Butterfly Space: An Architectural Approach for
Investigating Performance Issues

Yutong Zhao
School of Systems and Enterprises
Stevens Institute of Technology
Hoboken, United States
yzhaol02 @stevens.edu

Zhifei Chen

Lu Xiao
School of Systems and Enterprises
Stevens Institute of Technology
Hoboken, United States
Ixiao6 @stevens.edu

Bihuan Chen

Xiao Wang
School of Systems and Enterprises
Stevens Institute of Technology
Hoboken, United States
xwang97 @stevens.edu

Yang Liu

State Key Lab for Novel Software Technology School of Computer Science School of Computer Science and Engineering

Nanjing University
Nanjing, China
chenzhifei @smail.nju.edu.cn

Abstract—Performance issues widely exist in modern software
systems. Existing performance optimization approaches, such
as dynamic profiling, usually fail to consider the impacts of
architectural connections among methods on performance issues.

This paper contributes an architectural approach, Butterfly
Space modeling, to investigate performance issues. Each Butterfly
Space is composed of 1) a seed method; 2) methods in the “upper
wing” that call the seed directly or transitively; and 3) methods
in the “lower wing” that are called by the seed, directly or
transitively. The rationale is that the performance of the seed
method impacts and is impacted by all the other methods in
the space because of the call relationship. As such, developers
can more efficiently investigate groups of connected performance
improvement opportunities in Butterfly Spaces.

We studied three real-world open source Java projects to
evaluate such potential. Our findings are three-fold: 1) If the
seed method of a Butterfly Space contains performance prob-
lems, up to 60% of the methods in the space also contain
performance problems; 2) Butterfly Spaces can potentially help to
non-trivially increase the precision/recall and reduce the costs in
identifying performance improvement opportunities, compared to
dynamic profiling; and 3) Visualizing dynamic profiling metrics
with Butterfly Spaces simultaneously help to reveal two typical
patterns, namely Expensive Callee and Inefficient Caller, that are
responsible for performance problems and provide insights on
where to improve next. We believe that Butterfly Space modeling
has great potential for investigating performance issues.

Index Terms—software performance; software architecture;
performance optimization;

I. INTRODUCTION

Software performance is an indicator of how well a software
system or component meets its requirements for timeliness [1].
Performance issues can result in long execution time, memory
bloat, and even program crash [2]-[5]. Researchers found that
users are more likely to switch to competitors’ products due
to performance bugs than due to other general bugs [4]. To
improve software performance, the first and foremost task is
to find the performance optimization opportunities. Currently,
there are mainly two types of techniques to find performance

Fudan University
Shanghai, China
chenbihuan @ gmail.com

Nanyang Technological University
Singapore
yangliu@ntu.edu.sg

optimization opportunities: profiling based techniques and root
cause based techniques [6].

Profiling based techniques focus on collecting run-time
metrics that measure the memory and time consumption
when the program is running [7]-[12]. The high run-time
metrics help locate code regions (or hot spots) that account
for performance degradation. Profiling based approaches have
two major limitations. First, it is expensive and sometimes
impractical to collect high quality profiling data that reveal
performance problems [13], [14]. Developers have been using
various off-the-shelf tools to automatically generate test inputs
for better results [15]. But many performance problems are
triggered by special input, which is hard to obtain by using
automated tools. Developers rely on their experience, expertise,
and even intuition to discover such cases. In particular, creating
high quality test inputs to comprehensively uncover all potential
performance problems is almost impossible in large-scale,
complex software systems. Second, based on our observation of
three real-life software projects (shown in detail in Section VI),
not all the methods revised for performance optimization are
“hot-spots”. In other words, the dynamic metrics of these
methods look just like average methods. Relying on profiling-
based approaches to locate such methods is almost like random
or exhaustive searching.

The other approach is to locate performance issues based
on code patterns that cause inefficiency [5], [16]-[20]. For
example, the usage of inefficient data structure in the source
code can cause performance problems [3], [S], [10], [16]-[18],
[20]-[23]. Similarly, inefficient loop [10], [24]-[29], wasted
calculation [4], [16], [19], [26], [30]-[34], and inefficient
multi-thread synchronization [35]-[38] also cause performance
problems. However, these approaches usually only focused on
a specific type of localized performance problems that can
be fixed by a few lines of simple code fixes. They fail to be
applicable to a wider range of performance problems that may
be caused by more complicated reasons [6]. For example, the

performance problem of a method could be the cumulative
result of a chain of methods it calls directly and transitively.
Developers cannot improve its performance without fixing all
the other methods on the call chain that contribute to the
performance problem.

The common limitation of prior approaches is that they failed
to consider the architectural impacts on system performance.
In any software system, there are usually more than thousands
of methods. There is hardly a method isolated from other
methods; instead the methods call each other to deliver more
complicated functions. As such, the performance of a method is
actually determined by its callers and/or callees. For example,
if a method contains an inefficient loop, its caller will also be
inefficient. Similarly, if a method has high execution time, it
could be because of the frequent invocations from its callers.
Therefore, in order to locate and fix performance problems
more efficiently, developers should be aware of the architectural
impacts on performance. Instead of fixing a method that shows
high dynamic metrics or contains problematic code patterns in
isolation, developers should also inspect and prioritize methods
that architecturally connect to it.

In this paper, we propose a new architectural modeling
approach based on the static analysis of method calls, named
Butterfly Space modeling, to help detect and diagnose perfor-
mance issues. Each butterfly space is a method-level static
call graph, where the vertices are a subset of methods from
the entire system and the edges are the method calls that are
statically extracted. It contains three key parts: 1) a seed method,
which is the center of the space because of its relationship with
other methods in the space; 2) the upper wing which contains
all the methods that call the seed directly or transitively; and
3) the lower wing, which contains all the methods called by
the seed directly or transitively. Essentially, the performance of
the methods in a Butterfly Space impacts or is impacted by the
seed method. Therefore, developers can use Butterfly Spaces
to locate a group of architecturally connected methods with
performance optimization opportunities. Specifically, Butterfly
space builds a bridge between dynamic profiling and static
analysis, since developer can treat a “hot spot” method as
the seed of a Butterfly Space, then trace to and examine the
methods in the lower wing and the upper wing.

We showed the potential of Butterfly Spaces to investigate
performance problems on three real-world open source Java
projects, PDFBox, Avro, and Ivy. We found that if the seed
method contains performance problems, up to 60% of the other
methods in the space also contain performance optimization
opportunities. This is much higher than Butterfly Spaces where
the seed does not contain performance problems. Therefore,
we gained two insights 1) developers should leverage the
architectural connections to examine performance problems
and 2) developers should prioritize spaces with a problematic
seed over spaces with a normal seed.

In addition, we compared the efficiency of Butterfly Spaces
modeling with the dynamic profiling in two hypothetical
scenarios. First, when developers have limited time, using
Butterfly Spaces can potentially achieve up to 10% better

precision and up to 33% better recall in locating performance
optimization opportunities with comparable or even smaller
effort, compared to traditional dynamic profiling. Second, when
the goal is to retrieve all performance problems, i.e. 100% recall,
Butterfly Spaces can drastically improve (averagely double) the
precision and thus reduce (averagely half) the effort.

Finally, we provided in-depth qualitative study by visualizing
dynamic metrics together with Butterfly Spaces to show why
Butterfly Spaces can help identify performance problems. Each
Butterfly Space usually contains typical patterns, such as
expensive callee and inefficient caller, that connects inefficient
methods that should be treated together in performance
optimization [6]. The awareness of such patterns provides
insights for developers regarding where to fix next.

We believe Butterfly Spaces have promising potential to help
developers better locate performance optimization opportunities
by combining dynamic profiling and static structural analysis.

In summary, this paper makes the following contributions:

e We proposed a new architectural modeling approach,
called Butterfly Spaces modeling, to bridge the gap
between software architecture modeling and performance
analysis.

o We conducted evaluation on three real-world projects to
demonstrate the potential of using Butterfly Spaces to
investigate performance improvement opportunities.

e We combine the visualization of dynamic metrics and
static dependencies in Butterfly Spaces to provide qualita-
tive understanding of two architectural patterns that are
responsible for performance problems.

II. BACKGROUND

a) Mining Software Repository: Software repository pro-
vides rich data source to uncover interesting and actionable
information about software systems and projects. Mining
software repository helps to achieve different research goals.

To study performance problems, researchers mine the bug
tracking database to obtain ground truth data-set of real-life
performance issues in software systems. They usually first
use keywords to match issues that are potentially related to
performance problems [6], [33], [35], [39]. If the description
of an issue report contains keywords such as fast, slow, speed,
too many times, lot of time, too much time, the issue is related
to performance problems. Since the issues containing these
keywords are not necessarily truly related to performance
problems, manual inspection, verification, and selection of high
quality performance issues are conducted after the keyword
matching [6]. The selected performance issues are usually
used as ground truth data for new approach evaluation or for
empirical studies of analyzing the root causes and solutions of
real-life performance problems [33], [40]-[43].

Beside mining the bug tracking database, practitioners also
mine the version control systems to build the connections
between code revisions and the respective issues being solved
by the revisions [44]-[47]. According to the prior research, it
is a recognized convention that developers tag the issue report
ID in a revision message to indicate that this revision is to

fix the issue. This convention has been leveraged to build the
connections between issues and revisions. Practitioners leverage
the linkage to study the solutions of specific problems, such as
fixing performance bugs or security vulnerabilities [46]-[48].

In this paper, we mine the bug tracking database and
code repository to obtain the ground truth data-set containing
performance problems and optimization. As will be described
in detail in Section IV, we select high quality performance
issues, link the respective code revisions, and extract the list of
revised methods for performance improvements. We consider
the list of the methods as the de facto performance optimization
opportunities in a system. They serve as the ground to helps us
understand the architectural impacts on performance problems.

b) Architecture Root Detection Algorithm: Software ar-
chitecture is recognized as the most important determinant of
various quality attributes of a system [49]. Researchers have
focused on modeling and analyzing the descriptive architecture
of a system as it has been built to facilitate understanding and
maintainability [40]-[43], [SO0]-[55].

Cai et. al [41] developed an Architectural Root (ArchRoot)
detection algorithm. The basic idea is that the complexity
of a software system cannot be captured by a single view
picture. The authors proposed to model the static structural
dependencies among files as multiple design spaces. Each
design space is a group of architecturally connected files that
depend on one leading file. The ArchRoot detection algorithm
takes two inputs 1) the comprehensive set of design spaces,
calculated by using each and every source file in the system as
the leading file; and 2) a list of bug-prone files in a system. The
output of the ArchRoot detection algorithm is a minimal set of
design spaces that maximally aggregate the bug-prone files in
a system. The output design spaces are called the architectural
roots of bug-proneness since they reveal how bug-prone files
are architecturally connected to each other.

This paper employs the ArchRoot detection algorithm to
investigate how and to what extent methods with performance
optimization opportunities are architecturally connected with
each other. Therefore, we replace the two inputs to the ArchRoot
detection algorithm by 1) a comprehensive set of Butterfly
Spaces that are calculated by using each and every method as
the seed; and 2) the ground truth list of methods undertaken
performance optimization. The output is a minimal list of
Butterfly Spaces that connects the performance optimization
opportunities. Comparing to the original usage of the ArchRoot
detection algorithm, we made two changes. The architecture
modeling granularity changed from the file level to the method
level, since the file level is too coarse for performance analysis.
The second input, the ground-truth list of methods with
performance optimization, helps us to focus on the architectural
connections among performance optimization opportunities.

III. BUTTERFLY SPACE MODELING

We propose a new modeling technique called Butterfly
Spaces to capture the method-level dependencies in a system
as multiple call graphs. Each Butterfly Space is a call graph
formed by a subset of methods from the entire system and the

call relationship among these methods. We will formally define
Butterfly Space and use the example in Figure 1 to illustrate.

a) Definition: Formally, a Butterfly Space is composed
of three key parts:

o A seed method: it is the method in the center of a space.
All the other methods in the space either call or are called
by this seed method, directly or transitively.

o The Upper Wing: it is the groups of methods that call,
directly or transitively, the seed method. These methods
are separated into n layers, depending on the distance to
the seed method. The layer number indicates the number
of transitive calls from a method to the seed. For example,
methods in Layer 1 all directly call the seed method;
while methods in Layer 2 call the seed method through
methods in Layer 1.

o The Lower Wing: it is the group of methods that are
called by, directly or transitively, the seed method. They
are also separated into m layers based on the distance to
the seed. For example, methods in Layer 2 are transitively
called by the seed through methods in Layer 1.

Figure 1 is an example Butterfly Space calculated from
open source project, Avro. The seed of the space is method
ColumnValues.nextValue(). The Upper Wing contains nine
methods in three layers. The Lower Wing contains fifteen
methods in five layers.

In any real life software system, the number of methods
is usually counted by thousands (if not more). Using each
method as the seed, we can calculate a separate Butterfly Space.
The motivation and rationale of Butterfly Space modeling is
that the performance of the seed method is impacted by and
also impacts the performance of the methods in the same
space, but not methods in another space. For example, in
Figure 1, the performance of method ColumnValues.nextValue()
is determined by the performance of methods in the Lower
Wing, and influence the methods in the Upper Wing. In
particular, since ColumnValues.nextValue() only directly calls
method InputButter.getValue(), the execution time of the former
is the execution time of its own code plus the time of the latter.

b) Terms and Concepts: We envision that Butterfly Space
modeling provides a way to analyze performance problems
with architectural insights. Methods in a Butterfly Space are ar-
chitecturally connected to the seed method and with each other.
By examining a Butterfly Space, we can potentially identify
a group of connected performance optimization opportunities.
We propose to use two measurements, precision and recall
borrowed from information retrieval field [56], to evaluate how
effective it is to examine a particular Butterfly Space to capture
performance optimization opportunities.

The precision and recall of a Butterfly Space is defined as:

¢ Precision: it is the number of methods with performance
fixes in a Butterfly Space divided by the total number of
methods in this space. The higher the precision, the less
effort will be wasted in examining this Butterfly Space
for locating performance optimization opportunities.

¢ Recall: it is the number of methods with performance
fixes in a Butterfly Space divided by the total number of

methods with performance fixes in the system. The higher
the value, the more comprehensively this Butterfly Space
captures all the performance optimization opportunities.

The precision and recall together describes how relevant and
effective it is to examine a particular Butterfly Space to capture
performance optimization opportunities.

In addition, usually just checking one single Butterfly
Space will not capture all the performance improvement
opportunities. We assume that developers have to check a
set of Butterfly Spaces to increase the coverage of performance
issues. Therefore, we use Acc. Precision and Acc. Recall to
describe the accumulative precision and recall of a set of
Butterfly Spaces. They are calculated in the same way as the
original precision and recall by combining different Butterfly
Spaces.

InputBuffer.
readValuef

0

InputBuffer.
readFloat()

InputBufter |

InputBuffer. InputBuffer.
readDouble) readsitring ()

oo lowerWing __ __ ___

InputBuffer
readinput()

Ls

Fig. 1: A Butterfly Space Example from Avro

IV. STUDY APPROACH

This paper leverages Butterfly Space modeling to analyze
performance problems from the architectural perspective. The
approach overview is shown in Figure 2. It is composed of
three parallel branches: 1) facts mining to extract methods with
performance fixes, 2) static analysis to calculate the Butterfly
Spaces of a system, and 3) dynamic analysis to collect dynamic
profiling metrics; and last but not least 4) we combine the
three aspects to gain in-depth, qualitative understanding of the
relationship between architecture and performance problems.

a) Facts mining: The goal is to mine the de facto list of
methods undertaken performance optimization, from the bug
tracking database and code repository. The output serves as
the ground-truth data for the following analysis.

Firstly, We select performance issues using keywords
matching from the bug tracking database. We used keywords
including: fast, slow, perform, latency, throughput, optimize,
speed, heuristic, waste, efficient, unnecessary, redundant, too
many times, lot of time, too much time, which are a combination
of the prior studies [6], [33], [35]. We manually verified and
filtered the matched issues such that the selected issues are
truly related to performance problems. Next, we developed
a tool Methods Extractor to automatically extract the list of
methods that were revised to fix the performance issues. The
inputs to Methods Extractor include 1) performance issues and
2) the code repository. Methods Extractor first identifies code
revisions that fix the performance issues through the linkage

Issue Tracking
Database

‘ersion Control
System

1. Facts|mining 2. Static pnalysis 3. Dynanyic analysis)

Raw Data

Issues Selection Profiling

e Dynamic
;:Hnderstand -
Method Call
Graph

L

Performance II

Issues

ff

Evosuite: Study
Ltestii Process

Generation
Output I
File Set

)

- YourKit::
~Dynamic:-
- Profiling -

Ortimized Butterfly Space

Methods
Single
Exiractor Generator .
Optimized B i
X utterfly I Dynamic II New Tool
Method List Metrics
A . i Paity
| = L Took
" 4. Combined analysis Outout
+ Optimization facts - ArohRoot Manual —_—

« Butterfly Space modeling

Detector. Inspection
+ Dynamic profiling . i e

Root Butterfly II Method Call II
Spaces Patterns

Fig. 2: Approach Overview —

between issues and commits, as discussed in Section II. Then
it scans the details of each code revision to summarize which
methods were changed, which is not directly available from
the code repository. The final output is a list of methods with
performance fixes.

b) Static analysis: Next, we analyze the static code
dependencies to calculate the Butterfly Spaces. Firstly, we use
a commercial tool, called Understand to extract a Method Call
Graph. The nodes are all the methods in a software system, the
edges are the call relationship among the methods. Then, the
Butterfly Space Generator uses the Method Call Graph as the
input to generate a comprehensive set of Butterfly Spaces, using
each method in the system as the seed. The Butterfly Space
Generator is actually a graph traversal algorithm. Given any
seed method, it performs the broad first traversal to include
all the other methods that directly or transitively call or is
called by it. Depending on the direction of call relationship,
and the distance to the seed, the traversed methods are laid
out in different layers of the Upper Wing and Lower Wing.

c) Dynamic analysis: This step collects the dynamic
metrics of the methods at run-time. We used the off-the-shelf
tools, including EvoSuite [15] and YourKit [S7] to achieve this
goal. To increase the code coverage in dynamic profiling, we
run both the original testing cases in the project repository
as well as the testing cases that are automatically generated
by the unit testing tool, EvoSuite. Next, we use YourKit to
supervise the dynamic execution metrics while running the
test cases. We use Time, OwnTime and Count as the execution
metric for profiling. Time is the entire execution time of a
method. OwnTime is the execution time of a method excluding
the invocation time to other methods. Count is the number of
invocations to a method. These three metrics are widely used
in the existing profiling tools [57]-[59] to identify hot spot
methods. To increase the accuracy of the collected dynamic
metrics, we ran each project three times and use the average of
each metrics as the final dynamic profiling data. The dynamic
profiling data were collected on two Intel i7, 4-core, 32 GB
memory machines, running at 2.5 GHz.

d) Combined analysis: In this step, we combine the
Butterfly Space modeling with the dynamic profiling metrics to
bridge the gap between software architecture and performance.
It is composed of two parts.

In the first part, we use the ArchRoot detection algorithm
(introduced in Section II) to show that methods with perfor-
mance optimization opportunities are architecturally connected
to each other, instead of being isolated. As such, when
developers are seeking performance optimization opportunities,
they should not only look at the “hot spot” methods, they
should investigate a group of connected methods. The input to
the ArchRoot detection includes 1) the comprehensive set of
Butterfly Spaces of a system and 2) the ground truth method
list with performance fixes. It will identify a minimal number
of Butterfly Spaces to aggregate the methods with performance
optimization opportunities. The rational of the ArchRoot was
introduced in Section II. In particular, we applied the ArchRoot
detection algorithm in two hypothetical settings. In the first
setting, we assume that developers only have limited time to
examine a limited number of methods, by controlling the upper
limit of the total number of methods to be included in the output
root spaces. In the second setting, we assume that developers
aim to identify all the performance optimization opportunities,
by controlling the coverage to be 100%. In section VI, we will
show that using Butterfly Spaces for analyzing performance
issues can potentially beat the dynamic profiling approach by
either reducing the cost or improving the precision.

In the second part, we conducted in-depth, qualitative study
to investigate why Butterfly Spaces can help to analyze perfor-
mance issues, and what and how typical architectural patterns
contribute to performance problems. To achieve this goal, we
combine the ground truth method list with performance fixes
and the dynamic metrics in the visualization of Butterfly Spaces.
This helps to immediately reveal the architectural connections
among “hot spot” methods and two typical architectural patterns
that are responsible for performance problems.

V. RESEARCH QUESTIONS

We aim at answering three research questions to evaluate
the potential of Butterfly Space modeling for investigating
performance problems.

o RQ1: If the seed method of a Butterfly Space contains
performance problems, how likely the other methods
in the space also contain performance problems? In
particular, how does this compare to butterfly spaces
whose seeds are free of performance issues? We assume
that if the seed of a Butterfly Space contains performance
problems, the other methods in the space are also likely
to contain performance problems. The rationale is that
the seed method calls or is called by all the other
methods in the space, directly or transitively. Therefore,
the performance of the seed impacts and is impacted by
the other methods in the space. In comparison, if the seed
of a Butterfly Space is free of performance problems, the
rest of the space are less likely to contain performance
improvement opportunities. To answer this question, we

will examine the precision and recall of Butterfly Spaces
whose seed contains performance problem, and compare
these measurements with that of Butterfly Spaces whose
seed does not contain any problems. If the precision and
recall of the former is significantly higher than the latter,
it implies that when developers are revising a method
for improving performance, he/she should also prioritize
and examine the methods in its Butterfly Space to capture
more optimization opportunities at the same time. We
envision this heuristic will help improve the efficiency of
performance optimization localization for developers.
RQ2: What is the advantage of Butterfly Space
modeling in identifying performance optimization op-
portunities compared to dynamic profiling? Dynamic
profiling suffers from two intrinsic limitations in identi-
fying performance optimization opportunities. First, it is
expensive and sometimes impractical to generate a large
amount of high quality test data to reveal performance
problems. Second, dynamic profiling relies on identifying
the “hot spot” methods whose dynamic metrics are higher
than average methods. However, sometimes performance
optimization happens in methods whose dynamic met-
rics look average. To capture all possible performance
optimization opportunities, dynamic profiling is close to
random searching and thus is not applicable. This RQ
investigates the potential advantages of using Butterfly
Spaces compared to dynamic profiling approaches.

We use the ArchRoot detection algorithm to identify a set
of root Butterfly Spaces that aggregate methods undertaken
performance optimization. We compare the accumulative
precision and recall of the top root Butterfly Spaces with
dynamic profiling in two hypothetical settings.

First, suppose developers can only afford to review a
limited number of methods whose dynamic metrics ranks
in the top 30% in a project. We compare the accumulative
precision and recall of the top few Butterfly Spaces
containing comparable or smaller number of methods. If
the precision and recall of Butterfly Spaces are higher, it
implies that Butterfly Spaces have the potential to improve
the efficiency of identifying performance improvement
opportunities with comparable effort as dynamic profiling.
Second, suppose developers aim at identifying all the
methods that need performance optimization, the dynamic
profiling becomes almost like random searching. We will
investigate the number of root Butterfly Spaces that need
to be examined to reach a cumulative recall of 100%. And
we will compare the total number of methods included in
these spaces, and the cumulative precision. If the precision
is higher, while the number of methods is smaller than
using dynamic profiling, it indicates that Butterfly Spaces
have the potential to help comprehensively capture all
the performance improvement opportunities with higher
accuracy but less effort.

RQ3: What typical architectural patterns that are
responsible for performance problems can be revealed
when combining Butterfly Space with dynamic met-

TABLE I
Study Subjects

Subject # Issues] # Methods
Total | Keyword | Verified | Solved Total Perf
PDFBox | 3855 135 93 78 7249 554
Avro 2151 135 113 53 3446 739
Ivy 1522 54 41 24 4755 278
[Total [7528] 324 [247] 155] 15450 [1571 |

rics? The goal of this RQ is to evaluate the potential
of combining Butterfly Space with dynamic metrics to
provide fundamental and qualitative understanding of
whether exist and what are the typical architectural
patterns in the root Butterfly Spaces that are responsible
for the performance problems. This will provide more
in-depth insights for developers when using Butterfly
Spaces to identify architecturally connected performance
improvement opportunities with limited dynamic data or
historical fixing information.

VI. STUDY RESULTS

This section presents the subjects of this study, and provide
answers to the research questions.

A. Subjects

We selected three real life software projects from the Apache
open source community: PDFBox, Avro, and Ivy. The PDFbox
library is a Java tool for working with PDF documents. Avro
is a remote procedure call and data serialization framework.
Ivy is a transitive package manager to resolve complex project
dependencies. These subjects are selected due to the following
considerations. First, they are in different domains. Performance
plays a critical role in all these projects. The goal is to draw
general observations across different problem domains. Second,
these projects are all well-accepted, successful, and still active
Apache open source projects. The source code, version control
repository, and bug-tracking systems are all well organized and
readily available. This provides high quality data for our study.

We collected a total of 7528 issues reports in the JIRA issues
tracking system of the three selected projects up to 2018. There
are 324 (4.3%) issues matching performance keywords (Column
“Keyword”). The ratio is consistent with prior studies [6], [33],
[35]. There are totally 247 manually verified performance issues
(Column “Verified”). Totally 155 performance issues can be
linked with an accepted fixing solutions in the version control
system (Column “Solved”). Then we counted the number of
methods that were modified due to performance issues (Column
“Perf”), as shown in Table 1.

B. Study Results

Next, we will answer the three research questions discussed
in Section V.

RQ1: If the seed of a butterfly space contains per-
formance issue, how likely the rest of the space will
also contain performance issue? In particular, how does
this compare to butterfly spaces whose seeds are free of
performance issue?

To answer this question, we calculate the precision of each
Butterfly Space. The total number of methods in a system

determined the total number of Butterfly Spaces. We separate
all the Butterfly Spaces into two mutually exclusive groups:
1) the seed method was fixed for performance improvement,
thus contains performance problems; and 2) the seed method is
free of performance problems, i.e. never fixed for performance
improvement. For the sake of brevity, in the following context,
we use PS (Perf-Seed) Butterfly Space to the first group; NPS
(Non-Perf-Seed) Butterfly Space to refer to the second group.
Then, we calculate the average and median precision of Perf-
Seed Butterfly Space and that of Non-Perf-Seed Butterfly Space
separately.

As shown in Table II, the average precision of PS Butterfly
Space is from 33% (PDFBox) to 60% (Avro), comparing to
the average precision of NPS Butterfly Space between 5% (Ivy)
to 11% (Avro). The interpretation of the data is two-fold: 1)
if the seed contains performance problems, at least one in
every three methods in the space also can be improved for
performance, thus if a method contains performance problems,
the developers should prioritize and examine the methods
in its Butterfly Space; 2) if the seed is free of performance
problems, the other methods are 5 to 8 times less likely to
contain performance problems compared to the seed contains
performance problems. As such it is inefficient for developers
to check NPS Butterfly Space. Consistent observations hold
when looking at the median presison in the table.

As a particular note, as shown in Table II, the number of PS
Butterfly Space is drastically smaller than the number of NPS
Butterfly Space. Therefore, it is potentially biased to directly
compare the average and median precision of two groups
with unbalanced size. To address this concern, we conducted
random sampling on the NPS Butterfly Space. In every sampling
experiment, we randomly select the same number of NPS
Butterfly Spaces that is equal to the number of PS Butterfly
Spaces in each project, and compare the average precision
and median. The results are listed in column “Sampled NPS
Spaces”, the results of the sampling remain consistent with the
findings above.

Answer to RQI: If the seed of a Butterfly Space
contains performance problems, averagely 33% to 60%
of the methods in the space can also be improved for
performance. This is about 5 times higher comparing to
a Butterfly Space with a seed free of any performance
problems. The insight is that, when developers are
fixing performance problems of a method, they should
prioritize and examine other methods in the Butterfly
Space to fix a group of connected methods all at
once, instead of checking and fixing each method
individually. In comparison, if a method is free of
any performance problems, it is not efficient for the
developers to examine its Butterfly Space for finding
more improvement opportunities.

RQ2: What is the advantage of Butterfly Space model-
ing in identifying performance optimization opportunities
compared to dynamic profiling? As discussed in Section V,
we answer this question in two hypothetical settings.

TABLE 11
Average and Median Precision of Perf-Seed and Non-Perf-Seed Butterfly Spaces

. PS Spaces Sampled NPS Spaces NPS Spaces
Subject #PS-Spaces | #NPS-Spaces Avg Prec. 5 Med Prec. | Avg P[;ec. Me(lj3 Prec. Avg Prec. : Med Prec.
PDFBox 554 6695 33% 20% 6% 0% 6% 0%
Avro 739 2707 60% 53% 10% 0% 11% 0%
Ivy 278 4477 39% 23% 5% 0% 5% 0%

Note: “PS-Spaces” means Butterfly Spaces with the seed method fixed for performance improvement.
“NPS-Spaces” means Butterfly Spaces with the seed method free of performance problems.

“Avg Prec.” means the average precision of the Butterfly Spaces.
“Med Prec.” means the median precision of the Butterfly Spaces.
Setting 1: Suppose that the developers can only afford
the effort to examine the top ‘“hot spot” methods based
on dynamic profiling metrics. In real life, developers often
face time and resource constraints, as such they can only
examine a limited number of methods. This may very likely
to happen when the developers have approaching release
deadlines or limited number of people working on performance
improvements.

In this setting, we want to investigate whether the top few
root Butterfly Spaces containing fewer or smaller number of
methods would achieve higher precision and recall compared
to dynamic profiling. We experimented the top 10%, 20%,
and 30% as the threshold for identifying “hot spot” methods.
The results are all consistent, thus we will just present the
detailed results of the top 30% threshold. Since there are three
different types of dynamic metrics, namely, Time, OwnTime,
and Count as introduced in Section IV, we selected the metric
that achieves the highest precision and recall in each project to
make a fair comparison. When running the ArchRoot detection
algorithm, we specified a threshold on the precision of each
selected Butterfly Space, i.e. Butterfly Space with precision
less than the threshold will not be conducted to the set of
root Butterfly Spaces. For each project, we selected a threshold
that achieves the highest precision and recall of its set of root
Butterfly Spaces to make a fair comparison. The goal is to show
that there exists a set of root Butterfly Spaces that can beat
dynamic profiling in this setting, rather than tell developers
how to predict the locations of methods with performance
optimization opportunities.

The results under this setting are shown in Table III. The
first column shows the project name. The second and third
columns show the precision and recall of examining the top
30% hot spot methods according to dynamic profiling metrics.
Column four and five shows the minimal number of root
Butterfly Spaces that contain a comparable amount of methods
to the top 30% hot spot methods. The last two columns show
the cumulative precision and recall of the top root spaces in
capturing performance improvement opportunities.

We can make the following observations: First, the top 40
(PDFBox) to 60 (Avro) root spaces contains 20% to 29% of
the total number of methods. If the amount of methods to be
examined is the proxy of effort, the root Butterfly Spaces require
smaller (20% in PDFBox and 22% in Ivy) or comparable
(29% in Avro) effort compared to checking the top 30% hot
spot methods based on the dynamic profiling metrics. Second,
the precision of the root Butterfly Spaces is slight improved
compared to the dynamic profiling approach, with 3% (25%-
22% in PDFBox) to 11% (21%-10% in Ivy) improvement.

Third, the recall of the root Butterfly Spaces is obviously
improved compared to the dynamic profiling approach, with
33% (72%-39% in Avro) to 20% (67%-47% in PDFBox)
improvement.

Therefore, Butterfly Spaces have the potential to help
developers to find performance improvement opportunities with
higher precision and recall, but with less or comparable effort,
compared to dynamic profiling approach.

TABLE III

Top 30% “Hot Spots” vs. Butterfly Spaces
Top 30% Hot Spots

Top Root Butterfly Spaces

Subject Prec. Rec. # Spaces % Methods Prec. Rec.
PDFBox 22% 47% 40 20% 25% 67%
Avro 46% 39% 60 29% 52% 72%
Tvy 10% 51% 43 22% 21% 77%

Note: “Prec” means precision.

“Rec.” means recall.

Setting 2: Suppose that developers aim at identifying
all the methods that can be optimized for maximal perfor-
mance improvements. A small performance issue can cause
significant slowness and even system crash. When developers
have enough time and resource, they would like to capture
all possible optimization opportunities, i.e. achieving 100%
recall. However, developers would always prefer an approach
that costs less effort to find all the performance improvement
opportunities.

Before answering this question, we first point out that
dynamic profiling is close to exhaustive searching when the
goal is 100% recall. For example, as shown in Figure 3, the
x-axis is the top x% ranking based on the dynamic metrics of
different methods, the y-axis is the recall achieved by checking
the methods whose dynamic metrics rank in the top x%. The
curve shows that dynamic profiling is most efficient when
focusing on the higher ranking. For example, when checking
the top 30% hot spot methods, developers can achieve almost
40% recall; however, to achieve 100% recall, the developers
have to check all the methods. This figure is calculated from
Avro, but the other two projects are consistent.

Therefore, we actually compare the effort (i.e. the amount
of methods) and the precision of using Butterfly Spaces
with exhaustive searching. We run the ArchRoot detection
by setting the coverage to be 100%. As such, the result
root Butterfly Spaces together can achieve 100% recall. The
comparison results are shown in Table IV. The first column is
the project name. The second column shows the precision of
exhaustive searching, i.e. the percentage of methods revised
for performance improvements. The last three columns show
the number of root Butterfly Spaces, the percentage of methods
they contain, and the precision of examining these methods.

100%
90%
80% /

T 4

E 70%

8 60% -t

o

S 50%

= 0% g

=

= 30% Time

() /

Q /
20% // OwnTime
10% ,/,// Count
0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Dynamic Profiling Ranking

Fig. 3: Avro - Dynamic Metrics Ranking vs. Recall

We can make the following observations. First, developers
just need to examine about half (43% in Ivy to 51% in Avro)
of the methods, levering Butterfly Spaces, to achieve the 100%
recall. Although not listed in the table, but exhaustive searching,
as suggested by the name, required checking all the methods
in a system to achieve 100% recall. Second, the precision of
using Butterfly Spaces (Column “Prec.”) can be significantly
improved, about twice, compared to exhaustive searching
(Column “ExS Prec.”). This improvement is correlated with
the reduction of the review effort.

Answer to RQ2: Butterfly Space modeling has the
potential to improve the efficiency and reduce the
costs of finding performance optimization opportuni-
ties compared to dynamic profiling. Specifically, the
advantage can be reflected in two settings: 1) given
limited time and resource, Butterfly Space modeling
has the potential to increase the precision and recall
by up to 11% and 33% respectively, with smaller or
comparable effort; 2) Butterfly Space modeling has the
potential to reach 100% recall in finding performance
improvement opportunities with half of the cost and
double the precision compared to dynamic profiling.

RQ3: What typical architectural patterns are respon-
sible for performance problems can be revealed when
combining Butterfly Space with dynamic metrics? In this
RQ, we aim to draw in-depth, qualitative understanding of
the architectural connections in the root Butterfly Spaces that
aggregate methods with performance optimization. We found
that, by combining the Butterfly Spaces visualization with the
dynamic metrics, it helps us to facilitate the understanding of
the results of RQ1 and RQ2 by seeing the connections among
the dynamic metrics of optimized methods. In addition, it helps
to reveal the typical architectural patterns that are responsible
for the performance problems.

Figure 4 shows the Butterfly Space from Avro, the same
example as Figure 1, with the dynamic profiling metrics added.
In this figure, each rectangle represents a method in the space,
the edges represent their call relationship. In side of the
rectangle, we included the file name, where the method is

TABLE IV
Profiling vs. Butterfly Spaces for 100% Recall

Subject ExS Prec. # Spaces % Methods Prec.
PDFBox 8% 32 46% 17%
Avro 21% 61 51% 42%
Ivy 6% 38 43% 14%

Note: “ExS Prec.” means the precision using exhaustive searching .

defined, the method name, as well as the three dynamic metrics.
The dash lines “- - -” means that the dynamic data cannot
be obtained. We use different background in the rectangle
to differentiate the characteristics of methods. Slash pattern
background indicates that this method is never revised to
fix performance problems. The shaded background indicates
methods whose dynamic metrics ranked in the top 10% and
the top 30% in the system. The methods in this space are used
to process a “‘column-major” file format, which allows better
compression and efficient skipping of fields that are not of
interest, as to save calculating time.

This visualization helps us to notice the two most expensive
paths of call relationship going through the seed method. We
emphasized these two paths with thicker edges, and added
numbering labels to the edges. Methods along the two paths all
have very high Count, indicating that they are very frequently
called. We conjecture that a small improvement in any of the
methods along these paths can result in augmented performance
optimization due to the high invocation. In addition, in this
space, the most distant methods from the seed are not revised
for performance improvements at all.

In addition, we have observed that these two “hot” paths
actually reveal typical architectural patterns that are potentially
responsible for the performance problems, including the
expensive callee pattern and the Inefficient caller pattern.

a) Expensive callee: A method takes a long time to
execute because of the method it calls. Such methods are
featured by long total execution time but relatively low own
time. The root cause of the slowness in it is due to the
invocation to other inefficient methods. In Figure 4, the methods
connected by edges with label number é actually form a
chain of Expensive Callee. As shown in Figure 4, the own
time of the methods are all much lower compared to the total
execution time. And, the execution time and invocation count
add up reversing the call chain. Therefore, when developers fix
performance problems, they should trace along the call chain of
expensive callee to reap cumulative performance improvement,
instead of fixing an individual method.

b) Inefficient caller: The performance problems of a
method is caused by an inefficient caller that frequently calls it,
while the method itself does not have much room to improve.
Such methods are featured by similar total execution time
and own time, indicating the lack of accountability to its
callees. As highlighted by label @, the method on the bottom,
InputBuffer.innerLongDecode() has the same time and own
time, indicating there is no way to improve it by improving
its callee chain. While the benefits of fixing the code in itself
could be extremly limited, note that the per-invocation time is
close to zero already (85ms/833041). The promise to reduce

the execution time of InputBuffer.innerLongDecode() is to the
caller, who frequently calls it and the frequent invocation is not
efficient. Similarly, the method InputBuffer.readLong() also has
relatively high own time (195 ms out of the total 281 ms in
833091 invocations). Thus, it has limited room to improve
just by fixing its own code. To reap greater performance
improvement, the developers should trace back the its caller,
InputBuffer.readValue() to reduce the number of inefficient
invocation. Therefore, the three methods connected by edges
with label @ form a chain of Inefficient Caller and should
be treated together to reap greater improvements.

Answer to RQ3: By combining the Butterfly Spaces
with the dynamic profiling data, developers can gain
in-depth understanding of the architectural impacts on
performance issues. We observed two typical architec-
tural patterns, namely Expensive Callee and Inefficient
Caller, that are responsible for performance problems,
and also provide insights for developers to identify
architecturally connected performance improvement
opportunities to reap greater benefits.

VII. RELATED WORK

This section discussed related work in software performance
and software architecture.

a) Performance Analysis: A rich body of prior studies
have been conducted to understand and classify performance
bugs from different perspectives [4], [19], [29], [33], [34],
[60], [61]. Some work dedicated to profiling performance
specifications from running systems [10], [12], [62], [63].
Profiling tools [57], [58] are widely used to locate hot spot
methods that consumes most resources, such as memory and
execution time. However, these works have the limitation
of heavily relying on test inputs. Thus, some recent works
inspected profiling on special test inputs, which are usually
either empty or extremely large [12], [19]. This work is most
relevant to prior work that focused on tracing execution paths
of hot spot methods for root cause analysis of performance
issues [7]-[9], [59]. The uniqueness of our approach is that
we evaluated the potential of locating performance issues by
reasoning based on the static call graph without the dynamic
data. In addition, we compared our approach with using
dynamic data to identify hot-spots as performance optimization
candidates.

Some work focused on analyzing the root causes of
performance issues at the fine-grained code-level [64]-[67].
For example, loop-related performance issues have been
well-studied [24], [25], [27], [28]. Besides, inefficient data
structure [5], [16]—[18] and inefficient synchronization [35]—
[38] were also revealed as common root causes of performance
issues. In addition, anti-patterns are also used to detect, both
statically and dynamically, performance problems [35]-[39],
[68]. For example, Kieker [69] and WESSBAS [70] leverage
software testing to automatically capture performance code
anti-patterns, such as circuitous treasure hunt and extensive

processing. PerOpteryx supports the systematic process of eval-
uating and optimizing component-based software architecture
models [71]. These prior work are effective at detecting specific
types of code patterns that cause inefficiency. However, they
fail to analyze the various performance issues from the big
picture of software architecture.

b) Software Architecture: Software architecture refers
to the high-level design of the key elements and their inter-
connections of a system [49]. Numerous prior work focused on
the describing, modeling, and analyzing of software architecture.
Some work focused on recovering the high-level structure of
software architecture based on different criteria and using
different techniques [54], [55], [72]-[74]. Some work aimed at
analyzing the relationship between software architecture and
maintenance quality [43], [50], [75]-[78], aiming at identifying
architectural problems that contribute to high maintenance
costs.

Despite the large amount of prior work in architecture
modeling and analysis, little effort has been invested to study
the relationship between software architecture and performance.
This study bridges the gap between software architecture mod-
eling and performance analysis. To the best of the knowledge,
it is the first work to directly model and visualize software
architecture and combine it with dynamic profiling metrics.

VIII. DISCUSSION

In this section, we discuss the limitations and threats to
validity of this work, followed by our plan of future work.

a) Limitations: There are three limitations in this work.
First, this paper mined the project repository, including bug
tracking database and version control systems, to extract the
de facto list of methods with performance fixes. Therefore, the
root Butterfly Spaces that aggregate methods with performance
issues currently only works in retrospective, not predictive. But
the results indeed showed the potential of leveraging Butterfly
Spaces for investigating performance problems more efficiently
than traditional dynamic profiling. Second, in answering RQ3,
we reported two typical architectural patterns, namely, Expen-
sive Callee and Inefficient Caller, that recur in many Butterfly
Spaces. Although they provide insights for the architectural
influences on performance problems, we are not sure if these
two patterns comprehensively cover all possible architectural
patterns that are responsible for performance problems. Lastly,
this study is based upon 155 performance issues from three
open sourced Apache projects, all implemented in Java. We
cannot guarantee that the same results will hold for other
projects with different characteristics, such as projects in other
communities or in other languages. But we envision that
consistent observations should still hold for other projects.

b) Threats to Validity: There are two threats to validity
we are aware of. First, we used keyword matching for
selecting performance issues. We cannot guarantee that all
the performance issues are included, because a performance
issue may not contain any keywords. And we acknowledge
that the selected issues may contain a small amount of false
positive due to the limited knowledge about the projects. To

FileName.

methodName()
Time ms, OwnTime ms,
Count

ColumnValues.
seek()

=M, =--ms, -

}

Upper Wing
~
S

RN

ReaderBase.

nextKeyValue()
3ms, Oms, 2

TrevniTolsonTo

ol.toJson()
M, s, -

\

AvroColumnRe

ader.next()
83ms, 1ms, 2509

ColumnValues.
next()
12218 ms, 667 ms,
2156409

AvroColumnRea
der.nextValue()
--ms, ---ms, ===

No Perf
Fix

L-1

AvroColumnRe

ader.read()
73ms, 13ms, 9838

TrevniTolsonTool.
valueToJson()
~--ms, ---ms, -

Top 30%
Dynamic

@ Expensive

= Callee

®| Inefficient

Caller

ColumnValues.
nextValue()
5980ms, 2ms,

1182948

InputBuffer.
readValue()
5978ms, 367ms,
1184040

InputBuffer.
readFixed32()
23ms, 19ms,

204690

InputBuffer.
readint()
69ms, 69ms,
791654

InputBuffer.

readLong()
281ms, 195ms,
833001

InputBuffer.
readFixed64()
1ms, Oms, 2290

InputBuffer.
readFloat()
0ms,0ms, 1107

InputBuffer.

readstring ()

5006ms, 360ms,
588035

InputBuffer.
readBytes()
301ms, 1ms,
1217

InputBuffer.
readDouble()
0Oms, 0ms, 1107

InputBuffer.
readBoolean()
Oms, 0ms, 1111

|

InputBuffer.
read()
4ms, 0ms,994

Lower Wing

InputBuffer.
innerLongDecode()
85ms, 85ms, 833041

InputBuffer.
readFully()

---ms, ---ms, -

InputBuffer.
readinput()

---ms, ---ms, -

Fig. 4: Butterfly Space with Dynamic Profiling Metrics

best avoid bias, we used a combination of all the keywords
used in prior studies, and conducted rigorous manual review
to best avoid bias in the selection. Second, we consider all
the revised methods in commits for fixing performance issues
as containing performance problems. We acknowledge that
this may include false positives. Some methods could involve
in performance fixes due to accidental reasons. There is no
practical way to verify whether each revised method is a root
cause to performance problems. We acknowledge that this is
an internal threat to validity. However, we believe that the
noise introduced due to this treatment should not change the
overall conclusions of this paper. Third, due to the difficulties
in running all the test cases, we were not able to collect the
dynamic metrics of all the methods. To best resolve this, we
run both original testing cases in the project repository, as well
as the testing cases that are automatically generated by the
unit testing tool. Fourth, collecting dynamic execution metrics
relies on the running environment and the input of test cases.
As these metrics were collected while running test cases on
our local computer, the dynamic profiling data will be different
when running the same test cases on a different computer or
remote server. To cover this limitation, we run the test cases
on two computers, each for 3 times, and calculated the average
for each metric.

c) Future Work: In our future work, we plan to further
exploit the potential of using Butterfly Space modeling to
deepen the understanding of the relationship between archi-
tecture and performance. We are interested in 1) conducting
more systematic and comprehensive investigation of possible
architectural patterns that are responsible for performance

10

degradation; 2) using Butterfly Space modeling predicatively,
instead of retrospectively, in locating and analyzing perfor-
mance problems and optimization opportunities.

IX. CONCLUSION

To conclude, this paper proposed and implemented a new
architectural modeling approach, based on the static analysis
of method calls, named Butterfly Space, to help detect and
diagnose performance issues. We evaluated the potential of
Butterfly Space to investigate performance issues on three
real-world open source Java projects. The results showed that
the methods with performance fixes are strongly connected,
instead of being isolated. Compared to the current widely-used
dynamic profiling ranking technique, Butterfly Space modeling
has the potential to improve the efficiency and reduce the
costs of finding performance optimization opportunities. By
combining the Butterfly Space with dynamic profiling data,
developers can gain in-depth understanding of the architectural
impacts on performance issues. Two typical architectural
patterns, Expensive Callee and Inefficient caller are responsible
for performance problems, and provide guidance on where
to improve next. In summary, Butterfly Spaces not only
help locate performance problems, but also provide insights
for developers to understand the architectural impacts of
performance problems.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science
Foundation of the US under grants CCF-1823074.

[1

—

[2

—

—
©

[4

=

[5

[t}

[7

—

[8

=

[9

—

[10]

(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

Connie U Smith and Lloyd G Williams. Performance solutions: a
practical guide to creating responsive, scalable software, volume 1.
Addison-Wesley Reading, 2002.

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta
Simeoni. Model-based performance prediction in software development:
A survey. IEEE Transactions on Software Engineering, 30(5):295-310,
2004.

Guoging (Harry) Xu and Atanas Rountev. Precise memory leak detection
for java software using container profiling. In 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Germany,
May 10-18, 2008 [3], pages 151-160.

Shahed Zaman, Bram Adams, and Ahmed E Hassan. A qualitative
study on performance bugs. In Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories, pages 199-208. IEEE Press,
2012.

Guoging Xu, Dacong Yan, and Atanas Rountev. Static detection of loop-
invariant data structures. In European Conference on Object-Oriented
Programming, pages 738-763. Springer, 2012.

Zhifei Chen, Bihuan Chen, Lu Xiao, Xiao Wang, Lin Chen, Yang
Liu, and Baowen Xu. Speedoo: prioritizing performance optimization
opportunities. In Proceedings of the 40th International Conference on
Software Engineering, pages 811-821. ACM, 2018.

Thomas Ball and James R Larus. Efficient path profiling. In
Proceedings of the 29th annual ACM/IEEE international symposium
on Microarchitecture, pages 46-57. IEEE Computer Society, 1996.
Evelyn Duesterwald and Vasanth Bala. Software profiling for hot path
prediction: Less is more. ACM SIGOPS Operating Systems Review,
34(5):202-211, 2000.

James R Larus. Whole program paths. In ACM SIGPLAN Notices,
volume 34, pages 259-269. ACM, 1999.

Bihuan Chen, Yang Liu, and Wei Le. Generating performance distribu-
tions via probabilistic symbolic execution. In Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, Austin,
TX, USA, May 14-22, 2016 [10], pages 49-60.

Emilio Coppa, Camil Demetrescu, and Irene Finocchi. Input-sensitive
profiling. ACM SIGPLAN Notices, 47(6):89-98, 2012.

Rashmi Mudduluru and Murali Krishna Ramanathan. Efficient flow
profiling for detecting performance bugs. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, ISSTA 2016,
Saarbriicken, Germany, July 18-20, 2016 [12], pages 413-424.

Mark Grechanik, Chen Fu, and Qing Xie. Automatically finding
performance problems with feedback-directed learning software testing.
In Software Engineering (ICSE), 2012 34th International Conference on,
pages 156-166. IEEE, 2012.

Du Shen, Qi Luo, Denys Poshyvanyk, and Mark Grechanik. Automating
performance bottleneck detection using search-based application profiling.
In Proceedings of the 2015 International Symposium on Software Testing
and Analysis, pages 270-281. ACM, 2015.

Gordon Fraser and Andrea Arcuri. Evosuite: automatic test suite
generation for object-oriented software. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on Foundations
of software engineering, pages 416-419. ACM, 2011.

Guoging Xu. Finding reusable data structures. In ACM SIGPLAN Notices,
volume 47, pages 1017-1034. ACM, 2012.

Changhee Jung, Silvius Rus, Brian P Railing, Nathan Clark, and Santosh
Pande. Brainy: effective selection of data structures. In ACM SIGPLAN
Notices, volume 46, pages 86-97. ACM, 2011.

Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith
Schonberg, and Gary Sevitsky. Finding low-utility data structures. In
ACM Sigplan Notices, volume 45, pages 174-186. ACM, 2010.

Marija Selakovic and Michael Pradel. Performance issues and opti-
mizations in javascript: an empirical study. In Proceedings of the 38th
International Conference on Software Engineering, pages 61-72. ACM,
2016.

Lixia Liu and Silvius Rus. Perflint: A context sensitive performance
advisor for c++ programs. In Code Generation and Optimization, 2009.
CGO 2009. International Symposium on, pages 265-274. 1IEEE, 2009.
Guogqing (Harry) Xu. Coco: Sound and adaptive replacement of java
collections. In ECOOP 2013 - Object-Oriented Programming - 27th
European Conference, Montpellier, France, July 1-5, 2013. Proceedings,
pages 1-26, 2013.

11

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Ohad Shacham, Martin Vechev, and Eran Yahav. Chameleon: adaptive
selection of collections. In ACM Sigplan Notices, volume 44, pages
408-418. ACM, 2009.

Guoging Xu and Atanas Rountev. Detecting inefficiently-used containers
to avoid bloat. In ACM Sigplan Notices, volume 45, pages 160-173.
ACM, 2010.

Adrian Nistor, Linhai Song, Darko Marinov, and Shan Lu. Toddler:
Detecting performance problems via similar memory-access patterns.
In Proceedings of the 2013 International Conference on Software
Engineering, pages 562-571. IEEE Press, 2013.

Adrian Nistor, Po-Chun Chang, Cosmin Radoi, and Shan Lu. Caramel:
Detecting and fixing performance problems that have non-intrusive
fixes. In Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, volume 1, pages 902-912. IEEE, 2015.
Linhai Song and Shan Lu. Performance diagnosis for inefficient
loops. In Proceedings of the 39th International Conference on Software
Engineering, pages 370-380. IEEE Press, 2017.

Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic
performance bugs in collection traversals. In ACM SIGPLAN Notices,
volume 50, pages 369-378. ACM, 2015.

Monika Dhok and Murali Krishna Ramanathan. Directed test generation
to detect loop inefficiencies. In Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
pages 895-907. ACM, 2016.

Linhai Song and Shan Lu. Statistical debugging for real-world
performance problems. In ACM SIGPLAN Notices, volume 49, pages
561-578. ACM, 2014.

Luca Della Toffola, Michael Pradel, and Thomas R Gross. Performance
problems you can fix: A dynamic analysis of memoization opportunities.
In ACM SIGPLAN Notices, volume 50, pages 607-622. ACM, 2015.
Khanh Nguyen and Guoqing Xu. Cachetor: Detecting cacheable data
to remove bloat. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, pages 268-278. ACM, 2013.
Ajeet Shankar, Matthew Arnold, and Rastislav Bodik. Jolt: lightweight
dynamic analysis and removal of object churn. In Proceedings of the 23rd
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2008, October 19-23,
2008, Nashville, TN, USA [32], pages 127-142.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. ACM
SIGPLAN Notices, 47(6):77-88, 2012.

Adrian Nistor, Tian Jiang, and Lin Tan. Discovering, reporting, and
fixing performance bugs. In Proceedings of the 10th Working Conference
on Mining Software Repositories, pages 237-246. IEEE Press, 2013.
Michael Pradel, Markus Huggler, and Thomas R Gross. Performance
regression testing of concurrent classes. In Proceedings of the 2014
International Symposium on Software Testing and Analysis, pages 13-25.
ACM, 2014.

Tingting Yu and Michael Pradel. Syncprof: Detecting, localizing, and
optimizing synchronization bottlenecks. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, pages 389—
400. ACM, 2016.

Jeff Bogda and Urs Hoélzle. Removing unnecessary synchronization in
java. In ACM SIGPLAN Notices, volume 34, pages 35-46. ACM, 1999.
Erik Ruf. Effective synchronization removal for java. In ACM SIGPLAN
Notices, volume 35, pages 208-218. ACM, 2000.

Juan Pablo Sandoval Alcocer, Alexandre Bergel, and Marco Tulio Valente.
Learning from source code history to identify performance failures. In
Proceedings of the 7th ACM/SPEC on International Conference on
Performance Engineering, pages 37-48, 2016.

Lu Xiao, Yuanfang Cai, and Rick Kazman. Titan: A toolset that connects
software architecture with quality analysis. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pages 763-766. ACM, 2014.

Yuanfang Cai, Lu Xiao, Rick Kazman, Ran Mo, and Qiong Feng. Design
rule spaces: A new model for representing and analyzing software
architecture. IEEE Transactions on Software Engineering, 2018.

Lu Xiao. Bridging the Gap between Software Architecture and
Maintenance Quality. Drexel University, 2016.

Lu Xiao, Yuanfang Cai, and Rick Kazman. Design rule spaces: A new
form of architecture insight. In Proceedings of the 36th International
Conference on Software Engineering, pages 967-977. ACM, 2014.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]

[60]

[61]

Iman Keivanloo, Christopher Forbes, Aseel Hmood, Mostafa Erfani,
Christopher Neal, George Peristerakis, and Juergen Rilling. A linked
data platform for mining software repositories. In Proceedings of the
9th IEEE Working Conference on Mining Software Repositories, pages
32-35. IEEE Press, 2012.

Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu,
and Abraham Bernstein. The missing links: bugs and bug-fix commits. In
Proceedings of the eighteenth ACM SIGSOFT international symposium
on Foundations of software engineering, pages 97-106. ACM, 2010.

Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung.
Relink: recovering links between bugs and changes. In Proceedings of

the 19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, pages 15-25. ACM, 2011.

Andrea De Lucia, Fausto Fasano, Rocco Oliveto, and Genoveffa Tortora.

Recovering traceability links in software artifact management systems
using information retrieval methods. ACM Transactions on Software
Engineering and Methodology (TOSEM), 16(4):13, 2007.

Christopher S Corley, Nicholas A Kraft, Letha H Etzkorn, and Stacy K
Lukins. Recovering traceability links between source code and fixed bugs
via patch analysis. In Proceedings of the 6th International Workshop on

Traceability in Emerging Forms of Software Engineering, pages 31-37.

ACM, 2011.

Len Bass, Paul Clements, and Rick Kazman. Software architecture in
practice. Addison-Wesley Professional, 2003.

Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot patterns:

The formal definition and automatic detection of architecture smells.

In Software Architecture (WICSA), 2015 12th Working IEEE/IFIP
Conference on, pages 51-60. IEEE, 2015.

Allan Terry, Frederick Hayes-Roth, Lee Erman, Norman Coleman, Mary
Devito, George Papanagopoulos, and Barbara Hayes-Roth. Overview of
teknowledge’s domain-specific software architecture program. SIGSOFT
Softw. Eng. Notes, 19(4):68-76, October 1994.

Mary Shaw, Robert DeLine, Daniel V. Klein, Theodore L. Ross, David M.

Young, and Gregory Zelesnik. Abstractions for software architecture and
tools to support them. IEEE Trans. Softw. Eng., 21(4):314-335, April
1995.

Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava:
Connecting software architecture to implementation. In Proc. 24th,
pages 187-197, May 2002.

Kenichi Kobayashi, Manabu Kamimura, Koki Kato, Keisuke Yano, and
Akihiko Matsuo. Feature-gathering dependency-based software clustering
using dedication and modularity. In Proceedings of the 2012 IEEE
International Conference on Software Maintenance (ICSM), ICSM 12,
pages 462-471, Washington, DC, USA, 2012. IEEE Computer Society.

J. Misra, K. M. Annervaz, V. Kaulgud, S. Sengupta, and G. Titus.

Software clustering: Unifying syntactic and semantic features. In 20712
19th Working Conference on Reverse Engineering, pages 113122, Oct
2012.

Gerard Salton and Michael J McGill. Introduction to modern information
retrieval. 1986.

LLC Yourkit. Yourkit profiler, 2003.

Eun-young Cho. Jprofiler: Code coverage analysis tool for omp project.

Technical report, Technical Report: CMU 17-654 & 17, 2006.

André Van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A
framework for application performance monitoring and dynamic software
analysis. In Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, pages 247-248, 2012.

Sebastian Baltes, Oliver Moseler, Fabian Beck, and Stephan Diehl.

Navigate, understand, communicate: How developers locate performance
bugs. In Empirical Software Engineering and Measurement (ESEM),

2015 ACM/IEEE International Symposium on, pages 1-10. IEEE, 2015.

Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and
detecting performance bugs for smartphone applications. In Proceedings
of the 36th International Conference on Software Engineering, pages
1013-1024. ACM, 2014.

12

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

(78]

Marc Briinink and David S Rosenblum. Mining performance specifica-
tions. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 39-49. ACM,
2016.

Charlie Curtsinger and Emery D Berger. C oz: finding code that counts
with causal profiling. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 184—197. ACM, 2015.

Lu Fang, Liang Dou, and Guoqing (Harry) Xu. Perfblower: Quickly
detecting memory-related performance problems via amplification. In
29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic [64], pages 296-320.
Adriana E Chis, Nick Mitchell, Edith Schonberg, Gary Sevitsky, Patrick
OSullivan, Trevor Parsons, and John Murphy. Patterns of memory
inefficiency. In European Conference on Object-Oriented Programming,
pages 383-407. Springer, 2011.

Guoging Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary
Sevitsky. Software bloat analysis: finding, removing, and preventing
performance problems in modern large-scale object-oriented applications.
In Proceedings of the FSE/SDP workshop on Future of software
engineering research, pages 421-426. ACM, 2010.

Erik Altman, Matthew Arnold, Stephen Fink, and Nick Mitchell.
Performance analysis of idle programs. In ACM Sigplan Notices,
volume 45, pages 739-753. ACM, 2010.

Catia Trubiani, Achraf Ghabi, and Alexander Egyed. Exploiting
traceability uncertainty between software architectural models and
performance analysis results. In European Conference on Software
Architecture, pages 305-321. Springer, 2015.

Catia Trubiani, Alexander Bran, André van Hoorn, Alberto Avritzer, and
Holger Knoche. Exploiting load testing and profiling for performance
antipattern detection. Information and Software Technology, 95:329-345,
2018.

Christian Vogele, André van Hoorn, Eike Schulz, Wilhelm Hasselbring,
and Helmut Krcmar. Wessbas: extraction of probabilistic workload
specifications for load testing and performance predictiona model-driven
approach for session-based application systems. Software & Systems
Modeling, 17(2):443-477, 2018.

Axel Busch, Dominik FuchB, and Anne Koziolek. Peropteryx: Automated
improvement of software architectures. In 2019 IEEE International
Conference on Software Architecture Companion (ICSA-C), pages 162—
165. IEEE, 2019.

Kata Praditwong, Mark Harman, and Xin Yao. Software module
clustering as a multi-objective search problem. IEEE Trans. Softw.
Eng., 37(2):264-282, March 2011.

A. Corazza, S. Di Martino, V. Maggio, and G. Scanniello. Investigating
the use of lexical information for software system clustering. In 2011
15th European Conference on Software Maintenance and Reengineering,
pages 35-44, March 2011.

U. Erdemir, U. Tekin, and F. Buzluca. Object oriented software clustering
based on community structure. In 2011 18th Asia-Pacific Software
Engineering Conference, pages 315-321, Dec 2011.

Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng.
Identifying and quantifying architectural debt. In Proceedings of the
38th International Conference on Software Engineering, pages 488—498.
ACM, 2016.

Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton.
Detecting software modularity violations. In Software Engineering (ICSE),
2011 33rd International Conference on, pages 411-420. IEEE, 2011.
Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge
Haziyev, Volodymyr Fedak, and Andriy Shapochka. A case study in
locating the architectural roots of technical debt. In Software Engineering
(ICSE), 2015 IEEE/ACM 37th IEEE International Conference on,
volume 2, pages 179-188. IEEE, 2015.

Nico Zazworka, Clemente Izurieta, Sunny Wong, Yuanfang Cai, Carolyn
Seaman, Forrest Shull, et al. Comparing four approaches for technical
debt identification. Software Quality Journal, 22(3):403-426, 2014.

