DESIGNDIFF: Continuously Modeling Software
Design Difference from Code Revisions

Xiao Wang
Stevens Institute of Technology
Hoboken, United States
xwang97 @stevens.edu

Bihuan Chen
Fudan University
Shanghai, China

chenbihuan @gmail.com

Abstract—The design structure of a system continuously
evolves as the consequence of fast-paced code revisions. Agile
techniques, such as continuous testing, ensures the function goals
of a system with every code revision. However, there lacks
an efficient approach that can continuously model the design
difference resulting from every single code revision to facili-
tate comprehension and ensure the design quality. This paper
contributes a novel design modeling approach, called Design
Differencing (DESIGNDIFF), that models and visualizes the high-
level design differences resulting from every code revision. This
paper defines a complete and general set of 17 design change
operators to capture the design difference from any code revision.
We evaluated the potential of DESIGNDIFF in three aspects. First,
a user study of 10 developers indicated that DESIGNDIFF can help
practitioners to faster and better understand high-level design
differences from real-life software commits. Second, DESIGN-
DIFF analyzed 14,832 real-life commits in five real-life projects:
finding 4,189 commits altered the software design, 855 commits
introduced and 337 commits eliminated design flaws. The latency
between the flaw introduction and elimination is on average 2
months to 2 years! With an affordable performance overhead,
DESIGNDIFF has great potential to benefit practitioners in more
applications.

Index Terms—software architecture, architecture flaws, reverse
engineering

I. INTRODUCTION

During the past decades, agile methods have gained preva-
lence to enable fast-paced software development [1]-[5].
The design structure of a system continuously evolves as
the consequence of fast-paced code revisions. Developers
often unintentionally introduce design flaws that violate well
accepted design principles. Overtime, the system becomes ever
challenging to understand and maintain [6]. Agile techniques,
such as continuous testing [7]-[9], ensures the function goals
of a system with every code revision. However, there still lacks
an efficient approach that can continuously model the design
difference resulting from every single code revision to facilitate
comprehension and ensure the design quality.

Many agile methods advocate collective code ownership
and continuous refactoring for enabling the “Built-In Quality”
principle. The development team should perform Litter-Pickup

Lu Xiao
Stevens Institute of Technology
Hoboken, United States
Ixiao6 @stevens.edu

Yutong Zhao
Stevens Institute of Technology
Hoboken, United States
yzhaol02 @stevens.edu

Kaifeng Huang

Fudan University

Shanghai, China
kfhuangl6@fudan.edu.cn

Yang Liu
Nanyang Technological University
Singapore
yangliu@ntu.edu.sg

refactoring following the boy-scout rule: Leave your code better
than you found it. Therefore, developers need a way to quickly
and correctly understand the high-level design differences
resulting from their own and others’ code revisions. Previous
research has developed various techniques to recover the overall
design of a software system to improve understanding [10]—
[18]. The limitation is that existing approaches scan the entire
code base to build the design model, and thus are too expensive
to apply after every code revision in fast-paced development
process. In fact, a code revision usually only alters (if at all) a
very small part of the design. We argue that it is more efficient
to model the design difference by focusing on the changed
parts in an incremental fashion.

In addition, developers often unintentionally introduce design
flaws, which are formed by problematic connections among
software elements. Previous research has revealed typical design
flaws that recur in different projects [19]-[21]. For example,
Cyclic Dependency is a group of source files that form a
dependency cycle. Strong evidences from dozens of real-life
projects, both open source and industry, reveal that typical
design flaws are responsible for poor maintenance quality and
high long-term costs [19], [21]-[23]. The limitation is that
these design flaws usually have already caused significant loss
to the system when they can be detected by existing approaches.
In practice, due to limited resources, the design flaws were
seldom eliminated by refactoring and continued causing more
loss to the project [24], [25]. We argue that a more effective
solution is to instantly identify the introduction (as well as the
elimination) of these design flaws with rapid code revisions.

This paper contributes an efficient approach, called Design
Differencing (DESIGNDIFF). It automatically and efficiently
models and visualizes the essential design differences resulting
from any code revision as a sequence of design change
operators. This paper defines a comprehensive set of 17
fundamental design change operators. These operators, applied
in combinations and/or in sequences, can capture any drastically
design structure change in a system. The unique advantage of
our approach is that it focuses on modeling the changed parts,



instead of re-modeling the entire design structure of a system.
As such, it is affordable to be applied after every code commit.
DESIGNDIFF can also help to instantly detect the introduction
and elimination of design flaws with rapid code revisions. This
paper contributes the corresponding tool that automatically
generates such design differences and visualization, taking a
commit ID and the code base of the system as inputs. The tool
developed and data used in this paper can be found here '.

1) Can DESIGNDIFF facilitate the understanding of the
high-level design differences resulting from real-life software
commits? A user study involving 10 developers reviewing
20 real-life software commits of different complexity levels
indicates that DESIGNDIFF can help improve the completeness
and correctness of understanding with less time. In the study,
we compared with the code diff viewer from GitHub [26]
as the baseline. The rationale is that 1) GitHub is the most
accessible tool that highlight code difference in every single
code commit; and 2) to the best of our knowledge, there
is no other available tool that can compute the high-level
design difference from every single code revision. Therefore,
we believe that DESIGNDIFF can be a handy tool for developers
to perform design review for every single code commit.

2) Can DESIGNDIFF help to instantly detect the introduction
and elimination of design flaws with every single code revision?
We applied DESIGNDIFF on a total of 14,832 commits from five
open source projects on the Apache Software Foundation [27].
We found that only 4,189 (28%) commits altered the design
structure of a system. DESIGNDIFF further detected that 855
(20%) of the 4,189 design structure altering commits introduced
four types of architectural flaws, including cyclic dependency,
parent calls child, sibling call each other and declare child
class which violated the SOLID design principles [28], [29].
On the contrary, only 337 (8%) commits fixed the flaws. The
latency between the flaw introduction and elimination is on
average 2 months to 2 years! This indicates that DESIGNDIFF
can help to safeguard the design quality by providing instant
warning to developers when design flaws are first introduced.

3) Finally, the overhead of DESIGNDIFF is averagely from
13 to 29 seconds for analyzing commits in different sizes,
which is affordable to be employed for analyzing every single
change.

II. BACKGROUND

In this section, we introduce the fundamental background.
a) Dependency Graph and Design Structure Matrix

A dependency graph captures the structural dependencies
among software design elements [30]. The nodes are the
software design elements in different granularity (e.g. com-
ponents, source files, and methods); and the edges are the
dependencies among software design elements [31]. It can be
reverse engineered from the source code of a software system
using a widely-used commercial tool, Understand [32].

A design structure matrix (DSM), proposed by Baldwin and
Clark [33], can compactly represent a dependency graph of a

! https://drive.google.com/open?id=1blZgWoKRSn9s1SYOFoYWLkSMYkpZCNSw

software system as a square matrix [34]—-[37]. The rows and
columns in a DSM are labeled by the same set of software
design elements in the same order. A cell along the diagonal
represents self-dependency, and a non-empty off-diagonal cell
captures the dependency between the element on the row and
the element on the column. In Java, there are nine common
types of structural dependencies among source files, extracted
by Understand [32]. In common programming languages like
Java and C++, each file usually contains the definition of one
major class, therefore we use “class” and “file” interchangeably
for the ease of presentation. Each dependency type is explained
as follows.

o fo Implement fy: f, (class) implements f;, (interface)

o fo Extend fy: f, (child class) extends f; (parent class)
o fo Call fy: f, calls the methods declared in f;

o fo Throw fy: f, throws an exception of the type of f;
e fu Cast fy: f, is casted into the type of f

e fu Create fy: f, creates an instance of f3

o fo Typed fy: f, declares a variable of the type of f;

o fo Use fp: f, uses a value assigned from the type of f;
o fo Import fy: fi, is imported at the header of f,

Fig. 1a presents an example of a file-level DSM of the Maze
Game program (see Section III-A). Cell[1,7] says “Tp, Cr”. It
means that file 1, Door, declares a parameter type of (Typed)
and create an instance of (Create) file 7, Room.

b) Modular Operators

According to the design rule theory proposed by Baldwin
and Clark [33], any complex system is composed of high-
level design rules and modules. They proposed to capture
the dynamics of a modular structure by six simple modular
operators, which are a powerful set of conceptual tools to
capture the dynamics of a modular design. These six modular
operators are:

o Augmenting: add a new module to a system

o Excluding: remove a module from a system

e Porting: a module ports the functions from another module
o Inverting: create a new design rule from existing module(s)
o Splitting: break a module into sub-modules

o Substituting: replace one module by another module

These six operators form the theory of design evolution. They
can be applied in combinations and in sequences to drastically
change the design structure of a system.

III. THE DESIGNDIFF APPROACH

The Design Differencing (DESIGNDIFF), which can incre-
mentally model and visualize the design structure differences
resulting from each code revision, is composed of two key
parts:

o A Difference Design Structure Matrix (Diff-DSM) that
captures the fundamental design structure differences in a
design structure matrix (DSM)

o A complete set of 17 basic design change operators that can
capture the high-level design difference.

We use a Maze Game program as a running example to
illustrate the key ideas.


https://drive.google.com/open?id=1blZgWoKRSn9s1SYOFoYWLk5MYkpZCNSw

A. A Running Example

We will use a Maze Game program as a running example
to explain the key concepts in DESIGNDIFF and as one
of the subjects to evaluate DESIGNDIFF. The Maze Game
program is a homework in an undergraduate course in a
Software Engineering program. This homework is designed to
teach students the Factory Method (FM) and Abstract Factory
(AF) design patterns. Students first implement a basic maze
game, which creates a maze composed of black-and-white
rooms, walls and doors, following the map-site specified in
a configuration file. Next, students are asked to improve the
program to create a colorful maze game using the FM and AF
design patterns respectively. The functional properties of using
the two design patterns are identical: the program should be
able to create three different modes of maze games: 1) the
black-and-white maze, 2) the red maze, and 3) the blue maze
depending on runtime input.

B. Difference Design Structure Matrix

A Diff-DSM focuses on modeling the directly or indirectly
changed parts in a code revision. Similar to the original DSM
(introduced in II), a Diff-DSM is also a n*n square matrix,
where the rows and columns represent impacted source files
and each cell represents structural dependencies from a file
on the row to the file on the column. Diff-DSM is unique in
two aspects.

1) A Diff-DSM only captures files impacted, directly or
indirectly, by a code change, c. The impacted files are in four
types, distinguished by the prefix of each file in a Diff-DSM.
o faqq: files that are newly added to the system in ¢
e fRemove: files that are removed from the system in ¢
o farodisy: files that are modified in ¢
o fReferenced: files that do not themselves change in c, but are

referenced by fAdd9 fRemove: or fModify inc

Example. Fig. 1a reports the Diff-DSM for the code change
from a basic maze game to a colorful maze game using the FM
design pattern. The first column lists the files that are directly
or indirectly impacted in the change. Nine files are newly
added, five files are referenced by the changed files, and one
file is removed.

2) A Diff-DSM distinguishes structural dependency types as
added, removed, and unchanged in c. The added and removed
dependency types are marked with “+” and “-” (and also
highlighted in blue and red text colors) in cells.

Example. In Fig. 1a, cell[15,3] says “+Cl, +Cr” in blue,
indicating that these two dependency types (Call and Create)
are newly added (as a result of newly added files). Cell[12,4]
says “-Tp, -Cr” in red, denoting that SimpleMaze (row 12)
no longer declares types (Typed) and creates the instance of
(Create) the Wall (row 4) after change.

C. Design Change Operators

Diff-DSM captures the basic structure changes without
capturing the high-level design difference. For example, it
is possible that several files forming a new polymorphism
structure are added to the system. The Diff-DSM only captures

this case as a set of file and dependency additions, without
capturing them as an introduction of a new polymorphism
structure. Therefore, we define a complete set of 17 basic
design change operators that, by logic, capture all possible
design changes in a code change. They are defined and derived
from Baldwin and Clark’s design rule theory [33] and the object-
oriented design philosophy [28], [29]. We will first discuss the
rational of the 17 operators and justify why they are complete
and general to different object-oriented programming languages,
followed by the detailed definition of each operator. At the
end, we use the running example to illustrate the operators.

Rational and Completeness. Software design evolution can
be captured based on the grounds of Baldwin and Clark’s six
modular operators (see Section II). The first three types are
the most fundamental: Augmenting, Excluding and Porting.
Treating each source file as a fine-grained design module,
Augmenting and Excluding map to adding and removing source
files. Porting can be either Importing or Deporting, which map
to the addition or removal of dependencies among source files.

In different programming languages, there are different
types of structural dependencies. However, regardless of
the specific language, polymorphism is an important design
decision [28], [29]. The relationship between two source files
can be categorized as polymorphic or regular (i.e. other non-
polymorphic dependencies). For example, as introduced in
Section II, in Java, Extend and Implement, are two concrete
forms of polymorphic relationship. The other seven types
are regular dependencies. Following this rationale, in the
descending order of significance, Augmenting (Operator 1 to
5) can be elaborated into Augmenting an Entire Polymorphism
Tree, Augmenting a Partial Polymorphism Tree, Augmenting an
Interface, Augmenting a Child, and Augmenting a Regular File
. Similar breakdown can be applied to Excluding (Operator 6
to 10) and Importing (Operator 11 to 13)/Deporting (Operator
14 to 16). To be comprehensive, operator 17 captures the
modification to the dependency types.

These 17 operators are complete and general in capturing all
the fundamental design changes in software evolution. Although
we do not directly define operators based on the other three
modular operators, namely Inverting, Splitting, and Substituting,
the 17 operators already combine or can be combined to capture
them. We will explore the dynamics of their combination in
the future (see Section VIII).

Definitions. Given any code commit ¢, we define the
following operators that can be used in combination and
sequential to interpret the design structure difference resulting
from c:

1. Augmenting an Entire Polymorphism Tree, 7,: All
the files in 7T, are newly added in c and they form a new
polymorphism tree. That is, none of the files in 7, belongs
any preexisting polymorphism tree in the code base before c.
This operator indicates the introduction of new polymorphism
design structure.

Namely,

2. Augmenting a Partial Polymorphism Tree, PT,: The
files in PT, are newly added in c and they become part of a



preexisting polymorphism tree PT'. This operator indicates the
expansion of PT.

3. Augmenting an Interface, f; : File f; is added in ¢
as a parent class or an interface of an preexisting file in the
system. This operator indicates extracting general interfaces
from existing functions for future extension. As such, more
variations can be added as the child/concrete implementation
in future code revisions.

4. Augmenting a Child, f. : File f., is newly added
in ¢ as a child/concrete implementation of a preexisting
parent/interface in the system. This operator indicates a concrete
extension to a parent/interface.

5. Augmenting a Regular File, f,: File f, is added in c,
and f, is not part of any polymorphism tree. This operator
indicates direct addition of new functions.

6. Excluding an Entire Polymorphism Tree, 7,.: An entire
polymorphism tree 7). is removed in c. This operator eliminates
polymorphism design structure that is no longer needed, which
is the opposite of operator 1.

7. Excluding a Partial Polymorphism Tree, PT.: PT, is

part of a polymorphism tree PT" before ¢ and is removed in c.
The remaining part of PT after c is still a polymorphism tree.

This operator reduces or simplifies the structure of PT'.

8. Excluding an Interface, f; : File f; is removed in c.
Before c, another file implements or extends f; . This operator
indicates the removal of a general interface.

9. Excluding a Child, f., : File f._isremoved in c. Before c,
fe, implements or extends another file before c. This indicates
the removal of a concrete variation of an existing interface.

10. Excluding a Regular File, f.: File f, is removed in
¢, and f, is not part of any polymorphism tree before c. This
operator simply removes existing functions.

11. Importing Polymorphism, (f., f,): Developers add
polymorphism relationship between file f. (child/concrete) and
file f,, (parent/interface). Both f. and file f, exist before c. This
operator is needed when developers identified polymorphism
relationship between two existing files.

12. Importing Regular Dependency, (f., f,): Before c,
both file f, and file f, exist but f, does not depend on f,. In
¢, developer adds regular dependencies from f, to f,. This
operator increases the coupling among files.

13. Enhancing Regular Dependency, (f.,f,): File f,
already depends on file f, before c. In ¢, developer adds more
types of regular dependencies from f, to f,. This operator
strengthens the dependencies between files.

14. Deporting Polymorphism, ( f., f,): Developer removes
the polymorphism relationship from file f. (child/concrete) to
file f,, (parent/interface) in c. This operator eliminates no longer
needed polymorphism relationship between files.

15. Deporting Regular Dependency, (f., f,): File f,
depends on file f, before c. In ¢, developer completely removes
all the dependencies from f, to f,. This operator eliminates

dependencies between files, which in turn decouples the system.

16. Simplifying Regular Dependency, (f., f,): File f,
depends on file f, before c. In ¢, developer removes some

types of dependency from f, to f,. This operator weakens the
dependency between files but not completely eliminating it.

17. Modifying Regular Dependency, (fz, fy): File f,
depends on file f, both before and after c. The types of regular
dependencies from f, to f, are added and removed. This
indicates the nature of the relationship between files changed.
For example, it could change from a method call to an instance
creation.

Example. The implementation of the colorful Maze Game
using FM pattern can be modeled as a sequence of five
operators, as shown in Fig. 1b:

1) Opl: Augmenting Doors: Add BrownDoor (row 2) and
GreenDoor (row 3) as the child classes of Door (row 1);

2) Op2: Augmenting Walls: Add DarkBlueWall (row 5) and
RedWall (row 6) as the child of Wall (row 4);

3) Op3: Augmenting Rooms: Add LightBlueRoom (row 8)
and PinkRoom (row 9) as the child of Room (row 7).

3) Op4: Excluding SimpleMaze: Remove the original Simple-
Maze (row 12) which only creates the black-and-white maze
in the basic version.

2) OpS: Augmenting Factory. Lastly, create the factory
method inheritance structure by adding three new files, i.e.
MazeFactory (row 13) as the parent, and BlueMazeFactory (row
14) and RedMazeFactory (row 15) as two child classes. The
parent class MazeFactory uses the basic products, namely, Door,
Wall, and Room, to create a black-and-white maze. Each child
factory class, BlueMazeFactory and RedMazeFactory, uses the
specific concrete products, namely, BrownDoor-DarkBlueWall-
LightBlueRoom, and GreenDoor-RedWall-PinkRoom, as the
building blocks of red and blue mazes respectively.

IV. APPROACH IMPLEMENTATION AND APPLICATIONS

This section introduces the implementation of DESIGNDIFF,
followed by the discussion of its potential applications.

A. ArchDiff Implementation

Given a commit ID and the code base of a system as inputs,
DESIGNDIFF automatically interprets and visualizes the design
difference shown in Fig. 1. The implementation overview is
illustrated in Fig. 2, composed of two main parts: 1) Diff
Extraction and 2) DESIGNDIFF Modeling.

a) Diff Extraction

This part extracts the directly and indirectly involved source
files in a given commit c¢. We use Git APIs to identify source
files directly revised in ¢, namely ChangedFileSet, and revert the
code base into two status before and after the commit, namely
CodeBaseBefore and CodeBaseAfter. Next, the “Change Extrac-
tor” retrieves two file sets, ReferencedBefore and ReferenceAfter
that are not directly changed in c but are referenced by files
in ChangedFileSet, from CodeBaseBefore and CodeBaseAfter
respectively. ReferencedBefore and ReferenceAfter are neces-
sary to comprehensively capture indirect design impacts of
c. We combine ChangedFileSet with ReferencedBefore and
ReferenceAfter respectively to form InvolvedFileSetBefore and
InvolvedFileSetAfter, containing the directly and indirectly
involved files before and after c.



1 2

10 12 13 14 15

1 Reference.Door (1) Tp, Cr
2 Add.BrownDoor +al+Ext T (2) +Tp
3 Add.GreenDoor +Cl,+Ext " (3) +Tp
4 Reference.Wall (4)
5 Add.DarkBlueWall +cl,+Ext] (5)
6 Add.Redwall +Cl +Ext] " (8)
7 Reference.Room (7) Tp
8 Add.LightBlueRoom +Cl+Ext T (8)
9 Add.PinkRoom +Cl+Ext " (9
10 Reference.Maze (10)
11 Reference.Direction r (11)
12 Remove.SimpleMaze | -Cl,-Tp,-Cr -Tp,-Cr -Cl,-Tp,-Cr -Cl,-Tp,-Cr  -Tp [(12)
13 Add.MazeFactory +Cl,+Tp,+Cr +Tp,+Cr +Cl,+Tp,+Cr +Cl,+Tp,+Cr +Cl,+Tp (13) +Cr +Cr
14 Add.BlueMazeFactory +Tp +Cl,+Cr +Tp  +Cl,+Cr +Tp +Cl,+Cr +Tp +c|,+Ext'(14)
15 Add.RedMazeFactory|  +Tp +Cl+Cr +Tp +ClsCr +Tp +Cl+cr  +Tp +Cl+Ext  (15)
Note: Cl means Call; Tp means Typed; Cr means Create; Ext means Extend
(a) Diff-DSM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 Reference.Door (1) Tp, Cr
2 Add.BrownDoor +Cl+Ext 7 (2) +Tp
3 Add.GreenDoor +C,+Ext " (3) +Tp
4 Reference.Wall ()
5 Add.DarkBlueWall | g a0 ent Doors +cl+ext” (5) '
6 Add.Redwall +Cl,+Ext (6)
7 Reference.Room (7) TP
8 Add.LightBlueRoom 0Op2: Augment Walls | +Cl,+Ext " (8) Op5:
9 Add.PinkRoom +CL,+Ext " (9 Opd4: Exclude A:gr'“em
10 Reference.lv!aze' GOp3:Augment Room: (10) v SiﬁrleMaze Factories
11 Reference.Direction (11) G
12 Remove.SimpleMaze | -Cl,-Tp,-Cr -Tp,-Cr -Cl,-Tp,-Cr -Cl,-Tp,-Cr -Tp ﬁu) 0
13 Add.MazeFactory +Cl,+Tp,+Cr +Tp,+Cr +Cl,+Tp,+Cr +Cl,+Tp,+Cr +Cl,+Tp (13) +Cr +Cr
14 Add.BlueMazeFactoryf +Tp  +Cl,+Cr +Tp  +Cl,+Cr +Tp  +Cl+Cr +Tp +Cl,+Ext (14)
15 Add.RedMazeFactory| +Tp +ClL+Cr  +Tp +Cl,+Cr +Tp +Cl,+Cr +Tp +Cl,+Ext '(15)

Note: Cl means Call; Tp means Typed; Cr means Create; Ext means Extend

(b) Design Difference

Fig. 1: Operators for Colorful Maze Game Using Factory Method Pattern

1. Diff Extraction

Involved

“CodeBaze |
— FileSet
~"Commit __ Before |
( e Before |

Changed
FileSet

Change
Extractor

Involved
FileSet
Befnrei_i

| “Codemase
_ After

2. DesignDiff Modeling

Legend
Dependency Operator
Diff-DSM
oraph Gslznsratnr Matcher &
= BE{E{-E’" Visualizer
l [ Data J
Operator _’_7
%epe:i;;q: Diff-DSM Interpretation Inputf; Output
= ! i izati Flow
L [&Visualizt

Fig. 2: DESIGNDIFF Implementation Overview

b) DESIGNDIFF Modeling

Next, we model a commit as a sequence of design change
operators defined in Section III.

First, we use Understand [32] to calculate two subgraphs, de-
noted as Gpe fore and G feer, formed by InvolvedFileSetBefore
and InvolvedFileSetAfter respectively.

Next, the “Diff-DSM Generator”, a simple graph comparator,
identifies the difference between Gpefore and Ggpier. It first
identifies the discrepancies of the nodes in Giefore and
Gofter- As such files added, removed, and modified can
be distinguished. The referenced files are tagged in “Diff
Extraction”. It then compares edges in Gpefore and Ggfier t0
identify added or removed dependency types between any two
files. The output is a Diff-DSM highlighting file and dependency
changes as shown in Fig. la.

The “Operator Matcher and Visualizer” takes a Diff-DSM
as input and 1) matches the patterns of the 17 operators and
2) interprets the design difference as a sequence of operators.
Each type of operator is identified by a respective matching
procedure. The input is the Diff-DSM of a commit; the output
is the instances of a particular type of operator formed by
the involved files and/or dependencies. Due to space limit,
we only illustrate the pseudo code of two representative

matchers: matchAugmentingEntirePolyTrees in Algorithm 1 and
matchExcludingPartialPolyTrees in Algorithm 2. The pseudo
code of the other 15 matchers are included in the link below?. In
Algorithm 1, the first step (line 1) is to traverse the added files
in a Diff-DSM, d D sm, based on the polymorphism relationship.
The output of this step are clusters of newly added files,
namely trees, where files in each cluster are connected by the
polymorphism relationship (i.e. form a polymorphism tree).
We loop through the ¢rees (line 2 to line 8). In each iteration,
we check whether the current ¢ree contains more than 1 source
file (line 3); otherwise, it is not a real tree. Then we check
whether files in the ¢ree share polymorphism relationship with
files outside of it (line 4). If not, the tree is added to the return
set since it is an entirely new polymorphism tree. Algorithm 2
works similarly. The differences are in line 1 and line 4. In
line 1, we traverse the removed files instead of the added
files in dDsm to identify polymorphism trees formed by the
removed files. In line 4, we check whether files in a tree share
polymorphism relationship with files outside of the tree. If
so, it matches an excluded partial polymorphism tree operator.
After all the operators are matched in a commit, the “Operator
Visualizer” orders identified operators based on two heuristics:

2https://drive.google.com/open?id: lc1zKt-TuYb0_M9;jllsdRSObLS5-crA5Tk


https://drive.google.com/open?id=1c1zKt-TuYb0_M9jllsdRS0bL5-crA5Tk

1) Instances of the same type of operators are visualized in
one view due to their commonality; and 2) Operators related to
polymorphism structure will be visualized first. The rational is
to prioritize operators that are more likely to increase the system
complexity. Admitted, these heuristics may not be optimal, we
will discuss this in Section VIII.

Algorithm 1 matchAugmentingEntirePolyTrees
Input: dDsm
Output: new_trees

Declare: new_trees = ()
1: trees = traverseAddedFiles(dDsm, “poly”)
2: for tree in trees do
3. if sizeof(tree) > 1 then

4: if Vf € tree,dDsm.neighbors(f, “poly”) C
tree then

5: new_trees.add(tree)

6: end if

7 end if

8: end for

9: return new_trees

Algorithm 2 matchExcludingPartialPolyTrees

Input: dDsm
Output: excluded_partial_trees

Declare: excluded_partial_trees = ()

1. trees = traverseRemovedF'iles(dDsm, “poly”)

2: for tree in trees do

3. if sizeof(tree) > 1 then

4: if 3f € tree
3f; € dDsm.neighbors(f, “poly”), f; ¢ tree
then

5 excluded_partial_trees.add(tree)

6: end if

7 end if

8: end for

9: return excluded_partial_trees

B. DESIGNDIFF Potential Applications

DESIGNDIFF is a promising tool for software practitioners
in different application areas:
a) Design Structure Change Comprehension and Review
Software development is a collaborative and long-term
effort [38]. In some agile methods, teams even advocate
collective code ownership and continuous refactoring [39].
Therefore, it is important for developers to understand each
other’s changes at the high level, as well as their own changes
in the past. Code review has been an important technique for
ensuring quality [40]. DESIGNDIFF can be used to facilitate
the code review emphasizing on the design change.
b) Continuous Design Structure Monitoring
Developers constantly make changes to a system. Due to
the lack of experience or pressed by time, developers tend
to introduce sub-optimal implementation that form “techni-
cal debts” [41], [42]. Therefore, it is important to provide
continuous design quality monitoring to provide instant or

TABLE I: Study Subjects

Project #Files | #Commits LOC Duration(#Ms)
Avro 896 643 126K 114
Chemistry | 1053 1466 131K 107

Jena 5886 4780 515K 83
Mina 319 1702 23K 136
PDFBox 1289 6241 152K 119

early warning when changes introduce negative impact to the
overall design structure. DESIGNDIFF enables such continuous
design structure monitoring. For example, if a change intro-
duced design flaws, such as cyclic dependencies or unhealthy
inheritance relationships [43]-[45], developers should receive
an instant warning to take immediate actions. On the opposite,
if developers eliminated design flaws, they should also receive
a positive feedback to acknowledge the effort.
c) Software Design Education

The topics in software design are challenging for students
who lack practical experience [46]. Although students practice
good software design in programming homework, it is often
extremely inexplicit and inefficient for instructors to evaluate
students’ work in terms of the design correctness and quality.
DESIGNDIFF is a promising tool to overcome challenges for
both students and educators.

V. EVALUATION SETUP

This section discussed how we evaluate DESIGNDIFF.

A. Research Question . .
We propose to answer the following research questions:

« RQ1: Can DESIGNDIFF facilitate the understanding of the
high-level design differences resulting from real-life software
system commits?

« RQ2: Can DESIGNDIFF help to instantly detect the intro-
duction and elimination of design flaws with every single
code revision?

« RQ3: What is the performance overhead of DESIGNDIFF?

B. Evaluation Subjects and Setup

To answer RQ1 and RQ2, we applied DESIGNDIFF on a
total 14,832 of commits from five popular, real-life software
systems [47]-[51]. They are Avro—a remote procedure call
and data serialization framework; Chemistry—open source
Content Management Interoperability Services; Jena—Semantic
Web framework for Java; Mina—a Java network application
framework; and PDFbox—a pure-Java library for manipulating
PDF files. The basic facts about these projects are shown in
Table I. As a particular note, DESIGNDIFF identified 4,189
(28%) of the total 14,832 commits that altered the design
structure of the projects. The remaining 72% commits did not
alter the software design structure.

a) RQI Setup

We conduct a user study and survey to evaluate the
effectiveness of DESIGNDIFF for understanding the design
structure changes in real-life software commits. We compare
with using the diff viewer on GitHub [26], referred as GitDiff
in the following context. GitDiff presents the detailed code
revisions and highlights the added and removed lines of code
in green and red background. We use GitHub as the baseline
because 1) it is the most widely used and readily available tool



that highlight code difference in every single code commit;

and 2) to the best of our knowledge, there is no other available

tool that directly and automatically calculates and visualize the
high-level design difference from every single code revision.

To create a fair comparison, we employ the following setting
in the study: We selected 4 commits from each of the 5
projects (20 commits total) in 4 different complexity levels,
approximated by the number of involved files: <= 5, (5, 10],
(10, 15], and > 15. Intuitively, the more files involved, the
more difficult to understand. We invited 10 developers with 1
to 6 years of real-world development experience in the study.

The study is arranged in five sessions shown in Table II.
Each session is participated by 2 developers (column 2). Each
developer reviews 8 commits from two projects (column 3)
using DESIGNDIFF and GitDiff. For instance, in Session 1,
participant A uses DESIGNDIFF on Avro and GitDiff on
Chemistry; while participant B uses GitDiff on Avro and
DESIGNDIFF on Chemistry. As such, each participant reviews
8 cases from two projects by DESIGNDIFF and GitDiff
respectively; and each commit is reviewed four times, each
time by a different participant, using DESIGNDIFF and GitDiff
evenly. Therefore, the study results in a total 40 review cases
using DESIGNDIFF and 40 cases using GitDiff.

Before each session, we provide a 45 minutes training/exer-
cising to get participants familiarized with both methods. We
ask the participants to summarize the design changes in each
commit. We clarify our expectation by showing samples of
expected summary and educate the participants with the 17
operators. We track the time spent on each case.

We evaluate each summary in a scale of 1 to 5. A 5 means
a correct and complete summary; 4 if the summary contains
minor inaccuracies; 3 if important information is missing or
misinterpreted; 2 if the summary is largely vague/irrelevant; 1
if the summary is mostly vague/irrelevant. As an example, a
participant got 1 using DESIGNDIFF on a summary: “inheri-
tance change”, without any specific information of which and
how files are involved. To ensure fair evaluation, one author
performs the initial grading and another author confirms.

We collect feedback from participants using a brief survey
after the study. We ask three (two rating and one open-ended)
questions in the survey: 1) How useful is DESIGNDIFF for help-
ing understanding design changes? (Useful, Not Much Useful,
Useless); 2) How useful is GitDiff for helping understanding
design changes? (Useful, Not Much Useful, Useless); 3) What
is the strength and weakness of DESIGNDIFF and GitDiff?

RQI is answered through: 1) the quality and used time in
understanding; and 2) participants’ feedback.

b) RQ?2 Setup

We focus on four types of design flaws that violate well
accepted design principles [28], [29].

e Cyclic Dependency: A group of files form a dependency
cycle [43]-[45].

o Parent Calls Child: The parent (abstract) classes should not
depend on the child (concrete) classes. Otherwise, it violates
the Dependency Inversion Principle [29]: the concrete should
depend on the abstract but not vice versa.

TABLE II: Study Sessions

Commits (Method)

Avro (A: DESIGNDIFF; B:GitDiff); Chemistry (A: GitDiff; B: DESIGNDIFF)
Chemistry (C: DESIGNDIFF; D: GitDiff); Jena (C: GitDiff; D: DESIGNDIFF)
Jena (E: DESIGNDIFF; F: GitDiff); Mina (E: GitDiff; F: DESIGNDIFF)
Mina (G: DESIGNDIFF; H: GitDiff); PDFBox (G: GitDiff; H: DESIGNDIFF)
PDFBox (I: DESIGNDIFF; J: GitDiff); Avro (I: GitDiff; J: DESIGNDIFF)

W] B W9 =W

=HQEQ >
s % —| | o o w| B

m DesignDIFF i GITDIFF

#Cases
N

sssss

Fig. 3: Summary Quality

« Sibling Calls: According to the Livos Substitution Princi-
ple [29], the subclass should be able to substitute each other.
But if the sibling classes call each other, they cannot be used
interchangeably due to their coupling.

o Declare Child: Developers should declare the abstract/parent
class, instead of the concrete/child, to increase the flexible
and interchangeable instantiation of concrete/child classes.
Declaring a child class violates both Likov Substitution and
Dependency Inversion Principles [29].

DESIGNDIFF can help detect commits that introduce these
flaws. For example, to detect the introduction of cyclic
dependencies, we calculate cycles in a Diff-DSM formed by
after-change files-and-dependencies that do not exist in before-
change files-and-dependencies. Other flaws can be detected
in similar ways following the before-after criteria using a
Diff-DSM. The negation of flaw detection pin-points the flaw
elimination.

c) RQ3 Setup

We measure the performance overhead of running DESIGN-
DIFF against the 4,189 design structure altering commits on
a PC with 17 CPUS, 2.6GHz, 4 cores, 32 GB RAM, 64-bit
Operating System.

VI. EVALUATION RESULTS

RQ1: Can DESIGNDIFF facilitate the understanding of
the high-level design differences resulting from real-life
software system commits? We first present the understanding
quality and time by using DESIGNDIFF and GitDiff, then
present the survey results in four findings:

1) DESIGNDIFF improves the quality of understanding
obviously, compared to GitDiff. As introduced in Section V,
we grade the 40 cases by DESIGNDIFF and 40 cases by GitDiff
in the scale of [1,5]. Fig. 3 shows the grade distribution.

When using DESIGNDIFF, 30 (75%) cases received 5°,
indicating the completeness and correctness in the summaries of
design changes. Participants lost points mostly (8 in 10 cases)
due to missing minor dependency changes or being inaccurate
when describing the changed files. In 2 cases, the participate
submitted vague summary or mixed up changed dependency
types. The Mann-Whitney U-tests indicates that DESIGNDIFF
can statistically significantly improve the understanding quality
with p-value 0.0003.



TABLE III: Efficiency Improvement for Participants
Avg. Time (Minutes) Avg. Quality (Grade [1,5])

Par. 5 S TGN DIFF|GitDiff[Saved[ DESIGN DIFF|GitDiFf| Improved
D 7 8.5 1.5 5 3.5 1.5
H 45 6.5 2.0 425 3.75 0.5
C 4.5 7.5 3.0 4.25 1.75 2.5
1 5.75 10.5 | 4.8 5 425 0.75
F 8 18.25 1 10.3 5 3.25 1.75
B 4 975 [ 5.8 5 4.5 0.5
N i3 125
E 7.75 2.5 T-53 475 2.25 2.5
A 9.5 425 1-53 45 2.75 1.75
Avg -5.3 2.1
G 6.25 4 23 5 5 0

J 2.75 2 -0.8 2.5 2.75 -0.25
Avg -1.5 -0.1

In comparison, when using GitDiff, only 12 (30%) cases
received 5°. The summaries suffer from the following issues:
1) The summaries failed to completely capture the dependency
change among files (13 in 28 cases). In particular, participants
tend to miss porting/deporting dependencies or dependency
change that involve referenced files. Consistent with the survey
feedback, participants complain that GitDiff only explicitly
distinguishes changes to files as added, removed, or modified
by the background color (all green for added file, all red for
removed, and mixed background for modified file). However,
the dependency changes are implicit and tedious to capture.
2) The summaries did not contain detailed information of
which and how files are involved in a change (12 in 28 files).
For example, when an entire polymorphism tree is added, the
summary only vaguely indicates “some inheritance structure is
added”, without providing details. 3) The summaries mistaken
the roles of files and the nature of their dependencies(5 in 28).
For example, participants mixed up child and parent or mistaken
polymorphism relationship as regular dependency. 4) The
summaries look like a detailed “laundry list” without cohesive
understanding (2 in 28 cases). For example, “Augmenting an
Entire Polymorphism Tree” formed by a parent class A and
three child classes B, C, and D is described fragmented as
B extends A, C extends A, and D extends A following the
order of how changed files are listed on GitDiff. In 1 case, the
participant did not submit the summary, later confirmed by the
participant having difficulty identifying any meaningful design
changes from GitDiff.

2) For the majority (60%) participants, DESIGNDIFF both
improves the understanding quality (by an average 1.25°) and
reduces the review time (by an average of 4.5 minutes). The
data is shown in Table III. The first column shows the unique
ID of each participant. Column 2 to 4 shows the average time
each participant spent when using DESIGNDIFF and GitDiff,
and the time saved by using DESIGNDIFF. Similarly, Column
5 to 7 shows the grade received when using DESIGNDIFF and
GitDiff, and the grade improved by using DESIGNDIFF.

For 2 participants, they spent 5 more minutes when using
DESIGNDIFF, but the understanding quality is significantly
improved by 1.75” and 2.5’. According to the survey, DESIGN-
DIFF provides systematically guidance that helps users remain
engaged until high quality understanding is achieved; while
GitDiff tends to overwhelm and discourage users from further

pursuing understanding by details.

For the remaining 2 participants, the effectiveness of DE-
SIGNDIFF did not kick off in the study. They spent more time
(0.8 and 2.3 minutes) using DESIGNDIFF, without improving
the understanding quality. We conjecture that this is impacted
by individual background and experience. The DESIGNDIFF
uses a matrix representation, thus the participants’ performance
will be compromised if he/she is not comfortable with reading
a matrix. This is supported by the comments from the survey:
two participants suggested that we replace the DSM view by
a graph view, which is more intuitive to them. However, we
believe that this is amendable with more training and exercises.

3) The survey shows that all participants favor DESIGNDIFF
over GitDiff due to its explicitness in showing the design
changes. All 10 participants think that DESIGNDIFF is useful
for understanding design structure differences. In comparison,
4 participants think that GitDiff is useful; 5 think that GitDiff
is not much useful; and 1 thinks that GitDiff is useless.
However, four participants complained the complexity of the
DESIGNDIFF visualization and the high learning curve. They
suggest simplifying the view, especially for large changes,
such as by eliminating trivial operators like “Modify Regular
Dependency”. As mentioned earlier, two participants suggested
that we use a graph-based view to replace the DSM view. This
suggestion is opposite to the appreciation for the compactness
of the DSM view from other participants. For GitDiff, two
participants appreciated the clarity of the background color for
highlighting the added and removed lines of code. However,
most participants complained the fragmentary information and
overwhelming details that challenge the understanding of high-
level design differences.

RQ1 Answer: DESIGNDIFF can help most participants to
better and faster understand the design structure differences in
real-life software project commits. Participants mostly favor
DESIGNDIFF over GitDiff due to its clarity and explicitness
in showing the essential design change.

RQ2: Can DESIGNDIFF help to instantly detect the
introduction and elimination of design flaws with every
single code revision?

With the help of DESIGNDIFF, we found that, among the
4,189 commits that changed the design structure of the studied
projects, totally 855 commits introduced and 337 commits
eliminated design flaws. The detailed information is shown
in Table IV. The first column lists the project name and the
number of commits that changed the design structure. The 2nd
and 3rd column show the numbers of commits that introduced
and eliminated Cyclic Dependency respectively. The 4th column
shows the latency (in days) between the introduction and
elimination of each flaw instance. The following columns show
the similar information for the other three design flaws. We
can make the following observations from the data:

1) Overall, developers are 2 (Cyclic Dependency) to 5
(Parent Call Child) times more likely to introducing than
eliminating design flaws. For instance, in Avro, 37 commits
(which is 15% of the total 248 design altering commits)
introduced new cyclic dependencies among the revised files.



TABLE IV: Real-time Detection of Commits with the Flaw Introduction and Removal

Project Cyclic Dependency Parent Call Child Sibling Call Declare Child Class
(#Arch. Commits)|” #In. (%) | #EL (%) [L(D)|[ #In. (%) [ #EL. (%) [L(D)|| #In. (%) | #EL. (%) [L(D)|[ #n. (%) [ #EL (%) |[L(D)
Avro (248) 37 (15%) |7 2.4%) [TT79]|7 2.8%) |1 (0.4%) | - |9 3.6%) |1 (0.4%) | 1621][24 (9.7%) |4 (1.6%) | 1
Chemistry (321) [ 15 (4.6%) [6 (I1.8%) | 5 [[5 (1.6%) |1 (03%)| - [[9 2.8%)|3 (0.9%)| 8 |11 (3.4%) |3 (0.9%)| -

Mina (601) 37 (6.1%) 22 3.7%)] 56 || 6 1%) |1 (02%)| 1 [|23 3.8%)[3 (0.5%)| 5 |[31 (5.2%) |11 (1.8%)| 76
PDFBox (1392) [149 (10.7%)[75 (5.4%)| 579 [[37 (2.7%)| 5 (0.4%) [1599]|53 (3.8%)[13 (0.9%)| 990 || 111 (8%) |35 (2.5%)| 94
Jena (1627) 88 (5.4%) | 65 (4%) | 174 []20 (1.2%)|10 (0.6%)| 377 ||72 (4.4%)[31 (1.9%)] 5 [|T11 (6.8%)|40 (2.5%)| 35

[ Avg. In/Rm. [ 84%/3.4% =24

[399] 1.9%/04% =5 [[645]] 3.7% 7 0.9% =4 || 234 ][ 6.6% / 1.9% = 3.5 [[ 51 ]

In comparison, only 7 commits (2.4%) eliminated cycles. This
is consistent with prior empirical experience that design flaws
are not granted sufficient attention. Therefore, they are easily
introduced, but seldom get eliminated. This indicates that it is
important to provide real-time warning of the introduction of
flaws so that the developers can take immediate corrections
before maintenance consequences accumulate. Meanwhile,
developers should also receive positive feedback when they
make an effort to eliminate the flaws.

2) The latency between the introduction and elimination of
a design flaw is on average 51 days (Declare Child Class)
to 645 days (Parent Call Child)! As shown in Table IV, the
latency before elimination varies drastically from case by case:
from 1 day to 1559 days (sub-columns “L(D)”). To clarify,
not every introduced flaw is removed; and not every removed
flawed can be traced back to its original introduction on Git
log. The latency is calculated based on matched introduction
and elimination cases. The data indicate that most design flaws
are not eliminated in a timely fashion. Admittedly, the latency
is impacted by many factors, such as unawareness, lack of
experienced and time, priority of the issues, etc. However, we
believe that if developers can receive instant warning from
DESIGNDIFF, they have the option to eliminate these flaws
immediately after the introduction with a fresh memory.

RQ2 Answer: DESIGNDIFF successfully detected 855
commits that introduced and 337 commits that eliminated
four types of design flaws among the total 4,189 commits
that changed the design structure of the studied projects. The
latency between introduction and elimination of a design flaw
is on average from 51 to 645 days. Based on our evaluation,
we believe that DESIGNDIFF has the potential to provide
instant warning and positive feedback to the introduction and
elimination of design flaws. This enables the long-term health
of software design against rapid code revisions.

RQ3: What is the performance overhead of DESIGN-
DIFF? We track the execution time of DESIGNDIFF, covering
Diff Extractor, DiffDSM Generator, and Operator Matcher and
Visualizer, on commits with <=5, (5, 10], (10, 15], and > 15
source files. The profiling data show that the average processing
time is 13, 15, 19, 29 seconds for the four complexity levels
respectively. Large portions of time were consumed on Diff
Extractor and Operator Visualizer. The Diff Extractor could
end up scanning a large amount of the code for even a small
change due to a large number of referenced files. In addition,
the Visualizer relies on an open source library [52] to render
different operators in a .xlIsx file. Overall, the overhead of
DESIGNDIFF is affordable for running after every code change.

We plan to further optimize DESIGNDIFF in the future.
VII. RELATED WORK

a) Code Differencing

Numerous prior work focused on analyzing code differences
in a single code change. They are in three types: 1) Text-based
approach that computes the inserted, removed, or changed lines
of code between two versions of a source file [53]-[57]; 2) Tree-
based approaches that capture the syntactic difference in the
format of Abstract Syntax Trees [58]-[65]; and 3) Graph-based
approach that uses graph representations of source code, such
as control flow graph, to shown program semantic change [66]—
[70]. In a particular note, Apiwattanapong et. al. [66] analyzed
the semantic changes of OO programs, which are relevant
to the polymorphism related operators in this paper. Their
approach outputs a control-flow graph of the internal structure
of a method, composed of an entry point, method invocations,
variable declarations, and branching points, such as try and
catch, and finally an exiting point. They employed dynamic
binding to identify method invocations that may affect different
part of the program at run-time due to the polymorphism design.
In comparison, our work focused on capturing the changes of
the inter-dependencies among existing/added files/classes, and
group related changes into operators, such as Augmenting an
Partial PolyMorphsim Tree, to facilitate the comprehension of
the high-level design.

b) Design Differencing

Previous work has also focused on identifying design
difference between two versions of software program. Our work
is highly relevant to [71]-[74], where the design differences are
also described in the notion of change operators. In [73], the
authors identified add parent/base class and remove parent/base
class. They focused on just one particular parent or base
class being added or removed, without capturing the overall
polymorphism structure formed by a group of files. In [74],
the authors described the extract super class and flatten
polymorphism changes. The extract super class is similar to
add a parent/base class, and it focuses on cases where a
super class is extracted from an existing class. The flatten
polymorphism is the opposite of extract super class, where a
parent class and its child are combined into one flat class. In
[71], [72], the authors capture the general inheritance/interface
change similar to the previous two studies. Meanwhile, these
related work also identify fine-grained changes, such as change
visibility [71], [72], change attribute [73], [74], which are not
captured in this work. The uniqueness of our work is two-
fold. First, the polymorphism operators (i.e. operators 1 to
4,6 t0 9, 11, and 14) stand for different high-level design



decisions, which are not formally differentiated in previous
work. For example, Augmenting an Entire Polymorphism
Tree aggregates a group of newly added files that form an
completely new inheritance tree, which indicates the employ-
ment of polymorphism for addressing a complicated aspect
of design. Similarly, Augmenting Partial Polymorphism Tree
groups related files that expand an existing polymorphism tree,
which indicates the increase in the complexity of an existing
polymorphism structure. In prior work, these two scenarios are
not automatically captured, instead they will be illustrated as
multiple add-parent and add-class operators. Similarly, each of
the other polymorphism operators has a unique meaning that
is not specifically differentiated in related work. Second, our
approach is designed for continuous modeling. It performs a
light-weighted comparison of the before and the after change
DSMs composed of only the change-related files. The strength
is that, as shown in RQ2 and RQ3, it can be used to detect
the introduction and elimination of design flaws from every
single commit with affordable cost. In comparison, previous
approaches are designed for analyzing two remote versions
of code using comprehensive code analysis and heuristics
for mapping elements and extracting the fine-grained code
elements, such as attributes and methods. The advantage of
related work is to captured a combination of fine-grained and
design structure changes, but they may not be suitable for the
continuous monitoring evaluated in this paper.
c) Architecture Recovery and Analysis

Architecture recovery is the process of reverse-engineering
system architecture from binary code, source code, or con-
figuration files. Numerous techniques and tools were built
to automatically group implementation entities, e.g. files,
classes, or functions, into high level architectural elements,
such as components/connectors [10]-[18], modules [75]-[77],
and design spaces [22], [36], [37]. Architecture visualization
facilitates the high-level understanding [78]-[81]. Another
important goal of architecture recover is to identify architectural
decay and flaws [20], [45], [82]-[91]. To a very limited
extend, prior work focused on the analysis of architecture
evolution [23], [71], [92]-[95]. However, they mostly work
at consecutive versions of a software system and are limited
to provide timely guidance for developers after every single
code change. According to a recent study [96], developers
need improved awareness of the architectural changes in the
daily development activities. Our work complements existing
literature by contributing a continuous design change modeling
and monitoring approach.

VIII. THREATS TO VALIDITY AND LIMITATIONS

a) Threats to Validity

First, we defined the 17 change operators based on the
different patterns of dependency change among existing/added
source files. We cannot guarantee that these 17 operators
can correctly and completely capture the actual intentions
of developers who made the changes. Second, we acknowledge
the potential basis that we only compared with GitDiff, which
is not intended for analyzing software design. Third, we

acknowledge the potential basis in grading the design difference
summaries submitted by the study participants due to individual
understanding and experience. Fourth, 10 participants in RQ1
are currently graduate students who have 1-6 years of real-
world system development experience. And the 20 commits
in the study may not cover all possible change scenarios. We
plan to conduct more comprehensive user studies in the future.
Fifth, DESIGNDIFF employs heuristics to order and visualize
the design change operators (see Section IV). We acknowledge
it is not optimal for all different commits. In future work, we
plan to customize the ordering strategy based on the content
of each code change, such as by grouping operators involving
the same set of files together.
b) Limitations

First, we acknowledge that the time saved by using Design-
Diff compared to using GitDiff is not statistically significant
for all the participants. Only 60% participants were able to
save time by using DesignDiff. In future work, we plan to
simplify the visualization to make it is easier to understand.
Second, we acknowledge that we did not conduct statistic
analysis on the survey data of RQI, given the limited number
of participants. Third, DESIGNDIFF focuses on only four
operators: Augmenting, Excluding, Importing (Deporting), and
Inverting, of the original six operators. To clarify: Inverting
is captured as polymorphism related Augmenting. However,
Splitting and Substituting are not directly captured, but can be
captured by combinations of Augmenting, Excluding, Importing
and Deporting. We plan to investigate the dynamic combination
of the 17 operators in future work. Fourth, we acknowledge
that the four design flaws studied in RQ2 are not complete to
cover all possible flaws in practice. However, practitioners can
leverage DESIGNDIFF to define their own flaw detection rules
based on project needs. Fifth, the cyclic dependencies identified
by DESIGNDIFF only involve files within the Diff-DSM of a
commit. Cycles formed by both files in and out of a Diff-DSM
cannot be calculated without the knowledge of a full system
DSM. We plan to explore efficient ways to identified the latter
type of cycles in the future.

IX. CONCLUSION

This paper contributed a new design modeling and analysis
approach, DESIGNDIFF, to incrementally capture, interpret, and
visualize the essential design structure difference resulting from
every single code change. The evaluation on three application
contexts proved the great potential of DESIGNDIFF. A user
study of 10 participants and 20 real-life software commits
indicated that DESIGNDIFF can help practitioners to better
and faster understand the impacts of detailed code changes
to the software design structure. Evaluation on 14,832 real-
life software commits proved that DESIGNDIFF can enable
continuous design structure monitoring by providing instant
warning and positive feedback to design flaw introduction and
elimination.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science

Foundation of the US under grants CCF-1823074.



[2

—

[3

[4

=

[6

=

[7

—

[8

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Ken Schwaber and Mike Beedle. Agile software development with Scrum,
volume 1. Prentice Hall Upper Saddle River, 2002.

Robert C Martin. Agile software development: principles, patterns, and
practices. Prentice Hall, 2002.

Alistair Cockburn. Agile software development: the cooperative game.
Pearson Education, 2006.

Alistair Cockburn and Jim Highsmith. Agile software development: The
people factor. Computer, (11):131-133, 2001.

Agile Alliance. Agile manifesto. Online at http://www. agilemanifesto.
org, 6(1), 2001.

Lakshitha de Silva and Dharini Balasubramaniam. Controlling software
architecture erosion: A survey. J. Syst. Softw., 85(1):132-151, January
2012.

David Saff and Michael D Ernst. An experimental evaluation of
continuous testing during development. In ACM SIGSOFT Software
Engineering Notes, volume 29, pages 76-85. ACM, 2004.

Sean Stolberg. Enabling agile testing through continuous integration. In
2009 Agile Conference, pages 369-374. IEEE, 2009.

David Talby, Arie Keren, Orit Hazzan, and Yael Dubinsky. Agile software
testing in a large-scale project. IEEE software, 23(4):30-37, 2006.
Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative
analysis of software architecture recovery techniques. In Automated Soft-
ware Engineering (ASE), 2013 IEEE/ACM 28th International Conference
on, pages 486—496, 2013.

V. Tzerpos and R.C. Holt. ACDC: an algorithm for comprehension-driven
clustering. In Working Conference on Reverse Engineering (WCRE),
2000.

Brian S. Mitchell and Spiros Mancoridis. On the automatic modulariza-
tion of software systems using the bunch tool. IEEE TSE, 2006.

N. Anquetil and T. Lethbridge. File clustering using naming conventions
for legacy systems. In Conference of the Centre for Advanced Studies
on Collaborative Research, 1997.

N. Anquetil and T.C. Lethbridge. Recovering software architecture from
the names of source files. Journal of Software Maintenance: Research
and Practice, 1999.

Joshua Garcia, Daniel Popescu, Chris Mattmann, Nenad Medvidovic,
and Yuanfang Cai. Enhancing architectural recovery using concerns. In
ASE, 2011.

Anna Corazza, Sergio Di Martino, and Giuseppe Scanniello. A
probabilistic based approach towards software system clustering. In
European Conference on Software Maintenance and Reengineering
(CSMR), 2010.

Anna Corazza, Sergio Di Martino, Valerio Maggio, and Giuseppe
Scanniello. Investigating the use of lexical information for software
system clustering. In European Conference on Software Maintenance
and Reengineering (CSMR), 2011.

Janardan Misra, KM Annervaz, Vikrant Kaulgud, Shubhashis Sengupta,
and Gary Titus. Software clustering: Unifying syntactic and semantic
features. In Working Conference on Reverse Engineering (WCRE), 2012.
Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot patterns:
The formal definition and automatic detection of architecture smells.
In Software Architecture (WICSA), 2015 12th Working IEEE/IFIP
Conference on, pages 51-60. IEEE, 2015.

Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton.
Detecting software modularity violations. In Proceedings of the 33rd
International Conference on Software Engineering, pages 411-420. ACM,
2011.

Ran Mo, Yuanfang Cai, Rick Kazman, Lu Xiao, and Qiong Feng.
Architecture anti-patterns: Automatically detectable violations of design
principles. IEEE Transactions on Software Engineering, 2019.

Robert Schwanke, Lu Xiao, and Yuanfang Cai. Measuring architecture
quality by structure plus history analysis. In Proceedings of the 2013
International Conference on Software Engineering, pages 891-900. IEEE
Press, 2013.

Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng.
Identifying and quantifying architectural debt. In Proceedings of the
38th International Conference on Software Engineering, pages 488—498.
ACM, 2016.

Gabor Szoke, Gabor Antal, Csaba Nagy, Rudolf Ferenc, and Tibor
Gyiméthy. Empirical study on refactoring large-scale industrial systems
and its effects on maintainability. Journal of Systems and Software,
129:107-126, 2017.

[25]
[26]

[27]
[28]

[29]
[30]

(31]

(32]
[33]

[34]

(35]

(36]

[37]

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]
[48]
[49]
(501
[51]
[52]
[53]

[54]

[55]

Ewan Tempero, Tony Gorschek, and Lefteris Angelis. Barriers to
refactoring. Communications of the ACM, 60(10):54-61, 2017.
https://github.com/.

https://www.apache.org/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.
Robert C Martine. Design principles and design patterns. 2000.

Hausi A. Miiller, Mehmet A. Orgun, Scott R. Tilley, and James S. Uhl.
A reverse engineering approach to subsystem structure identification,
1993.

Rainer Koschke. Software visualization in software maintenance, reverse
engineering, and re-engineering: A research survey. Journal of Software
Maintenance, 15(2):87-109, March 2003.

https://scitools.com/.

Carliss Y. Baldwin and Kim B. Clark. Design Rules: The Power of
Modularity Volume 1. MIT Press, Cambridge, MA, USA, 1999.

Y. Cai and K. J. Sullivan. Modularity analysis of logical design models.
In 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE’06), pages 91-102, Sep. 2006.

A. Avritzer, D. Paulish, and Y. Cai. Coordination implications of software
architecture in a global software development project. In Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008), pages
107-116, Feb 2008.

Lu Xiao, Yuanfang Cai, and Rick Kazman. Design rule spaces: A new
form of architecture insight. In Proceedings of the 36th International
Conference on Software Engineering, pages 967-977. ACM, 2014.
Yuanfang Cai, Lu Xiao, Rick Kazman, Ran Mo, and Qiong Feng. “design
rule spaces: A new model for representing and analyzing software
architecture”. IEEE Transactions on Software Engineering, Accepted.
Frederick P. Brooks, Jr. The Mythical Man-month (Anniversary Ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.
Robert Cecil Martin. Agile Software Development: Principles, Patterns,
and Practices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.
Shane Mclntosh, Yasutaka Kamei, Bram Adams, and Ahmed E. Hassan.
The impact of code review coverage and code review participation
on software quality: A case study of the qt, vtk, and itk projects.
In Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014, pages 192-201, New York, NY, USA, 2014.
ACM.

Philippe Kruchten, Robert L. Nord, Ipek Ozkaya, and Davide Falessi.
Technical debt: Towards a crisper definition report on the 4th international
workshop on managing technical debt. SIGSOFT Softw. Eng. Notes,
38(5):51-54, August 2013.

TechDebt ’18: Proceedings of the 2018 International Conference on
Technical Debt, New York, NY, USA, 2018. ACM.

Tosin Daniel Oyetoyan, Daniela S. Cruzes, and Reidar Conradi. A study
of cyclic dependencies on defect profile of software components. J. Syst.
Softw., 86(12):3162-3182, December 2013.

Heiko Koziolek. Sustainability evaluation of software architectures: A
systematic review. In Proceedings of the Joint ACM SIGSOFT Conference
— QoSA and ACM SIGSOFT Symposium — ISARCS on Quality of Software
Architectures — QoSA and Architecting Critical Systems — ISARCS, QoSA-
ISARCS 11, pages 3-12, New York, NY, USA, 2011. ACM.

Ran Mo, Yuanfang Cai, R. Kazman, and Lu Xiao. Hotspot Patterns:
The Formal Definition and Automatic Detection of Architecture Smells.
In 2015 12th Working IEEE/IFIP Conference on Software Architecture
(WICSA), pages 51-60, May 2015.

Jules Moloney and Rajaa Issa. Materials in architectural design education
software: A case study. International Journal of Architectural Computing,
1(1):46-58, 2003.

https://avro.apache.org/.

https://github.com/.

https://jena.apache.org/.

https://mina.apache.org/.

https://pdfbox.apache.org/.

https://poi.apache.org/.

Eugene W Myers. Ano (nd) difference algorithm and its variations.
Algorithmica, 1(1-4):251-266, 1986.

Webb Miller and Eugene W Myers. A file comparison program. Software:
Practice and Experience, 15(11):1025-1040, 1985.

Muhammad Asaduzzaman, Chanchal K Roy, Kevin A Schneider, and
Massimiliano Di Penta. Lhdiff: A language-independent hybrid approach


https://github.com/
https://www.apache.org/
https://scitools.com/
https://avro.apache.org/
https://github.com/
https://jena.apache.org/
https://mina.apache.org/
https://pdfbox.apache.org/
https://poi.apache.org/

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

for tracking source code lines. In 2013 IEEE International Conference
on Software Maintenance, pages 230-239. IEEE, 2013.

Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. Tracking your
changes: A language-independent approach. IEEE Software, 26(1):50-57,
20009.

Steven Reiss. Tracking source locations. In 2008 ACM/IEEE 30th
International Conference on Software Engineering, pages 11-20. IEEE,
2008.

Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina,
and Jennifer Widom. Change detection in hierarchically structured
information. In Acm Sigmod Record, volume 25, pages 493-504. ACM,
1996.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and
Martin Monperrus. Fine-grained and accurate source code differencing.
In Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering, pages 313-324. ACM, 2014.

Beat Fluri, Michael Wuersch, Martin PInzger, and Harald Gall. Change
distilling: Tree differencing for fine-grained source code change extraction.
IEEE Transactions on software engineering, 33(11):725-743, 2007.
Beat Fluri and Harald C Gall. Classifying change types for qualifying
change couplings. In /4th IEEE International Conference on Program
Comprehension (ICPC’06), pages 35-45. IEEE, 2006.

Masatomo Hashimoto and Akira Mori. Diff/ts: A tool for fine-grained
structural change analysis. In 2008 15th Working Conference on Reverse
Engineering, pages 279-288. IEEE, 2008.

G. Dotzler and M. Philippsen. Move-optimized source code tree
differencing. In 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 660-671, Sep. 2016.
Yoshiki Higo, Akio Ohtani, and Shinji Kusumoto. Generating simpler ast
edit scripts by considering copy-and-paste. In Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2017, pages 532-542, Piscataway, NJ, USA, 2017. IEEE Press.
Kaizhong Zhang and Dennis Shasha. Simple fast algorithms for the
editing distance between trees and related problems. SIAM J. COMPUT,
18(6), 1989.

Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. A
differencing algorithm for object-oriented programs. In Proceedings of the
19th IEEE International Conference on Automated Software Engineering,
ASE ’04, pages 2—-13, Washington, DC, USA, 2004. IEEE Computer
Society.

Susan Horwitz. Identifying the semantic and textual differences between
two versions of a program. In Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design and Implementation,
PLDI ’90, pages 234-245, New York, NY, USA, 1990. ACM.

S. Raghavan, R. Rohana, D. Leon, A. Podgurski, and V. Augustine. Dex:
a semantic-graph differencing tool for studying changes in large code
bases. In 20th IEEE International Conference on Software Maintenance,
2004. Proceedings., pages 188-197, Sep. 2004.

Jackson and Ladd. Semantic diff: a tool for summarizing the effects of
modifications. In Proceedings 1994 International Conference on Software
Maintenance, pages 243-252, Sep. 1994.

Shuvendu K. Lahiri, Chris Hawblitzel, Ming Kawaguchi, and Henrique
Rebélo. Symdiff: A language-agnostic semantic diff tool for imperative
programs. In Proceedings of the 24th International Conference on
Computer Aided Verification, CAV’12, pages 712717, Berlin, Heidelberg,
2012. Springer-Verlag.

Zhenchang Xing and Eleni Stroulia. Umldiff: An algorithm for object-
oriented design differencing. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering, ASE 05,
pages 54-65, New York, NY, USA, 2005. ACM.

Zhenchang Xing and Eleni Stroulia. Differencing logical uml models.
Automated Software Engineering, 14(2):215-259, 2007.

Rimon Mikhaiel, Nikolaos Tsantalis, Natalia Negara, Eleni Stroulia, and
Zhenchang Xing. Differencing uml models: a domain-specific vs. a
domain-agnostic method. In International Summer School on Generative
and Transformational Techniques in Software Engineering, pages 159—
196. Springer, 2011.

Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin,
and Marie-Pierre Gervais. Detecting complex changes and refactorings
during (meta) model evolution. Information Systems, 62:220-241, 2016.
Sunny Wong, Yuanfang Cai, Giuseppe Valetto, Georgi Simeonov, and
Kanwarpreet Sethi. Design rule hierarchies and parallelism in software
development tasks. In Proceedings of the 2009 IEEE/ACM International

[76]

(771

[78]

[79]

[80]

(81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Conference on Automated Software Engineering, pages 197-208. IEEE
Computer Society, 2009.

Yuanfang Cai and Sunny Wong. Design rule hierarchy, task parallelism,
and dependency analysis in logical decision models, August 30 2011.
US Patent App. 13/819,136.

Lu Xiao and Tingting Yu. Ripple: a test-aware architecture modeling
framework. In Proceedings of the Ist International Workshop on
Establishing the Community-Wide Infrastructure for Architecture-Based
Software Engineering, pages 14-20. IEEE Press, 2017.

A. P. Sawant and N. Bali. Diffarchviz: A tool to visualize correspondence
between multiple representations of a software architecture. In 2007 4th
IEEE International Workshop on Visualizing Software for Understanding
and Analysis, pages 121-128, June 2007.

S. Duszynski, J. Knodel, and M. Lindvall. Save: Software architecture
visualization and evaluation. In 2009 13th European Conference on
Software Maintenance and Reengineering, pages 323-324, March 2009.
Keith Gallagher, Andrew Hatch, and Malcolm Munro. Software
architecture visualization: An evaluation framework and its application.
IEEE Trans. Softw. Eng., 34(2):260-270, March 2008.

Zohreh Sharafi. A systematic analysis of software architecture visual-
ization techniques. In Proceedings of the 2011 IEEE 19th International
Conference on Program Comprehension, ICPC 11, pages 254-257,
Washington, DC, USA, 2011. IEEE Computer Society.

Gail C. Murphy, David Notkin, and Kevin Sullivan. Software reflexion
models: bridging the gap between source and high-level models. In FSE,
1995.

Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic.
Toward a catalogue of architectural bad smells. In QoSA '09: Proc. 5th
Int’l Conf. on Quality of Software Architectures, 2009.

Joshua Garcia, Daniel Popescu, George Edwards, and Medvidovic Nenad.
Identifying Architectural Bad Smells. In /3th European Conference on
Software Maintenance and Reengineering, 2009.

Joshua Garcia. A unified framework for studying architectural decay of
software systems. PhD thesis, University of Southern California, 2014.
Naouel Moha, Yann-Gael Gueheneuc, Laurence Duchien, and A Le Meur.
Decor: A method for the specification and detection of code and design
smells. Software Engineering, IEEE Transactions on, 36(1):20-36, 2010.
John B. Tran and Richard C. Holt. Forward and Reverse Repair of
Software Architecture. In Proceedings of the 1999 Conference of the
Centre for Advanced Studies on Collaborative Research, CASCON ’99,
pages 12—, Mississauga, Ontario, Canada, 1999. IBM Press.

Lance Tokuda and Don Batory. Evolving object-oriented designs with
refactorings. Automated Software Engineering, 8(1):89-120, 2001.

Jan Philipps and Bernhard Rumpe. Refinement of information flow
architectures. In Formal Engineering Methods., 1997. Proceedings., First
IEEE International Conference on, pages 203-212. IEEE, 1997.

Tom Mens and Tom Tourwé. A survey of software refactoring. Software
Engineering, IEEE Transactions on, 30(2):126-139, 2004.

Igor Ivkovic and Kostas Kontogiannis. A Framework for Software
Architecture Refactoring Using Model Transformations and Semantic
Annotations. In Proceedings of the Conference on Software Maintenance
and Reengineering, CSMR ’06, pages 135-144, Washington, DC, USA,
2006. IEEE Computer Society.

E. Kouroshfar. Studying the effect of co-change dispersion on software
quality. In ACM Student Research Competition, 35th International
Conference on Software Engineering (ICSE), pages 1450-1452, San
Francisco, CA, May 2013.

Duc Le, Pooyan Behnamghader, Joshua Garcia, Daniel Link, Arman
Shahbazian, and Nenad Medvidovic. An empirical study of architectural
change in open-source software systems. To appear in the 12th Working
Conference on Mining Software Repositories, 2015.

Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge
Haziyev, Volodymyr Fedak, and Andriy Shapochka. A case study in
locating the architectural roots of technical debt. In Proceedings of the
37th International Conference on Software Engineering-Volume 2, pages
179-188. IEEE Press, 2015.

Architectural decay prediction. https://seal.ics.uci.edu/projects/decayprediction/,

2016.

Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwet-
sagul, and Mark Harman. Are developers aware of the architectural impact
of their changes? In Proceedings of the 32Nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, pages 95—
105, Piscataway, NJ, USA, 2017. IEEE Press.



