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ABSTRACT

The vulnerability of deep neural networks to small, adversar-
ially designed perturbations can be attributed to their “exces-
sive linearity.” In this paper, we propose a bottom-up strat-
egy for attenuating adversarial perturbations using a nonlin-
ear front end which polarizes and quantizes the data. We
observe that ideal polarization can be utilized to completely
eliminate perturbations, develop algorithms to learn approx-
imately polarizing bases for data, and investigate the effec-
tiveness of the proposed strategy on the MNIST and Fashion
MNIST datasets.

1. INTRODUCTION

Given the immense impact of deep learning on a diversity of
fields, its vulnerability to tiny adversarial perturbations [1, 2]
is of great concern. For image datasets, for example, such
perturbations are almost imperceptible for humans, but they
can render state-of-the-art models useless, causing misclas-
sification with high confidence. State of the art adversarial
attacks are variants of gradient ascent, utilizing the local lin-
earity of deep networks. State of the art defenses are based on
adversarial training, using training examples obtained using
adversarial attacks, but yield little insight into, or guarantees
of, the achieved robustness.

In this paper, we investigate a systematic, bottom-up ap-
proach to robustness, studying a defense based on a nonlinear
front end for attenuating adversarial perturbations before they
reach the deep network. We focus on /,-bounded pertur-
bations. Our approach consists of polarizing the input data
into well-separated clusters by projecting onto an appropri-
ately selected basis (implemented using convolutional filters),
and then quantizing the output using thresholds that scale with
the ¢/, norm of the basis functions. For ideal polarization, we
prove that perturbations are completely eliminated. We intro-
duce a regularization technique to learn polarizing bases from
data, and demonstrate the efficacy of the proposed defense for
the MNIST and Fashion MNIST datasets.
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2. BACKGROUND

Suppose we have a classifier that takes in inputs € RV,
and outputs predictions (confidence scores for M classes) y €
[0,1]M. Our goal is to defend against malicious inputs of the
form « + e, where e € RY is a small perturbation that aims
to cause misclassification. Formally, we can describe such
adversarial attacks as a maximization problem:

max L(6,z + e, Yirue)s (1)

ecS
where L is a loss function, 8 denotes network weights and bi-
ases and yy,e 1 the vector of true labels. The adversary aims
to find the perturbation that maximizes L, subject to the con-
dition that e is chosen from a set S (typically £, bounded). In
this paper, we focus on /o, bounded attacks: |le||, < e for
an “attack budget” € > 0. Furthermore, we assume a “white
box” attack, in which the adversary has full knowledge of the
network structure and weights.

Attacks: State of the art /., bounded attacks (used in our
evaluations) are all based on gradient ascent on the cost func-
tion in (1). The Fast Gradient Sign Method (FGSM) [3], com-
putes the perturbation by

e=c-sign(VoL(0,z,y)) (2)

An iterative version of FGSM known as the Basic Iterative
Method (BIM) [4] finds the perturbation as

ei+1 = Clip, (ei +a-sign(VaL(0,z + e, y))) 3)

where « is the step size for each iteration, and ¢ is the overall
{ attack budget. It was noted in [5] that BIM is a formu-
lation of Projected Gradient Descent (PGD), a well-known
method in convex optimization. The PGD attack suggested
in [5] employs BIM with multiple random starting points
sampled from a uniform distribution in the € box around the
data point. We term this scheme PGD with Restarts.

Defenses: Defenders seek to minimize (1), so that learning in
an adversarial setting may be viewed as a minimax game. A
number of defense mechanisms have been proposed, only to
be defeated by stronger adversaries [6,7]. The current state
of the art defense employs retraining with adversarial exam-
ples [5]. However, there is no design intuition as to why and
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Fig. 1. (a) Activation sparsity (Eq. 4) alone is not sufficient to achieve robustness: perturbations can ride on top of strongly acti-
vated neurons (shaded region). (b) Polarization of neural activity can fully eliminate perturbations. For the shown hypothetical
histogram (gray) of w” x/||w||1, a ternary activation (blue) is effective. (c) Probability distribution of normalized front-end

filter outputs ay, /||wy||;.

how perturbations are being controlled as they flow up the
network. It is also computationally intensive, slowing down
training by an order of magnitude. A more efficient and in-
terpretable line of defenses employ data preprocessing prior
to the network. For example, sparsity-based preprocessing
was shown to be effective for linear classifiers [8] and neu-
ral networks [9, 10]. More recently, [11] proposed prepro-
cessing by randomly erasing pixels of the image, followed
by reconstruction using well-known matrix estimation meth-
ods. When combined with adversarial training, [11] achieves
state-of-the-art performance on MNIST, CIFAR-10, SVHN,
and Tiny-ImageNet datasets.

A number of quantization-based defense methods have
been proposed in literature, within the neural network [12, 13]
and as a front end [14-17]. The key difference in our pro-
posed strategy is that we employ polarization prior to quan-
tization, which enables theoretical guarantees on robustness
(Section 3).

Gradient Masking: The use of non-differentiable functions
or functions with a saturation region can cause state of the art
gradient-based attacks to falter. However, defenses that rely
on such “gradient masking” are not robust: they are easily cir-
cumvented by the attacker, as shown in [7], by replacing the
non-differentiable function by a differentiable approximation.
We test our defense using the gradient approximation meth-
ods of [7], replacing non-differentiable functions with identity
in the gradient calculations. We have also performed exper-
iments with other differentiable approximations to our quan-
tization function, but found identity approximation to be the
most effective for the attack.

3. POLARIZATION-BASED DEFENSE

We investigate a defense based on a front end which prepro-
cesses the inputs via a linear transformation followed by a

nonlinear activation f. Following convention, the linear op-
eration of a particular filter is termed a neuron. Consider a
typical front-end neuron with weights w, and scalar output
a. For perturbed input x + e with £, bound |le|loc < €, a
contains two components: desired signal w? x, and an output
perturbation w” e that is constrained in magnitude: |w”e| <
llellsollwll1 < €|lw]|1 due to Holder’s inequality. For the de-
fense to be successful, the nonlinearity f must be chosen such
that f(a = w? (x +e)) =~ f(w'x).

One design approach is to promote sparse activations by
increasing the threshold for neurons to fire, which makes it
difficult for a small perturbation to induce firing:

0, la| < efwls

fla) = @)

a, otherwise.

While this method helps (see [8—10] for a similar approach),
Fig. 1a shows why it cannot be completely successful. When
a neuron resides near the middle of the unshaded region, no
perturbation can change the signal output (f(a) = 0). How-
ever, neurons with a strong desired signal component (large
|wT'x|) can serve as hosts for the perturbation, allowing it to
propagate through the defense. Hence activation sparsity can
only be a part of the solution.

What if we could somehow polarize neural activity to ob-
tain well-separated clusters of neurons? Consider for instance
the three clusters of activations shown in Fig. 1b. In such a
scenario, we can completely eliminate perturbations by using
a quantized nonlinearity (in this case, ternary quantization).
Note that it is important for neurons to avoid the “danger
zones” of width 2¢ shown in the figure: this ensures that per-
turbations cannot switch data from one quantization level to
the next. These observations are formalized in the following
proposition.

Proposition 1. Suppose the front end polarizes activations
into a multimodal distribution with L clusters, with minimum
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inter-cluster separation d > 2¢||w||1. Letcy < ca < ...cp—1
denote the midpoints between adjacent clusters. Then the fol-
lowing L-level quantizer (with thresholds at c;) completely
eliminates perturbations with { ., norm smaller than e:

1 L—1
fla)=73 ; sign(a — ¢;). (5)

Proof. Since we use a quantizing nonlinearity, perturbations
can cause distortion only if the output switches quantization
levels. We know that for a perturbation e with /., budget €,
the maximum output distortion is €||w]||;. Therefore, if clus-
ters are separated by a distance of 2¢||w||1, perturbations can-
not propagate through the defense. O

This result motivates a second design approach, where
we seek a neural basis in which outputs are well-polarized
for clean inputs, with clusters of w” z/||w||; separated by at
least 2¢ as shown in Fig. 1b. We can then choose a piecewise
constant nonlinearity (Eq. 5) to eliminate the effect of pertur-
bations. Equipped with these design principles, we now detail
training procedures to learn polarizing bases from data.

3.1. Implementing a Polarizing Front End

Front end
| T |
| Pol.anzmg a 1 2 : _
T+ e — filters — Twel; [ Q(+) =+ Classifier
: [’LIJ17 000 w}(} :

Fig. 2. Block diagram of front end defense, showing a polar-
izing filter followed by ¢; normalization and quantization.

We employ a front end (shown in Fig. 2) which uses
convolutional filters to learn polarized and quantized latent
representations of data. For front end neuron wy, let z;, =
ak/||wg||1 denote the normalized activation. We seek a mul-
timodal distribution for z, with clusters separated by at least
2e. We achieve this by training with bump regularizers By (-)
and Bs(-) which promote polarization of data. We train in
three stages by minimizing the modified loss function:

K
A
E(y, Ytrues Z) = [:CE(yv ytrue) =+ ? ; B(Zk)

where Lo is the cross-entropy loss determined by the true
label and outputs of the classifier, K is the number of neurons,
z is the vector of activations of all neurons [z1, ... zk], B is
the regularizer and A is a scaling coefficient. These stages can
be described as follows:

1. We start by training the polarizer without using any
quantization. The front end filters are initialized from

Fashion MNIST

After Stage 2

Initial After Stage 1

MNIST

Initial After Stage 1 After Stage 2

Fig. 3. Typical progression of front-end filters over stages.

a uniform distibution described in [18]. Due to the ran-
dom initialization, normalized activations are typically
clustered around zero initially (shown in Fig. 1c). Next
we incorporate a bump regularizer B(-) = Bj(-) to
drive the normalized activations away from the origin,
pushing z towards the endpoints —1 and 1.

Bi(zg) = e—2r/20%

2. After achieving a sufficiently even level of distribution
throughout the interval [—1, 1], we switch to the sec-
ond bump regularizer B(-) = Bs(+), aimed at pushing
the normalized activations away from the quantization
thresholds +c and polarizing z into three clusters cen-
tered at —1, 0 and 1.

By(z) = e~ (+=9)/203 4 o~(aite)?/203

3. Now we introduce the quantization function f5(-) de-
scribed in Eq. 6. We also freeze and stop training the
filters in the front end, and remove the regularizer. We
train the classifier to let the weights adapt to the quan-
tization.

fa(zr) = 0.5sgn(zr, — ¢) + 0.5sgn(z; +¢). (6)

For testing, we continue using the quantized activation in (6)
to eliminate perturbations. Details regarding the choice of
parameters such as \, ¢, o1 and o5 are given in Section 4.

We find that these three stages suffice for Fashion MNIST
and MNIST, but depending on the dataset, one could poten-
tially repeat Stage 2 with an increasing number of clusters
until the desired level of polarization is achieved. Fig. Ic
demonstrates the effects bump regularizers have on the distri-
bution of normalized activations.

Fig. 3 shows the filters obtained after each stage for
MNIST and Fashion MNIST. Interestingly, we find that the
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learnt filters appear similar to pixel bases. This is consistent
with the observations in [5] about first-layer filters learnt by
adversarial training on MNIST.

4. EXPERIMENTS AND RESULTS

4.1. Training Details

For a fair comparison we use the small convolutional neural
network from [5], consisting of two convolutional layers and
two fully connected layers. Convolutional layers have 32 and
64 number of filters that are 5x5 in size. Each convolutional
layer is followed by 2x2 maxpooling operation. Every layer
except the last uses ReLU activation function. The outputs of
the last layer are fed into a softmax function to generate clas-
sification probabilities. In every run, the model is trained for
20 epochs in each stage for a total of 60 epochs. Gradient de-
scent is achieved using the Adam optimizer [19] with learning
rate 10~2 and default hyperparameters in PyTorch library.
During training with bump regularizers, stage 1 and stage
2 bump widths are picked to be oy = 0.35 and 05 = 0.15
respectively. To make the adaptation of weights smoother,
we increase the bump coefficient A linearly from O to 1 in
each stage, as the stages progress. The quantization thresh-
old is chosen to be ¢ = 0.3 for Fashion MNIST and ¢ = 0.5
for MNIST. When adversarially training using the methods of
Madry et al. [5] we use 10 restarts and 20 steps in each restart.

Attack Setup: We evaluate our defense against the white box
attacks described in Section 2: FGSM, BIM and PGD with
Restarts. We use attack budget ¢ = 0.3 for MNIST and € =
0.1 for Fashion MNIST. In iterative methods, we use step size
a = €/10. In BIM, we use 20 steps. In PGD we choose
the best performing attack from 20 random restarts, with 100
steps in each restart.

4.2. Results and Discussion

Fig. 4 shows the effect of attack budget on accuracy, showing
that our front end increases adversarial accuracy across a wide
range of e. Table 1 details our results against different attacks,
with a comparison with methods from literature.

Our defense significantly improves robustness against a
variety of attacks, but falls short of the accuracies obtained

Table 1. Experimental results for different attacks.

Fashion MNIST (e = 0.1) MNIST (e = 0.3)

Clean FGSM BIM PGD  Clean FGSM BIM PGD

Fashion MNIST

—*— Defense, BIM
No Defense, BIM

—4— Defense, PGD

—=— No Defense, PGD
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Fig. 4. Classification accuracy versus £, attack budget.

by adversarial training. This is because perfect polarization is
not possible in practice, leading to some leakage of adversar-
ial perturbations through the front end. However, the polar-
ization approach is amenable to interpretation, and provides
an avenue for further efforts in systematic bottom-up design.
In contrast, empirical experiments are the only means of ver-
ifying the efficacy of state of the art adversarial training.

5. CONCLUSIONS

In this paper, we have shown that polarization is a promising
tool for defense against adversarial attacks: when data is per-
fectly polarized, quantization can provably eliminate pertur-
bations. Our training procedures for learning polarizing bases
indicate that pixel bases are effective for polarizing datasets
like MNIST and Fashion MNIST, which is consistent with
the first-layer filters learnt in adversarially trained models for
these datasets [5]. While we consider a supervised learning
framework here, we have also obtained promising results with
unsupervised learning of polarizing bases, but omit discus-
sion due to space constraints. Open problems for future work
include combining polarizing front ends with nonlinearities
within the network in order to provably attenuate attacks as
they flow through the network, and obtaining polarizing bases
for more complex datasets such as CIFAR and ImageNet.
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