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Abstract. This paper provides new theoretical connections between multi-time Hamilton—Jacobi partial differ-
ential equations and variational image decomposition models in imaging sciences. We show that the
minimal values of these optimization problems are governed by multi-time Hamilton—Jacobi partial
differential equations. The minimizers of these optimization problems can be represented using the
momentum in the corresponding Hamilton—Jacobi partial differential equation. Moreover, varia-
tional behaviors of both the minimizers and the momentum are investigated as the regularization
parameters approach zero. In addition, we provide a new perspective from convex analysis to prove
the uniqueness of convex solutions to Hamilton—Jacobi equations. Finally, we consider image de-
composition models that do not have unique minimizers, and we propose a regularization approach
to perform the analysis using multi-time Hamilton—Jacobi partial differential equations.
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1. Introduction. In the late 20th century, the Hamilton—Jacobi (HJ) equation was widely
studied in the field of partial differential equations (PDEs). To be specific, the solution S(z, t)
defined for x € R™, ¢t > 0 satisfies the following Cauchy problem:

OSGt) 4 H(x,t,8(x,t), VaS(2,1) =0, o€ R >0,
S(z,0) = J(z), z € R,
where H is the Hamiltonian and J is the initial data. When the Hamiltonian only depends on

the spatial gradient V,S(z,t), under some regularity and convexity assumptions, the solution
is given by the Hopf formula or Lax formula [18, 68]

S(z,t) = sup (p,z) — J*(p) — tH(p) (Hopf formula)
peER”™
. [T —u
= inf J(u)+tH ( > (Lax formula),
ueR"” t

where J* and H* are the Legendre transform of the functions J and H, respectively. From
the physics point of view, the HJ PDE describes the movement of a particle in a physics model

*Received by the editors June 5, 2019; accepted for publication (in revised form) December 13, 2019; published
electronically June 30, 2020. The authors are listed in alphabetical order.
https://doi.org/10.1137 /19M1266332
Funding: The work of the authors was supported by the National Science Foundation grant 1820821.
TDepartment of Applied Mathematics, Brown University, Providence, Rl 02906 (jerome_darbon@brown.edu,
tingwei_meng@brown.edu).

971

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/24/20 to 128.148.254.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

972 JEROME DARBON AND TINGWEI MENG

whose energy function is given by the Hamiltonian H. To be specific, the variables x and ¢
are the current position and time of the particle. The characteristic line of the PDE gives the
trajectory of the particle. The momentum is given by the spatial gradient V,S(z,t), which
coincides with the maximizer in the Hopf formula. The velocity is given by *5*, where u is
the minimizer in the Lax formula.

We refer the reader to the review paper [48] for thorough details and to [49, 69] for connec-
tions between convex analysis and HJ equations. An extension of this PDE is to consider the
time variable ¢ in a higher dimensional space RY, in which case the PDE system is called the
multi-time HJ equation, first discussed by Rochet from an economic point of view [80]. Later,
Lions and Rochet [71] considered the multi-time HJ equations when the Hamiltonians are
convex functions which depend only on the momentum. They proposed the generalized Hopf
formula by writing it as the composition of several semigroups of the corresponding single-time
HJ operators. Following their work, several existence and uniqueness results [20, 32, 73, 78, 88|
were provided in more general cases—for example, when the Hamiltonians have spatial or time
dependence.

It is well known that the HJ equation has a deep relationship with optimal control [26]
and differential games [57, 84]. Later, Darbon [49] provided a representation formula for the
minimizers of a specific kind of optimization problem, which relates the minimizers to the
spatial gradients of the solutions to the HJ equations. As we will see below, many models
in imaging sciences can be viewed from a perspective of HJ PDEs. Following that work, we
generalize the results to multi-time HJ equations and a larger set of optimization problems,
including the decomposition models in image processing.

In the past few decades, many decomposition models have been proposed in image pro-
cessing. These models are applied to different practical problems, such as inpainting [23, 56],
image classification [12], and road detection [62]. Here, we give a brief overview of convex
variational models in this area. There are many models that cannot be fully listed here, for
which we refer the reader to [44, 61].

The basic idea of image decomposition is to regard an image = as a summation of several
components {u;} and solve the following minimization problem:

N

(1.1) argmin fo(uo) + Y A; fj(u;).

uo+--tun=e j=1
Here, each function f; is designed to characterize the corresponding component ;. One
may tune the parameters {\;} to put emphasis on different components. There are many
celebrated decomposition models in the literature of imaging sciences. In the introduction
we mention the continuous versions of the models, while later in the main part of this paper
we will work with their discrete versions. The first widely used decomposition model is the
Rudin—-Osher—Fatemi (ROF) model, proposed in [83], which applies the total variation (TV)
seminorm and || - H%Q to recognize the geometry and noise in an image, respectively. In the
continuous setting, for any function v € L'(Q2) and 2 C R?, the TV seminorm of u is defined
by

||| 7y := sup {/Qu(x)divgb(:r)da:: ¢ € CHOQR?), ||¢]|L= < 1} )
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Here and in the remainder of the introduction, the derivatives and divergence are in the
distribution sense. The space BV () is the space containing all functions of bounded variation,
defined by

BV(Q) = {u e L*Q): |lul|lrv < +oo}.

Under these settings, the ROF model solves the following problem:

. 1
arg min [l + 5= — ull%.
u€BV(Q)

The mathematical analysis for the ROF model is provided in [1, 2, 3, 4, 7, 28, 29, 33, 34, 35, 36,
38,40, 41, 46, 47, 51, 63, 64, 76, 79, 89, 91]. Later, Meyer [72] pointed out the disadvantage of
Il - ||%2 in capturing oscillating patterns. In order to overcome this disadvantage, he suggested
using the norm in one of the three spaces F, F, G to replace it, where these three spaces are
defined as follows. We use the notation of Meyer to describe these spaces [72]. First, define
the space of functions of bounded mean oscillation (BMO) by

BMO := {f € L. (R"): sup{@/@\f(x) — foldz : @ is any ball in R”} < —i—oo}

1
where the symbol fg is defined by fqg := m/ f(x)dx,
Q

and the homogeneous Besov space Bl1 1 by
B = {f e LT (RY) 1 Y 3 e, k)|27072) < o,
jeZ kezn

where {c(j,k)} are the wavelet coefficients of f}

Let B"™ be the dual space of B%l Then, define E, F,G by E := B3,"™®, F := div(BMO),
and G := div(L*>). To be specific, the space G and G-norm are defined as follows:

G:={f=01g91+0aga: g1,92 € L°(R*)},
1flle = nf{l(g? + g3) /e = f = Drgn + Baga).

The space F' is similarly defined by replacing the space L™ in the above definition with the
BMO space. The corresponding models proposed by Meyer are stated as follows:

(1.2) argmin ||u|rv + Allz — ul|x, where the space X can be E, F, or G.
’ ueBV(Q)

For mathematical analysis of these models, we refer the reader to [59, 62, 70]. In [59], the
space FE is also generalized to any homogeneous Besov space Bg _2’q, where p, q € [1,+o0] and
a € (0,2). However, Meyer’s models are hard to solve numerically. There are mainly two
approaches to numerically solve the model with the G-norm. The first approach is approxi-
mating L in the definition of G by LP [90]. Osher, Solé, and Vese [77] proposed an equivalent
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formulation called OSV when p = 2. Briefly, OSV uses the square of the H~'-norm instead
of the G-norm. To be specific, the OSV model solves

argm1n||uHTV+/\/ V(A) Mz —u | dxdy.
u€BV(Q)

The other approach called the A2BC model is proposed by Aujol et al. [9, 10], replacing
the G-norm with the indicator function of balls in the space G. In other words, it solves the
following problem:

(1.3) argmin ||u||ry + I{]|z — ull¢ < p},
u€BV(Q)

where I{-} denotes the indicator function whose definition will be given in section 2. It
is shown that this A?BC model gives the solution to Meyer’s model (1.2) with X = G
when the parameter p is appropriately chosen. In practice, they use a Moreau—Yosida-type
approximation and solve the following problem instead:

. 1
(1.4) argmin |ullzy + I{|[vlle < p} + 55z —u—v7s.
wEBV(Q), veG 2A

This regularized model converges to (1.3) as the parameter A approaches zero. Moreover, it is
easy to implement using Chambolle’s projection method [37]. Similarly, in [11], the indicator
function of the FE-ball is used to replace the E-norm, which provides a similar numerical
implementation approach to the Meyer’s model (1.2) with X = E.

In the above models, an image is decomposed into a geometrical part and an oscillating
part. However, for a noisy image, the oscillating part may contain both the texture in the
original image and the noise. To split these two parts, a u + v + w model is proposed in [11],
which constrains the G-norm of the texture part and the E-norm of the noisy part. Later,
Gilles [60] modified the u + v + w model with a coefficient assigned to each pixel to smoothly
indicate whether it is in texture or noise. He also modified the A2BC model by requiring the
G-norm of the noise to be much smaller than the G-norm of the texture. In [15, 53, 54|, the
authors extended some of the above-mentioned models, which are originally proposed for gray-
scale images, to color images. There are many other functions used in image decomposition.
For example, the L'-norm [5, 14, 42, 75] is used to promote sparsity or remove salt and pepper
noise. In [13, 14], the quadratic form (-, K-), where K is a linear symmetric positive operator,
is used for adaptive kernel selection of the texture component. Note that this quadratic form
generalizes the L? term in ROF and the H~! term in OSV.

The previous work [49] clarifies the relationship between single-time HJ equations and
decomposition models with two terms (i.e., N = 1in (1.1)), such as the ROF model, Meyer’s
models, and some of their variations. However, as mentioned above, there are many other
models handling three or more components. Also, in practice, one may modify a model by
adding a quadratic term for numerical consideration, such as in (1.4). This kind of modi-
fication is applied to most of the above models. As a result, the objective function in the
numerical implementation actually contains three or more terms. On the other hand, new
models can be constructed by regarding the functions mentioned above as building blocks and
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combining them together. For instance, the morphological component analysis [58, 85, 86]
combines the ROF model and L' minimization for the coefficients with respect to two sets of
dictionaries chosen for the representation of texture and geometry. Another example is [45],
which adds a higher order term «||Av||3, to the models introduced above in order to reduce
the staircase effect. Actually, the higher order terms in image processing are widely studied in
the literature. Two important models are the TV-TV? infimal convolution model [41] and the
total generalized variation (TGV) model [25]. In fact, after discretization, the higher order
linear operators are discretized using some matrices. In other words, the results in this paper
can be applied to the discrete models with higher order terms by regarding them as matrix
multiplication. In conclusion, it is valuable to generalize the previous work [49] and provide
a framework to analyze the models involving more than two components. Also, our proposed
framework is suitable for a large class of discrete decomposition models in imaging sciences,
even including some models containing higher order terms.

Now, we briefly introduce the intuition and the basic setup for our framework and demon-
strate the idea using some experimental results of the discrete A2BC model. In general, for
a discrete decomposition model (1.1), an image is regarded as a vector z € R™, where n is
the number of pixels. If we can relate each f;, j > 1, to a Hamiltonian and fy to an initial
function, then the minimal value, regarded as a function of the input data =z and the param-
eters {);}, relates to the solution of the corresponding multi-time HJ equation. Here, the
parameters {\;} are regarded as time variables.

For example, the discrete A2BC model solves the following optimization problem:

L1
2

(Y

(1.5) S(x, p,A) == min J(u)+ J* <u>

min I = — ol

The desired quantities are the minimizers, denoted as u(z,pu,\) and v(z, u, A). Here, the
discrete TV seminorm J : R™*™2 — R is defined as follows:

mi1—1mo—1

(1.6) J(u) == Z Z lwiv1j — Wi

i=1 j=1

+ Ui g1 — uigl-

In this paper, we identify the space R™*™2 containing all matrices with m rows and mso
columns with the Euclidean space R™ where n = mims. The discrete TV J defined above
is the anisotropic version, which will be used in this paper. Its Legendre transform J* is the
indicator function of the unit ball in the dual space. To be specific, let || - || be the dual norm
of J, which is given by

[vlc = inf{ sup 1/ (9i,)* + (hij)*:  vij = gij — Gi—1,j + hij — hij1,
1<i<m,
1252ms

90,5 = 9mi,j = hio = him, =0, gij,hij€R V1<i<m,1<j< mz}-

Then, we have J*(p) = I{||p|l¢ < 1} for any p € R™, where I{-} denotes the indicator function.
Notice that any indicator function is invariant under multiplication with a positive constant;
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Image x, Geometrical part for Image 1 Texture part v for Image 1

(a) (b) (c)

ol

Mixed image 0.3x , +0.7x, Geometrical part for mixed image Texture part v for mixed image

(d) () (f)

Figure 1. The A?BC model is applied to an artificial image. The original image 1 and the corresponding
minimizers u,v are shown in (a)—(c). The convexr combination 0.3z1 4+ 0.7x2 of 1 and its rotation x2 is shown
in (d), whose minimizers are shown in (e)—(f).

then we have pJ* = J*. Hence, the above optimization problem is equivalent to

2
r—Uu—"v

u,vER 2

2
We shall see that such a representation for S will allow us to show that S satisfies the following
multi-time HJ equation:

PG 4 J(VaS(z,1,0) =0,  z€R™pu>0,1>0,
Oeaed) 4 LIV, 8 (2, 1, M3 =0, = €R™u>0,A>0,
S(,0,0) = J(z), x € R

In Figures 1 to 6, the minimizers u, v and the minimal values S for the corresponding input
images are shown. To compute the minimizers, we apply a splitting algorithm to convert the
optimization problem (1.5) to two subproblems involving computing the proximal point of A\J
and computing the projection to a p-ball of Meyer’s norm. The second subproblem is the
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Figure 2. The graphs of the minimal values S with respect to the variables o, i, and A in the first ezample
are shown in (a)—(c), respectively. To be specific, (a) shows the function a — S(azi + (1 — &)z, apr + (1 —
a)pz, a1 + (1 — a)A2), (b) shows the function p— S(x1, 1, A1), and (c) shows the function A — S(z1, p1, A).

dual problem to the first one. As a result, for both subproblems, we can apply the algorithm
in [39, 50, 67] to obtain the exact minimizers.

In the first example, the test image x; is shown in Figure 1a. We consider the following
parameters: 1 = 1, A1 = 0.01. The corresponding minimizers u and v are shown in Figures 1b
and lc. When o = x1, A = \; are fixed, the minimal values S(z1, u, A1) can be regarded as
a function of u, whose graph is plotted in Figure 2b. Similarly, the graph of S(z1, pu1,A) is
plotted in Figure 2c. To illustrate the variation of S with respect to x, we choose another
image z9 with corresponding suitable parameters p2, A2 and plot the function values f : o —
S(axi+(1—a)zg, apr+(1—a)ug, adi+(1—a)A2) with « € [0, 1]. In this example, x9 is chosen
to be a rotation of x1, and the parameters remain the same: po = py, As = A\1. The graph of
f is plotted in Figure 2a. We also show an example of the mixed image = = ax; + (1 — a)zs
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Noisy image (with variance 0.09)

Restored image u Noisy part (v+0.5)

(a) (b) (c)

Figure 3. The A’ BC model is applied to the noisy test image shown in (a). The corresponding minimizers
u and v are shown in (b) and (c), respectively.

Geometrical part u

Texture part (v+128)

(a) (b) (c)

Figure 4. The A>BC model is applied to the test image “Barbara”. The original image is shown in (a).
The corresponding minimizers u and v are shown in (b) and (c), respectively.

for o = 0.3 and the corresponding minimizers u, v in Figures 1d to 1f. In addition, the A2 BC
model (with parameters p = 0.06, A = 0.01) is applied to a noisy image shown in Figure 3a,
whose minimizers are shown in Figures 3b and 3c.

The test image “Barbara” is used in the second example. The original image and the
corresponding minimizers u, v in the A2BC model with parameters u = 30, A = 8 are shown
in Figure 4. To demonstrate the variations of the minimal values, we choose two parts x1, xo
of the image, shown in Figures 5a and 5d, and repeat the experiment in the first example.
Setting uy = 16, po = 24, A\; = 8, and Ay = 12, the corresponding minimizers u, v are shown in
Figures 5b, 5¢, be, and 5f. The mixed image (o = 0.5) and minimizers are shown in Figures 5g
to 51, and the dependence of S on z, i, A is shown in Figures 6a to 6c¢.

It can be seen from Figures 2 and 6 that S is a convex function with respect to the input
image x and the parameters. This can be proved with an argument similar to that in the
proof of Proposition 3.1. In this paper, more properties about S and the minimizers u, v are
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Image Xy

(d)

Mixed image 0.5x ‘+0.5X2

(8)

Geometrical part for Image 1

B

(b)

Geometrical part for Image 2

(e)

Geometrical part for mixed image

(h)

Texture part (v + 128) for Image 1

(c)

Texture part (v + 128) for Image 2

(f)

Texture part (v + 128) for mixed image

(i)

Figure 5. The A2BC model is applied to two parts of the image “Barbara.” The original image x1, 2 and

corresponding minimizers u,v are shown in (a)—(f).

are shown in (g)—(i).

revealed.

The conver combination 0.5x1 + 0.5x2 and its minimizers

Our contribution. The contribution of this paper is the theoretical results connecting
the multi-time HJ equation and some optimization models such as decomposition models in
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Figure 6. The graphs of the minimal values S with respect to the variables o, u, and X in the second
example are plotted in (a)—(c), respectively.

imaging sciences. There are three parts of this paper. In the first part, we consider the de-
composition models and the corresponding dual problems, and we investigate the properties
of their optimizers and optimal values. To be specific, for some optimization problems, the
minimal value coincides with the solution S(z,t1,...,tx) to a corresponding multi-time HJ
equation. This relationship in the case of single-time HJ equations has been studied in [49].
We generalize the representation formula for the minimizer u; and the variational analysis
results of S and V.S in [49] to the case of multi-time HJ equations. Moreover, we present

. . . o . . U4 . . .
a new variational analysis of the scaled minimizer 3*. In the variational analysis, we con-

J
sider a sequence {(zx,t1 ,...,tN %)}k, Wwhose elements are perturbed variables near the point
(,0,...,0), and the perturbation becomes smaller when k is larger. We show that the limits

of the corresponding spatial gradients V.S and the scaled minimizers 32

- solve two optimiza-
J
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tion problems which are dual to each other. In the second part, we prove the uniqueness
of the convex solution to the multi-time HJ equation under some specific assumptions. In
the field of PDEs, the uniqueness of the viscosity solution has been widely studied; for these
studies we refer the reader to [48] and the references listed there. Here, our contribution is
to provide a new perspective from convex analysis and use the duality technique to prove
the uniqueness of the convex solution. Finally, we propose a regularization method for the
decomposition problems which may have nonunique minimizers or nondifferentiable minimal
values. The regularization method is used to select a unique minimizer w) , and a unique
gradient p) , of the minimal function, where A and p are some positive parameters. In fact,
the gradient p) , coincides with the maximizer in the corresponding dual problem. This reg-
ularization method can be regarded as a generalization of the Moreau—Yosida approximation,
which is introduced, for example, in [8, 27]. Instead of only considering the primal problem
as in the Moreau—Yosida approximation, our contribution here is to consider both the primal
problem and the dual problem at the same time. Then, we apply the variational analysis
result in the first part to prove the convergence of uy , and p, ,. We show that they converge
to the [?-projection of zero onto the corresponding sets of the original problems, when the
regularization parameters A and p approach zero in a comparable rate.

Organization of the paper. The paper is organized as follows. Section 2 gives a brief
review of the convex optimization theorems which are used in the later proofs. The main
results are stated in sections 3 to 5. In section 3, the connection between some decomposition
models and the multi-time HJ equation is shown. Proposition 3.2 provides the representa-
tion formula for the minimizers u; of some decomposition models. Also, we investigate the
variational behaviors of the minimal value S, the momentum V.S, and the velocities ?—J in
Proposition 3.5. Section 4 is devoted to the proof of the uniqueness of the convex solution to
the multi-time HJ equation. In section 5, we present a regularization method for the degen-
erate cases which do not satisfy the assumptions in section 3. The method is demonstrated
using a specific example, but the analysis can be easily applied to other models. Finally, some
conclusions are drawn in section 6.

2. Mathematical background. In this section, several basic definitions and theorems in
convex analysis are reviewed. All the results and notations can be found in [65, 66]. We also
refer the readers to [22, 24, 81]. The notations used in this paper are summarized in Table 1.

First, a set C' in R™ is convex if ax 4+ (1 — o)y € C whenever z,y € C and «a € [0, 1].
The relative interior of C, denoted as ri C, is the interior of C' with respect to the minimal
hyperplane containing C' in R™. For any convex set C', the normal cone of C' at z € C, denoted
by N¢(z), can be characterized by

(2.1) q € N¢(z) if and only if (q,y —x) <0 for any y € C.

Here, we use angle brackets (-, -) to denote the inner product operator in any Euclidean space
R™. For any closed convex set C' and any point « € C, one can define the asymptotic cone of
C, denoted as Cx (), by

(2.2) Coo(xz) ={deR": z+tde C for all t > 0}.

In fact, the asymptotic cone is independent of z, as stated in the following result.
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Table 1
Notation used in this paper. Here, we use C to denote a set, f to denote a function, and x,d to denote
vectors in R™.

Notation | Meaning Definition

dom f domain of f {z eR": f(z) eR}

ri C relative interior of C' the interior of C' with respect to the minimal hyper-

plane containing C in R"

Nc(z) normal cone of C' at x {geR": (q,y—z) <0 forany y € C}

Coo () asymptotic cone of C {deR": z+tde C forall t >0}

epi f epigraph of f {(z,t) eR" xR: z €dom f, t > f(x)}

To(R™) a useful and standard class of | the set containing all proper, convex, lower semi-
convex functions continuous functions from R" to R U {+oc0}

f(z,d) directional derivative of f at = | lim, o+ +(f(z + hd) — f(z))
along the direction d

of (x) subdifferential of f at « {peR™: f(y) > f(z)+ (p,y —x) Vy € R"}

Ic the indicator function of C' If z € C, then define I¢(x) := 0. Otherwise, define
Ic(z) = +oo.

fr Legendre transform of f [ (p) = sup,epn (P, x) — f(x)

fOg inf-convolution of f and g (fOg)(z) := infyern f(u) + g(z — u)

Proposition 2.1 (see [65, Prop.111.2.2.1]). Let C be a closed convez set and x,y € C. Then
Coo(x) = Cxo(y). In other words, for any d € Coo(x), y+td € C for any t > 0.

A function f : R™ - RU{+o00} is said to be convex if for any « € (0,1) and any z,y € R,

flax+ (1 —a)y) <af(x)+ (1 —a)f(y).

The function f is called proper if it is not identically equal to +00. The domain of f, denoted
by dom f, is defined to be the set where f does not take the value +o0o0. The epigraph of f,
denoted as epi f, is defined by

epi f:={(z,t): z €dom f, t > f(x)}.

Then, f is convex (proper, or lower semicontinuous, respectively) if and only if epi f is
convex (nonempty, or closed, respectively). We denote I'g(R™) to be the set of proper, convex,
and lower semicontinuous functions from R"™ to R U {4+00}. In this section, we only consider
the functions in T'o(R™). These functions have good continuity properties, which are stated
below.

Proposition 2.2 (see [65, Lem.IV.3.1.1 and Chap.l.3.1 - 3.2]). Let f € T'oW(R"). Ifz €
ri dom f, then f is continuous at x in dom f. If x € dom f \ ri dom f, then for any
y €ri dom f,

f(z) = lim f(z+t(y—x)).

t—0t

For any f € To(R"™) and x € dom f, the directional derivative at = along any direction
d, denoted as f’(z,d), is well defined in RU {£o0}. When f is differentiable at z, f'(z,-) =
(Vf(z),-) is a linear function. In general, when f is not differentiable, f’(z,-) is only sublinear,
in which case we can consider the linear functions dominated by it. Each normal vector of
such linear functions gives a subgradient of f at z, whose formal definition is given below.
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Also, the rigorous statement about the relation we described above between the directional
derivatives and subgradients is given in Proposition 2.6.
A vector p is called a subgradient of f at x if it satisfies

fly) > f(x) + (p,y — z) for any y € R"™.

The collection of all such subgradients is called the subdifferential of f at x, denoted as df(x).
It is easy to check that 0 € 0f(x) if and only if = is a minimizer of f. As a result, one can
check whether x is a minimizer by computing the subdifferential.

As is well known, the subdifferential operator is a (maximal) monotone operator. To be
specific,

(2.3) (p—q,z—y) >0 for any p € 0f(z) and q € Of(y).

Moreover, in most cases, the subdifferential operator commutes with summation.

Proposition 2.3 (see [66, Cor.XI.3.1.2]). Let f,g € I'o(R™). Assumeri dom fNri dom g #
0. Then O(f + g)(z) = 0f (x) + dg(z) for any x € dom f N dom g.

Here, we give one simple example. For any convex set C, the indicator function Io is

defined by
0, x e,
Ic(z) ==
400, x¢C.

In this paper, we also use the notation /{-} to denote the indicator function if the set C' is
given in the form of some constraints. By definition, the indicator function Io remains the
same after multiplying by a positive constant; i.e., we have alc = I¢ for any a > 0. One can
compute the subdifferential of the indicator function and obtain

(2.4) dlc(z) = Ne(a).

Next, we introduce one important transform in convex analysis called the Legendre trans-
form. For any function f € I'o(R"™), the Legendre transform of f, denoted as f*, is defined
by

(2.5) f*(p) := sup (p,z) — f(z).

z€R™

The Legendre transform gives a duality relationship between f and f*. In other words, if
f € To(R™), then f* € T'o(R™) and f** = f. Similarly, along with this duality relationship,
some properties are dual to others, as stated in the following proposition. (Here and in what
follows, a function g is called 1-coercive if limj, 400 () /||2]| = +00.)

Proposition 2.4 (see [66, Chap.X.4.1]). Let f € I'o((R™). Then f is finite-valued if and
only if f* is 1-coercive. Also, f is differentiable if and only if f* is strictly convex.

In particular, the subgradients can be characterized by the maximizers in (2.5).

Proposition 2.5 (see [66, Cor.X.1.4.4]). Let f € T'o\(R™) and p,x € R". Then p € 0f(x) if
and only if x € df*(p), if and only if f(x)+ f*(p) = (p, x).
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The concepts we introduced above, including directional derivatives, subgradients, and
the Legendre transform, can be linked together by the following proposition.

Proposition 2.6 (see [66, Example X.2.4.3]). Let f € I'o(R™) and x € dom [ such that Of(x)
is nonempty; then (f'(x,-))* = Iyp(z). Moreover, if x € ri dom f, then f'(x,-) € T'o(R™), and
hence f'(x,-) = I3ty

In addition to the Legendre transform, there is another operator to construct convex
functions called inf-convolution. Given two functions f,g € T'o(R"), assume there exists
an affine function [ such that f(z) > I(x) and g(x) > I(z) for any x € R™. Then, the inf-
convolution between f and g, denoted as f[g, is a convex function taking values in RU{+o00}.
The definition of the inf-convolution f[g is given by

(2.6) (f0g)(x) := mf f(u)+g(z —u).

In the following proposition, the relation between the Legendre transform and inf-convolution
is stated. Actually, the Hopf formula and Lax formula introduced in the next section are
formulated using the Legendre transform and the inf-convolution operator, respectively. As a
result, these two operators play a significant role in our present analysis.

Proposition 2.7 (see [66, Thm.X.2.3.2 and Thm.X1.3.4.1]). Let f,g € T'o(R™). Assume
the intersection of ri dom f* and ri dom g¢* is nonempty. Then fOg € T'o(R™) and fOg =
(f*+ g*)*. Moreover, for any x € dom fUg, the optimization problem (2.6) has at least one
minimizer, and O(fOg)(x) = 0f(u) N dg(x — u) for any minimizer u.

3. Properties of the solutions to the multi-time Hamilton—Jacobi equations. In this
section, we provide a representation formula for the minimizers in the Lax formula and high-
light the relation of the minimizers and the momentum in the multi-time HJ equation. Also,
we investigate the variational behaviors of both the solution to the multi-time HJ equation
and the corresponding momentum when time variables approach zero. Moreover, we also
present a new result stating the variational behaviors of the velocities, which has not been
developed before, even for the single-time case. Similar to the duality relation of the Hopf
and Lax formulas, the cluster points of the minimizers and momentum solve two optimization
problems, which are also dual to each other. An illustration is given in the upper part of
Figure 7.

We consider the solution S(z,t1,...,tyx) to the following multi-time HJ equation:

(3.1) {£+Hj(V$S) =0forany j€{l,...,N}, ze€R" ty,...,txy >0,

S(z,0,...,0) = J(x), z e R™.

Here, we consider only the multi-time HJ equations whose Hamiltonians depend only on the
momentum V,S. Several conditions are imposed on the Hamiltonians {H;} and the initial
data J in this section. To be specific, we assume the following;:

(H1) H; : R™ — R is convex and 1-coercive for any j = 1,..., N. Moreover, at least one of

them is strictly convex.

(H2) J € Th(R™).
From the assumption (H1), by Proposition 2.4, it is known that H J* is also finite-valued,
convex, and 1-coercive for any j =1,..., N. Moreover, at least one H; is differentiable.
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It is well known that in this case the unique classical solution is given by the Hopf formula
[71, 88] stated as

*

N

N
(3:2)  Sul(x,t,...,tn) = [ J*+ D _HH; | (2)= sup (p,x) — J*(p) = Y _ t;H;(p)
j=1 pER™

j=1
and the Lax formula [88] stated as
Sp(x,tr,... ty) = (JOH)O--- O HN)") (2)

N N
. [ Uy
— inf J|xz— g uj | + E thj (t])
J=1 j=1

UL ye., Ny ER™
t;7#0

(3.3)

u;=0 whenever ¢;=0

for any x € R™ and t1,...,txy > 0. We extend Sy and Sy, to the whole domain by simply
setting the function values to +00 whenever the function value is not defined. There are some
physical interpretations of the HJ PDEs and the optimizers in the above two formulas. Given
suitable Hamiltonians { H;} and a suitable initial condition .J, the HJ PDE (3.1) describes the
movement of a particle. Roughly speaking, in a time interval with length ¢;, a particle moves
along the characteristic line of the jth equation in the PDE system. The velocity in this time
interval equals 7:—;, where (u1,...,uy) denotes the minimizer in the Lax formula (3.3). On
the other hand, the maximizer in the Hopf formula (3.2) gives the momentum of the particle,
which coincides with the spatial gradient V,S(z,t1,...,tn). We refer the reader to [21] for
details about HJ PDEs and variational principles in physics.

Under the assumptions (H1) and (H2), Si = S1, and the value is finite if there exists some
t; > 0. In addition, the minimizers in the Lax formula (3.3) exist whenever the minimal value
is finite. This result can be proved using Proposition 2.7. Also, by Proposition 2.5, it is not
hard to check that Sy € C'(R™ x (0, +00)") and satisfies HJ equation (3.1). Moreover, the
spatial gradient is the unique maximizer in the Hopf formula (3.2). To conclude, the Hopf and
Lax formulas express the classical solution to the multi-time HJ equation as two optimization
problems. The Hopf formula provides a physical interpretation and has the momentum V.5
as the maximizer, while its dual problem in the Lax formula is in the same form as some
decomposition models in imaging sciences.

The following proposition states that the solution is actually a convex function; hence the
techniques in convex analysis can be applied to analyze the solution. The results hold even
under weaker assumptions. Actually, a part of the proposition can be further generalized to
the case when J, H; € I'g(R") and dom J* C dom H; for any j.

Proposition 3.1. Let J, Hj € To(R™) and dom H; = R"™ for any j. Then, Sy € To(R*™),
whose Legendre transform is given by

Sulp, E7) = J"(p) + ZI{Ej_ + Hj(p) < 0}
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for any p € R™ and E~ = (Ey,...,Ey) € RN. Here, I{-} denotes the indicator function.
Moreover, if the assumptions (H1)—(H2) are satisfied, then Sg(z,t1,...,tN) is finite for any
z € R" and ty,...,ty > 0 which are not all zero.

Proof. First, we prove that Sy is the Legendre transform of F', where F' is defined by

N

F(p,E™):=J"(p) + Y _I{E; + Hj(p) <0}
j=1

for any p € R and any E~ = (Ey,...,Ey) € RV, It is easy to check that I € [o(R"™V).
By definition, for any € R” and t = (t1,...,tx) € RY,

N N
B4 Pt = s | {op)+ Y 4GE I k) - Y HE; +Hyp) <0)

peER™ E— RN j=1

First, we consider the case when there exists k such that ¢z < 0. Take p € dom J*. For
any j # k, take E; = —H; (p), which is a finite value. From the above equation,

F*(x,t) > (z,p) + thEj_ —J*(p) + limsup #E, = +oo.
£k By <—Hj(p)
E, ——o0

Hence F*(z,t) = 400 = Sy (x,t) if t; < 0 for some k.

Then, consider the case when ¢1,...,ty > 0. Let x € R™; from (3.4), we obtain
F*(z,t) = sup (x,p) + Z t;E; — J*(p)
_ peR™ . J: t;>0
E;<-Hj(p) Vj
35 cap | ww [ne X oo s
peR™ | Ej <—H;(p) Vi i ;>0

peR™ j: ;>0

Therefore, Sy = F*, which implies that Sy is a convex lower semicontinuous function and
F = S%;. Moreover, if there exists some k such that ¢, > 0 and ¢; > 0 for any j # k, then,
by assumption (H1), we deduce that J* + Zj tjH; is 1-coercive, which, by Proposition 2.4,
implies that its Legendre transform Sy (-, ¢1,...,tn) (with respect to x) is finite-valued. M

By investigating Sy on the boundary of the domain, the solution to a lower time dimen-
sional equation is embedded in the solution to the higher time dimensional equation, in the
sense that the restriction of Sy on the subspace {(z,t1,...,tny) : t; =0Vj € J} for any index
set J C {1,..., N} is the solution to the corresponding lower time dimensional HJ equation
with Hamiltonians {H;}q;.
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The following proposition states a representation formula for the minimizers in the Lax
formula. In the decomposition model (3.3), a given image z is decomposed into different
components, including wuy,...,uy and the residual x — Z;VZI u;. However, sometimes the
primal minimization problem is difficult to solve; then the following proposition can be applied
to compute (ug,...,uy) using the momentum VS (x,t1,...,ty). In fact, the momentum is
the maximizer of the dual problem in the Hopf formula (3.2). In other words, the following
proposition gives the relation of the optimizers in the primal decomposition problem and the
dual problem.

Proposition 3.2. Suppose the assumptions (H1)—(H2) hold. Let x € R™ty,...,ty >0, and

assume the time variables {t;} are not all zero. Denote (u1,...,un) to be any minimizer of
the minimization problem in (3.3) with parameters x and ti,...,ty. Here, each u; can be
regarded as a function of (z,t1,...,tn). Then, for any j,

(3.6) Uj(.f,h, ..., tN) € tjaHj (VoSp(x,ty,...,tN)) -

Specifically, if a stronger assumption is imposed, say, all the Hamiltonians are differen-
tiable, then the minimizer (uq,...,un) is unique and satisfies

uj(z,t1,...,tn) =t;VH; (Vo Sp(z,t1,...,tn)) for any j.

Proof. Since dom Hj; = R" for each j, by Proposition 2.7 and induction, the minimizers
uj exist if Sg(x,t1,...,tn) < 400, and

N N
8$SL($,t1,...,tN)=8J m—zluj m qa(th]* (t])) (u])
J= J=

(3.7) N N
=aJ ==Y w || oH; <“J>
j=1 j=1 tj

From the assumption (H1), there exists some j such that H ;s differentiable; hence the
intersection above contains at most one element. On the other hand, 9,5y is nonempty in
the interior of the domain of Sr,(+,¢1,...,tx), which is the whole space R™ because S;, = Sg
is finite-valued when the time variables are not all zero. Therefore, the above intersection
contains exactly one element. In other words, Sy is differentiable with respect to x for any
t1,...,txy > 0 which are not all zero and = € R". Moreover, by (3.7), VS € 0H; (u;/t;),
which implies u;/t; € 0H;(V,Sp(x,t1,...,tn)) for any j. [ |

In the remaining part of this section, we investigate the multi-time HJ equation (3.1) and
the minimization problem (3.3) from a variational point of view. To be specific, let v;;, € R™
and t;, > 0 for any j € {1,...,N} and k € N such that they satisfy limy_,4octjr = 0
and limy_, oo v = Vj oo for any j. Let x € R" and x, = x + Z;VZI tjxvjr for any k. We
are interested in the convergence behavior of the momentum V,Sy and the minimizers u;
evaluated at (2, t1k,...,tN k). We will demonstrate one application in section 5.

Among all the sequences {t;x}r,j = 1,..., N, by taking subsequences, we can assume
there is a sequence with the lowest convergence rate. According to the symmetry of the time
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variables, without loss of generality, we can assume {t; 1} is the slowest sequence converging
to zero compared to {tj;}x for any j > 1; ie., we assume that {Z—Z}k has a finite limit
denoted as o € R for any j. In summary, the following notations and assumptions are
adopted:

(3.8)
N
Tp =+ th,kvj,k: where t;;, > 0, z,v;, € R" for any j € {1,...,N}, and k € N,
j=1
lim t;p=0and lim v, =v;c0,
k—+o00 ik k—+o00 gk 100
tik
lim 2% =a;. €R.
k—+o0 t1 e

In the decomposition models, {zx} is given by a sequence of observed images. In each
there is a constant component denoted by  and several other components denoted by t; v,
for j = 1,...,N. In the remaining part of this section, we investigate the behavior of the
minimizers of the decomposition model in (3.3) when the components t; ,v; converge to zero
and the parameters ¢; in the model vanish.

First, we show the convergence of u; to zero, which is stated in (i) of the following propo-
sition. In other words, the decomposition model recovers the constant component = when the
other components ¢;,v; 1 and the parameters ¢;; in the model converge to zero. Then, (ii)
and (iii) in the following proposition are technical results about the convergence rate, which
will be used in later proofs.

Proposition 3.3. Assume (H1)—(H2) and (3.8) hold. Let (u1,...,uyn) be any minimizer of
the minimization problem in (3.3). Let x € dom J. Then the following hold:
(i) Foranyj=1,...,N,

(3.9) m wj(zg, tik, ... tng) = 0.

k—+o0

(i) If 0J(x) # 0 and oo = 0, then

1
lim —ui(xg,t ot =0.
L (@ ti gy tNE)

(iii) If 0J(x) # 0 and ajoo # 0, then the sequence {tﬁuj(:vk,tl’k, . ,tN,k)}k is bounded.

Proof. Denote w;, := uj(xk,ti, ..., tng) forany j=1,..., N, and gy, := xk—Ej-V:l Uj ;-
Define I := {j : {||@;k|//tjx}r is not bounded}. Recall that for each j =1,..., N, {vjr}r C
R™ and {t; 1} C (0, +00) are two sequences satisfying limy_, o vk = Vj,00 and limy_, 1 oo tj 1 =
0, respectively. And the kth spatial variable xj is defined to be x + Z;V:1 i KV k-

Proof of (i): By the Lax formula (3.3),

N _ N N
_ Uj.k
J (o ;) + th,kH; <tjk ) <J|xp— Z tikvik | + th,kH;(Uj,k)
j=1 ' Jj=1 J=1

(3.10)

N
= J(@) + > tieH; ().
j=1
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Since J is a convex function, there exists z € dom J such that 0J(z) # 0. Let ¢ € d.J(z).
Then, using the convexity of J and the Cauchy—Schwarz inequality, we get

N
(811 J(or) 2 J() + (g, ok —2) = ) — gl 3 lagall - lalllex - 1.
j=1

Combining (3.10) and (3.11), we get

N N
(3.12) Zt H< )<J() T+ Sty ) + lall S Nl + lalllzs — =11

j=1 j=1

For any j € I, since ||@;|//t;jx is not bounded, without loss of generality, by taking
subsequences, we can assume [|@; ||/t increases to infinity. Since H is 1-coercive, for any
M > 0, there exists K such that for any k > K, H} (u;r/tjr) > M|[u;kll/tjk Together with
(3.12), we get

|>

S0 = el < 3 (tett; (F24) = el
N
< (@) = 9) 4l = ol + St w30 + 3 (sl = ety (72£)).

(3.13)

J€el Jel
=1 J¢l ”

Since {t;x}x and {vjx}x are bounded, and H; is continuous in R™ for any j, then the right-
hand side is bounded. However, M can be arbitrarily large; then the boundedness of the
left-hand side (deduced by the boundedness of the right-hand side) implies ||, x| — 0 for any
jel. If j &1, then |lu;||/t; is bounded by the definition of I; hence ;) also converges to
zZero.

Proof of (ii): We can apply the same argument as above and set z = z because 9.J(x) # 0.
From (3.13), using the definition of zj in (3.8) and the triangle inequality, we have

(1)
ik

N
> (M —llal i@zl < lalllee =@l + Dtk (vix) + <HQHHUj,k

o j=1 Jjél
N u
. * 47k
SZ (H; (v0) + lalllvj]) +Zw<llq” B <tk>)
: ]e] ]7 J7

Dividing both sides by ?; 1, we can obtain

[

—lal) > === Z
JeI Lk j=1

+ Z

.
L (uqr
T

)

_ g Uik
"\tix ) )

7 i) + llalllvjx
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With the same argument as in the proof of (i), we deduce that the right-hand side is bounded,
while M can be arbitrarily large. Therefore, ||@;x||/t1 1 converges to zero for any j € I. If
J &I and aj o =0, then ||u;k]|/tjx is bounded by the definition of I and ¢;/t; 1 converges
to zero by the definition of o ; hence ||@; x| /t1,% also converges to zero.

Proof of (iii): It suffices to prove the contrapositive statement. To be specific, let j € I,
i.e., [|4jkll/tjk is unbounded; it then suffices to prove oo = 0. In the proof of (ii), we know
that ||a; x| /t1x converges to zero if j € I. Then, the unboundedness of {u;/t;}r implies
that ¢;/t1 , converges to 0; hence o~ = 0, and (iii) is proved. [ |

Similarly, we also consider the maximizers V,Sy in the dual problem (3.2) with the
observed data zj and the parameters {tj’k}év:l. The following lemma states the boundedness
of the maximizers {V .Sy (xk,ti k, ..., tn k)& which will be used in later proofs.

Lemma 3.4. Under the assumptions (H1)-(H2) and (3.8), for any = € dom J such that
0J(x) # 0, the sequence {VoSu(Tk,t1 k- - tN k) is bounded, and any cluster point p is in
0J(x).

Proof. Recall that for each j € {1,..., N}, {vjr}r C R" and {t;x}r C (0,+00) are two
sequences satisfying the assumptions in (3.8). Denote py := VoS (xk, ti g, ..., tn k). Then,
pr is a maximizer of the maximization problem in (3.2). Hence, for any ¢ in 0J(x),

(Tk, PE) — Zt] kHj(pr) =2 (@, q) Zt] kHj(q

Since ¢ € 0J(z), we have x € dJ*(q); hence J*(pr) > J*(q) + (x,px — ¢). Combining this
inequality and the one above, we can obtain

th,kH (pk) Zt] kH <(xp —z,pr — q) Z J,kHUJ,

2

|(lpell + llall)-

Here, for the second inequality above, we used the definition of xj in (3.8) and the Cauchy—
Schwarz inequality. Then, rearranging the terms and dividing by ¢; 5, we get

N
(3.14)

i (k) = llvrllllpell) < )+ [lvgelllall)-

J=1 J=1

If {px}x is not bounded, without loss of generality we can assume ||pg|| increases to infinity.
Since Hj is 1-coercive for all j, then, for any M > 0, there exists K such that H;(py) > M ||pg||
for any £ > K and any j = 1,..., N. Then, from (3.14), for any k£ > K, we obtain

N ¢ N
o
> (M = ol sl < Z

j=1"b

)+ llvirllial)-

~
??‘

The right-hand side is bounded. However, since ||px|| goes to infinity, the term for j = 1
on the left-hand side is unbounded, while the term for j > 1 is nonnegative. As a result,
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the left-hand side can be arbitrarily large, which leads to a contradiction. Therefore, we can
conclude that {pg}x is bounded.

For the remaining part, let p be a cluster point; then there exists a subsequence converging
to p, still denoted as py. Since Sy solves the multi-time HJ equation (3.1) and H; is continuous
for any j, then we have

lim VSy(zk,tig,....tNg) = kETm(Pk, —Hi(pi),.-.,—Hn(pr))

k—4o00
= (p,—Hi(p),...,—Hn(p)).

By the continuity property [66, Prop.XI.4.1.1] of the subdifferential operator 0Sy of the
convex lower semicontinuous function Sy, we can conclude that

(p7_Hl(p)7 .. "_HN(p)) € aSH(x707 s ’0)7

which implies p € 9J(x). [ |

The variational behaviors of the momentum VS and the velocities u;/t; are presented in
the following proposition. To be specific, the cluster points of the momenta and the velocities
solve two optimization problems, respectively, and the two problems are dual to each other.
An illustration of this result is given in Figure 7.

Proposition 3.5. Assume (H1)-(H2) and (3.8) hold. Let x € dom J and dJ(x) # (). Then
the following hold:

(i) The directional derivative of Sg corresponds to a mazimization problem:
(3.15)

S (i ty o tng) — S0, ..
i OH @kt Nk) — Su(z ~ e Zay,

k——+o00 th qedJ () q7 vj7oo> ](Q))

Moreover, let p be any cluster point of {VzSu(Tk,tik,- -, tN k) ks then,

N
(3.16) p € arg maXZ oo ({4, Vj0o) — Hj(q)) -
gedJ(x) =1

(ii) The directional derivative of S, corresponds to the dual minimization problem:

SL<33k;t1,k7 NN 7tN,k) — SL(.%',O, NN ,0)

lim

k—+oo t1k

(3.17) N
= min Y oo (I5 () (V0o — wy) + Hj (w)).

ijR" =
Moreover, if w; is a cluster point of {u;(xk, t1k, .., tNk)/tjktk for any j satisfying o o #
0, then
(3.18) w; € arg min (I(?;J(x) (Vj,00 — wj) + H]*(wj)> .

’u}jER”
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In particular, if Hj is strictly convex and o # 0 for some j, then the maximizer
in (3.16) is unique, which implies the convergence of V,.Sg(zk,t1k,...,tn k) to the unique
maximizer. Similarly, for any j such that H; is differentiable and o o # 0, we can conclude
that uj(xg, tik, ..., tNk)/tjk converges to the unique minimizer in (3.18).

SH(m]wtl,kv"':tN,k)*SH ('1‘70»"'70)
11,5tk 2

Remark 3.6. It is straightforward to obtain limy_, using the

following computation:

S t1iky--.,t -5 0,...,0
lim H("Eka 1,k ) N,k) H(xa ) ’ )

k—+o0 ”(tl,k,-u,tN,k)HQ
_ lim SH(l‘k,th,...,tN’k)—SH(.TU,O,...,O) ] tl,k
k—+00 1k (1o tNE) |2
_ lim SH(l’k,tl’k,...,tN’k)—SH(.QZ,O,...,O) ) 1
k—+o0 t1k H(al,oo>---aaN,oo)H2’

where the last equality follows from the assumption that oo = limg_io0tji/t1x for any
j=1,...,N.

Proof. Recall that the kth spatial variable x; is defined to be z + Z;V: 1tk ks Where
{vjr}te € R™ and {t;r}r C (0,400) are two sequences satisfying the assumptions in (3.8).
Denote ASy, := SH(.Tk,th, ces atN,k) — Sy (z,0,...,0).

Proof of (i): For any ¢ € 0J(z), by Hopf formula (3.2), we obtain

*

N
ASp =T+ Y tiuH; | (zx) = J(2) > (g, 21) — th kHj(q) = J(2).

i=1

Since q € 9J(z), we have J*(q) + J(x) = (g, x). Hence, together with the definition of xj in
(3.8), we get

ASy > (g, z — x) Zt]kH Zt]k a,vjk) — Hj(q)).

Therefore, we have

AS N ot
i 35 o35 )~ 1100 = S0~ 1),

where we recall that limy_, oo vjr = Vjoo and limy_ oo tjr/t1x = jee by (3.8). Here, ¢ is
an arbitrary element in 0.J(x); hence we obtain

N

ASj,
3.19 liminf — > sup joo((q, Vo) — Hj(q))-
519 ST SUNUDREL

On the other hand, for any k, consider the function ¢y, : [0, +00) — R defined by ¢y (t) :=
(ZL‘—{—Z _ b0 Uy gt ozN7kt), where o, :=t;/t1 . Since Sy is a convex function
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and ¢ is its restriction on a line, then ¢ € T'o(R) with dom ¢ = [0,4+00). Also, ¢ is
differentiable in (0, 4+00) since Sy is differentiable. The derivative of ¢y, at t; j is given by the
chain rule:

oSy
(t1) = Zajk ( (VoSu (T, tig, - tNK), Vik) + —F— o, (g, t1 k,-uﬂfN,k))-

7j=1

Since Sy satisfies the multi-time HJ equation (3.1), we obtain

Ok (tir) Za]k (VaSa(Tr, tr ks - tNk)s Vik) — Hj(VaSu(zr tik, - tNk))) -
7=1

From straightforward computation and the convexity of ¢, we get

AS,  dr(tig) — ¢k(0)
(3.20) e - % (t1k) Zag, (P> vjk) — Hj(p))
Where Pk ‘= VxSH(a:k, tl,ky e ,tN,k)‘

Let p be a cluster point of {py}. Take a subsequence converging to p and continue to
denote it as {py}. Since p € dJ(z) by Lemma 3.4 and H; is continuous for any j, we have

N

ASy,
hmsupf < Zag so (D Vjio0) = Hj(p)) € sup Y ajioo((q, vj.00) — Hj(q))-
k—+o0o U1,k j=1 qedJ(x) j=1

Together with (3.19), the equation (3.15) is proved. Moreover, any cluster point p is a maxi-
mizer.

Proof of (ii): Here, we adopt the notations u;; and g, defined in the proof of Proposi-
tion 3.3 to represent the minimizers in the Lax formula. According to the Lax formula (3.3)

evaluated at the point (zy,t1k,...,tn k) and by the convexity of J, we deduce that
U U
Sp=J t; H* >J ) — t; H* J:
st () 2013 (32

for any g € 0J(x). Since Sp = Su, we have Sg(zg, t1k, ..., tnk) — Sp(2,0,...,0) = ASj. By
the definition of z;, and @, we can compute gy — = T — 2 — Zj Ujp = Zj (kUi —Ujk);

hence we have
ASk ( Ui ko
> O7N% q? Vj k q7 +« ,kH* = )
m Z PRNE T, t Lk P\ ik

where oy 1= t;1/t1 k. According to Proposition 3.2, we have @/t € 0H;(py). Therefore,

we get,
Uj ke Uj ke U ke
a; x Hj < : > = Qjk << ’ ,pk> —Hj(pk)) =< ’ ,pk> — o Hj (pr).-
tjk tik l1k
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Combining the above two equations, we obtain

AS 0
— Z <Oz], q,Vjk) + <pk —-q, tlj:> — aj,kHj(pk)>

t1k :
oo_0
(3.21) .
Uy, w [ Uik
+ <O‘J7 <q, Uik — > + o Hj < - >> :
]z::l tJ,k tjk
Q0070

From Proposition 3.3(ii), ||@;kl||/t1r converges to zero if o = 0. Also, py are bounded
by Lemma 3.4; hence the first sum on the right-hand side of (3.21) converges to zero as k
approaches infinity. On the other hand, for j such that «j # 0, @;/t;, is bounded by
Proposition 3.3(iii). Taking a subsequence, we can assume that ;/t;; converges to some
vector, denoted as w;. In conclusion, as k approaches infinity in (3.21), we have

N
ASy, .-
(322) kEIJPOO tl k Z ; aj,oo (<Q7Uj,oo w]> + H Za] oo q7 U], > H(Q))v
O‘jj,oo#o

where the second inequality holds by the definition of Legendre transform (2.5). From (3.15),
for any maximizer p in (3.16),

ASy

N
(3.23) kgr_’l_loo E = JZ; aj,oo(<pa Uj,oo> — H; (p))-

Taking ¢ = p in (3.22) and comparing it with (3.23), we can conclude that the inequalities
in (3.22) become equalities when ¢ = p. As a result, when a;~ # 0, we have (p,w;) =
H(w;) + Hj(p), which implies that p € 9H;(w;). Then, we deduce that

AS al
. k — * [ =
%{w#o

On the other hand, for an arbitrary ¢ € dJ(z), by (3.22) and (3.24), we have

N

i o _AS,
D oo (9, V)00 —w)) + H (w5)) = S
i—1 ’

0‘1300750

N
> Z Qg co Q7Uj,oo_wj>+H;(wj))a

a 0

which implies that (p—gq, vj,cc —w;) > 0 for any ¢ € aJ(:L’), when oo # 0. By (2.1) and (2.4),
we can deduce that vj.. — w; € Nyj(z)(p) = 0lgj)(p). Proposition 2.5 gives the equality
(P, Vjoo —Wj) = 152 (Vj 0o — wj). Then, (3.17) follows from this equality and (3.24).
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It remains to prove (3.18). Consider any j such that o 7# 0. Define f : R" — R by
flw) = Igj(x)(vjpo —w) + Hj(w). Then it suffices to prove 0 € 9f(w;). So far, we have
proved p € OH;(w;) and vjoo — w; € 0lgy(y)(p), which implies p € 350 (Vj,00 — wj). By
straightforward computation and Proposition 2.3,

Of () = =01 5 (vj,e0 — W5) + Hj(w5) > —p+p =0.

Therefore, w; is a minimizer of f, which concludes the proof. |

The above proposition provides the explicit formulas for the variations of S, V.S, and
%, where u; denotes the jth component of the minimizer of the decomposition model in the
form of (3.3). Specifically, the limits of these quantities are related to the two optimization
problems given by (3.16) and (3.18). From the perspective of image processing, given an
observed image x; which is a summation of a constant component z and other components
tjkVjk, the decomposition model (3.3) gives NV 4 1 components. In these N + 1 components,
one component converges to the constant component x, and the other components u; vanish
as the parameters t;; approach zero, by Proposition 3.3. Then, Proposition 3.5(ii) states
that the component u; converges to 0 from a direction w; [82, p. 197]. On the other hand,
Proposition 3.5(i) provides a representation formula for the cluster point of the maximizers of
the dual problem in the form of (3.2).

4. Uniqueness of the convex solutions to the multi-time Hamilton—Jacobi equations.
In the previous section, we have discussed the relation of the optimization problems in the
Hopf formula and Lax formula with the classical solution of the multi-time HJ equation.
In fact, some results can be generalized to weaker assumptions, in which case the solution
provided by Hopf and Lax formulas is not classical. In this section, we prove that the only
convex solution is given by the two formulas.

In the field of PDESs, a type of solution called the viscosity solution is considered for solving
the HJ equation when no classical solution exists. The uniqueness of the viscosity solution has
been widely studied under different assumptions [17, 19]. However, the functions in convex
analysis and optimization may take the value +o0o, which is an unusual condition in the field
of PDEs. Therefore, to maintain the connection of the HJ equations and convex optimization
problems, we consider the convex solution which may be infinity in some area and prove the
uniqueness using the techniques in convex analysis.

We start with the proof for the classical convex solution in order to demonstrate the idea of
utilizing the convexity assumptions. After that, we state the uniqueness of nonsmooth convex
solution under more general assumptions in Corollary 4.3. When proving the uniqueness of
the classical convex solution, we assume the properties (H1) and (H2) hold. Moreover, the
solution S satisfies the following:

(S1) S €Ty (R™x [0,+00)) NCHR™ x (0, 400)N);
(S2) S solves the multi-time HJ equation (3.1).

As is discussed in section 3, Sy defined in the Hopf formula (3.2) is a solution satisfying
the assumptions (S1) and (S2). Hence, we just need to prove S = Sy for any S satisfying
(S1)-(S2). First, we consider the single-time case when the time dimension N = 1, and we
formulate its Legendre transform S*(p, E~) for p € R™ and E~ € R in the following lemma.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/24/20 to 128.148.254.57. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MULTI-TIME HAMILTON-JACOBI EQUATIONS 997

Lemma 4.1. Assume (H1)-(H2) hold and S satisfies (S1)—(S2).
exists a conver function H : R"™ — R U {+o0}, such that S*(p, E~) =
where V :={(p,E7): E~ < —H(p)}.

Let N = 1. Then there
J*(p) + IV(pa E_)z

Proof. In this proof, we only consider the single-time HJ equation. For the single-time
case, H is used to denote the Hamiltonian, instead of H;, for simplicity. First, consider the
domain of S*. For each p € R", define

(4.1) H(p):=inf{—E~: (p,E”) €dom S*} € R:=RU {£oc}.

graph of —H (p+a(q —p), BT + a(E~ — E7)) (ap1 + (1 — )p2, 0B~ + (1 — ) B-)

‘ dom S*

U py apH1l-a)p, p,

(a) (b) (c)

Figure 8. [llustrations for different steps in the proof of Lemma 4.1.

For the illustration of this definition, see Figure 8a. The function H defined here is an
extended-valued function taking values in R. In the last step of this proof, we will show
the convexity and specify the range of this function. From this definition, it is obvious that
dom S* C V, where V = {(p, E~): E~ < —H(p)}, as defined in the statement of this lemma.
Moreover, denote Vi = {(p, E~) : E~ < —H(p)}; then we prove V; C dom S* by using the
monotonicity of $*(p,-). To be specific, let p € R and —co < E~ < E~ < +o0; then, we
have

(4.2) S*(p,E7) = sup (p,x)+tE~—S(z,t) < sup (p,x)+tE~—S(z,t) = S*(p, E).
zERM >0 zERM 1>0

Hence, S*(p, E~) is nondecreasing with respect to E~. As a result, (p, E~) € dom S* implies
{p} X (=00, E~] C dom S*. Therefore, we obtain V; C dom S* C V.

In the next step, we prove dom S* = V.

Denote U := {p € R*: H(p) < 400} (see Figure 8a). Here and in the remainder of this
section, we use the bold character 0 to denote the zero vector in R™. Since U is the projection
of dom S* along the direction (0,1), U is a convex set. Let p € ri U. Take E~ < —H(p);
then 9S5*(p, E~) # () because (p, E7) € ri dom S*. Let (z,t) € 95*(p, E~), which implies
(p,E7) € 0S(x,t). If t > 0, then E~ = %(m,t) and p = V,;S5(x,t). Since S satisfies the HJ
equation (3.1), E~ 4+ H(p) = 0. In other words, if (z,t) € 05*(p, E~) with E~ # —H(p),
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then we can conclude that ¢ = 0. Therefore, for any E~ < —H(p) and E~ # —H(p), by
Proposition 2.6, the directional derivative of S* in the direction (0, 1) is

(S)(p, E7),(0,1)) = sup  ((2,1),(0,1))=  sup  ((z,0),(0,1)) =0.
(z,t)€dS* (p,E~) (z,t)€0S*(p,E7)

As a result, S*(p,-) is a constant function in its domain. Denote this value as f(p). By the
continuity of S* when restricting to the straight line {p} x R, the value S*(p, —H(p)) is also
f(p) if H(p) is finite. Hence, S*(p, E~) = f(p) for any p € ri U and E~ < —H(p).

Now, we consider the case when p € U \ ri U. For the illustration, see Figure 8b. Let
E~ < —H(p). Take g € ri U and E~ < —H(q); then, by Proposition 2.2,

43)  S'(pE7)= lim §(p+alg-p), E” +a(E” - E7)) = lim f(p+a(g—p)).

Hence, the value of S*(p, E~) does not depend on E~ if E~ < —H(p). Denote this value as

f(p). By continuity, S*(p, —H(p)) = f(p) if H(p) is finite. Therefore, we have proved that
the domain of S* coincides with the set V and S*(p, E~) = f(p) in the domain of S*.

Then, we prove f = J* when restricting to dom f. By setting f(p) = 400 if p & U, we
can regard f as a function from R” to RU {4o00}. It is not hard to check the convexity of f.
To be specific, for any p;,p2 € dom f and a € (0, 1), choose E~ < —fl(pl) and B~ < —fI(pg)
(see Figure 8c); then we have

flapi+ (1 — a)pz) = S*(apr + (1 — a)pz, aE~ + (1 —a)E7)

<aS*(p, £7) 4+ (1 —a)S*(p2, £7)
=af(p1) + (1 —a)f(p2)

Hence f is a convex function taking values in R U {+o0}. Also, for each z € R", we have

J(x) = S(x,0) = sup (x,p)—S"(p,E")
(p,E—)eV

= sup  (z,p)—f(p)= sup (z,p)— f(p) = ().
pER™ pedom f
3B~ | (p,E-)EV

Therefore, f** = J*, which implies ri dom f = ri dom J* and f(p) = J*(p) if p € ri dom f.
Moreover, according to Proposition 2.2 and (4.3), we deduce that

flp) = lim f(p+alg—p))= lim J'(p+alg—p)=J"(p)

for any p € dom f \ ri dom f and ¢ € ri dom f. As a result, we have f = J* in the domain
of definition. In conclusion, we get the following formula for S*:

(4.4) S (p, E7) = J*(p) + Iv(p, E7).

The final part is to prove that H is a convex function taking values in R U {+00}.
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First, we prove that H cannot take the value —oo by contradiction. Suppose there exists
p € R™ such that H(p) equals —oco. Then, by definition of H we have {p} x R C dom S*.
Together with the formula of S* in (4.4), we derive

{p} xR x {J*(p)} Cepi S™.

Therefore, (0,1,0) and (0,—1,0) are in the asymptotic cone of epi S* by definition (2.2).
Then, by Proposition 2.1, for any ¢ € U, we obtain

{a} x R x {J*(¢q)} C epi S,

which implies {¢} x R C dom S*. Since ¢ is an arbitrary vector in U, we deduce that
dom S* = U x R. Moreover, according to (4.4), the function S* is a constant on the line
{q} x R for any ¢ € U, which implies that the directional derivative of S* in the direction
(0,1) is zero. In other words, we have

(4.5) (S*Y((p,E7),(0,1)) =0 for any p € U and E~ € R.

On the other hand, consider any y € R™ and s > 0 such that 9S(y,s) is nonempty. Let
(p, E7) € 0S(y, s). This implies (y,s) € 9S*(p, E~). Hence, according to Proposition 2.6, we
get
(S*)/((p7 Ef),(O,l)) = sup <($,t),(0, 1)> 2 <<y73)7<071)> =s5>0,
(z,t)€0S5* (p,ET)

which contradicts (4.5). Therefore, H cannot take the value —oc. B

At last, the convexity of H follows from the convexity of dom S*. In fact, epi H =
{(p,—E7): (p,E7) € dom S*}, which is a reflection of the convex set dom S*; hence it is
also convex. Therefore, H is a convex function from R” to R U {+o0}. [ |

Based on this lemma, the following proposition states the uniqueness result. It can be
easily seen in the above lemma that the Legendre transform of S has a form similar to S7;.
Actually, the following proposition is proved by equating the two functions S* and S%;.

Proposition 4.2. The solution to the multi-time HJ equation is unique. Specifically, under
the assumptions (H1) and (H2), if S satisfies (S1)-(S2), then S = Sp.

Proof. In the proof of this proposition, we first consider the single-time case. Let N =1,
and let H be the Hamiltonian.

From Lemma 4.1, it is proved that S*(p, E~) = J*(p) + Iy (p, E~), where V = {(p, E7) :
E~ < —H(p)} and H is a convex function whose domain is the projection of dom S* along
(0,1). Moreover, ri dom J* = ri dom H (note that the domains of H and f are the same).

First, we prove that H (p) = H(p) for any p € ri dom H by contradiction. Assume there
exists p € ri dom H such that H(p) # H(p). Let E~ = —H(p). Then, by Proposition 2.3 and
(2.4), we deduce that

(4.6) 0S*(p, E7) = dJ*(p) x {0} + Ny (p, E7) = 8J*(p) x {0} + {t(v,1) : v € dH(p),t > 0},

where the last equality holds because V is the reflection of epi H. Here NV(pLE_) denotes
the normal cone of the set V at (p, E7). Let 29 € 0J*(p), t > 0, and v € JH(p). Denote
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x = xo + tv. Then, by (4.6) we have (z,t) € 9S*(p, E~), which implies (p, E~) € 9S(z,1).
However, E~ 4+ H(p) = —H(p) + H(p) # 0; hence the HJ equation (3.1) does not hold at
(z,t), which is a contradiction. Therefore, H = H when restricting to the relative interior of
the domain of H, which implies

S*(p. E7) = J"(p) + H{E™ < —H(p)} = J*(p) + {E~ < —H(p)} = S (p, E7)

for any p € ri dom H.

Actually, the values of any convex lower semicontinuous function on the relative boundary
of its domain are fully determined by the values in the relative interior. It is not hard to check
that

ri dom S* =ridom Si; ={(p,E"): peridom J*",E~ < —H(p)}.

Hence, we have proved that S* and S%; agree in the relative interior of the domain. Therefore,
S* = 5% in the whole domain, which implies S = Sy and gives the uniqueness of the convex
solution to the single-time HJ equation.

Then, we can consider the multi-time case. Now, we assume N > 1. It suffices to prove S
and Sy coincide for any x € R™ and any t1,...,ty > 0. Let a1, ...,an be arbitrary positive
real numbers, and denote a := (ay,...,ay). Define T'(z,s) := S(z,saq,...,say) for any
r € R" and s > 0. Then T € T'o(R"*!). We can compute the gradient of T with respect to s
for any x € R™ and s > 0 using chain rule and the assumption that S satisfies the multi-time
HJ equation (3.1) to obtain

8T$S Z 95z, s0) Za] (VaS(x, sa)) Zaj (VoT(x,s)).

It is easy to check that 7' satisfies the initial condition given by J, ie., T(z,0) = J(x)
for any x € R™. Hence, T is a solution to the single-time HJ equation with Hamiltonian
H = Z _, ajH;, which is finite-valued, 1-coercive, and strictly convex. Therefore, for the
single-time HJ equaution7 the conditions (H1)-(H2) and (S1)-(S2) are satisfied. Then, the
solution T is unique and equal to the Hopf formula with respect to the Hamiltonian H.
Hence, for any x € R", s > 0, and any «q,...,ay > 0, we have

*

S(z,sai,...,say) = (J"+sH)"(z) = J*—I—ZS% () = Sg(x, saq,...,san).

Therefore, S = Sy in the relative interior of the domain, which implies S = Sy in the whole
space, because of the lower semicontinuity of S and Sp. The uniqueness of the solution to
the multi-time HJ equation follows. |

One can actually apply the above arguments to weaker assumptions and obtain a general-
ized result, which is stated in the following corollary. In this generalized result, it is possible
that the solution S is not a classical solution; hence the subgradients of .S, instead of the gradi-
ents, are assumed to satisfy the HJ equation, which is a natural generalization of the classical
solution when we want to consider the solution which is convex and lower semicontinuous.
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Corollary 4.3. Let J € To(R™), and let Hy, Ha, ..., Hy be arbitrary extended-valued func-
tions defined on R™. Assume there exists a function S € To(R™ x [0,400)N) satisfying the
following:

(i) Ifpe R and E,...,Ey € R satisfy (p, By ,...,Ey) € 0S(x,t1,...,tn) for somex € R"
and t1,...,ty >0, then E; + Hj(p) =0 for any j =1,...,N.
(ii) S(z,0,...,0) = J(x) for any x € R™.
Then, the following statements hold:
1. For the case of single time, i.e., N = 1, denote H = Hj to be the Hamiltonian. If there
exist ¢ € R™, t > 0 such that S(x,t) # +oo, then S is unique and S = F*, where F is
defined by

(4.7) F(p,E™):=J"(p)+I{E~ < —H(p)} + I{p € ri dom J*}

for any p € R™ and E~ € R. Moreover, the restriction of H on ri dom J* is finite-valued
and convez.

2. For the multi-time case, i.e., N > 1, if S is another function satisfying the assumptions
(1)-(ii) with ri dom S = ri dom S, then S = S. In other words, the solution is unique
when the relative interior of the domain is given.

Proof. The proof of this corollary is similar to the proof of Proposition 4.2, so we just give
a brief sketch here. First, we adjust the proof of Lemma 4.1 by changing the gradients of S to
the subgradients of S. The argument still holds because we assume in (i) that the subgradients
of S satisfy the HJ equation. Then, we draw the same conclusion as in Lemma 4.1. In other
words, with the function H defined in (4.1), we have

(4.8) S*(p, E7) = J*(p) + I{E~ < —H(p)}.

Also, the part of NV =1 in the proof of Proposition 4.2 still holds. So we derive that the two
functions H and H coincide in the relative interior of dom J*. Together with (4.8), we derive
(4.7), and hence the first statement in this corollary follows.

For the case when N > 1, it suffices to prove that S and S coincide in the relative interior
of the domain. Let (y,t1,...,tx) be an arbitrary point in ri dom S. It remains to prove that
S and S are equal at the point (y,t1,...,ty). Notice that we have ¢; > 0 for any i = 1,..., N;
then we can choose the positive number «; in the proof of Proposition 4.2 to be t; for any i.
As in the proof of Proposition 4.2, we define the functions T and T by

T(z,s) := S(z,s01,...,5an) and T(z,s):=S(z,s0,...,s50N)

for any € R™ and s > 0. Since there exists a point (y,t1,...,ty) in the relative interior of
dom S, one can easily check that the assumptions in [66, Thm. X1.3.2.1] hold. Then, by [66,
Thm. XI.3.2.1], the chain rule for the subgradients of S holds. Similarly, the chain rule also
holds for the subgradients of S. Therefore, the argument in the proof of Proposition 4.2 in
the multi-time case remains valid by changing the gradients to the subgradients. As a result,
we conclude that both T and T solve the single-time HJ equation with the Hamiltonian
Z;V:l a;H;. Then, by the first statement in this corollary, we have T' = T, which implies that

S and S coincide at the point (y,1,...,tx), and the proof is complete. [ |
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5. A regularization method for the degenerate cases. In the previous two sections, we
discussed the relation between some optimization problems and the multi-time HJ equations
under the assumptions (H1) and (H2). In general, if those assumptions are not satisfied,
some results may collapse. For example, if there is no strictly convex Hamiltonian, then
the solution may be nondifferentiable, which leads to the nonuniqueness of the maximizer
p (called momentum) in the Hopf formula (3.2). Also, the minimizer u in the Lax formula
(3.3) may be nonunique if the Hamiltonians are not differentiable. However, these are two
common situations for optimization problems such as the decomposition models. In fact, any
norm or indicator function is neither strictly convex nor differentiable. As a result, it is an
important problem to select a meaningful momentum p or minimizer v in the solution set
when it contains more than one element.

In this section, we propose a regularization method to select a unique momentum p and
a unique minimizer u simultaneously, and we provide the representation formulas for both
selected quantities by using the results stated in the previous sections. Intuitively, to select
a minimizer u, we modify the degenerate term by adding AH to it where A is a positive
parameter and H is a differentiable function satisfying (H1). When X approaches zero, the
minimizer of the modified problem will converge to the unique minimizer @ in the solution
set of the original problem which minimizes the function H. The procedure to select p is the
same except for performing the inf-convolution with AH*(-/\) to the degenerate term instead
of the addition of AH.

In the literature, the special case of selecting the momentum p using inf-convolution with
I-112/(2)) is well known as Moreau—Yosida approximation, which is introduced, for instance, in
[8, Thm. 2, p. 144] and [27, Thm. 3.1, p. 54]. Generally, a Moreau—Yosida-based regularization
method usually selects a unique minimizer « only or a momentum p only, but not both. Our
contribution here is that we consider the primal problem and the dual problem simultaneously.
In other words, one can select the momentum p and the minimizer u at the same time using
our method. This analysis can be adapted easily to other decomposition models with more
degenerate terms. Moreover, one can also use the same procedure with another function H
or even use two different functions in the two added terms. One alternative choice is || - ||&/«
for any a > 1, for example. In fact, if H is chosen to be any nonnegative, finite-valued, 1-
coercive, differentiable, and strictly convex function, the statements in this section still hold.
To be specific, the proofs of Lemma 5.1, Lemma 5.3, and Proposition 5.4 hold after subtle
adjustment, and one can use subdifferential calculus to prove Lemma 5.2. In this paper, for
simplicity, we mainly focus on the quadratic regularization terms, which are usually preferred
in practice because of the simplicity and efficiency of numerical implementation.

Now, we focus on a specific decomposition model, and the regularization function H is
chosen to be || - ||3/2. Some other models can be analyzed using similar arguments. Let | - ||
and ||-]| be two arbitrary norms whose dual norms are denoted as || - ||« and [|-||,. In fact, all
the results remain valid if || - || and [||-|| are two seminorms, in which case the corresponding
dual norms || - ||« and [|-]||, are finite in some subspaces and equal to 400 otherwise. The set
of minimizers is defined as follows:

U(z,t) := argmin ||ul| + I{[|z — ull, <t}.
ueR™
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We can regard the minimal value as a solution to the HJ equation given by the Lax formula
with spatial variable x € R™ and time variable ¢ > 0 and define

S(x,¢) = min [lul] + I{{]= - ull, <t}.

Note that in the corresponding HJ equation, the initial function is || - || and the Hamiltonian is
[I-l; hence the assumption (H1) is not satisfied. As a result, we need to apply the regularization
method in this example. For simplicity we also use Fj, Fb to denote these two norms; then
Fi(y) = I{|l|lyll, < t}. We assume ¢t = 1 and drop the variable ¢ in the remainder of this
section because the variation of ¢ is not considered in this problem. Then, we can rewrite the
problem as follows:

U(z) = argmin Fy (u) + Fy (x — u),
(5.1) u€eR”

S(z) = min Fi(u) + F5(x — u).

uER™
In fact, there are in practice some useful models in the literature which can fit into this form.
Now, we give two examples. In what follows, we use || - ||7v, || - ||z and || - [|¢ to denote the
discrete TV seminorm, the discrete E-norm, and the discrete G-norm, respectively. First, in
[9, 10], it is shown that Meyer’s model in the form
arg min ||ul|ry + oflz — ullg
ueR”

is equivalent to

argmin ||ul|7y + I{|lz — ulc < B}

u€eR™
for some suitable positive parameter 5. In this example, both F; and Fy are the discrete TV
because the discrete G-norm is the dual norm of || - ||7y. Similarly, another Meyer model
stated as
arg min ||ul|ry + ofjlz — ul|g
u€eR”
is equivalent to
arg min [ullry + I{[le — ulls < 8}

ueR”
for some suitable positive parameter § [11]. In this example, the functions F} and F» are the
discrete TV and the dual norm of the discrete E-norm, respectively.
As mentioned above, we apply two operators to the function F} and obtain its approxi-
mation

Av e 1 2
(5.2) Fiyu = (Fl + 5” : H2) DZH ||z

where A, > 0 are small regularization parameters. Here, we choose to modify the function
Fy, but one may instead apply the operators to the function F5, and the analysis is similar.
Then, the problem reads

uy ,(x) = argmin Fy y ,(u) + Fy (z — u),

(53) U'GR" .
Siu(@) = min Fyyu(u) + F (@ — w).
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We expand the inf-convolution to get

u)\“u, =T - wAnUJ

: A 2 * 1 2
U, Wr,y) 1= argmin Fy(v) + < ||v||3 + F5(w) + —||lz — v — w||3,
65 (v 00) = o min Fi () + S0l + F ) + | 13

Sui= min Fu(o) + G0l + F3(w) + 5-lla = v — wlf
Here and later in this section, we omit the variable z when there is no ambiguity.

By introducing the quadratic terms, the uniqueness of (vy ,,wy ) and the differentiability
of Sy, are guaranteed. When the parameters A and p converge to zero at a comparable rate,
the reasonable minimizer u and momentum p are selected. In fact, they are the elements with
the minimal /?-norms in the target sets U(z) and 9S(x). The detailed statements are listed
as follows.

Lemma 5.1. For any A, pn > 0, there is a unique minimizer (vy ,,wy ) to the problem (5.4).
Moreover, for any positive constant K, the sets {vy, : A\, € (0, K)} and {wy,, : A\, p € (0,K)}
are bounded.

Proof. Tt is easy to check that the objective function in (5.4) is 1-coercive and strictly
convex because of the 1-coercivity and strict convexity of the quadratic terms. Therefore,
there exists a unique minimizer (vy ,,wx ).

Setting w =z —v and v € U(x) in (5.4) and comparing it with (5.1), we obtain

: A . .1
Snu(@) < min Fi(v) + SIvlls + F (z = v) = S(@) + A min CLEIIER

Denote C' := S(z) + min,cy(y) L ||v||3, where K is an arbitrary positive number as defined in
the statement. Then C is independent of A and p, and Sy ,(z) < C when 0 < A < K. From
this inequality and the definition of Sy ,(z) in (5.4), we can derive a bound for x — vy , —w) ,
that reads

(5.5) |2 —vx 0 — wa 13 < 208y u(7) < 2Cu < 20K whenever p < K.

Therefore, vy , +wy , is bounded by the constant ||z|2++v2CK when we assume A, u € (0, K).

Then, from the constraint given by the indicator function F3 in the minimization problem
(5.4), we have [|wy,[|, < 1, which implies the boundedness of w) , because all the norms
are equivalent in the finite dimensional space R". As a result, vy , is also bounded whenever
A, 1€ (0, K). Then the conclusion follows. [ ]

Lemma 5.2. Letwvy , andwy , be defined by (5.4). Then, we have limy ,,_,o+ vz y+wx = T.
Any cluster point of vy, is also a cluster point of uy , and vice versa. Moreover, any cluster
point of uy, and vy, is in U(x).

Proof. The convergence of vy, +wy , to x follows from (5.5). Since uy, = = —w) ,, any
cluster point of uy , is also a cluster point of vy , and vice versa. It remains to show that any
cluster point of vy ,, is in U(x).
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By the definition of (v ,,wx ), we have

. A 1
(U wrp) = argmin 1 (v) + Z{Jll3 + I{{lwll, <1} + 2l =V wlf3

v,wER™

. AL 1
(5.6) = argmin pF(v) + - [lol3 + I{{lwll, <1} + Sz — v — w3
v,wER™ 2 2

1 N AL
—argmax (5,0) + (ov0) — (Glo+ wlf + F ) + i) + 013,
v,wER™

where we first multiply the objective function by p and then expand the quadratic term.
Recall that any indicator function is invariant under multiplication with a positive constant;
hence we obtain I{||w]|, < 1} = pI{||w]||, < 1}, and the second equality in (5.6) follows. The
last maximization problem in (5.6) is in the form of the Hopf formula. The corresponding
multi-time HJ equation with time variables u and v = Ay is given by

o &

S,z m,v) + Fi(VyS(y, z,1,v)) =0, y,z € R p,v >0,
S,z p,v) + 51V Sy, 2,0, 0) 13 =0, y,z € R p,v >0,
Y, 2,0,0) = J(y, 2), y,z € R™.

(5.7)

Q)

14

0

Here, J is the lower semicontinuous convex function such that J*(v,w) = |jv+w||3 + F5 (w).
Although the assumption (H1) is not satisfied, by (5.6) and Lemma 5.1, we know that the
Hopf formula is well defined in R™ x R™ x [0, +00) x [0, +00). Moreover, the solution S is
the classical solution to the multi-time HJ equation (5.7), and its spatial gradient equals
(va,us wxu)- To be specific, we have

(5'8) (’U)\,,u:w)\,u) = vyyzg(x:xvuv AM)'

Then, we want to apply the results in Proposition 3.5(i) to prove that any cluster point
of vy, is in U(x). In fact, under the basic assumptions that H;,J € I'o(R™) and the Hopf
formula is well defined, the proof of Proposition 3.5(i) only requires the following statements:

(a) 0J(z,x) is nonempty;

(b) the Hamiltonians are finite-valued;

(¢) S is differentiable;

(d) the spatial gradient V, .S(z,x, u, \ir) is bounded with all limit points in 8.J(, x).
The statements (b) and (c) are obviously satisfied. It is straightforward to check that
0J(xz,x) # 0. Specifically, (v,w) € 9J(z,z) if and only if (x,2) € 9J*(v,w). By simple
computation, 0.J*(v,w) = (v + w,v + w + OF5(w)). Then we obtain

(5.9) (v,w) € OJ(x,x) if and only if v +w = x and ||w]|, < 1.

Such v and w always exist; hence 0J(z,z) # (). As for statement (d), the boundedness of
Vy.2S(z, 2, u, \) follows from (5.8) and Lemma 5.1. By (5.5), vy, + wy, converges to .
Also, [Jwx ||, < 1 is given by the constraint imposed by Fj in the minimization problem
(5.4). Together with (5.8), we can conclude that any limit point of V,, .S (x, z, 1, Air), denoted
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as (v,w), satisfies v +w = z and ||w||, < 1. Hence, (v,w) € dJ(z,z) by (5.9), and statement
(d) is proved.

Therefore, the conclusion of Proposition 3.5(i) still holds although the assumption (H1) is
not satisfied. As a result, for any cluster point (7,w) of (vx ., wau),

(,w) € argmax —Fij(v)= argmin Fi(v) ={(v,w): veU(x),w=x— v},
(v,w)edJ(x,) vtw=z, ||lw|,<1

where the last two equalities follow from (5.9) and the definition of U(z) in (5.1). In conclusion,
any cluster point v of vy, is in U(x). [ ]

Lemma 5.3. For any A, > 0, the function Sy, defined in (5.3) is differentiable. Let
x € R", and define py, := V Sy u(x). Then for any positive constant K, the set of gradients
{Prp : Ap € (0,K)} is bounded. Moreover, as A and p approach zero, any cluster point of
Py is in 0S(x).

Proof. Rewriting the formula of Sy , in (5.4), we get

A 2 * 1 2
S = R+ 31 18) 080 (50 18).

From straightforward computation, by Proposition 2.7 and the definition of (v ,,wy ) in
(5.4), we obtain

053,(5) = 0 (Fi+ 311 1) (or) 0P n ) (V{10 = ons = wn) |

(5.10)
. 1

= (OF1(va ) + Avap) ﬂ OF5 (wx 1) ﬂ {M(x —Uap T U’)\,u)} .

As a result, 0S) ,(x) contains at most one element. On the other hand, Sy, is convex and

finite-valued, which implies the subdifferential of S ,, is nonempty. Hence, Sy , is differentiable

and its gradient is given by

1
(5.11) Pap = VS ulx) = ﬁ(x — Unp — Wrp)-

Let K be an arbitrary positive number. Now, we prove that there exists a constant C
such that ||py,l2 < C whenever A\,u € (0,K). By (5.10) and (5.11), py, is in the set
OFi(vy ) 4+ Avy . On the one hand, the subdifferential of the norm Fj is always bounded.
In other words, there exists a constant Cy such that ||s|l2 < C; whenever s € JF;(z) for
some z € R™. Then, we deduce that the set 0Fi(vy,) is bounded by Cj. On the other
hand, according to Lemma 5.1, there exists a constant Cy such that ||vy |2 < Co2 whenever
A v € (0, K). Therefore, {px, : A, € (0, K)} is bounded by C; + Co K.

Let p be a cluster point of {py,}. By taking a subsequence we can assume A\, and py
converge to zero and py = py, ,, converges to p. By Lemma 5.1, vy := vy, ,, is bounded;
hence we can assume vy, converges to a point u by taking a subsequence. Then, wy := wy, ,,
converges to x — u by Lemma 5.2. From (5.10), we have

P € (OF 1 (vg) + Apvg) NOFy (wy).
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Since the subdifferential operators 0F; and 0F; are continuous [66, Prop. XI.4.1.1], when &
goes to infinity, the above inclusion becomes

(5.12) p € (OF1(u)+0-u)NOF;(x —u) = 0F1(u) N OF; (x — u).
On the other hand, by Proposition 2.7 and the definition of S(x) and U(z) in (5.1), we have
(5.13) 0S(x) = 0Fy(u) N OFy (x — u)

for any 4 € U(x). Moreover, by Lemma 5.2, since u is a cluster point of vy, we can conclude
that u € U(z). As a result, we can choose & = u in (5.13) and compare it with (5.12) to

conclude that p € 95(z). [ ]
Proposition 5.4. Assume {A\y} C (0,+00) and {ur} C (0,400) converge to zero and
limk_>+ooz—t = ¢ € (0,+00). Then, the minimizer u, := uy, ,, ond the gradient pj :=

VS () converge to the I?-projections of zero onto the sets U(z) and 0S(z), respectively.
To be specific,

lim wg = argmin||ul|s and lim p; = argmin ||p||o.
k—+o0 u€el () k=00 pedS(z)

Proof. Define H(-) := || - ||3/2. We will use the general symbol H to replace the quadratic
function because this proof holds for a general finite-valued, 1-coercive, differentiable, and
strictly convex function H. Note that the limit of u is the same as the limit of vy; hence we
just need to prove the result for v; and p,. Denote

(5.14) u:=argmin H(u) and p:=argminH(p).
uel(x) p€IS(z)

Since v and pg are bounded, we can assume that vg converges to u and pg converges to p by
taking a subsequence. Then it suffices to prove u = u, p = p.
By (5.10) and (5.11), we have

(515) iy € (OF;(vg) + MV H () [ OFs () {VH* (W) } .

By Proposition 2.5, we deduce that wy € 0F5(pg) and & — vy, — wi, = uxVH(px). Together
with (5.15), we obtain

Pk — )\kVH(Uk) € aFl(Uk),

5.16
(5.16) z — w,VH(pr) — vip = wi, € OF2(py).

On the other hand, since @ and p are the minimizer and momentum of the original problem
(5.1), we have

(5.17) p € OFi(a) NOFy (x — ).

Combining (5.16) and (5.17), we obtain

pr — A VH(vy) € 0F1(v) and  p € 0Fi(u),
x— pupVH(pg) —vx € OF3(pr) and x — u € OF5(p).
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Since the subdifferential operators 0F; and 0F» are monotone, by (2.3), we obtain

(o — M VH (vg) — p,vp — @) >0,
(x — i VH(py) — v — (x — @), pr —p) > 0.

We sum up the two inequalities to get

0 > —(px — M VH(vg) — p, vk, — ) — (x — i VH (p) — vi — (x — 4),pr, — D)
= A\e(VH (vg), v, — ) + px(VH (pr), pr — D)-

We divide the above inequality by uj and take the limit £k — 400 to obtain
(5.18) 0> c(VH(u),u—1u)+ (VH(p),p— D),

where the positive constant ¢ is defined in the statement of this proposition to be ¢ :=
limg 400 Ak /. From Lemma 5.2 and Lemma 5.3, we know that u € U(x) and p € 9S(z);
hence we have H(u) > H(u) and H(p) > H(p) by (5.14). Taken together with (5.18), we
obtain

(5.19) 0>c(H(u)— H(u))+ H(p) — H(p) > «(VH(u),u —u) + (VH(p),p — p) > 0.

As a result, the inequalities in (5.19) become equalities, which implies H(u) = H(u) and
H(p) = H(p) because c is positive by assumption. Therefore, we conclude that v = @ and
p = P, since the minimizers in (5.18) are unique. [ |

In practice, if a model has nonunique minimizers, then some existing optimization algo-
rithms may fail to converge, in which case one may consider this modification procedure and
perform the optimization algorithm to the modified problem to obtain a sequence converging
to the selected minimizer. Here, for simplicity, we only demonstrate the method on a specific
optimization problem whose objective function contains two parts including one norm and
one constraint. In fact, this method works for more general cases, such as some other decom-
position models with more degenerate parts. Now, we give a numerical illustration for this
proposed regularization method on the celebrated TVL1 model [5, 6, 14, 42, 43, 52, 74, 75].

To be specific, the TVL1 model solves the following optimization problem:

(5.20) UTVELY () .= argmin a|ul|7v + ||z — ul|1,
u€R™
where || - |7y denotes the discrete TV seminorm defined in (1.6). However, it is well known

that this minimization problem may have nonunique minimizers [42, 50]. For instance, let €2
be the domain of an image and 7 be any small rectangle in © such that 2|Q;| < [Q]. Let
I be the set of indices whose corresponding pixels are in Q1. Let mq, mo be the numbers of
pixels on the two adjacent sides of the small rectangle 1. In other words, there are mimso
pixels in € and 2(m; + m2) pixels on the boundary of Q. Let a and b be two different real
numbers in [0, 1], and set the discretized image x as follows:

a if (i,5) €1,
T4 =
7 b oif (i,5) € 1.
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Table 2
Numerical results of the TVL1 model with the proposed regularization method.

Example 1 Example 2 Example 3 Example 4
Original
Image -
v
Component

Then, the minimizers of the TVL1 model (5.20) with @ = (mim2)/(2m1 + 2msg) are not
unique. Moreover, we have

UTVE (z) = {Bur + (1 — Bluz : B € [0,1]},

where u; and ug are defined by

(ug); g = min{a,b} if (i,5) € I, and  (ug)i; = max{a,b} if (i,7) € I,
B i (i,) & 1 BT if (i) & 1.

By applying the proposed regularization method, a unique minimizer is selected in this set of
minimizers. To be specific, we solve the following problem:

G2) I @), 0l (@) = aminafollry + el + 2 ol + 5z — v - w3
v, wER™ j2i

Note that the above model is related to models incorporating infimal convolution of L' and L?

fidelity terms, which are used for mixed Gaussian and salt and pepper noise image restoration,

as proposed in [30, 31], for instance. Although this model is different from the example we

give in (5.1), one can adjust the arguments to prove the same statements for this model. In

other words, when the two parameters A and p converge to zero at a comparable rate, the

v-component v{‘;m(x) converges to the element 7" *!(x) defined by

aVI(z) .= argmin |Jullz = w,

weUTVLIL(g)

and the w-component converges to the residual x —wu;. Numerically, we use a splitting method
and the algorithm in [39, 50, 67] to solve the minimizer in (5.21) when A = p = 0.01. We
test the regularization method on the four images shown in the first row in Table 2, and the
corresponding v-components are shown in the second row.
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6. Conclusion. In this paper, we provide connections between multi-time Hamilton—
Jacobi equations and some optimization problems such as the decomposition models in image
processing. To be specific, we show a representation formula for the minimizers u; and clarify
the connection between the minimizers u; and the spatial gradient p of the minimal values.

Moreover, we also study the variational behaviors of the momentum p and the velocities ?—j

It turns out that their limits solve two optimization problems which are dual to each other.
In addition, we provide a new perspective from convex analysis to prove the uniqueness of the
convex solution to the multi-time HJ equation, taking advantage of the convexity assumptions
to overcome the difficulty that the functions can take the value +o0o. Finally, we demonstrate a
regularization method to modify the decomposition models which have nonunique minimizers.
In this work, we consider the optimization problems which can be written in the form
of Lax formula (3.3). Hence, we assume the observed data z is the summation of different
components {u;}. We do not consider nonadditive perturbation models such as [16, 55, 87].
However, our analysis actually covers a wide range of decomposition models with additive
noise, and the results can be easily extended to vector-valued images such as color images.
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