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Abstract

We propose new and original mathematical connections between Hamilton-Jacobi

USA (HJ) partial differential equations (PDEs) with initial data and neural network

Research supported by NSF DMS architectures. Specifically, we prove that some classes of neural networks correspond to
é?vzeongf;iaif;fZ‘;giynsg‘nf; are representation formulas of HJ PDE solutions whose Hamiltonians and initial data are
alphabetical order obtained from the parameters of the neural networks. These results do not rely on

universal approximation properties of neural networks; rather, our results show that
some classes of neural network architectures naturally encode the physics contained in
some HJ PDEs. Our results naturally yield efficient neural network-based methods for
evaluating solutions of some HJ PDEs in high dimension without using grids or
numerical approximations. We also present some numerical results for solving some
inverse problems involving HJ PDEs using our proposed architectures.

1 Introduction

The Hamilton—Jacobi (HJ) equations are an important class of partial differential equation
(PDE) models that arise in many scientific disciplines, e.g., physics [6,25,26,33,101], imag-
ing science [38—40], game theory [13,24,49,82], and optimal control [9,46,55,56,110].
Exact or approximate solutions to these equations then give practical insight about the
models in consideration. We consider here HJ PDEs specified by a Hamiltonian function
H:R"” — R and convex initial data J: R” — R

§(x, t) + H(V,S(x,t)) =0 in R” x (0, +00),
at (1)
S(x,0) = J(x) in R”,

where %—f(x, t) and V,S(x, t) = (%(x, t),..., %(x, t)) denote the partial derivative with
respect to ¢ and the gradient vector with respect to x of the function (x, ) — S(«, £), and
the Hamiltonian H only depends on the gradient V,S(x, £).
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Our main motivation is to compute the viscosity solution of certain H] PDEs of the
form of (1) in high dimension for a given x € R” and ¢ > 0 [9-11,34] by leveraging
new efficient hardware technologies and silicon-based electric circuits dedicated to neu-
ral networks. As noted by LeCun in [102], the use of neural networks has been greatly
influenced by available hardware. In addition, there have been many initiatives to cre-
ate new hardware for neural networks that yield extremely efficient (in terms of speed,
latency, throughput or energy) implementations: For instance, [50-52] propose efficient
neural network implementations using field-programmable gate array, [8] optimizes neu-
ral network implementations for Intel’s architecture, and [96] provides efficient hardware
implementation of certain building blocks widely used in neural networks. It is also worth
mentioning that Google created specific hardware, called “Tensor Processor Unit” [87] to
implement their neural networks in data centers. Note that Xilinx announced a new set of
hardware (Versal Al core) for implementing neural networks while Intel enhances their
processors with specific hardware instructions for neural networks. LeCun also suggests
in [102, Section 3] possible new trends for hardware dedicated to neural networks. Finally,
we refer the reader to [30] (see also [69]) that describes the evolution of silicon-based elec-
trical circuits for machine learning.

In this paper, we propose classes of neural network architectures that exactly represent
viscosity solutions of certain HJ PDEs of the form of (1). Our results pave the way to lever-
age efficient dedicated hardware implementation of neural networks to evaluate viscosity
solutions of certain HJ PDEs for initial data which takes a particular form.

Related work The viscosity solution to the H] PDE (1) rarely admits a closed-form expres-
sion, and in general it must be computed with numerical algorithms or other methods
tailored for the Hamiltonian H, initial data J, and dimension 7.

The dimensionality, in particular, matters significantly because in many applications
involving HJ] PDE models, the dimension # is extremely large. In imaging problems, for
example, the vector & typically corresponds to a noisy image whose entries are its pixel
values, and the associated Hamilton—Jacobi equations describe the solution to an image
denoising convex optimization problem [38,39]. Denoising a 1080 x 1920 standard full
HD image on a smartphone, for example, corresponds to solving a HJ PDE in dimension
n = 1080 x 1920 = 2,073,600.

Unfortunately, standard grid-based numerical algorithms for PDEs are impractical when
n > 4. Such algorithms employ grids to discretize the spatial and time domain, and the
number of grid points required to evaluate accurately solutions of PDEs grows exponen-
tially with the dimension #. It is therefore essentially impossible in practice to numerically
solve PDEs in high dimension using grid-based algorithms, even with sophisticated high-
order accuracy methods for H] PDEs such as ENO [121], WENO [84], and DG [75]. This
problem is known as the curse of dimensionality [17].

Overcoming the curse of dimensionality in general remains an open problem, but for
HJ PDEs several methods have been proposed to solve it. These include, but are not
limited to, max-plus algebra methods [2,3,45,54,60,110-113], dynamic programming
and reinforcement learning [4,19], tensor decomposition techniques [44,73,142], sparse
grids [20,59,90], model order reduction [5,97], polynomial approximation [88,89], multi-
level Picard method [79-81,146], optimization methods [38—40,151] and neural networks
[7,42,64,76,77,83,100,120,131,134,136,138]. Among these methods, neural networks
have become increasingly popular tools to solve PDEs [7,14-16,18,29,31,41-43,53,58,
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62-65,74,76-78,85,92,93,98-100,104,109,114,115,118,120,123,131,134-136,138-140,
144,145,148-150] and inverse problems involving PDEs [107,108,116,117,122,126—
130,143,149,152,153]. Their popularity is due to universal approximation theorems that
state that neural networks can approximate broad classes of (high-dimensional, non-
linear) functions on compact sets [35,71,72,124]. These properties, in particular, have
been recently leveraged to approximate solutions to high-dimensional nonlinear HJ PDEs
[64,138] and for the development of physics-informed neural networks that aim to solve
supervised learning problems while respecting any given laws of physics described by a
set of nonlinear PDEs [128].

In this paper, we propose some neural network architectures that exactly represent
viscosity solutions to HJ PDEs of the form of (1), where the Hamiltonians and initial
data are obtained from the parameters of the neural network architectures. Recall our
results require the initial data J to be convex and the Hamiltonian H to only depend on
the gradient V,S(x, t) [see Eq. (1)]. In other words, we show that some neural networks
correspond to exact representation formulas of H] PDE solutions. To our knowledge, this
is the first result that shows that certain neural networks can exactly represent solutions
of certain HJ PDEs.

Note that an alternative method to numerically evaluate solutions of H] PDEs of the
form of (1) with convex initial data has been proposed in [40]. This method relies on
the Hopf formula and is only based on optimization. Therefore, this method is grid and
approximation-free and works well in high dimension. Contrary to [40], our proposed
approach does not rely on any (possibly non-convex) optimization techniques.
Contributions of this paper In this paper, we prove that some classes of shallow neural
networks are, under certain conditions, viscosity solutions to Hamilton—Jacobi equations
for initial data which takes a particular form. The main result of this paper is Theorem 3.1.
We show in this theorem that the neural network architecture illustrated in Fig. 1 rep-
resents, under certain conditions, the viscosity solution to a set of first-order H] PDEs of
the form of (1), where the Hamiltonians and the convex initial data are obtained from the
parameters of the neural network. As a corollary of this result for the one-dimensional
case, we propose a second neural network architecture (illustrated in Fig. 4) that repre-
sents the spatial gradient of the viscosity solution of the H] PDE above in 1D and show
in Proposition 3.1 that under appropriate conditions, this neural network corresponds to
entropy solutions of some conservation laws in 1D.

Let us emphasize that the proposed architecture in Fig. 1 for representing solutions to
HJ PDEs allows us to numerically evaluate their solutions in high dimension without using
grids.

We also stress that our results do not rely on universal approximation properties of
neural networks. Instead, our results show that the physics contained in H] PDEs satisfying
the conditions of Theorem 3.1 can naturally be encoded by the neural network architecture
depicted in Fig. 1. Our results further suggest interpretations of this neural network
architecture in terms of solutions to PDEs.

We also test the proposed neural network architecture (depicted in Fig. 1) on some
inverse problems. To do so, we consider the following problem. Given training data sam-
pled from the solution S of a first-order HJ] PDE (1) with unknown convex initial function
J and Hamiltonian H, we aim to recover the unknown initial function. After the training
process using the Adam optimizer, the trained neural network with input time variable
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t = 0 gives an approximation to the convex initial function /. Moreover, the parameters
in the trained neural network also provide partial information on the Hamiltonian H. The
parameters only approximate the Hamiltonian at certain points, however, and therefore
do not give complete information about the function. We show the experimental results
on several examples. Our numerical results show that this problem cannot generally be
solved using Adam optimizer with high accuracy. In other words, while our theoretical
results (see Theorem 3.1) show that the neural network representation (depicted in Fig. 1)
to some HJ PDE:s is exact, the Adam optimizer for training the proposed networks in this
paper sometimes gives large errors in some of our inverse problems, and as such there is
no guarantee that the Adam optimizer works well for the proposed network.
Organization of this paper In Sect. 2, we briefly review shallow neural networks and
concepts of convex analysis that will be used throughout this paper. In Sect. 3, we establish
connections between the neural network architecture illustrated in Fig. 1 and viscosity
solutions to HJ PDEs of the form of (1), and the neural network architecture illustrated in
Fig. 4 and one-dimensional conservation laws. The mathematical setup for establishing
these connections is described in Sect. 3.1, our main results, which concern first-order
HJ PDEs, are described in Sect. 3.2, and an extension of these results to one-dimensional
conservation laws is presented in Sect. 3.3. In Sect. 4, we perform numerical experiments
to test the effectiveness of the Adam optimizer using our proposed architecture (depicted
in Fig. 1) for solving some inverse problems. Finally, we draw some conclusions and
directions for future work in Sect. 5. Several appendices contain proofs of our results.

2 Background

In this section, we introduce mathematical concepts that will be used in this paper. We
review the standard structure of shallow neural networks from a mathematical point of
view in Sect. 2.1 and present some fundamental definitions and results in convex analysis
in Sect. 2.2. For the notation, we use R” to denote the n-dimensional Euclidean space. The
Euclidean scalar product and Euclidean norm on R” are denoted by (-, -) and ||-||,. The set
of matrices with m rows and # columns with real entries is denoted by M,,, ,(R).

2.1 Shallow neural networks
Neural networks provide architectures for constructing complicated nonlinear func-
tions from simple building blocks. Common neural network architectures in applications
include, for example, feedforward neural networks in statistical learning, recurrent neural
networks in natural language processing, and convolutional neural networks in imaging
science. In this paper, we focus on shallow neural networks, a subclass of feedforward
neural networks that typically consist of one hidden layer and one output layer. We give
here a brief mathematical introduction to shallow neural networks. For more details, we
refer the reader to [61,103,137] and the references listed therein.

A shallow neural network with one hidden layer and one output layer is a composition of
affine functions with a nonlinear function. A hidden layer with m € N neurons comprises
m affine functions of an input x € R” with weights w; € R” and biases b; € R:

R” x R” x R > (x, w;, b;) = (w;, x) + b;.
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These m affine functions can be succinctly written in vector form as W« + b, where the
matrix W € M, ,(R) has for rows the weights w; and the vector b € R™ has for entries
the biases b;. The output layer comprises a nonlinear function o : R” — R that takes for
input the vector Wx + b of affine functions and gives the number

R xR"xR> @ w;,b)—~ o (Wx+b).

The nonlinear function o is called the activation function of the output layer.

In Sect. 4, we will consider the following problem: Given data points {(x;, yi)}fi ; CR"x
R, infer the relationship between the input #;’s and the output y;’s. To infer this relation,
we assume that the output takes the form (or can be approximated by) y; = o (W«; + b)
for some known activation function o, unknown matrix of weights W € M,, ,(R), and
unknown vector of bias b. A standard approach to solve such a problem is to estimate the
weights w; and biases b; so as to minimize the mean square error

N

- 1
{0w, bi)}iZ, € argmin N D (o (Wai+b) =) @
{wib)iZ, CR" xR i=1

In the field of machine learning, solving this minimization problem is called the learning
or training process. The data {(x;, yi)}f\; ; used in the training process is called training
data. Finding a global minimizer is generally difficult due to the complexity of the mini-
mization problem and that the objective function is not convex with respect to the weights
and biases. State-of-the-art algorithms for solving these problems are stochastic gradient
descent-based methods with momentum acceleration, such as the Adam optimizer for
neural networks [94]. This algorithm will be used in our numerical experiments.

2.2 Convex analysis
We introduce here several definitions and results of convex analysis that will be used in
this paper. We refer readers to Hiriart—Urruty and Lemaréchal [67,68] and Rockafellar

[133] for comprehensive references on finite-dimensional convex analysis.

Definition 1 (Convex sets, relative interiors, and convex hulls) A set C C R” is called
convex ifforany A € [0, 1] and any«, y € C, the element Ax + (1 — 1)y is in C. The relative
interior of a convex set C C R”, denoted by ri C, consists of the points in the interior of
the unique smallest affine set containing C. The convex hull of a set C, denoted by conv C,
consists of all the convex combinations of the elements of C. An important example of a
convex hull is the unit simplex in R”, which we denote by

Ap={(ay,..,an) €[0,1)": D o =1¢. (3)
i=1

Definition 2 (Domains and proper functions) The domain of a function f: R” — R U
{400} is the set

domf = {x e R" : f(x) < +oc}.

A functionf is called proper if its domain is non-empty and f (x) > —oo for every # € R".



20

Page 6 of 50 J. Darbon et al. Res Math 5¢i(2020)7:20

Definition 3 (Convex functions, lower semicontinuity, and convex envelopes) A proper
function f: R” — R U {+00} is called convex if the set dom f is convex and if for any
%,y € dom f and all A € [0, 1], there holds

SfOx+ (1 =2y <AM(x)+0—-21)f) (4)

A proper function f: R” — R U {+o00} is called lower semicontinuous if for every
sequence {xk}]‘fg € R" with limg_, y oo = & € R”, we have liminfy_, , o f(xx) > f (%).
The class of proper, lower semicontinuous convex functions is denoted by I'hH(R”).
Given a function f: R” — R U {+00}, we define its convex envelope co f as the largest
convex function such that co f(x) < f(x) for every x € R”. We define the convex lower
semicontinuous envelope co f as the largest convex and lower semicontinuous function

such that co f () < f(») for every x € R”.

Definition 4 (Subdifferentials and subgradients) The subdifferential 9f (x) of f € I'H(R")
atx € dom f is the set (possibly empty) of vectors p € R” satistying

Vy e R", f(9) > f(x) + (p,y — ). (5)

The subdifferential 9f (x) is a closed convex set whenever it is non-empty, and any vector
p € 9f () is called a subgradient of f atx. If f is a proper convex function, then 9f (x) # ¢
whenever x € ri (dom f), and 9f (x) = ) whenever x ¢ dom J [133, Thm. 23.4]. If a convex
function f is differentiable at xy € R”, then its gradient V,f (xo) is the unique subgradient
of f at xg, and conversely if f has a unique subgradient at x¢, then f is differentiable at that
point [133, Thm. 21.5].

Definition 5 (Fenchel-Legendre transforms) Let f € I(R”). The Fenchel-Legendre
transform f*: R” — R U {400} of f is defined as

) = sup {(p.x) —f®)}. (6)

xeR”

For any f € Ip(R”), the mapping f +— f* is one-to-one, f* € I'H(R”), and (f*)* = f.
Moreover, for any (x, p) € R” x R”, the so-called Fenchel’s inequality holds:

f@®) +fp) = (x p), 7)

with equality attained if and only if p € 9f (x), if and only if ¥ € 9f*(p) [68, Cor. X.1.4.4].

We summarize some notations and definitions in Table 1.

3 Connections between neural networks and Hamilton-Jacobi equations

This section establishes connections between HJ PDEs and neural network architectures.
Subsection 3.1 presents the mathematical setup, subsection 3.2 describes our main results
for first-order H] PDEs, and finally subsection 3.3 presents our results for first-order
one-dimensional conservation laws.
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Table 1 Notation used in this paper. Here, we use C to denote a setin R”, f to denote a
function from R” to R U {400} and x to denote a vector in R"

Notation Meaning Definition

(-, ) Euclidean scalar product in R” (xy)=>" 1 xyi

11> Euclidean norm in R” [l =/ (%, x)

riC Relative interior of C The interior of C with respect to
the minimal hyperplane contain-
ing CinR"

conv C Convex hull of C The set containing all convex
combinations of the elements of
C

Ap Unit simplex in R” {lr, ... an) €10, 30 0y =1}

dom Domain of f {x e R": f(x) < 400}

TIH(R™) A useful and standard class of convex functions The set containing all proper, con-

vex, lower semicontinuous func-
tions from R"” to R U {+o0}

cof Convex envelope of f The largest convex function such
that cof(x) < f(x) forevery x €
Rﬂ

cof Convex and lower semicontinuous envelope of f The largest convex and lower

semicontinuous function such
that co f(x) < f(x) forevery x €

Rﬂ

of (x) Subdifferential of f at x peR": fo)=fx)+ (py—
x) Vy € R}

f* Fenchel-Legendre transform of ()= supxern {(p. x) — f(®)}

Weight : (p;, — 6)
Bias : —

(P, x) — 16, — ?’1}

’ (pyX) — 16, — 7, J‘ pz[,i);g

<pm’ X> - tem - ym}

Fig. 1 |lllustration of the structure of the neural network (8) that can represent the viscosity solution to
first-order Hamilton—Jacobi equations for initial data which takes a particular form

3.1 Setup
In this section, we consider the function f: R” x [0,+00) — R given by the neural
network in Fig. 1. Mathematically, the function f can be expressed using the following

formula

f(x; t; {(Pp eil yl)}fil) =  max {(pi; x) - tel - )/i}' (8)
ie{l,..,m}

Our goal is to show that the function f in (8) is the unique uniformly continuous

viscosity solution to a suitable Hamilton—Jacobi equation. In what follows, we denote

S t:{(py 0, vi)}!L,) by f (%, t) when there is no ambiguity in the parameters.

Page 7 of 50
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We adopt the following assumptions on the parameters:

(A1) The parameters {p;};", are pairwise distinct, i.e, p; # p; if i #J.
(A2) There exists a convex function g: R” — R such that g(p;) = yi.
(A3) Foranyj € {1,...,m}and any (@1, ..., ay) € R that satisfy

(@1, ...,0m) € Ay withaj =0,
D iz %P = Pj) 9)
Zi;ﬁ/’ o%Yi =Y

there holds Zi# a;b; > 0;.

Note that (A3) is not a strong assumption. Indeed, if there exist j € {1,..., m} and
(@1, ..., o) € R™ satistying Eq. (9) and Zi# a;0; < 6;, then

ppx) — 16— v < D ail(py ) — t0; — i) < r?%x{(pi, x) — t0; — y;}.
i

As a result, the jth neuron in the network can be removed without changing the value
of f(x, t) for any x € R” and ¢t > 0. Removing all such neurons in the network, we can
therefore assume (A3) holds.

Our aim is to identify the HJ equations whose viscosity solutions correspond to the
neural network f defined by Eq. (8). Here, x and ¢ play the role of the spatial and time
variables, and f(-, 0) corresponds to the initial data. To simplify the notation, we define
the function/: R” — R as

,0) = = b X)) — Vi 10
f®x0) =J(x) ieg}gfm}{(p, x) — vi} (10)
and the set I, as the collection of maximizers in Eq. (10) at «, that is,

Ly:=arg max{(p;, x) — y;}. (11)

i{l,...,m}

Note that the initial data J given by (10) is a convex and polyhedral function, and it satisfies
several properties that we describe in the following lemma.

Lemma 3.1 Suppose {(p;, vi)}[", C R" x R satisfy assumptions (A1) and (A2). Then the
following statements hold.

(i) The Fenchel—-Legendre transform of ] is given by the convex and lower semicontinuous
function

m
“ rgir;EA {Zai%‘} if p € conv ({p;}12,),
]*(p) — 1w Wm m i=1

2:11 aip;=p (12)

+o00 otherwise.

Moreover, its restriction to dom J* is continuous, and the subdifferential 9]*(p) is
non-empty for every p € dom J*.
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(i) Let p € dom J* and x € 3]*(p). Then, (a1, ..., ay,) € R™ is a minimizer in Eq. (12)
if and only if it satisfies the constraints

(ﬂ) (O‘b e am) € Am;
®) YLiaip;i=p,
(c) aj =0foranyi ¢ I

(iii) Foreachik € {1,..., m}, let

1 if i=k
o = Sj:=
0 if i#k
Then, (a1, ..., 0y) is a minimizer in Eq. (12) at the point p = py. Hence, we have
J* (i) = Vi
Proof See “Appendix A.1” for the proof. ]

Having defined the initial condition J, the next step is to define a Hamiltonian H. To do
so, first denote by A(p) the set of minimizers in Eq. (12) evaluated at p € dom J*, i.e.,

m
A(p):= arg min {Z%’V;’}- 13)
(a1, om)eAm | j=1
Yt wip=p

Note that the set A(p) is non-empty for every p € dom J* by Lemma 3.1(i). Now, we
define the Hamiltonian function H: R” — R U {400} by

inf a;6; if p e dom]/¥
H(p):= «EM{; } (14)

+o00 otherwise.

The function H defined in (14) is a polyhedral function whose properties are stated in the
following lemma.

Lemma 3.2 Suppose {(p;, 0, vi)}]"; C R” x R x R satisfy assumptions (A1)—(A3). Then,
the following statements hold:

(i) Foreveryp € dom J*, the set A(p) is compact and Eq. (14) has at least one minimizer.
(ii) The restriction of H to dom J* is a bounded and continuous function.
(iii) There holds H(p;) = 6, foreachi € {1, ..., m}.

Proof See “Appendix A.2” for the proof. ]

3.2 Main results: First-order Hamilton-Jacobi equations

Let f be the function represented by the neural network architecture in Fig. 1, whose
mathematical definition is given in Eq. (8). In the following theorem, we identify the set
of first-order HJ equations whose viscosity solutions correspond to the neural network f.
Specifically, f solves a first-order HJ equation with Hamiltonian H and initial function J
that were defined previously in Egs. (14) and (10), respectively. Furthermore, we provide
necessary and sufficient conditions for a first-order HJ equation of the form of (1) with
initial data given in the form of (10) to have for viscosity solution the neural network f.
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Theorem 3.1 Suppose the parameters {(p;, 0;, v;)}"; C R” x R x R satisfy assumptions
(A1)-(A3), and let f be the neural network defined by Eq. (8) with these parameters. Let ]
and H be the functions defined in Egs. (10) and (14), respectively, and let H: R" — R be
a continuous function. Then the following two statements hold.

(i) The neural network f is the unique uniformly continuous viscosity solution to the
first-order Hamilton—Jacobi equation

3—{(96, t)+ H(Vyf(x,t)) =0, in R” x (0, +00), (15)
fx,0) =J(x), in R”.

Moreover, f is jointly convex in (x,t).
(ii) The neural network f is the unique uniformly continuous viscosity solution to the
first-order Hamilton—Jacobi equation

2—{(96, t)+ H(Vyf(x,t)) =0, in R” x (0, +00), (16)
f(x 0) =J(x), in R”,

if and only if H(p;) = H(p,) for each i € {1,...,m} and H(p) > H(p) for every
p € dom J*,

Proof See “Appendix B” for the proof. o

Remark 1 This theorem identifies the set of H] equations with initial data / whose solution
is given by the neural network f. To each such HJ equation, there corresponds a continuous
Hamiltonian A satisfying H(p;) = H(p;) for every i = {1,...,m} and H(p) > H(p) for
every p € dom J*. The smallest possible Hamiltonian satisfying these constraints is the
function H defined in (14), and its corresponding HJ equation is given by (15).

Example 1 In this example, we consider the HJ PDE with initial data /"“¢(x) = ||x||; and
2

the Hamiltonian H""¢(p) = — @ for all x, p € R”. The viscosity solution to this H] PDE

is given by

nt
Sx,t) = |21 + — = max {{p,x) — t6; — y;} for everyx € R" and ¢ > 0,
2 ie{l,...,m}

where m = 2", each entry of p; takes value in {£1}, and 6; = —7, y; = 0 for every
i € {1,...,m}. In other words, the solution S can be represented using the proposed
neural network with parameters {(p;, —7, 0)},. We can compute the functions / and H
using definitions in Eqgs. (10) and (14) and then obtain

J(x) = |lx|l1 = J"¢(x) for every x € R";

H(p) _ —g: ) S [_11 l]n;

+o00, otherwise.

Theorem 3.1 stipulates that S solves the HJ PDE (16) if and only if H(p;) = — 75 for every
ie{l,...,m}and H(p) > —g for every p € [-1,1]" \ {p;},. The Hamiltonian Hve s
one candidate satisfying these constraints.
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Example 2 In this example, we consider the case when J"'¢(x) = ||x| o and H"¢(p) =
—% for every x, p € R”. Denote by e; the ith standard unit vector in R”. Let m = 2n,
), ={Fe} |, 0 = —5,and y; = O for every i € {1, ..., m}. The viscosity solution S
is given by

nt
S t) = xlloc + — = max {(p,x) — t0; — y;} for everyx € R” and ¢ > 0.
2 ie{l,...,m}

Hence, S can be represented using the proposed neural network with parameters
{(p; —%, 0)}72,. Similarly, as in the first example, we compute / and H and obtain the
following results

J(x) = ||%||oc for every x € R";

n

-5 € By;
Hp=1 2 P

+00 otherwise,

where B, denotes the unit ball with respect to the /! norm in R”, i.e.,, B, = conv {+te; :
i € {1,...,n}}. By Theorem 3.1, S is a viscosity solution to the HJ] PDE (16) if and only
if Hp,) = —5 forevery i € {1,...,m} and H(p) > —3 for every p € B,\{p;}/",. The
Hamiltonian H""¢ is one candidate satisfying these constraints.

Example 3 In this example, we consider the H] PDE with Hamiltonian H""¢(p) = ||p||1
and initial data J"“¢(x) = max { (12| cos %(lel + Ile)}, for all p € R” and ¥ =
(%1, %, . .., %) € R"™. The corresponding neural network has m = 2un + 5 neurons, where
the parameters are given by

{0 6 v, = {(en LO)Y, U{(—e; L)L,
(p2n+1’ O2n+15 V2n+1) =(0,0,0),

1
{(p, 6;, )/i)},«zz;irz = {_

ﬁ(ael + Bey, 2,0): o, B € {:i:l}},

where e; is the i" standard unit vector in R” and 0 denotes the zero vector in R”. The
functions J and H defined by (10) and (14) coincide with the underlying true initial data
Jtrue and Hamiltonian H™ €. Therefore, by Theorem 3.1, the proposed neural network
represents the viscosity solution to the HJ] PDE. In other words, given the true parameters
{(p;, 0, i)}, the proposed neural network solves this H] PDE without the curse of
dimensionality. We illustrate the solution with dimension » = 16 in Fig. 2, which shows
several slices of the solution evaluated at ¥ = (x1, 42, 0,...,0) € R1®and ¢ =0,1,2,3in
figures 2(A), 2(B), 2(C), 2(D), respectively. In each figure, the x and y axes correspond to
the first two components x; and %3 in «, while the color represents the function value
S(x, t).

Remark 2 Let € > 0 and consider the neural network f : R” x [0, +00) — R defined by

[ (%, t):=€log (Z e((mx)teiyi)/g) )

i=1



20

J. Darbon et al. Res Math 5¢i(2020)7:20

Page 12 of 50
10.0 15 10.0 135
7.5 7.5 ' 12.0
12
5.0 5.0 40:5
9.0
2.5 9 25
75
% 00 ¥ 00
6.0
-2.5 8 -2.5
45
-5.0 -5.0
3 3.0
-15 -15 15
-10.0 0 -10.0 0.0
-100 -75 =50 =25 00 25 . A 10.0 -10.0 =75 -5.0 =25 0.0 25 X A 10.0
x1 x1
(a)
10.0 12.0 10.0 10
75 B 10.5 b A
8
5.0 9.0 5.0
25 75 2.5 6
] 0.0 6.0 X 0.0
-2.5 4.5 -2.5 4
-5.0 3.0 -5.0
2
-754 15 -75
-10.0 - . 0.0 -10.0 o
-10.0 =75 =50 =25 0.0 . . A 10.0 -100 =75 =50 =25 0 0 25 75 10.0
x1
© (d)
Fig.2 Solution S: R'® x [0, +-00) — R to the HJ PDE in Example 3 is solved using the proposed neural
network. Several slices of the solution S evaluated atx® = (x,x2,0,...,0)and t = 0, 1, 2, 3 are shown in figures
2(A), 2(B), 2(C), 2(D), respectively. In each figure, the x and y axes correspond to the first two components x;
and x, in the variable &, while the color represents the function value S(x; t)

and illustrated in Fig. 3. This neural network substitutes the non-smooth maximum acti-
vation function in the neural network f defined by Eq. (8) (and depicted in Fig. 1) with
a smooth log-exponential activation function. When the parameter 6; = —% H p; ||§, then
the neural network f; is the unique, jointly convex and smooth solution to the following
viscous HJ PDE

3fe;x; t) ||fo€ 15 = gAxfe(x, ) in R x (0, 400),
(18)
Je(x,0) = elog (Z e((pi’x>_yi)/€) —
i=1

This result relies on the Cole—Hopf transformation ([47], Sect. 4.4.1); see Appendix C for
the proof. While this neural network architecture represents, under certain conditions,
the solution to the viscous H] PDE (18), we note that the particular form of the convex
initial data in the HJ PDE (18), which effectively corresponds to a soft Legendre transform
in that lim._. € log (Z e((piox)— V’)k) = maX;e(l,.. ,m}{(p,, ) y;}, severely restricts
the practlcaellt(;f of this result.
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(py,x) — 16, — 71}—

L <p" X> _ tel — }/I J_Lugfexpnnemiu] -

<pm’ X> - tem - }/m}_

Fig. 3 lllustration of the structure of the neural network (17) that represents the solution to a subclass of
second-order HJ equations when 6; = —%||p,-||§ forie{1,...,m}

3.3 First-order one-dimensional conservation laws

It is well known that one-dimensional conservation laws are related to HJ equations
(see, e.g., [1,22,23,28,32,86,91,95,106], and also [37] for a comprehensive introduction
to conservation laws and entropy solutions). Formally, by taking spatial gradient of the H]J
equation (1) and identifying the gradient V,f = u, we obtain the conservation law

u .
E(x, t) + ViH(ux, t)) =0 in R x (0, +00), 19)

u(x, 0) = up(x):=VJ(x) in R,

where the flux function corresponds to the Hamiltonian H in the HJ equation. Here,
we assume that the initial data J is convex and globally Lipschitz continuous, and the
symbols V and V;, in this section correspond to derivatives in the sense of distribution if
the classical derivatives do not exist.

In this section, we show that the conservation law derived from the HJ equation (1) can
be represented by a neural network architecture. Specifically, the corresponding entropy
solution u(x, t) = V,f(x, t) to the one-dimensional conservation law (19) can be repre-
sented using a neural network architecture with an argmax based activation function, i.e.,

Vif (%, t) = pj, wherej € arg max{(p;, x) — t0; — y;}. (20)

i€{l,...,m}

The structure of this network is shown in Fig. 4. When more than one maximizer exist in
the optimization problem above, one can choose any maximizer j and define the value to
be p;. We now prove that the function V,f given by the neural network (20) is indeed the
entropy solution to the one-dimensional conservation law (19) with flux function H and
initial data VJ, where H and J are defined by Egs. (14) and (10), respectively.

Proposition 3.1 Cousider the one-dimensional case, i.e., n = 1. Suppose the parameters
{(pi» 0, vi)}L, C R x R x R satisfy assumptions (A1)—(A3), and let u:=V,f be the neural
network defined in Eq. (20) with these parameters. Let ] and H be the functions defined
in Egs. (10) and (14), respectively, and let H: R — R be a locally Lipschitz continuous
function. Then, the following two statements hold.
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J = Argmax fo(x’ Z) - [7]-

Fig.4 lllustration of the structure of the neural network (20) that can represent the entropy solution to
one-dimensional conservation laws

(i) The neural network u is the entropy solution to the conservation law

d
B—L:(x, t)+ ViH(u(x, t)) =0 in R x (0, +00),

(21)
u(x, 0) = VJ(x) in R
(ii) The neural network u is the entropy solution to the conservation law
O 1) + VeHlu(m 1) =0 in R x (0, +00)
— (&, u(x,t)) = in R x (0, +00),
at ¥ (22)

u(x, 0) = VJ(x) in R,
if and only if there exists a constant C € R such that H(p;) = H(p;) + C for every
ie{l,...,myand H(p) > H(p) + C for any p € conv i},
Proof See “Appendix D” for the proof. O

Example 4 Here, we give one example related to Example 1. Consider /*%¢(x) = |x| and
H"™¢(p) = —E- for every x,p € R. The entropy solution u to the corresponding one

dimensional conservation law is given by

1 if x>0,
-1 if x<0O.

u(x, t) =

This solution u can be represented using the neural network in Fig. 4 withm = 2, p; = 1,

pr=-1,00 =6, = —% and y; = y» = 0. To be specific, we have

u(x) = pj, wherej € arg max {xp; — t0; — yi}.
ie{l,..,m}

The initial data J and Hamiltonian H defined in Egs. (10) and (14) are given by

J(x) = |x| for every x € R;

H(p) — _% JZAS [_17 1]:

+o0 otherwise.
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By Proposition 3.1, u solves the one-dimensional conservation law (22) if and only if there
exists some constant C € R such that H(£1) = —% +Cand H(p) > —% + C for every
p € (=1, 1). Note that H'""® is one candidate satisfying these constraints.

4 Numerical experiments
4.1 First-order Hamilton-Jacobi equations
In this subsection, we present several numerical experiments to test the effectiveness of
the Adam optimizer using our proposed architecture (depicted in Fig. 1) for solving some
inverse problems. We focus on the following inverse problem: We are given data samples
from a function S: R” x [0, +00) — R that is the viscosity solution to an HJ equation (1)
with unknown convex initial data J/ and Hamiltonian H, which only depends on V,S(x, £).
Our aim is to recover the convex initial data /. We propose to learn the neural network
using machine learning techniques to recover the convex initial data /. We shall see that
this approach also provides partial information on the Hamiltonian H.

Specifically, given data samples {(x}, ;, S(x;), tj))}jj\i 1» where {(x;, tj)}j]‘i 1 C R x [0, +00),
we train the neural network f with structure in Fig. 1 using the mean square loss function
defined by

1
N ¢
j=1

Iy 0 vi)¥L) = If (x5, 5 L 05 vi)YIL1) — S(xj, )%

The training problem is formulated as

argmin ({0 vV -
(P05 v} CR"XRXR

After training, we approximate the initial condition in the HJ equation, denoted by J,
by evaluating the trained neural network at £ = 0. That is, we approximate the initial

condition by
J:=f(- 0). (24)

In addition, we obtain partial information of the Hamiltonian H using the parameters
in the trained neural network via the following procedure. We first detect the effective
neurons of the network, which we define to be the affine functions {(p;, ¥) — 6; — i}
that contribute to the pointwise maximum in the neural network f (see Eq. (8)). We then
denote by L the set of indices that correspond to the parameters of the effective neurons,

ie.,

L= U arg max{(pi, x) — t0; — Vi),

x€R, £>0 ie{l,...m}

and we finally use each effective parameter (p, 6;) for [ € L to approximate the point
(p, H(p;)) on the graph of the Hamiltonian. In practice, we approximate the set L using a
large number of points (x, £) sampled in the domain R” x [0, +00).
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4.1.1 Randomly generalized piecewise affine H and J
In this subsection, we randomly select m parameters pt’ “¢in [—1,1)" fori € {1,...,m},
and define /¢ and y/™¢ as follows

Case 1. 6/ = —|p""|3 and y/™ = O0fori € {1,...,m}.

Case 2. 0/7"¢ = —|pi™||5 and y/™ = %prmeH% forie{l,...,m}.
1 .

Case 3. 6/ = —%||pi™||3 and y/™* = Ofori € {1,..., m}.
1 1 )

Case 4. 0/ = —1||pi™||3 and y/™* = L||pi™|3 fori € {1, ..., m}.

Define the function S as

S(x 1):= max {(pi™e, x) — toIre — ylrey,

By Theorem 3.1, this function S is a viscosity solution to the HJ equations whose Hamil-
tonian and initial function are the piecewise affine functions defined in Eqs. (14) and (10),
respectively. In other words, S solves the HJ equation with initial data J satisfying

J(x):= max (pm‘e ), for Case 1 and 3;

ie{l,...m} ( )
25
J(x):= max {(p””e x) — |””e||2} for Case 2 and 4,
ie . ,m

and Hamiltonian H satisfying

— max a;|[p?™|yt, if p e domJ¥
H(p):= acA(p) {Z ! for Case 1 and 2;

+00, otherwise,

—— max {Za,llp”"enz} if pedom]/*¥

H(p):= 2 acAlp for Case 3 and 4,

+00 otherwise,

where A(p) is the set of maximizers of the corresponding maximization problem in Eq.
(25). Specifically, if we construct a neural network f as shown in Fig. 1 with the underlying
parameters {(p?"¢, 6/, y[™€)}" | , then the function given by the neural network is exactly
the same as the function S. In other words, {(p!“¢, 67, y/"¢)}’"  is a global minimizer
for the training problem (23) with the global minimal loss value equal to zero.

Now, we train the neural network f with training data {(x;, ;, S(x;, t/))}N 1» where the
points {(x;, t,)} *, are randomly sampled in R” x [0, +-00) with respect to the standard
normal distribution for eachj € {1, ..., N}. (We take the absolute value for ¢ to make sure
it is nonnegative.) Here and after, the number of training data points is N = 20,000. We
run 60,000 descent steps using the Adam optimizer to train the neural network f. The
parameters for the Adam optimizer are chosen to be 81 = 0.5, B2 = 0.9, the learning rate
is 10~* and the batch size is 500.

To measure the performance of the training process, we compute the relative mean
square errors of the sorted parameters in the trained neural network, denoted by
{(p» 05 vi)}-1, and the sorted underlying true parameters {(p?"¢, 6"¢, ")} | . To be

specific, the errors are computed as follows
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Table 2 Relative mean square errors of the parameters in the neural network f with 2
neurons in different cases and different dimensions averaged over 100 repeated
experiments

# Case Case 1 Case 2 Case 3 Case 4
Averaged Relative Errors of {p;} 2D 4.10E—03 2.10E—03 3.84E—03 2.82E—03
4D 141E—09 1.20E—09 1.38E—09 1.29E—09
8D 1.14E—09 1.03E—09 1.09E—09 1.20E—09
16D 1.14E—09 6.68E—03 1.23E—09 7.74E—03
32D 1.49E—09 3.73E-01 1.46E—03 4.00E-01
Averaged Relative Errors of {6;} 2D 4.82E—-02 7.31E—-02 1.17E=01 1.79E—01
4D 347E-10 2.82E—-10 1.15E—09 1.15E—09
8D 147E—10 1.08E—10 2.10E—-10 225E—-10
16D 544E—11 1.69E—03 4.75E—=11 4.12E-03
32D 361E—-11 3.27E-01 6.42E—03 2.39E—-01
Averaged Relative Errors of {y;} 2D 1.35E—-02 1.01E—01 1.33E-02 9.24E—02
4D 3.71E=10 1.24E—09 3.67E—-10 1.10E—09
8D 291E-10 1.74E—10 2.82E—-10 201E=10
16D 2.80E—10 2.08E—04 3.10E—-10 3.20E—-04
32D 3.56E—10 1.88E—02 1.56E—01 3.62E—-02

m £ 2
Zi:l lp; — I’ime II5

relative mean square error of {p;} =

i true |2
i=1 ||Pir"e||2
) Z:il |91 _ Qitrue|2
relative mean square error of {6;} = NTE )
i=11Y%
m
. Sy v — v
relative mean square error of {y;} = S e s
i=11Y;

For the cases when the denominator Z:’il |yi” ue|2 is zero, such as Case 1 and Case 3, we

7|2 instead.

measure the absolute mean square error % Yl lvi—

We test Cases 1-4 on the neural networks with 2 and 4 neurons, i.e., we set m = 2,4
and repeat the experiments 100 times. We then compute the relative mean square errors
in each experiment and take the average. The averaged relative mean square errors are
shown in Tables 2 and 3, respectively. From the error tables, we observe that the training
process performs pretty well and gives errors below 107 in some cases when m = 2.
However, for the case when m = 4, we do not obtain the global minimizers and the error
isabove 1073, Therefore, there is no guarantee for the performance of the Adam optimizer
in this training problem and it may be related to the complexity of the solution S to the
underlying HJ equation.

4.1.2 Quadratic Hamiltonians
In this subsection, we consider two inverse problems of first-order HJ equations whose
Hamiltonians and initial data are defined as follows:

1. H(p) = —;lpl3 andJ(x) = |l%ll1 for p,x € R".
2. H(p) = 3llpl3 and J (%) = |l%]1 for p,x € R".

The solution to each of the two corresponding HJ equations can be represented using the
Hopf formula [70] and reads
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Table 3 Relative mean square errors of the parameters in the neural network f with 4
neurons in different cases and different dimensions averaged over 100 repeated
experiments

# Case Case 1 Case 2 Case 3 Case 4
Averaged Relative Errors of {p;} 2D 3.12E—-01 2.21E-01 2.85E—01 2.14E—01
4D 7.82E—02 6.12E—02 7.92E—-02 4.30E—02
8D 2.62E—-02 431E-03 4.02E-02 7.82E-03
16D 2.88E—02 3.64E—02 4.35E-02 1.73E—02
32D 1.42E—02 3.72E-01 1.42E—01 5.04E—01
Averaged Relative Errors of {6;} 2D 2.59E—01 3.68E—01 4.82E—-01 1.34E+00
4D 6.07E—02 8.37E—02 947E—-02 1.23E-01
8D 1.04E—02 848E—03 141E—02 1.31E—-02
16D 2.66E—03 2.53E—-02 7.80E—03 1.90E—02
32D 8.09E—04 441E-01 1.81E—02 3.66E—01
Averaged Relative Errors of {y;} 2D 1.01E-02 3.19E-01 1.51E-02 2.65E—01
4D 6.72E—03 1.79E—02 1.03E—02 1.30E—02
8D 3.22E-03 2.34E—-03 3.93E-03 2.65E—03
16D 948E—-03 3.70E—03 1.92E—02 1.94E—-03
32D 1.33E—02 535E—02 4.73E-01 1.17E=01

1. S t) = |lxl1 + %t forx e R”andt > 0
2
2. 8@ t) =Y iz (1] = 5) + X<t ;—’t,wherex =®1,...,x,) e R"andt >0
We train the neural network f using the same procedure as in the previous subsection
and obtain the function J (see Eq. (24)) and the parameters {(p;, 6))};c; associated with

the effective neurons. We compute the relative mean square error of J and {(p;, 6;)};c1, as
follows:

Ntest ~
Yony @) — Jaen))?
ZNtest |] test |2

e 6, — Hp)?
Y lHpp?

relative error of J:=

relative error of {(p;, 0))};:=

where {x/*’} are randomly sampled with respect to the standard normal distribution in
R” and there are in total N* = 2,000 testing data points. We repeat the experiments 100
times. The corresponding averaged errors in the two examples are listed in Tables 4 and
5, respectively.

In the first example, we have H(p) = —% ||p||% and J(x) = ||»||1. According to Theorem
3.1, the solution S can be represented without error by the neural network in Fig. 1 with

parameters
{(p,e,y) ER"xRxR: p(i) € (£1)}, fori e {1,...,n), 6 = g y =o}, (26)

where p(i) denotes the i entry of the vector p. In other words, the global minimal loss
value in the training problem is theoretically guaranteed to be zero. From the numerical
errors in Table 4, we observe that in low dimension such as 1D and 2D, the errors of the
initial function are small. However, in most cases, the errors of the parameters are pretty
large. In the case of n dimension, the viscosity solution can be represented using the 2”
parameters in Eq. (26). However, the number of effective neurons are larger than 2” in all
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Table 4 Relative mean square errors of J and {(p,, 6))} for the inverse problems of the

first-order HJ equations in different dimensions withJ = || - || and H = —% Il - ||§, averaged
over 100 repeated experiments

# Neurons 64 128 256 512 1024
Averaged Relative Errors of J 1D 229E—07 220E—07 2.12E—07 2.14E—07  1.82E—-07

2D 149E—-06 127E—06 1.16E—06 1.01E—06  9.25E—07
4D 6.27E—04 181E—04 593E—05 1.69E—06 3.44E—07
8D 127E—02  1.10E—02 1.03E—02 992E-03 9.73E—-03
16D  569E—02 583E—02 596E—02 599E—-02 6.01E—02
Averaged Relative Errors of {(p), 6))} 1D 2.58E—-01 129E—-01 7.05E—02 356E—02 1.72E—02
2D 4778—02  328E—-02 2.03E—02 1.03E-02 6.53E—03
4D 936E—03 4.09E—03 158E—03 531E-04 1.73E—04
8D 3.75E—02 339E-02 325E-02 278E-02 260E-02
16D  530E—01  5.40E-01 543E—01 543E—01  542E-01

Averaged Number of Effective Neurons 1D 445 4.37 418 392 355
2D 8.84 8.59 7.87 7.1 6.3
4D 20.04 20.62 19.52 183 17.06
8D 36.97 4391 47.84 49.19 50.03
16D 482 59.53 64.85 65.79 64.84

Table 5 Relative mean square errors of J and {(p,, §))} for the inverse problems of the

first-order HJ equations in different dimensions withJ = || - |y and H = | - ||2/2, averaged
over 100 repeated experiments

# Neurons 64 128 256 512 1024
Averaged Relative Errors of J 1D 523E—08 245E—08 1.96E—08 1.77E—08 1.77E—08

2D 1.75E—05 167E—=05 1.77E—=05 1.85E—05 1.91E—05
4D 582E—04 494E—04 528E—04 576E—04 6.16E—04
8D 154E—02  140E—02 135E—02 1.33E—02 1.32E-02
16D 4.19E—02 4.33E—02 443E—02 446E—02 449E-02
Averaged Relative Errors of {(p), 6))} 1D 325E—02 193E—02 124E—02 562E—03 292E-03
2D 830E—03 7.08E—03 578E—03 4.25E—03 347E-03
4D 241E—02 241E—02 251E—02 265E—02 2.82E—-02
8D 733E—02 732E-02 7.25E-02 7.15E-02 7.08E-—02
16D 3.85E—01  3.90E-01 392E—01  3.92E—-01 391E-01

Averaged Number of Effective Neurons 1D 20.26 26.94 3226 36.02 3861
2D 3274 48.05 65.7 84.87 99.83
4D 46.69 72.3 103.71 14741 198.27
8D 55.55 82.04 95.46 90.82 82.5
16D 61.51 99.63 119.95 118.89 109.1

cases, which also implies that the Adam optimizer does not find the global minimizers in
this example.

In the second example, the solution S cannot be represented using our proposed neural
network without error. Hence, the results describe the approximation of the solution S
by the neural network. From Table 5, we observe that the errors become larger when
the dimension increases. For this example, the number of effective neurons should be m
where m is the number of neurons used in the architecture. Table 5 shows that the average
number of effective neurons is below this optimal number. Therefore, this implies that
the Adam optimizer does not find the global minimizers in this example either.
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In conclusion, these numerical experiments suggest that recovering initial data from
data samples using our proposed neural network architecture with the Adam optimizer
is unsatisfactory for solving these inverse problems. In particular, Adam optimizer is not
always able to find a global minimizer when the solution can be represented without error
using our network architecture.

4.2 One-dimensional conservation laws
In this part, we show the representability of the neural network V,f given in Fig. 4 and
Eq. (20). Since the number of neurons is finite, the function V,f only takes values in the
finite set {p;}!" ;. In other words, it can represent the entropy solution u to the PDE (19)
without error only if u takes values in a finite set.

Here, we consider the following two examples

1. Hp) = —%pz and J(x) = |x| for p, x € R. The initial condition u is then given by

1, x>0,
up(x) = ) 0
-1, x<0O.

2. Hlp) = %pz and J(x) = |x| for p,x € R. Hence, the initial function u is the same as
in example 1.

In the first example, the entropy solution u only takes values in the finite set {1}, and it
can be represented by the neural network V,f without error by Prop. 3.1. However, in the
second example, the solution u takes values in the infinite set [—1, 1]; hence, the neural
network V,f is only an approximation of the corresponding solution .

To show the representability of the neural network, in each example, we choose the
parameters {p;}?" ; to be the uniform grid points in [-1, 1], i.e,,

piz—l—i—M for ie{l,...,m}.
m—1

We set 6; = H(p;) and y; = J*(p;) for each i € {1,..., m}, where J* is the Fenchel-
Legendre transform of the antiderivative of the initial function uy. Hence, in these two
examples, y; equals for each i. Figures 5 and 6 show the neural network V,f and the true
entropy solution u in these two examples at time ¢ = 1. As expected, the error in Fig. 5
for example 1 is negligible. For example 2, we consider neural networks with 32 and 128
neurons whose graphs are plotted in Figs. 6a and 6b, respectively. We observe in these
figures that the error of the neural networks with the specific parameters decreases as the
number of neurons increases. In conclusion, the neural network V,f with the architecture
in Fig. 4 can represent the solution to the one-dimensional conservation laws given in
Eq. (19) pretty well. In fact, because of the discontinuity of the activation function, the
proposed neural network V,f has advantages in representing the discontinuity in solution
such as shocks, but it requires more neurons when approximating non-constant smooth
parts of the solution.

5 Conclusion
Summary of the proposed work In this paper, we have established novel mathematical
connections between some classes of H] PDEs with convex initial data and neural net-
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and J* in example 1. The function given by the neural network is plotted in

orange and the true solution is plotted in blue

Solution

-0.25

-0.50

-0.75

-1.00

Solution to Example 2 with 32 Neurons

Solution to Example 2 with 128 Neurons

—— True Solution
Numerical Solution of NN

/

Solution

-0.25

-0.50

-0.75

-1.00

—— True Solution /S
Numerical Solution of NN /

0.0

(b)

Fig.6 Plot of the function represented by the neural network V,f at time t = 1 with 32 and 128 neurons
whose parameters are defined using H and J* in example 2. The function given by the neural network is
plotted in orange and the true solution is plotted in blue. The neural network with 32 neurons is shown on
the left, while the neural network with 128 neurons is shown on the right

work architectures. Our main results give conditions under which for initial data which
takes a particular form. These results do not rely on universal approximation properties
of neural networks; rather, our results show that some neural networks correspond to
representation formulas of solutions to H] PDEs whose Hamiltonians and convex initial
data are obtained from the parameters of the neural network. This means that some neural
network architectures naturally encode the physics contained in some HJ PDEs satisfying
the conditions in Theorem 3.1.

The first neural network architecture that we have proposed is depicted in Fig. 1. We
have shown in Theorem 3.1 that under certain conditions on the parameters, this neural
network architecture represents the viscosity solution of the HJ PDEs (16) for initial data
which takes a particular form. The corresponding Hamiltonian and convex initial data
can be recovered from the parameters of this neural network. As a corollary of this result
for the one-dimensional case, we have proposed a second neural network architecture
(depicted in Fig. 4) that represents the spatial gradient of the viscosity solution of the
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HJ PDEs (1) (in one dimension), and we have shown in Prop. 3.1 that under appropriate
conditions on the parameters, this neural network corresponds to entropy solutions of
the conservation laws (22).

Let us emphasize that the neural network architecture depicted in Fig. 1 that represents
solutions to the HJ PDEs (16) allows us to numerically evaluate these solutions in high
dimension without using grids or numerical approximations. Our work also paves the way
to leverage efficient technologies and hardware developed for neural networks to compute
efficiently solutions to certain HJ PDEs.

We have also tested the performance of the state-of-the-art Adam optimizer using our
proposed neural network architecture (depicted in Fig. 1) on some inverse problems. Our
numerical experiments in Sect. 4 show that these problems cannot generally be solved
with the Adam optimizer with high accuracy. These numerical results suggest further
developments of efficient neural network training algorithms for solving inverse problems
with our proposed neural network architectures.

Perspectives on other neural network architectures and HJ PDEs We now present exten-
sions of the proposed architectures that are viable candidates for representing solutions
of HJ PDEs.

First consider the following multi-time HJ PDE [12,27,39,105,119,125,132,141] which
reads

as
%(x, L, .. EN) + I-Ij(VxS(x, t, .. IN))
7

=0 foreachje{l,...,N} in R” x (0, +00),
Sx,0,...,0) =](x) in R”

A generalized Hopf formula [39,105,132] for this multi-time HJ equation is given by

N * N
Sty ... tn) = (Z tH; +]*> (x) = sup { (p.x) — thHj(p) -7 ¢
i=1

PER” j=1

(28)

foranyx € R” and ¢y, ..., &y > 0. Based on this formula, we propose a neural network
architecture, depicted in Fig. 7, whose mathematical definition is given by

N
f(x; tl; RS tN; {(pi; eill ) eiN) yl)}:il) = max (pit x) - Z tjel] —VYi(> (29)
j=1

ief{l,...,m}

where {(p;, 0i1, . . ., Oin» vy, CR" x RN x R is the set of parameters. The generalized
Hopf formula (28) suggests that the neural network architecture depicted in Fig. 7 is a
good candidate for representing the solution to (27) under appropriate conditions on the
parameters of the network.

As mentioned in [105], the multi-time HJ equation (27) may not have viscosity solutions.
However, under suitable assumptions [12,27,39,119], the generalized Hopf formula (28)
is a viscosity solution of the multi-time HJ equation. We intend to clarify the connec-
tions between the generalized Hopf formula, multi-time HJ PDEs, viscosity solutions, and
general solutions in a future work.
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\‘;mgh! P = O)
P X) =110y — .. —tyOy — 11
X
(0 ( Ma ()
) PiX) =105 = = O = Vi a1 SO 1155 1)
5 L )
=) ) <
Li/\ P X) = 10,1 = oo = IOy = Vo
Fig. 7 lllustration of the structure of the neural network (29) that can represent solutions to some first-order
multi-time HJ equations

In [38,39], it is shown that when the Hamiltonian H and the initial data / are both
convex, and under appropriate assumptions, the solution S to the following HJ] PDE

%(x, t)+ H(VeSx, t) =0 in R” x (0, +00),
S(x, 0) = J(x) in R”,

is represented by the Hopf [70] and Lax—Oleinik formulas [47, Sect. 10.3.4]. These for-
mulas read

Six, t) = m%x {(p, x) —J*(p) — tH(p)} (Hopf formula)
PER”

= m]iRn {](u) + tH* (x ; u) } . (Lax—Oleinik formula)
ucR”

Let p(x, t) be the maximizer in the Hopf formula and u(x, t) be the minimizer in the
Lax—Oleinik formula. Then, they satisfy the following relation [38,39]

ulx t) =x—tVH(p, t)).

Figure 8 depicts an architecture of a neural network that implements the formula above
for the minimizer u(x, ). In other words, we consider the ResNet-type neural network
defined by

ux t) =x — tVH(pj), where j € arg max {(pi, x) — t0; — y,-}. (30)

i€{l,...m}

Note that this proposed neural network suggests an interpretation of some ResNet archi-
tecture (for details on the ResNet architecture, see [66]) in terms of HJ PDEs. The activa-
tion functions of the proposed ResNet architecture are a composition of an argmax-based
function and ¢t VH, where H is the Hamiltonian in the corresponding HJ equation. More-
over, when the time variable is fixed, the input # and the output # are in the same space R”;
hence, one can chain the ResNet structure in Fig. 8 to obtain a deep neural network archi-
tecture by specifying a sequence of time variables ¢y, £, . . ., Zy. The deep neural network
is given by

U = up_q —thH(p]l;), foreachk € {1,...,N}, (31)
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Weight: ()
Bias:—

(p1,X) =16, — 1y

Jj = Argmax

u=x- tVH(p’)

' (pyx) — 10, — v,

(P X) = 10, = Vi

Fig. 8 lllustration of the structure of the ResNet-type neural network (30) that can represent the minimizer
in the Lax-Oleinik formula. Note that the activation function is defined using the gradient of the Hamiltonian
H, ie,VH

Weight : p?
Bias : — 17 = 1,07

@

Weight : p!
Bias : — 7! — 1,6}

‘_

Jji=Argmax [ )6 VH, J» = Argmax .
s ‘——. u
2

4, VH(p}) 1, VHy(P})

‘_

Fig. 9 |Illustration of the structure of the ResNet-type deep neural network (31) that can represent the
minimizers in the generalized Lax-Oleinik formula for the multi-time HJ PDEs. Note that the activation
function in the k™ layer is defined using the gradient of one Hamiltonian Hy, i.e., VHj. This figure only depicts
two layers

where #y = xand plli( is the output of the argmax based activation function in the k" layer.
For the case when N = 2, an illustration of this deep ResNet architecture with two layers
is shown in Fig. 9. In fact, this deep ResNet architecture can be formulated as follows

N
Uy =x — ZthH(p}l;).

k=1

This formulation suggests that this architecture should also provide the minimizers of
the generalized Lax—Oleinik formula for the multi-time HJ PDEs [39]. These ideas and
perspectives will be presented in detail in a forthcoming paper.

Applications of these neural architectures that can represent viscosity solutions of cer-
tain HJ PDEs to certain optimal control problems will be presented elsewhere.
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A Proofs of lemmas in Section 3.1

A.1 Proof of Lemma 3.1

Proof of (i): The convex and lower semicontinuous function J* satisfies Eq. (12) by [68,
Prop. X.3.4.1]. It is also finite and continuous over its polytopal domain dom J* =
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conv ({p;},) [133, Thms. 10.2 and 20.5], and moreover, the subdifferential 3/*(p) is
non-empty by [133, Thm. 23.10].

Proof of (ii): First, suppose the vector (¢, ..., a,) € R satisfies the constraints (a)—
(c). Since & € 9J*(p), there holds J*(p) = (p,x) — J(#¢) [68, Cor. X.1.4.4], and using the
definition of the set I, (11) and constraints (a)—(c) we deduce that

J*(p) = (p,x) —J(@) = (p.x) — Y _ o (%)

iely
= (pl x) - Zai(@j: x)
iely
m
- <p Y em, > P S
iely iely i=1

Therefore, («y, . . ., &y,) isaminimizer in Eq. (12). Second, let (&, . . ., ;) be aminimizer in
Eq. (12). Then, (a)—(b) follow directly from the constraints in Eq. (12). A similar argument
as above yields

J(@) = (p,x) —T*(p) = <Zaip,», x> =Y =) ai((pyx) —vi).
i=1 i=1 i=1

But J(x) = maxie{l,,_,,m}{(pi, x) — yi} by definition, and so there holds «; = 0 whenever
J(x) # (p;, ) — yi. In other words, o; = 0 whenever i ¢ I.

Proof of (iii): Let (B1, ..., Bm) € Ay satisty Y | Bip; = py. By assumption (A2), we
have yx = g(p;) with g convex, and hence, Jensen’s inequality yields

D suvi=wv=gr) =¢ (Z :Bipi) <Y Bigp) =) Bivi
i=1 i=1 i=1

i=1

Therefore, the vector (814, . . ., §,k) is a minimizer in Eq. (12) at the point p;, and J*(p;) =
i follows.

A.2 Proof of Lemma 3.2
Proof of (i): Let p € dom J*. The set A(p) € A,, is non-empty and bounded by Lemma
3.1(i), and it is closed since A(p) is the solution set to the linear programming problem (12).

Hence, A(p) is compact. As a result, we immediately have that H(p) < +00. Moreover,
for each (a1, ..., a,,) € A(p) there holds

.....

from which we conclude that H is a bounded function on dom J*. Since the target function
in the minimization problem (14) is continuous, existence of a minimizer follows by
compactness of A(p).

Proof of (ii): We have already shown in the proof of (i) that the restriction of H to
dom J* is bounded, and so it remains to prove its continuity. For any p € dom J*, we



20 Page 26 of 50 J. Darbon et al. Res Math 5ci(2020)7:20

have that (o1, ..., a,) € A(p) if and only if (a1, ..., am) € Ay, Y 1oy ip; = p, and
Yo aiyi = J*(p). As a result, we have

H(p) = min !Zaﬂi (o, ., ) € Ay, Zaipi =p, Za”’i :]*(p)}, (32)

i=1 i=1 i=1

Define the function #: R"*1 — R U {+o0} by

m m m
h(p, I")I= min {Zaigi : (O[l, .. ~;O[m) € Am; Zaipi =p Zai)/i = V} ) (33)

i=1 i=1 i=1

for any p € R” and r € R. Using the same argument as in the proof of Lemma 3.1(i), we
conclude that % is a convex lower semicontinuous function, and in fact continuous over
its domain dom /2 = conv {(p;, ¥;)}/~,. Comparing Eq. (32) and the definition of / in (33),
we deduce that H(p) = h(p,J*(p)) for any p € dom J*. Continuity of H in dom J* then
follows from the continuity of # and J* in their own domains.

Proofof (iii): Letk € {1, ..., m}. Onthe one hand, Lemma 3.1(iii) implies (§1x, - - -, 8,x) €
A(py), so that

m
H(py) < Z Sik0i = k. (34)
im1

On the other hand, let (o1, ..., a,) € A(py) be a vector different from (81, - . ., 8k)-
Then, (a1, ..., m) € Ay, satisfies Y 1" oip; = p, Y e aiyi = J*(p), and o < 1. Define
(ﬂl,...,ﬂm) S Am by

%] g s
it j#Kk
0 if j=k
A straightforward computation using the properties of (a1, . . ., @), Lemma 3.1(iii), and

the definition of (81, . .., By, vields

(Bi - Bm) € A with B =0,
aip; Pi — %P
Z,Bipi=zl_” = =Pp

i%k i+k %k 1—oy
3 3 avi TR — vk vk — vk
,BiJ/i = L = = = yk
X X 1-—- (678 1-— (078 1-— (043
i#k i#k

In other words, Eq. (9) holds at index k, which, by assumption (A3), implies that
Zi#k Bi0; > 0. As a result, we have

m m
D il = b+ (L= ) D Bibi > b + (1 — o) = O = Y _ 8ub
i=1 ik i=1

Taken together with Eq. (34), we conclude that (814, . . ., §,,x) is the unique minimizer in
(14), and hence, we obtain H(p;) = 6.
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B Proof of Theorem 3.1
To prove this theorem, we will use three lemmas whose statements and proofs are given
in Sect. B.1, B.2, and B.3, respectively. The proof of Theorem 3.1 is given in Sect. B.4.

B.1 Statement and proof of Lemma B.1

Lemma B.1 Suppose the parameters {(p;, 0;, vi)}ir, C R" x R x R satisfy assumptions
(A1)-(A3). Let ] and H be the functions defined in Egs. (10) and (14), respectively. Let
H:R" — R be a continuous function satisfying H(p;) = H(p,) foreachi € {1, ..., m} and
H(p) > H(p) for all p € dom J*. Then, the neural network f defined in Eq. (8) satisfies

Sl t):= Eﬁ’?_"m}{(”i’ x)—t0;—yi} = sup {(px)—tH(p)—]*p)}. (35)

t pedom J*
Proof Letx € R”and t > 0. Since H(p) > H(p) for every p € dom J*, we get
(px) —tH(p) — J*(p) < (p.®) — tH(p) — J* (). (36)

Let (a1, . . ., @) be a minimizer in (14). By Egs. (12), (13), and (14), we have

p=) ap, Hp)=)Y af and J(p)=) . (37)
i=1 i=1

i=1

Combining Egs. (36), (37), and (8), we get

(%) — tH@p) —*(p) < Y _ ail(p; %) — t0; — vi)
i=1

< max }{(pi, x) —t0; — vi} =f (%, t),

ie{l,...m

where the second inequality follows from the constraint («y, ..., @) € A,,. Since p €

dom J* is arbitrary, we obtain

sup  {(px) — tH(p) =" ()} <flx2). (38)

pedom J*
Now, by Lemmas 3.1(iii), 3.2(iii), and the assumptions on H, we have
H(py) =H(py) =6 and  J*(py) = vi
for each k € {1, ..., m}. A straightforward computation yields

fxt) = max {{(p,x)—t0; — y;}
i€{l,...,m}

= na,, ey 2) = tH ) =T @0) (39)
< swp {Bx) —tHp) - @)},
pedom J*

where the inequality holds since p; € dom J* for every i € {1,..., m}. The conclusion
then follows from Egs. (38) and (39). |
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B.2 Statement and proof of Lemma B.2
Lemma B.2 Suppose the parameters {(p;, 0;, y))}i-; C R" x R x R satisfy assumptions
(A1)-(A3). For every k € {1,...,m)}, there exist x € R" and t > 0 such that (-, t) is
differentiable at x and Vif (x, t) = p.

Proof Since f is the supremum of a finite number of affine functions by definition (8),
it is finite-valued and convex for ¢ > 0. As a result, V,f(x,t) = py; is equivalent to
A(f (- t))x) = {pr}, and so it suffices to prove that d(f(, £))(x#) = {p,} for some & € R”
and ¢ > 0. To simplify the notation, we use dxf («, £) to denote the subdifferential of (-, £)
atx.

By [67, Thm. V1.4.4.2], the subdifferential of f(-, ¢) at x4 is the convex hull of the p,’s
whose indices i’s are maximizers in (8), that is,

dxf (%, t) = co {p; : i is a maximizer in (8)}.
It suffices then to prove the existence of x € R” and ¢ > 0 such that
P x) — O — vk > (ppx) —tb; —y;  foreveryi # k. (40)
First, consider the case when there exists x € R” such that (p;, x) — yx > (p;, %) — y; for
everyi # k.Inthat case, by continuity, there exists small £ > O such that (p;, x) -0, —yx >
(p; x) — t0; — y; for every i # k and so (40) holds.

Now, consider the case when there does not exist # € R” such that (p;,x) — yx >

max; i {(p;, %) — ¥i}. In other words, we assume

J(x) = n:f]z({@i' x) — vy} foreveryx € R”. (41)

We apply Lemma 3.1(i) to the formula above and obtain
m m
J*(py) = min {Zaiyi o m) € Ay Z“il’i =pp a=0¢. (42)
i=1 i=1

Letxo € 3J*(py). Denote by I, the set of maximizers in Eq. (41) at the point o, i.e.,

Lyy: = arg max{(p; %) — yi). (43)
itk

Note that we have k ¢ I, by definition of I,. Define a function #: R” — R U {400} by

0; if p=p;andi € I,
h(p)= i II p=p;andi € Iy, (44)

+00 otherwise.

Denote the convex lower semicontinuous envelope of / by co 4. Since xg € 3/*(py), we
can use [67, Thm. V1.4.4.2] and the definition of I, and / in Eqgs. (43) and (44) to deduce

Py € 0J(x0) = co{p, : i € Iy)} = dom o h. (45)
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Hence, the point p; is in the domain of the polytopal convex function co 4. Then, [133,
Thm. 23.10] implies d(co #)(py) # @. Let vo € 9(co h)(p;) and x = xg + tvo. It remains
to choose suitable positive ¢ such that (40) holds. Letting x = x¢ + tvg in (40) yields

Prox) — 0 — v — (P x) — t0; — i)
= (pp %0 + tvo) — tOr — vk — ({(py X0 + tvo) — £0; — i) (46)
= (P %0) — vk — ((Pix0) — vi) +t(0; — Ok — (p; — P> v0))-

Now, we consider two situations, the first when i ¢ I, U {k} and the second when i € I,.
It suffices to prove (40) hold in each case for small enough positive £.

Ifi ¢ Iy, U{k}, theniis not a maximizer in Eq. (41) at the point x. By (45), p; is a convex
combination of the set {p; : i € Iy,}. In other words, there exists (¢, . .., cm) € Ay such
that Z/’il ¢ip; = pi and ¢; = 0 whenever j ¢ Iy,. Taken together with assumption (A2)
and Egs. (10), (41), (43), we have

J(®0) = (Pr%0) — Yk = (Pro%0) — &py) = <Z Cipjy x0> —¢| X ep;

\j eIxo jel, xo0

> Y qippx0) — g) = ) ¢J(x0) = J (o).

j€lx, j€lx,
Thus, the inequalities become equalities in the equation above. As a result, we have
(B %0) — vi = (%0) > (P %0) — Vis

where the inequality holds because i ¢ I, U {k} by assumption. This inequality implies
that the constant (p;, x0) — yx — ((p, ®0) — i) is positive, and taken together with (46),
we conclude that the inequality in (40) holds for i ¢ I, U {k} when ¢ is small enough.

If i € I, then both i and k are maximizers in Eq. (10) at #9, and hence, we have

(pro®0) — vi =T (%0) = (P %0) — Vi (47)
Together with Eq. (46) and the definition of / in Eq. (44), we obtain

(ProX) — 0k — v — ((pyx) — t6; — vi) = 0 + t(h(p;) — Ok — (P; — P> V0))

- (48)
> t(co h(p;) — Ok — (p; — P> v0))-
In addition, since vy € 8(co 4)(py), we have
co h(p;) > <o h(py) + (p; — P> Vo). (49)
Combining Egs. (48) and (49), we obtain
(Prox) — tO — vk — ((ppx) — t0; — yi) = t(co hipy) — Ok). (50)

To prove the result, it suffices to show co h(py) > 6. As p; € <o h (as shown before in
Eq. (45)), then according to [68, Prop. X.1.5.4] we have

co h(py) = Z Oljh(pj) = Z a;b;, (51)

J€lx, j€lxg
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for some (@1, . . ., o) € Ay satisfying py = Z]”il ajpjand o = O wheneverj ¢ I,. Then,

by Lemma 3.1(ii) («1, . . ., @) is @ minimizer in Eq. (42), that is,

v =T (py) = Zaﬁ// = Z oy = Zam.

j=1 jelx, itk

Hence, Eq. (9) holds for the index k. By assumption (A3), we have 6; < Zj £k @46). Taken
together with the fact that «; = 0 whenever j ¢ I, and Eq. (51), we find

Ok < Z(X,‘@j = Z ajf; = <o h(py). (52)

j#k j Elxo

Hence, the right-hand side of Eq. (50) is strictly positive, and we conclude that (p;, x) —
O — vk > (ppx) —t0; — yifort > 0if i € Iy,.

Therefore, in this case, when ¢ > 0 is small enough and x is chosen as above, we have
(P x) — tO — v > (p; %) — t6; — y; for every i # k, and the proof is complete. O

B.3 Statement and proof of Lemma B.3
Lemma B.3 Suppose the parameters {(p;, 0;, yi)}.; C R" x R x R satisfy assumptions
(A1)-(A3). Define a function F : R"T!1 — R U {400} by

* if E-+H(p) <0,
Fp E-)e J*p) i ) (53)
+o00 otherwise,

forallp € R" and E~ € R. Then, the convex envelope of F is given by

m

cOF(p,E")= inf v 3
(P ) (01)-~-’Cm)eC(p,E—)§ iVi ( )

where the constraint set C(p, E™) is defined by
m m
Cp,E )=3(ct,.--»Cm) € Ay chpi =p, ZC,’@L‘ < —E
i=1 i=1

Proof First, we compute the convex hull of epi F, which we denote by co (epi F). Let
(p, E~,r) € co(epi F),wherep € R"and E~,r € R. Then thereexistk € N, (81, ..., Bx) €
Ayxand(q;, E;, ;) € epi F foreachi € {1, ..., k} suchthat (p, E~, 1) = Zf-;l Bilg, E;, 1i).
By definition of F in Eq. (53), (g;, E, r;) € epiF holds if and only if g; € dom J*, E =+
H(q;) < 0and r; > J*(q;). In conclusion, we have

(Br -5 Br) € Apo

(P E~r) = Y0y Bilas E; i),

qi--.,q; € dom J*, (55)
E +H(gq) <0 foreachie(l,... k},

ri >2J*(q;) foreachie{l,..., k}.
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For each i, since we have g; € dom /*, by Lemma 3.2(i) the minimization problem in (14)
evaluated at g; has at least one minimizer. Let (@1, - . ., @) be such a minimizer. Using
Egs. (12), (14), and (o1, - - ., @im) € Ay, we have

> (L0 v) = (1, g, Hg,),J*(q))). (56)
j=1

Define the real number cj:= Zle Biajj for any j € {1, ..., m}. Combining Egs. (55) and
(56), we get that ¢; > 0 for any j and

m

> Lpp ) = ZZﬁ,a,, L p; 6 %))
j=1 j=1 i=1
k m
=Y B | 2oL py 6 7) Zﬂl(l a4, H(a), T (@),
i=1 j=1

We continue the computation using Eq. (55) and get

m

k
Z ¢(L pj) = Z Bi(1, q;) = (L p);

j=1 i=1

D¢t = ZﬁLH(ql Z,B,E‘ -
j=1

ZC]’)//‘ = Zﬂif*(qi) < Z,Bﬂ’l' =r

j=1 i=1 i=1

Therefore, we conclude that (cy, .. ., ¢,y) € A, and

m
P=2"i6p)
— m
E™ < - Zj:l ¢t
rz Zjnil Gjyj-

As a consequence, co (epi F) € co (Uj’ll <{p/-} x (=00, =6;] x [y}, +oo)>). Now, Lem-
mas 3.1(iii) and 3.2(iii) imply {pj} x (=00, —6;] x [y}, +00) C epi F foreachj € {1,..., m}.
Therefore, we have

co(epi F) = {(p,E_, r) € R” x R x R : there exists (c1, ..., ¢;) € Ay st

m m m
P = ch‘pj, E~ ZC@,, ZC/]/]}
j=1 j=1 j=1
(57)
By [68, Def. IV.2.5.3 and Prop. IV.2.5.1], we have
coF(p,E”)=inf{reR: (p,E7,r) € co (epi F)}. (58)

The conclusion then follows from Egs. (57) and (58). |
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B.4 Proof of Theorem 3.1

Proof of (i): First, the neural network f is the pointwise maximum of m affine functions
in (%, t) and therefore is jointly convex in these variables. Second, as the function H
is continuous and bounded in dom J* by Lemma 3.2(ii), there exists a continuous and
bounded function defined in R” whose restriction to dom J* coincides with H [57, Thm.
4.16]. Then, statement (i) follows by substituting this function for A in statement (ii), and
so it suffices to prove the latter.

Proof of (ii) (sufficiency): Suppose H(p;,) = H(p,) for every i € {1,...,m} and
H(p) > H(p) for every p € dom J*. Since H is continuous on R” and J is convex and Lip-
schitz continuous with Lipschitz constant L = max;e1,..,m) l|p;ll, [10, Thm. 3.1] implies
that (x,¢) — Sup,eqom j* {(p, %) — tH(p) — J*(p)} is the unique uniformly continuous
viscosity solution to the HJ equation (16). But this function is equivalent to the neural
network f by Lemma B.1, and therefore, both sufficiency and statement (i) follow.

Proof of (ii) (necessity): Suppose the neural network f is the unique uniformly continuous
viscosity solution to (16). First, we prove that H(p;) = H(py) for every k € {1, ..., m}. Fix
k € {1,..., m}. By Lemma B.2, there exist x € R"” and ¢ > 0 satisfying d,f (%, t) = {p;}-
Use Lems. 3.1(iii) and 3.2(iii) to write the maximization problem in Eq. (8) as

f(x» t) = max {(P; x) - tH(P) - ]*(P)}: (59)
pe{pl"-"pm}

where (p, t) — (p,x) — tH(p) — J*(p) is continuous in (p, t) and differentiable in £. As

the feasible set {py, . . ., p,,} is compact, f is also differentiable with respect to ¢ [21, Prop.

4.12], and its derivative equals

a(x, t) = min {—H(p) : p is a maximizer in Eq. (59)}.
Since x and ¢ satisfy d,f (%, £) = {py}, [67, Thm. V1.4.4.2] implies that the only maximizer
in Eq. (59) is py.. As a result, there holds

0
8—{@ t) = —H(py). (60)

Since f is convex on R”, its subdifferential 9f (x, ) is non-empty and satisfies

8f(x, t) c axf(x’ t) X atf(x» t) = {(Pk: _H(pk))}

In other words, the subdifferential of (, £) contains only one element, and therefore, f is
differentiable at (x, £) and its gradient equals (p;, —H (py)) [133, Thm. 21.5]. Using (16)
and (60), we obtain

f

0=—
at

(, 8) + H(Vif (x, 1) = —H (py) + H(py).
Ask € {1,..., m} is arbitrary, we find that H(p;) = H(py) for every k € {1,..., m}.
Next, we prove by contradiction that H(p) > H(p) for every p € dom J*. It is enough
to prove the property only for every p € ri dom J* by continuity of both // and H (where
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continuity of H is proved in Lemma 3.2(ii)). Assume H(p) < H(p) for some p € ri dom J*.
Define two functions F and F from R” x R to R U {+oco} by

For @ ErH@<o o [ i E A <o,

400 otherwise. 400 otherwise.

(61)

for any g € R” and E~ € R. Denoting the convex envelope of F by co F, Lemma B.3
implies

m
coF(q,E") = inf ¢;ivi, where C is defined b
1 (€1eerem) EC(g.E7) ; v Y

m m
C(gE )=1(cty-..,cm) € A : ch'p,' =gq, chﬁi < —-E”
i=1 i=1

Let E] € (—H(p), —H(p)). Now, we want to prove that co F(p,E]) < J*(p); this
inequality will lead to a contradiction with the definition of H.

Using statement (i) of this theorem and the supposition that f is the unique viscosity
solution to the HJ equation (16), we have that

f(x t) = sup {(g,x) — tH(q) —J*(q)} = sup {(g,x) — tH(q) — J*(q)}-
geR” geR”

Furthermore, a similar calculation as in the proof of [39, Prop. 3.1] yields
f = F* = F*, which implies f* = ¢o F = co F.

where o F and co F denotes the convex lower semicontinuous envelopes of F and F,
respectively. On the one hand, since f* = €0 F, the definition of F in Eq. (61) implies

f*(p-Hp) <EF(p,—Hp)) =7*(p) and {p} x (—oo, —H(p)] < dom F < dom f*.
(63)

Recall that p € ri dom J* and E] < —H(p), so that (p, E{) € ri dom f*. As a result, we
get

(p, aE; +(1- a)(—]:[(p))) € ridom f* forall a € (0, 1). (64)

On the other hand, since f* = co F, we have ri dom f* = ri dom (co F) and f* = co F in

ri dom f*. Taken together with Eq. (64) and the continuity of f*, there holds

[ o ~H@) = lim [* (paEy + (1 - ) (~H(p))
O<a<l1

. (65)
= olcl—>n}) coF (p, aE] +(1 - oz)(—H(p))),

O<a<l1

Note that co F(p, -) is monotone non-decreasing. Indeed, if E; is a real number such that
E, > Ej,bythedefinition of the set C in Eq. (62) there holds C(p, E; ) € C(p, E{ ), which

20
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implies co F(p, E; ) > co F(p, Ey ). Recalling that E; < —H (p), monotonicity of co F(p, -)
and Eq. (65) imply

f*(p. —H(p)) > 01[1_% co F (p,aE] + (1 —a)E]) = co F(p, ET). (66)
O<a<l1

Combining Egs. (63) and (66), we get
co F(p, E7) < J*(p) < +00. (67)

As a result, the set C(p, E]) is non-empty. Since it is also compact, there exists a min-
imizer in Eq. (62) evaluated at the point (p, E). Let (cy, . . ., ¢;) be such a minimizer. By
Egs. (62) and (67) and the assumption that E; € (—H (p), —H (p)), there holds

(cry--rem) € Ay

YL cipi =P,

YLy =coF(p, Ey) <J*(p),
Yomicit < —E;f <H(p).

(68)

Comparing the first three statements in Eq. (68) and the formula of J* in Eq. (12), we
deduce that (¢, . . ., ¢) is @ minimizer in Eq. (12), i.e., (c1, . .., ¢) € A(p). By definition
of H in Eq. (14), we have

m m

H(p) = inf i0; < cit;,
() aéA@);g;all gg; Vi
which contradicts the last inequality in Eq. (68). Therefore, we conclude that A (p) > H(p)
for any p € ri dom J* and the proof is finished.

C Connections between the neural network (17) and the viscous HJ PDE (18)
Let f be the neural network defined by Eq. (17) with parameters {(p;, 6;, ;)}/~; and € > 0,
which is illustrated in Fig. 3. We will show in this appendix that when the parameter 6; =
—% || p; ||§ fori € {1, ..., m}, then the neural network f; corresponds to the unique, jointly
convex smooth solution to the viscous HJ PDE (18). This result will follow immediately
from the following lemma.

Lemma C.1 Let {(p;, v))}72; C R" x R and € > 0. Then, the function we : R" — R
defined by

wele, =3 el P 5 ) e "

i=1

is the unique, jointly log-convex and smooth solution to the Cauchy problem

d
;;e (1) = %Axwe (x, t) in R” x (0, +00),

m (70)
Wwelx, 0) = Z e((pix)—vi)/€ in R”.
i=1
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Proof A short calculation shows that the function w, defined in Eq. (69) solves the Cauchy
problem (70), and uniqueness holds by strict positiveness of the initial data (see [147, Chap.
VIII, Thm. 2.2] and note that the uniqueness result can easily be generalized to n > 1).
Now, let A € [0,1] and (%1, £1) and (x9, £3) be such that x = Ax; + (1 — A)xy and
t = At; + (1 — A)ty. Then, the Holder’s inequality (see, e.g., [57, Thm. 6.2]) implies
(o) lpil3-n) e _ i (ex(wm%||pi||§—n)/ee<1—x>(<pi,xz>+2||pi||§—n)/e)

1 i=1

A 1-A
. ( - e(<pi,x1>+%||pi||§n)/s> (ie(wm?nmn%m-)/e) ,

i=1

12

i=1

and we find we(x, £) < (Wel(xy, tl))k (We (%9, tg))17A , which implies that w, is jointly log-
convex in (x, £). O

Thanks to Lemma C.1 and the Cole—Hopf transformation fc (x, £) = € log (wc (%, t)) (see,
e.g., [47], Sect. 4.4.1), a short calculation immediately implies that the neural network fc
solves the viscous HJ PDE (18), and it is also its unique solution because w is the unique
solution to the Cauchy problem (70). Joint convexity in (x, t) follows from log-convexity
of (%, t) > we(x, t) for every € > 0.

D Proof of Proposition 3.1
To prove this proposition, we will use three lemmas whose statements and proofs are
given in Sect. D.1, D.2, and D.3, respectively. The proof of Prop. 3.1 is given in Sect. D.4.

D.1 Statement and proof of Lemma D.1

Lemma D.1 Consider the one-dimensional case, i.e, n = 1. Let p1,...,pm € R satisfy
p1 < -+ < pm and define the function ] using Eq. (10). Suppose assumptions (A1)-(A2)
hold. Let x € R, p € 8] (x), and suppose p # p; for any i € {1,..., m}. Then, there exists
kel{l,...,m}suchthatpy <p < pxy1 and

k k 4+ 1 € arg max{xp; — y;}. (71)

ief(l,...,m}

Proof Let I, denotes the set of maximizers in Eq. (11) at x. Since p € 9J(x), p # p; for
ie€f{l,...,m},and 9J(x) = co{p; : i € I;} by [67, Thm. V1.4.4.2], there exist j,[ € I
such that p; < p < p;. Moreover, there exists kK with j < k < kK + 1 < [ such that
Pj S Pk <P < pis1 < pi. We will show that k k + 1 € I,. We only prove k € I; the case
for k + 1 is similar.

If pj = pi, then k = j € I, and the conclusion follows directly. Hence suppose p; <
Pk < pi- Then, there exists a € (0, 1) such that py = ap; + (1 — a)p;. Using that j, [ € I,
assumption (A2), and Jensen inequality, we get

xpi — Vi = xpx — &pr) = (apj + (1 — a)p)x — glap; + (1 — a)p;)
axp; + (1 — a)xp; — ag(p;) — (1 — a)g(py)
= alxp; — y) + (1 — a)(xp; — v1)

ieg}ﬁfm}{xpi - Yib

WV
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which implies that k € I. A similar argument shows that k 4+ 1 € I, which completes the
proof. O

D.2 Statement and proof of Lemma D.2

Lemma D.2 Counsider the one-dimensional case, i.e, n = 1. Let p1, ..., pm € R satisfy
p1 < -+ < pm and define the function H using Eq. (14). Suppose assumptions (A1)-(A3)
hold. Let ug € R and py < uy < pi41 for some index k. Then, there holds

H(uo) = PrOk + Br+10k+1, (72)
where
Pk+1 — Pk Pik+1 — Pk

Proof Let B:=(B1, ..., Bm) € Ay satisty

Uuo — Pk

_Pik+1 — U0
b
Pk+1 — Pk

= and  Brr1i=
Pk+1 — Pk

and B; = 0 foreveryi € {1,...,m} \ {k k + 1}. We will prove that § is a minimizer in Eq.
(14) evaluated at ug, that is,

m
B € arg min {Za,@i},

OCE.A(M()) i=1

where

m
A(up):= arg min [Z Otl']/l'} .
(a1,...0m) €A, i=1
Yoty aipi=uo
First, we show that 8 € A(uo). By definition of B and Lemma 3.1(ii) with p = ug, the
statement holds provided k, k + 1 € I, where the set I, contains the maximizers in Eq.
(10) evaluated at x € 9J*(ug). But if x € 3/*(ug), we have uy € 9J(x), and Lemma D.1
implies k, k + 1 € I,. Hence, B € A(uy).
Now, suppose that 8 is not a minimizer in Eq. (14) evaluated at uy. By Lemma 3.2(i), there
exists a minimizer in Eq. (14) evaluated at the point u, which we denote by («y, . . ., &y).
Then there holds

Y= Bi=1

Yty aipi = YL Bipi = uo,
Yty =3 Bivi =T (uo),
Y i < Y Bibs

(74)

0 for every i and B; = O for every i € {1,...,m} \ {k k + 1}, we have
ok + aky1 < 1= Br + Brs1. As o # B, then one or both of the inequalities o < B¢ and
ak+1 < Prs1 hold. This leaves three possible cases, and we now show that each case leads

Since «; >
<

to a contradiction.
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Case 1: Let oy < By and agy1 = Brs1- Define the coefficient ¢; by

o — Bi
cii={ B — o’
0, i=k

The following equations then hold

(¢, ..., cm) € Ay with e =0,
Zi;ﬁk CiPi = Pk
D itk CiVi = Vi
> ik it < Ok
These equations, however, violate assumption (A3), and so we get a contradiction.
Case 2: Let oy > Py and ag41 < PBr+1- A similar argument as in case 1 can be applied

here by exchanging the indices k and k + 1 to derive a contradiction.
Case 3: Let oy < B and ag41 < PBr+1. From Eq. (74), we obtain

Bk — @k + Bt — Gkl = Diskkr1 %o
Bk — ar)pk + (Brea1 — @t 1)Pk+1 = D jsick1 Yibio

(75)
(Be — )y + (Br1 — Q1) Vi1 = Doizprr %iVio
(Be — )0k + (Bra1 — otr+1)0k+1 > D ispier1 %ibi
Define two numbers g and gy by
. oib;i X aip;
qii= ZK]( iPi and Qio1i= Zz>k+1 lpl' (76)
Dk i Diskt1 i

Note that from the first two equations in (74) and the assumption that o < B and
Ok+1 < Pi+1, there exist i < k and iy > k + 1 such that o, # 0 and o4, # 0, and hence,
the numbers g and gy are well-defined. By definition, we have gx < pr < pr+1 < Gk+1-
Therefore, there exist by, bgy1 € (0, 1) such that

Pk =brgr + (1 = bi)qry1  and  pry1 = braqe + (1= bry1)qeia- (77)

A straightforward computation yields

by = D1 — Pk 4 by = T+l ~ P+l (78)
dk+1 — 9k dk+1 — 9k
Define the coefficients cf.‘ and cfH as follows
bro; briq10;
kXi ) i < k, k+1%i ) i < k;
Za}<k Ao Zw<k U
k._ 1— by k+1._ ) (1 -5 o

¢ = ( k)al Cisk+1 and ¢, = ( k+1) l: P> k41,
Za}>k+l U Zw>k+l 279)
0, otherwise, 0, otherwise.

(79)

20
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These coefficients satisfy c¥, ¢ k+1 € [01] foranyiand Y}/, cF = Y7 ¢ f‘“ 1. In

other words, we have

(c]f, ces cfn) € Ay, with clli =0 and (c]f“, ces cfnﬂ) € Ay, with clliﬁ =0 (80)
Hence, the first equality in Eq. (9) holds for the coefficients (cll‘, sk ) with the index
k and also for the coefficients (clf+1, ..., ck+1) with the index k + 1. We show next that
these coeflicients satisfy the second and third equalities in (9) and draw a contradiction
with assumption (A3).

Using Eqgs. (76), (77), and (79) to write the formulas for py and py. 1 via the coefficients
k—+1

c ~and ¢; ", we find
k= bk—%d( (fl +1-b )—ZzbkJrl P Z C; p, Zc{fpi,
i<k %1 L>k+1 i#kk+1 i#k
D imk41 %P
P = by TP (g ) EEAR P Sy, S ey,

Zz<ka

Yisks1 % i#kk+1 i#k+1
(81)

where the last equalities in the two formulas above hold because clli 41 =0and cI,;H =0
by definition. Hence, the second equality in Eq. (9) also holds for both the index k and
k+1.

From the third equality in Eq. (75), assumption (A2), Eq. (81), and Jensen’s inequality,
we have

Y i = (B — vk + Brr1 — )it
i#kk+1

= (Bx — a)gpr) + Br+1 — k1) Pr+1)

=Bc—ag | D dpi|+ B~ | D K p;

i#k k41 i#k k41
(82)
SBr—a) | D Fep) |+ B —as) | D] el
i#kk+1 i#kk+1
= Y ((Be—aw)ef + (Bir1 — axs)e g(pi)
i#kk+1
_ k k+1y.
= Z ((Bx — a)e; + (Bry1 — 0‘k+1)ci )Vie
i#kk+1
We now compute and simplify the coefficients (8 — ak)cf.‘ + (Br+1 — ak+1)cf+1 in the

formula above. First, consider the case when i < k. Egs. (78) and (79) imply

(Bx — ax)ck + (ﬂk+1 — ary1)C; ke

bt
Zw<k U

e
= m((ﬂk — a)bi + (Brs1 — Qit1)bi41)

= (Bk — ak)za}<k - + (Brs1 — Q1)
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o qk+1 — Pk qk+1 — Pk
= ((,Bk — o) 5 o (B — akﬂ)*—“)
Zw<k Uo qk+1 — 9k 9k+1 — 9k

o 1
= : ((Bk — otk + Bry1 — ok1)qk+1
Zw<k Yo  qk+1 — 9k

—(Br — a)pi — (Br1 — Qe 1)Pi+1)-

Applying the first two equalities in Eq. (75) and Eq. (76) to the last formula above, we
obtain

(Bx — )k + (Brga — axgn)er ™

o 1

=Z o — Z Qi | Gk+1 — Z aipi
w<k %o k1 =9k \ \ Lo i#kk+1
o 1

DT D igrp— Y api— Y, aip;
o<k Yo dk+1 =4k \ ;o i<k isk+1
o 1

=y (z) a3 o an
w<k %o k1 =9k \ Loty i<k i=k+1
o

= : Z“z Gk+1 — qk)

Y w<k %  qk+1— gk Py
= ;.

The same result for the case when i > k + 1 also holds and the proof is similar. Therefore,
we have

(B — @x)ef + (Bry1 — axs)ei T = foreachi # kk+ 1. (83)

Combining Egs. (82) and (83), we have

Yoo < Y (Br—a)e + By — e Nyi= Y aive

i#kk+1 i#kk+1 i#kk+1

Since the left side and right side are the same, the inequality above becomes equality,
which implies that the inequality in Eq. (82) also becomes equality. In other words, we

have
ve=gw)= Y agp)= Y cvi=) cv
ikk+1 i#kk+1 i#k (84)
v =g = Y atleb)= Y Tvi= )Y 4ty
i#kk+1 ik k+1 i#k+1
where the last equalities in the two formulas above hold because clli 41 =0and ck+1 0

by definition. Hence, the third equality in (9) also holds for both indices k and k + 1.
In summary, Egs. (80), (81), and (84) imply that Eq. (9) holds for the index k with
coefficients (cll‘, et c/,‘n) and also for the index k + 1 with coefficients (cll(H, ety c],‘,,"’l).

Hence, by assumption (A3), we find

Zcf@i > 0 and Z cf“@i > Oyl
ik i#k+1

Page 39 of 50
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Using the inequalities above with Eq. (83) and the fact that c’,§ =0 and c,]§+1 = 0, we
find

Bk — )0k + (Brsr — kp1)0ks1 < Bk — @) Y i+ (Bar — ogn) Y, 76,
i#k i#k+1

= Y (Be—a)ef + (B — o) O = Y iy

ik k41 itk k41

which contradicts the last inequality in Eq. (75).

In conclusion, we obtain contradictions in all the three cases. As a consequence, we
conclude that @ is a minimizer in Eq. (14) evaluated at g and Eq. (72) follows from the
definition of H in (14). O

D.3 Statement and proof of Lemma D.3

Lemma D.3 Consider the one-dimensional case, i.e, n = 1. Let p1, ..., pm € R satisfy
P1 < -+ < pm. Suppose assumptions (A1)-(A2) hold. Let x € R and t > 0. Assume j, k, |
are three indices such that 1 <j < k <l < mand

jo | € arg max{xp; — t0; — yi}. (85)

i€{l,...m}
Then, there holds

0 — Ok < 91—91"
Pl — Pk P —pj

(86)

Proof Note that Eq. (86) holds trivially when j = k, so we only need to consider the case
when j < k < [. On the one hand, Eq. (85) implies

xpj —t0; — y; = xp; — t0) — y; = xpr — 0k — Vi
which yields

Yi— v < x(pr — pr) — t(0; — 0k),
vi— v =x(p; — pj) — t(6; — 6).

(87)

On the other hand, foreachi € {j,j+1,...,/ —1}letg; € (p;, pi+1) and x; € 3/*(g;). Such
x; exists because ¢; € int dom J*, so that the subdifferential 9/*(g;) is non-empty. Then,
qi € 3J(x;) and Lemma D.1 imply

Xipi — Vi =Xipiy1 — Virl = MaxX {Xipo — Vol
well,..,m}

A straightforward computation yields

-1 -1
vi—ve =) (i1 —vi) = ) _xipiy1 — pi)
ik i=k

-1 -1
vi—v =Y (vir1 —v) = ) _xi(pis1 — pi).

i=j i=j
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Combining the two equalities above with Eq. (87), we conclude that

-1
x(pr = p) — 10— 0) = Y xipiv1 — pi)
i=k
-1
x(p1 — pj) — (0 — sz(PHrl pi).

=/

Now, divide the inequality above by t(p; — px) > 0 (because by assumption ¢ > 0 and
I > k, which implies that p; > py), divide the equality above by #(p; — p;) > 0 (because
I > j, which implies that £(p; — p;) # 0), and rearrange the terms to obtain

(/3 1 Zf;i xi(piv1 — pi)
Pi — Pk t P1— Pk
-6 x 1 Zﬁ;,‘l xi(pi+1 — pi)

<z
<z-
(88)

pi—pi t t pr—pj

Recall that g; < gj11 < -+ < ;1 and x; € 39/*(q;) for any j < i < L. Since the function
J* is convex, the subdifferential operator d/* is a monotone non-decreasing operator
[67, Def. 1V .4.1.3, and Prop. V1.6.1.1], which yields x; < xj11 < -+ < ¥;_1. Using that
p1 <p2<---<pmandj < k <[, we obtain

L xi(piv1 — Zf;;l xkpiv1 —pi)
Pr — Pk g Pr — Pk -
_ Zk xk(pit1 — pi) - Z;Z,l xi(piv1 — pi) %
B Pk — P - p—p ®9

To proceed we now use that fact that if four real numbers 4,¢ € R and b,d > 0 satisfy

% d’ then % 7= a+c Combining this fact with inequality (89), we find

b+d
i xipin1 —p) S Yk xilpin = p) + X5 xilpi —
p1— Pk g P1— Pk TPk — pj
Yoo %i(piv1 — pi)
T

We combine the inequality above with (88) to obtain

0, — 9k 0, — 0;
P1 — Pk pl P/

which concludes the proof. O

D.4 Proof of Proposition 3.1

Proof of (i): First, note that u is piecewise constant. Second, recall that J is defined as
the pointwise maximum of a finite number of affine functions. Therefore, the initial data
u(-,0) = VJ(-) (recall that here, the gradient V is taken in the sense of distribution) are
bounded and of locally bounded variation (see [48, Chap. 5, page 167] for the definition
of locally bounded variation). Finally, the flux function H, defined in Eq. (14), is Lipschitz
continuous in dom J* by Lemma D.2. It can therefore be extended to R while preserving
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its Lipschitz property [57, Thm. 4.16]. Therefore, we can invoke [36, Prop. 2.1] to conclude
that u is the entropy solution to the conservation law (21) provided it satisfies the two
following conditions. Let %(¢) be any smooth line of discontinuity of u. Fix ¢ > 0 and
define u~ and u™ as

u:= lim u(xt) and uT:= lLm ulx t). (90)

x—>x(t)~ x—x()t
Then, the two conditions are:
1. The curve x(¢) is a straight line with the slope

dx _ Hwu") —Hw™)

= 91

dt ut —u~ ©1)
2. For any ug between ut and u—, we have
+y _ +y _ -

H(u™) — H(uo) <H(u ) — H(u ). 92)

ut —up = ut —u~

First, we prove the first condition and Eq. (91). According to the definition of « in Eq.
(20), the range of u is the compact set {p1, . . ., pu}. Asaresult, u~ and u™ are in the range
of u, i.e., there exist indices j and [ such that

u" =p; and ut =p. (93)

Let (%(s), s) be a point on the curve x which is not one of the endpoints. Since u is piecewise
constant, there exists a neighborhood N of (%(s), s) such that for any (x7, £), (x,¢) € N
satisfying x~ < &(¢) < «1, we have u(x ™, t) = u~ = pj and u(x™, t) = u™ = p;. In other
words, if x 7, x™, t are chosen as above, according to the definition of  in Eq. (20), we have

j € argmax{x~p; —t0; —y;} and [ € argmax{xTp; —t6; — y;}. (94)
ie{l,...m} ief{l,...,m}

Define a sequence {x]:}]':;xl) C (=00, x(s)) such that (x,,s) € N for any k € N and
limy, 4 oo %, = X(s). By Eq. (94), we have

X Pj— s —y; > X Pi —sb; —yiforanyie {l,..., m}.
When k approaches infinity, the above inequality implies

x(s)pj — s — vj = X(s)p; —s0; —y; foranyie{l,...,m}
In other words, we have

j € arg max{x(s)p; — s6; — yi}. (95)

ie{l,...m}

Similarly, define a sequence {x,j}]fg C (%(s), +00) such that (xlj, s) € Nforany k € N
and limg_, 4 x,j = %(s). Using a similar argument as above, we can conclude that

[ € arg max{x(s)p; — s0; — yi}. (96)

ie{l,..,m}
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By a continuity argument, Egs. (95) and (96) also hold for the end points of #. In conclusion,
for any (x(¢), t) on the curve X, we have

j, 1 € arg max{x(t)p; — t0; — vi}, (97)

i€{l,...,m}

which implies that
x()pr — 0 — yi = x(t)p; — t6; — y;.
Therefore, the curve %(¢) lies on the straight line
x(pr —pj) —tO —6)— (v —y)=0

and Eq. (93) and Lemma 3.2(iii) imply that its slope equals

dx _ 0 — 0 _ Hu") —H(u™)
dt_pl—pj_ utr—u-

This proves Eq. (91) and the first condition holds.

It remains to show the second condition. Since u equals V,f and f is convex by Theorem
3.1, its corresponding subdifferential operator # is monotone non-decreasing with respect
to x [67, Def. 1V.4.1.3 and Prop. V1.6.1.1]. As aresult, u~ < u" and ug € (u~, u™), where
we still adopt the notation = = p; and u™ = p;. Recall that Lemma 3.2(iii) implies
H(p;) = 6; for any i. Then, Eq. (92) in the second condition becomes

0; — H(up) < 0 — 6
pi—uo  pI—p

(98)

Without loss of generality, we may assume that p; < p2 < --- < py,. Then, the fact
pj=u" <u" =p;impliesj < I. We consider the following two cases.

First, if there exists some k such that uy = py, then H(up) = 6; by Lemma 3.2(iii). Since
u~ < uy < ut,wehavej < k < [. Recall that Eq. (97) holds. Therefore, the assumptions
of Lemma D.3 are satisfied, which implies Eq. (98) holds.

Second, suppose ug # p; for every i € {1, ..., m}. Then there exists some k € {j,j +
1,...,1 — 1} such that p; < up < piy1. Lemma D.2 then implies that Egs. (72) and (73)
hold, that is,

H(uo) = Bk + Br10k+1 o = Bibk + Bir1Pk1,  and B+ B = L
Using these three equations, we can write the left-hand side of Eq. (98) as

Oy — H(uo) 60 — POk — Bi+10k+1 _ Pr(Or — 6k) + Br+1(0) — Ok41)

= . (99)
pi—uo  pr— Bk — Brpr+r  Bepr — pi) + B (1 — i)
If k + 1 = [, then this equation become

0 — H(uo) 0 — 0k
pi—uo  PI—DPk
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Since j < k < [ and Eq. (97) hold, then the assumptions of Lemma D.3 are satisfied. This
allows us to conclude that Eq. (98) holds.

If k + 1 # [, then using Eq. (97), the inequalitiesj < k < k+ 1 < [/, and Lemma D.3, we
obtain

/3/<(91—9k):91—9k 0; — 0; and Br10; — Oky1) O — Ok <9z—9j
Bxwi—py)  pi—pk  pL—Dj Bis1(p1 — pr+1) Pl_Pk—H\Pl_P}'

Note that if a; € R and b; € (0, 4+00) for i € {1, 2, 3} satisfy Z—i < Zz and ﬂz < Z_z, then
ZiiZ; < Z_: Then, since B (p; — pi), Br+1®1 — pr+1) and p; — pj are p051t1ve, we have

B0 — 6k) + Bry1(601 — Or41) o 0 — 9
Bx(pr — p) + Bir1(r — prs1) — pi—pj

Hence, Eq. (98) follows directly from the inequality above and Eq. (99).

Therefore, the two conditions, including Eqs. (91) and (92), are satisfied and we apply
[36, Prop 2.1] to conclude that the function u is the entropy solution to the conservation
law (21).

Proof of (ii) (sufficiency): Without loss of generality, assume p; < pa < --+ < py,. Let
C e R.Suppose H satisfies H(p;) = H(p;)+C foreachi € {1,...,m}and H(p) > H(p)+C
for any p € [p1, pm]. We want to prove that u is the entropy solution to the conservation
law (22).

As in the proof of (i), we apply [36, Prop 2.1] and verify that the two conditions hold
through Egs. (91) and (92). Let X(¢) be any smooth line of discontinuity of #, define #~ and
u't by Eq. (90) (and recall that u~ = p; and ut = p;), and let uy € (u™, u™). We proved in
the proof of (i) that %(¢) is a straight line, and so it suffices to prove that

dx  H(u")—H@u")

Ht) = Auwo) _ At = Aw)

ax _ ) d < 100
dt ut —u~ an ut —uy ut —u~ (100)
We start with proving the equality in Eq. (100). By assumption, there holds
H(u‘):]zl(p/)=H(pj)+C=H(u_)+C and
Hw")=H@p)=Hp)+C=Hu")+C (101)

We combine Eq. (101) with Eq. (91), (which we proved in the proof of (i)), we obtain

dx Hw")-Hw) Hwu")+C—-Hwu)+C) Hwut) —Hu)

dr ut —u~ ut —u~ a ut —u~

Therefore, the equality in (100) holds.
Next, we prove the inequality in Eq. (100). Since g € (u~, u™) C [p1, pm], by assumption
there holds H (1) > H(uo) + C. Taken together with Egs. (92) and (101), we get

H(u*) — H(uo) c H@) +C = (Hlu) +0)

ut — up = ut — ug
< Hw")—HWu™) Hwu?t)—Hw)
~ - ’
ut —u~ ut —u-

which shows that the inequality in Eq. (100) holds.
Hence, we can invoke [36, Prop 2.1] to conclude that u is the entropy solution to the
conservation law (22).
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Proof of (ii) (necessity): Suppose that « is the entropy solution to the conservation law
(22). We prove that there exists C € R such that H(p;) = H(p;) + C for any i and

H(p) > H(p) + C forany p € [p1, pm].
By Lemma B.2, for each i € {1, ..., m} there exist x € R and ¢ > 0 such that

f(. t) is differentiable at x, and V,f(x, £) = p;. (102)

Moreover, the proof of Lemma B.2 implies there exists T > 0 such that for any 0 <
t < T, there exists x € R such that Eq. (102) holds. As a result, there exists ¢ > 0 such
that for each i € {1,..., m}, there exists x; € R satisfying Eq. (102) at the point (x;, £),
which implies u(x;, £) = p;. Note that p; # p; implies that x; # x;. (Indeed, if x; = x;, then
pi = Vaf (%, t) = Vif (%), £) = p; which gives a contradiction since p; # p; by assumption
(Al).) As mentioned before, the function u(-, £) = V,f is a monotone non-decreasing
operator and p; is increasing with respect to i, and therefore x; < x3 < -+ - < xy,. Since u
is piecewise constant, for each k € {1, ..., m — 1} there exists a curve of discontinuity of #
with # = pj on the left-hand side of the curve and # = pg on the right-hand side of the
curve. Let (s) be such a curve and let #~ and u™ be the corresponding numbers defined
in Eq. (90). The argument above proves that we have u™ = p; and ut = py 1.

Since u is the piecewise constant entropy solution, we invoke [36, Prop 2.1] to conclude
that the two aforementioned conditions hold for the curve %(s), i.e., (100) holds with
u~ = py and ut = py 1. From the equality in (100) and Eq. (91) proved in (i), we deduce

H(pri1) — H(pr) _ Hu") — H(u™) _dx _ Hu')—H@u™) _ Hpe) = Hpr)
Pik+1 — Pk ut —u- dt ut —u- Pkl — Pk

Since k is an arbitrary index, the equality above implies that H (py.1) —H (px) = H(pi11)—
H(py) holds for any k € {1, ..., m — 1}. Therefore, there exists C € R such that

H(py) =H(py) + C foranyk € {1,...,m). (103)

It remains to prove H(uo) > H(uo) + C for all ug € [py, pr+1]. If this inequality holds,
then the statement follows because k is an arbitrary index. We already proved that H (uo) >
H (ug) + C for ug = py with k € {1, ..., m}. Therefore, we need to prove that H(u) >
H(up) + C for all ug € (pr, px+1)- Let uo € (P, pr+1)- By Eq. (103) and the inequality in
(100), we have

Hpes) +C = i) _ A = llw) _ At = AGO) _ Hipear) — Hpi)
Pik+1 — Uo ut—ug wt—u Pk+1 — Pk
(104)

By Lemma D.2 and a straightforward computation, we also have

H(pr+1) — H(uo) _ H(py1) — H(px)
Pk+1 — U0 Pk+1 — Pk

(105)

Comparing Egs. (104) and (105), we obtain H (1) > H(uo) + C. Since k is arbitrary, we
conclude that A (uo) > H(ug) + C holds for all uy € [p1, p;»] and the proof is complete.
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