

JGR Earth Surface

RESEARCH ARTICLE

10.1029/2019JF005043

Key Points:

Shorelinechange on sandy, wave-dominated barrier islands is partially explained by shoreline smoothing from alongshore transport gradients
Whereshorelinestabilization is not prevalent, shoreline curvature can explain a significant amount of the shoreline changesignal
Correlation strength varies regionally with wave climate in ways that are consistent with theoretical and model predictions

Sup portin g Inform ation :

· Supporting Information SI

Correspondence to:

A. B. Murray, abmurray@duke.edu

Citat ion:

Lauzon, R., Murray, A. B., Cheng, S., Liu, J., Ells, K. D., & Lazarus, E. D. (2019). Correlation between shoreline change and planform curvatureon wave-dominated, sandy coasls. *Journal* of Geophysical Research: Earth Surface, 124. https://doi.org/10.109/ 2019JR105043

Received 19 FEB 2019 Accepted 29SEP 2019 Accepted article online19 OCT 2019

Correlation Between Shoreline Change and Planform Curvature on Wave-Dominated, Sandy Coasts

R. Lauzon¹ E), A. B. Murray¹E), S. Cheng¹, J. Liu¹, K. D. Ells² E), and E. D. Lazarus³ E)

¹Nicholas School of the Environment, Duke University, Durham, NC, USA, ²De partment of Physics and Physical Oceanography, University of North Carolina Wilmington, Wilmington, NC, USA, ³Environmental Dynamics Lab, School of Geography and Environmental Science, University of Southampton, Southampton, UK

Abstract Low-lying, wave-dominated, sandy coastlines can exhibit high rates of shoreline change that mayimpactcoastal infrastructure, habitation, recreation, and economy. Efforts to understand and quantify controls on shoreline change typically examine factors such as sea-level rise; anthropogenic modifications; geologic substrate, nearshore bathymetry, and regional geography; and sediment grain size. The role of shoreline planform curvatu re, however, tends to be overlooked. Theoretical and numerical model considerations indicate that incidentoffsho re waves interacting with even subtle shoreline curvature can drive gradients in net alongshore sediment flux that can cause significant erosion or accretion. However, these predictions or assumptions have not often been tested against observations, especially over larges patial and temporal scales. Here, we examined the correlation between shoreline curvature and shoreline change rates for spatially extended segments of the U.S. Atlantic and Gulf Coasts (-1,700 km total). Where shoreline stabilization (nourishment or hard structures) does not dominate the shoreline change signal, we find a significant negative correlation between shoreline curvature and sho reline change rates (i.e., convex-seaward curvature [promontories] is associated withshoreline erosion, and concave-seawrd curvature [embayments] with accretion) at spatial scales of 1-5 km alongshore and timescales of decades to centu ries. This indicates that shoreline changes observed in these reaches can be explained in part by gradients in alongshore sediment flux acting to smooth spatial variations in shoreline curvature. Our results suggest that shoreline curvature should be included as a key variable in modeling and risk assessment of coastal change on wave-dominated, sandy coastlines.

1. Introduction

Along low-lying, wave-dominated, sandy coastlines, a variety of physical processes, affect shoreline change across a wide range of sp atial and tempora I scales. Despite their vulnerability to storms and sea-level riseevent-driven and chronic natural hazards- these environments tend to be intensively developed (Wong et al., 2014), motivating efforts to quantify present and historical rates of shoreline change and assess erosion ris k, in the United States (Armstrong & Lazarus, 2019; Fletcher et al., 2012; Gibbs & Richmond, 2015; Gomitz et al., 1994; Hapke et al., 2006; Hapke et al., 2011; Hapke et al., 2013; Hapke & Reid, 2007; Morton et al., 2004; Morton et al., 2005; Morton & Miller, 2005; Ruggiero et al., 2013) and internat ionally (e.g., Coellio et al., 2006; Nicholls & Vega-Leinert, 2008; Shaw et al., 1998). Related to this empirical work are efforts to explain past and predict future trends in shoreline behavior with numerical models of coastal processes and environmental conditions (Ruggiero et al., 2010; Gutierrez et al., 2011; Hapke et al., 2013; Plant et al., 2016; Vitousek et al., 2017; Yates & Le Cozannet, 2012). However, modeled and observed sho reline changes on sandy coastlines still tend to show poor agreement over larger-spatial (>101 km) and longertemporal (>10¹ years)scales(e.g., Gutierrez et al., 2011; French et al., 2016; Yates & Le Cozannet, 2012). The number and variety of controls and processes that can affect sandyshoreline change, including sea-level rise (Ashton & Lorenzo-Trueba, 2018; Leatherman et al., 2000; Moore et al., 2010; Moore et al., 2018; Murray & Moore, 2018; Plant et al., 2016); anthropogenic modifications (Armstrong & Lazarus, 2019; Hapke et al., 2013; Johnson et al., 2015; Miselis & Lorenzo-Trueba, 2017; Rogers et al., 2015; Smith et al., 2015); geologic su bstrate (Cooper et al., 2018; Hauser et al., 2018; Lazarus & Murray, 2011; Moore et al., 2010; Valvo et al., 2006), nearshore bathymetry (Browder & McNinch, 2006; McNinch, 2004; Schupp et al., 2006), and regional geography (Cooper et al., 2018; Plant et al., 2016); wave climate (Anderson et al., 2018; Antolinez et al., 2018; Slott et al., 2010); and sediment grain size(Dean & Dalrymple, 2002; Komar, 1998), makes determining their

©2019. American Geophysical Union. All Rights Reserved.

2

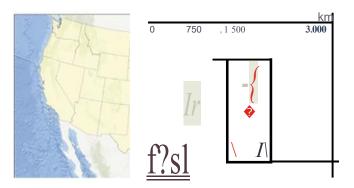


Figure 1. The extent of the shorelines on the (a) Atlantic and (b) Gulf coasts considered in our study.

relative contributions difficult, whether empirically or with numerical modeling. The influence of these factors changes with spatial scale (Lazarus et al., 2011; List et al., 2006)- and at regional scales, a key but commonly overlooked driver of shoreline change is planform curvature.

Here, we examine a correlation between shoreline curvature and shoreline change along - 1,700 km of sandy reaches of the U.S. Atlant ic and Gulf Coasts (Figure 1), over multiann ual to centenn ial timescales. This analysis spans spatial and temporal scales an order of magnitude larger than those considered previously (Lazarus & Murray, 2007, 2011; Lazarus et al., 2011, 2012). Research into coastal vulnerabilityat largespatial scales has tended to focus on shoreline transgression due to sea-level rise (FitzGerald et al., 2008; Gornitz et al., 1994; Gutierrez et al., 2011; Hinkel & Klein, 2009; Plant et al., 2016; Shawet al., 1998). While sea-level rise can drive long-term coastal erosion (Leatherman et al., 2000; Moore

et al., 2010; Pilkey & Cooper, 2004; Vitouse k et al., 2017), so can interactions between incident offshore waves and subtle changes in shoreline planform curvature (Figure 2a), by setting up gradients in net alongsho re sediment transport that generate spatial patterns of shoreline erosion and accretion (Cowell et al., 1995; Dean & Yoo, 1992; Lazarus et al., 2011; Lazarus & Murray, 2007, 2011; Valvo et al., 2006). (In this context, "offshore waves" refers to waves seaward of the inner continental shelf edge.)

At any point along the shoreline planform, the magnitude of alongshore sediment flux can be related to significant wave height and relative angle between the incident offshore wave crest and the shoreline orientation (Ashton & Murray, 2006a; Falques, 2003). This wave-driven alongshore sediment flux is maximized for relative angles of -4 5°. When prevailing waves approach from "low angles" (relative angles less than the flux-maximizing angle), gradients in alongshore transport tend to diverge at convex-seaward (promontory) segments of the shoreline, causing erosion, and converge at concave-seaward (embayed) segments, causing accretion (Ashton et al., 2001; Ashton & Murray, 2006a; Ar riaga et al., 2017; Falques, 2003). Conversely, under a "high angle" wave climate, these gradients in net sediment transport are reversed, such that large-scale coastline curvature tends to increase over time and emergent planform features develop (Ashton et al., 2001; Ashton & Murray, 2006a, 2006b; Falques, 2003; Idier et al., 2017; Murray & Ashton, 2013; van den Berg et al., 2012). In most locations, on some days, the offshore waves approach from high angles relative to the local shoreline orientat ion, and on some days, they approach from low angles.

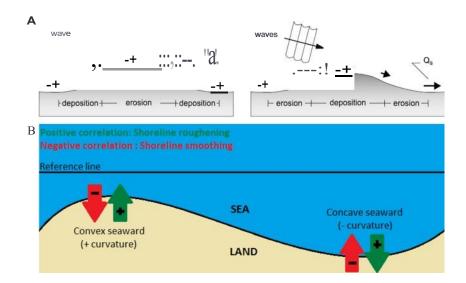


Figure 2. (a) A schematic of gradients in alongshore currents created by shoreline curvature. Reproduced from Ashton and Murray (2006a).(b) Sign conventions used in this analysis. Convex (concave) seaward curvature is defined as positive (negative). Accretion (erosion) is positive (negative) shoreline change. A positive (negative) correlation represents roughening (smoothing) of the shoreline.

Whether a coastline experiences net roughening or net smoothing depends on the wave climate; when there is a greater influence on alongshore transport from low-angle offshore waves, a net smoothing results, and viceversa. (This distinction in terms of offshore waves applies in the limits of large alongshore lengthscales, relative to the cross-shore extent of the shorefa ce. On alongshore scales smaller than a few kilometers, for open ocean coasts, interactions between wave transformation and the curvature of seabed contours (Falques & Calvete, 2005) increase the proportion of high-angle offshore wave influence needed to cause coastline roughening.) Transport gradients tend to be larger (altering the coastline shape more rapidly) whereshoreline curvature is high, but evensubtle variations in curvature (involving a small range of shoreline angles) can drive shoreline change (Lazarus & Murray, 2007; Valvo et al., 2006).

Where shoreline planform curvature is low, long-term coastline evolution can be described with a diffusion equation, such that positive diffusivity corresponds to coastline smoothing and negative diffusivity corresponds to coastline roughening (Ashton & Murray, 2006a, 2006b; Falques, 2003; Ashton et al., 2003; Murray & Ashton 2003). Given that extensive reaches of the U.S. Atlantic and Gulf Coasts feature low curvatures with local waveclimates tending to be low-angle dominated (e.g., Ashton & Murray, 2006b; Johnson et al., 2015), a diffusive, smoothing signalshould be apparent over largespatial and long timescales across a broad span of locations. In numerical modeling experiments, even where regional high-angle waveclimates (relative to the regional coastline trend) have shaped large-scale, emergent coastline features, such as cuspatecapesor free spits, wave-shadowing effects, and local shoreline reorientation, result in diffusive prevailing conditions everywhere but near the cape tip or spit terminus (Ashton et al., 2016; Ashton & Murray, 2006a, 2006b). Thus, model results and observations (or hindcasts) of local wave climates lead us to expect a coastline-smoothing signal, that is, positive diffusivity, in almost all locations (Ashton & Murray, 2006b). On the other hand, how much the diffusive, low-angle waves dominate local wave climates varies from region to region (e.g., Johnson et al., 2015), leading to the prediction that coastline diffusion should be more dominant in some regions than others.

Because diffusion of large-scale coastal features theoretically occurs more slowly than for small-scale ones (the characteristic timescale for coastline change, T, scales with the square of the alongshore length scale, L; $T \ll L2$), to detect the influence of larger-scale (> km) coastline curvature should require longer-term (>10¹ years) shoreline comparisons.

Theoretical and numerical model-based predictions for how shoreline changeshould be related to coastline curvature have not often been directly tested against observations. We build on work by Lazarus and Murray (2007) that identified a negative correlation between shoreline curvature and shoreline change (i.e., where planform curvature was offshore convex, defined as positive, shoreline change was landward, defined as negative; Figure 2b) along $\sim 100\,\mathrm{km}$ of the Northern Outer Banks of North Carolina (USA). The correlation was statistically significant at 10^2 - $10^3\,\mathrm{m}$ spatial scales and multiannual timescales (Supporting Information FigureS1). Here, we identify a predominant smoothing signal (a negative correlation between shoreline curvature and shoreline change) on the wave-dominated, sandy shorelines of the U.S. Atlantic and Gulf Coasts over decadal to centennial timescales and multi-km spatial scales.

2. Methods

We analyzed shoreline curvature and change for coastal barriers along the U.S. Atlantic and Gulf Coasts, spanning a total of - 1,700 km.

2.1. Shoreline Curvature

 $To calculate shoreline curvature, we downloaded shorelines from the Geophysical Data System (GEODAS) \\ Coastline Extractor v 1.1.3 (https://www.ngdc.noaa.gov/mgg/geodas/geodas.html). Shorelines in the Coastline Extractor come from the Global Self-consistent , Hierarchical, High-resolution Geography database (Wessel & Smith, 1996) and are based on the World Vector Shoreline Data. After importing the shorelines from the Coastline Extractor into ArcGIS, we divided them into sections defined by morphologic (e.g., inlets) and anthropogenic (e.g., groynes) boundaries.$

In ArcGIS, we set points at 1-m increments along each shoreline segment and created a reference line by linking the segment endpoints. We moved the reference line 2,000-3,000 m offshore so that the entirety of the shoreline was on the landward side of the reference line, which serves as an arbitrary datum for

defining cross-shore positions. We assume the overall curvature of each segment is low, so that the distance along the reference line (x) and the distance from the reference line (y) correspond to (x, y) coordinates for each point on the shoreline.

To isolate signatures of alongshore sediment flux related to coastline curvature, we removed 0.5 km from both ends of each shoreline section to reduce potential effects of inlets, which can cause convex bulges in the shoreline affected local changes in tidal deltas (Davis & Fitzgerald, 2003). However, where a jetty is present at the end of a shoreline section, we did not remove that terminal 0.5 km, because the shoreline curvature (concave-seaward; negative curvature) and shoreline change (accretion; positive change) updrift of the jetty is a result of gradients in along\lhore transport. Groynes result in the creation of locally concave and accreting shorelines updrift, similar to a jetty, but wave-shadowing downdrift results in locally concave and eroding shorelines. Rather than distinguish between these two effects, we treat a groyne as an inlet and remove 0.5 km from both sides in our analysis.

We then filtered the (x,y) shoreline sections with a running average weighted by a Gaussian distribution with a length scale off(where L = 1, 3, and 5 km, respectively), to remove small-scale (high frequency) variations and reveal the large-scale curvature of the shoreline (Lazarus & Murray, 2007):

$$f(x) = \frac{1}{1 \cdot 1.77} e^{-2(T)}$$
(1)

Truncating the tails of the Gaussian yields a total sum of the weights that is slightly less than 1 (--0.95). (The resultingshoreline positions could be multiplied by the inverse of this factor, to regain the full amplitude of the smoothed-shoreline undulations, although such a normalization would be canceled out in the correlation calculations, equation (2), and would thus not affect our results.) This truncation allowed us to retain more shoreline length for analysis, reducing the number of points needed to calculate a single value. This method differs slightly from that used in previous work (Lazarus & Murray, 2007) but results in filters of comparable size (Figure S2). Increasing the filter size reduces the number of data points obtainable from a given shoreline segment (because only points greater than half a smoothing window from the boundaries can be used); where a shoreline segment is not long enough to allowfor smoothing at all three length scales (1, 3, and 5 km), we only examined the applicable scales. We calculated curvature as the second derivative of the smoothed shoreline, under the assumption that localshorelineorientations deviated littlefrom the average orientation of the shoreline segment (Lazarus & Murray, 2007). (See Figure S3 for details of the analysis for an example shoreline segment.)

2.2. Shoreline Change

We obtained shoreline change data separately, from the USGS National Assessment of Shoreline Change Project (Morton et al., 2004; Morton & Miller, 2005). Mean high water level was used to identify the shoreline. A "long-term" (-1 <> 2 years) rate of shoreline change for a given shoreline segment was obtained from a linear regression of shoreline change spanning the late-1800s, 1920s-1930s, 1970s, and 1998-2002. A "short-term" (-10¹ years) shoreline change rate was calculated using an endpoint method and shoreline data from the 1970s and 1998-2002. Positive values of shoreline change represent accretion; negative values represent erosion (Figure 2b). Where extensive reaches of a given shoreline segment did not have available shoreline change data, we removed the segment from the analysis.

With the shoreline curvature and shoreline change data, we calculated a correlation coefficient (zero-lag) to determine the magnitude and sign of the relationship between curvature and shoreline change rate for each shoreline segment

$$\rho(A,B) = \frac{1}{N-1} \sum_{i=0}^{n} \left(\frac{A_i - \mu_A}{\sigma_A} \right) \left(\frac{B_i - \mu_B}{\sigma_B} \right), \tag{2}$$

4

where μA and aA are the mean and standard deviation of A (curvature), respectively, and $\mu 8$ and a8 are the mean and standard deviation of B(shoreline change rate). The absolute value of the correlation coefficients, which are nondimensional, is bounded by O(indicating no relationship between the two signals) and 1 (indicating that all of the variance in one signal is related to variance in the other signal). By our convention

(Figure 2b), a negative correlation indicates shoreline smoothing, and a positive correlation indicates shoreline roughening.

We also identified shoreline segments that have experienced nourishment (Miller et al., 2004; Miller et al., 2005). We excluded nourished segments from our analysis of North Carolina and Florida but have included nourished segments from Texas and the Mid-Atlantic to demonstrate the effects of nourishment on this type of analysis. Nourished segments included in our calculations are identified in Table 1.

To provide context when analyzing the results of the correla tion calculations for select regions (North Carolina, Texas, and Florida), we calculated an average effective diffusivity, representing the time-integrated effects of the high- and low-angle waves in the wave climate, following the methods of Ashton and Murray (2006b). Coastline diffusion can be expressed by

$$\begin{array}{cc} ay & \frac{1}{D} \frac{\partial Q_s}{\partial \theta} \frac{\partial^2 y}{\partial x^2}, \end{array} \tag{3}$$

where By/Bt is shoreline change rate, D is shoreface depth (the depth to which erosion or accretion are spread), and 8Qsf8\$ is the rate of change of alongshore sediment flux as the relative angle between offshore wave crests and the local shoreline, \mathcal{C} , varies—which is a function of relative angle and height of offshore waves. We can define coastline diffusivity μ as

$$\mu = \frac{1}{D} \frac{\partial Q_s}{\partial \theta}.$$
 (4)

To represent the net diffusive (or antidiffusive) effects of a wave climate, we use an effective diffusivity (Ash ton & Murray, 2006b):

$$\mu_{net} = \frac{\sum_{i=0}^{n} \mu_i t_i}{\sum_{i=1}^{n} t_i},\tag{5}$$

5

where μ net has dimensions of m²/s. (Wave data are typically available as statistics such as significant wave height and wave direction averaged over a sampling period t; μ_1 is calculated for each data point using equation (4).) This effective diffusivity is O when the diffusive influence of all the low-angle waves in a wave climate equals the antidiffusive influence of all the high-angle waves. Greater positive magnitudes of μ net result from a greater dominance of low-angle waves, and or larger-wave heights (holding the proportion of influences from low- and high-angle waves, and or larger-wave heights (holding the proportion of influences from low- and high-angle waves, and or larger-wave heights (holding the proportion of influences from low- and high-angle waves constant). In either case, positive or negative, the magnitude can in principle be large (e.g., >>1). The rate that subtle coastline undulations are smoothed out (or exaggerated) depends on the magnitude of μ n.t

2.3. Excluded Reaches

We excluded from this analysis much of the wave-do minated, sandy coastline of South Carolina and Georgia. This stretch of coast is characterized by a large tidal range, and frequent tidal inlets as well as estuaries; ocean-facing shoreline segments are therefore short, and the influence of tidal inlets isstrong. We also excluded segments that are extensively stabilized and heavily developed in North Carolina and Florida.

3. Results

The fullspatial extent of our analysis is shown in Figure 1 and data are reported in Table 1. Here, we examine subsets of those results in detail.

3.1. North Carolina

3.1.1. Comparison to Previous Work

Lazarusand Murray (2007) previously analyzed correlations between curvature and shoreline change along a section of the Northern Outer Banks of North Carolina from the Virginia state line to Oregon Inlet (NC P96 in this study). Because here we use a somewhat different method, we focused on the same section and reanalyzed the original data from that work (which extracted shoreline position from repeated lidar

Table 1

Correlation Coefficient	Data for all Spo	aceand Timescale	s for all Shorelin	ne Six:tions				
	Correlation ooefficie nt							
	Short-term shoreline change			Long-term shorelinechange				
Shoreline section	1km	3km	Siem	1 km	3km	Siem		
New York 8	0.070324	- 0.12827	-0.1582	-0.03502	-0.20957	-0.36577		
New York 7	0.111674	0.372689	0.129199	-0.01643	-0.26676	-0.18264		
NewYork6	-0.16447	-0.2139	0.094883	0.072898	-0.35544	-0.41847		
New York 5	-0.04217	-0.01076	0.02657	-0.01125	-0.02875	-0.08844		
NewYork4	-0.00042	0.026879	0.164316	-0.07888	0.202794	0.11143		
NewYork3	0.019078	-0.06927	-054342	0.027861	0.06655	0.023931		
NewYork2	-0.59108	-0.69198	-0.6239	-0.1626	-0.04233	0.164476		
New York 1	-0.39928	0.094831	0.309797	0.305994	0.079137	-0.23789		
NewJersey9	-0.08228	0.053764	0.205561	0.107832	0.348556	0.332377		
NewJersey8	0.145729	0.205536	-0.00939	0.045185	0.10853	0.052792		
New Jersey7	0.291612	0552746	0.412828	0.213461	0.624899	0.515199		
NewJersey6	0.217063	0.117759	0.120676	0.17374	0.402628	0.220784		
New Jersey 5	-0.2044	-0.16818	-0.48515	0.381102	0570934	0.612524		
New Jersey4	0.102028	0.339569	0.282275	0.10447	0.008002	0.082873		
NewJersey3	-0.61737	-0.83374	-0.40891	0.415036	0569583	0581117		
NewJersey2	-0.06871	0.011789	0.351761	0.089031	0.353269	0.226332		
New Jersey!	-0.10345	0.105707	- 0.10639	0.419118	0.726764	0.608737		
Delaware 1	-0.17877	-0.4055	-0.26207	0.003589	-0.09073	-0.30117		
Maryland 1	0.005773	0.073997	0.242193	-0.02634	0.017682	0.150606		
Virginia! 2	-0.10359	-0.16801	-0.19339	0.029798	0.059715	0.055696		
Virginial 1	-0.40403	-0.14275	0.24763	-0.02237	0.520963	0.141626		
Virginia 10	-0.37967	-0.34945	0.000728	-0.02503	0.257716	0571434		
Virginia 9	-0.06196	-0.00568	-0.08664	0.145887	0.238378	0.164923		
Virginia 8	0.15521	-0.36874	-0.6393	0.145665	0.42626	0501020		
Virginia 7	-0.25557	-0.74775	-0.7111	0.088547	0.106359	0.61136		
Virginia 6	0.037561	0.120676	0.746808	-0.26258	-0.39069	-0.68728		
Virginia 5	-0.54848	0.120070 NIA	0.740000 NIA	-0.94385	-0.39009 NIA	NIA		
Virginia 4	-0.96205	-0.66748	NIA	0.925424	0.857653	NIA		
Virginia 3	0.064669	- 0.21759	NIA NIA	0.323424	0.363048	NIA		
Virginia 3 Virginia 2	0.004609	0.759211	0.803326	0.02661	0.503048	0.89144		
Virginia 2 Virginia 1	0.123024	0.739211 NIA	0.803320 NIA	-0.01646	NIA	NIA		
North Carolina P96	0.744336	-0.10529	-0.00876	-0.10541	-0.18824	-0.13276		
North Carolina P92	0.144209	-0.10329	-0.31334	0.025203	-0.18824	-0.13270		
North Carolina P91	-0.25219							
		NIA 0.020114	NIA 0.142102	0.145667	NIA	NIA		
North Carolina P90 North Carolina P89	0.250724 0.021587	0.039114	0.142102 0.102581	0.017522	0.01094 0.01805	0.14377 -0.18751		
		0.218485		-0.24125				
North Carolina P88	0.079472	0.050025	0.04052	-0.06983	-0.06712	-0.06532		
North Carolina P87	-0.19644	0.324325	0.550742	0.027631	0.254313	0.579232		
North Carolina P85	-0.37264	-0.83128	NIA	-0.51683	-0.91692	NIA		
North Carolina P84	-0.0911	0525982	NIA	0.124373	0591191	NIA		
North Carolina P83	-0.01929	-0.08488	0.122145	-0.00162	-0.25567	-0.24168		
North Carolina P81	-0.30684	-0.21183	-0.34157	-0.65238	-0.33897	0.31653		
North Carolina P80	-0.21832	0.071481	- 0.06178	0.17744	0.422571	-0.12204		
North Carolina P78	-0.56693	-0.78673	-0.70293	- 0.51285	-0.69875	-0.10446		
North Carolina P76	0.09098	0.140232	- 0.14015	0.067391	0501133	0.1847		
South Carolina P68	-0.10677	-0.44164	- 0.68018	-0.33971	-0.81407	-0.90549		
Florida P19	0.025201	0.099415	0.279159	0.054233	0.095545	0.12083		

Table 1 (continued)

	Correlation coefficient								
	Shor t	-term shoreline c	hange	Long-term shoreline change					
Shoreline section	1km	3km	5km	1km	3km	5km			
Florida Pl 8	0.124249	-0 .04477	- 0.13314	- 0.04349	-0 .37348	- 05 5988			
Florida Pl 7	- 0.03337	0.052037	0.01319	- 0.00258	0.040937	0.033951			
Florida Pl 6_2	0.093654	0.1549	0.255917	0.005374	0.006049	-0 .02489			
Florida Pl 6_1	- 0.09532	-0 .11464	-0 .05769	- 0.08013	- 0.09641	-0 .0637			
Florida PIS	0.021525	0.053018	-0 .02001	0.020112	0.024078	0.036264			
Florida PIO	- 0.16552	0.161041	0.271616	- 0.05879	-0 .13993	-0 .09773			
Florida P9	0.087139	-0 .15064	- 0.21389	0.299981	-0 .01654	0.10858			
Texas 14	- 0.00358	-0 .12428	- 0.27463	0.035979	0.008918	0.000558			
Texas13	0.050743	0.004555	-0 .04873	0.045255	0.016686	-0 .00247			
Texas12	- 0.04612	0.135178	0.13365	- 0.04115	- 0.1909	-05 75			
Texas11	- 0.03796	-0 .37634	- 0.37393	- 0.04811	0.074985	0.071233			
Texas 10	- 0.07537	-0 .13733	- 0.20475	- 0.1033	-0 .07987	-0 .19432			
Texas 9	- 0.03402	-0 .0859	- 0.14875	- 0.00463	0.021958	- 0.03221			
Texas 8	- 0.11271	0.061099	0.044159	- 0.12668	0.029944	0.104228			
Texas 7	- 0.06834	-0 .17361	- 0.28095	- 0.10502	-0 .18407	- 0.25799			
Texas 6	- 0.19458	-0 .5778	- 0.71853	- 0.19394	- 0.54149	-0 .66695			
Texas 5	- 0.05542	-0 .25435	- 0.43196	- 0.00979	0.037675	-0 .00574			
Texas 4	0.009212	-0 .03978	- 0.05869	- 0.01434	-0 .06512	-0 .08189			
Texas 3	0.003582	-0 .06113	- 0.08572	0.003729	0.006362	- 0.01497			
Texas 2	- 0.04068	-0 .07482	- 0.09748	- 0.00601	-0 .01158	0.017724			
Texas 1	- 0.06139	-0 .58019	- 0.7515	- 0.13321	-0 .50223	-0 .63403			

Note. Shorelinesections are numbered moving from south to north(e.g., New York 1 is the southern most section of New York's shore line). Bold shoreline section names have not experienced nourishment, unbolded section names have experienced nourishment. Bold values are significant at a 95% confidence interval.

surveys) to make a direct quantitative comparison. Where Lazarus and Murray (2007) smoothed the calculated curvature and shoreline change values, we smooth the shoreline itself. Comparing the results of smoothing the calculated curvature versus smoothing the shoreline, we found no difference in the final curvature values. Likewise, we found a negligible difference in the correlation coefficients for smoothing (Lazarus & Murray, 2007) or not smooth ing (this study) the shoreline change data.

The smoothing filters used in the respective analyses differ slightly (Figure S2). Our results thus differ in local detail, but not in overall trend. When we change the shape of our Gaussian so that it resembles the Hanning window used by Lazarus and Murray (2007), such that the sum of the weights is ~99% and the lowest weight is ~1% of the central value, the length scales of the respective filters differ by a factor of ~1.5: data smoothed at a 1-km scale in our analysis are comparable to smoothing at a ~1.5-km scale by the process in Lazarus and Murray (2007). We have to reduce our length scale($\frac{1}{4}$ in equation (1)) by ~ $\frac{1}{4}$ to weight our Gaussian in a way that is comparable to their Hanning window.

Our method reproduced the same relationships demonstrated by Lazarus and Murray (2007; Figure S2), with values within a factor of 2 of those they reported (Table S1). The correlation between shoreline curvature and shoreline change isstrongest at longer (decadal) timescales, and it depends on length scale in a way that varies with timescale (Figure S2).

3.1.2. New Anal ysis

We analyzed ~265 km of sandy barrier island shoreline along North Carolina's coast- more than twice the reach covered previously (Lazarus & Murray, 2007, 2011; Lazarus et al., 2011, 2012). Individual islands range in length from 2.7 to 121.44 km. We removed several nourished shoreline segments from the analysis (NC77,79,82, 86, 93, 94, and 95; Table1) and a few of the sho reline reaches(NC 84,85,and 91) are too short to be analyzed at all three length scales.

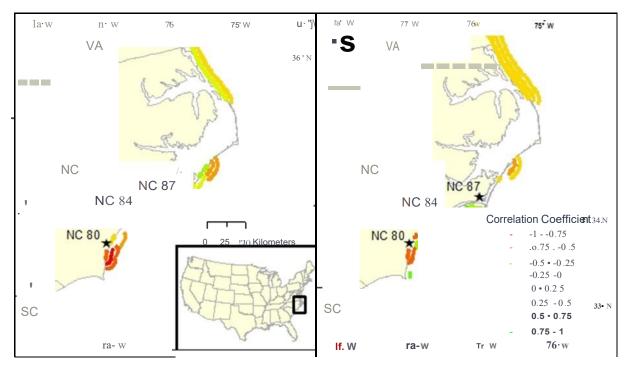


Figure 3. Map showing the significant correlation coefficients between shoreline curvature and shoreline change for the North and South Carolina Coasts. (a) Correlations between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century-scale) shoreline change. For both timescales, data are plotted in the following order: moving away from the coast, 1, 3, and 5 kmsmoothing. Stars mark shoreline sections discussed in detail in the text; NC87 is Shackleford Banks, NC84 is Browns Island, and NC 80 is Figure Eight Island.

For context, we calculated a representative effective diffusivity of 0.992 m²/s for North Carolina (see Table S2 for details on shoreline sections and wave dataused). Thus, we would expect correlations between curvature and shoreline change to be negative, corresponding to coastline smoothing. At the 1-km smoothing scale, almost all (85%) of the shoreline has a significant correlation (using a 95% confidence interval criterion) between shoreline curvature and short-term shoreline change (Table 1; Figure 3). This percentage decreases to - 16% at the 5-km scale. The percentage of the shoreline with a significant positive correlation, indicating roughening, decreases from nearly 70% at the 1-km scale to - 5% at 5 km. This indicates small-scale roughening and large-scale smoothing over decadal timescales. Approximately 50% of the shoreline has a significant, negative correlation between shoreline curvature and long-term shoreline change at all spatial scales considered, indicating long-term (century-scale) smoothing. Significant correlation coefficients range from -0.83 to 0.55 for short-term shoreline change and -0.91 to 0.59 for long term (Table 1). Stronger magnitude correlations (both positive and negative) tend to occur at large spatial scales.

Some of the significant roughening signals can be explained by local factors. For example, Shackleford Banks(NC 87) has a significant, positive correlation at the 3- and 5-km scales for both short- and long-term shoreline change (Figure 3). This apparent roughening signal likely arises from wave-shadowing effects leading to a local gradient in wave climate where the western end of the island is more strongly affected by waves from the east and northeast than the eastern end. The resulting gradient in net alongshore sediment transport causes shoreline erosion creating a concave shoreline. The association between concavity and erosion corresponds to a roughening signal in our analysis.

Another island with a roughening signal, Figure Eight Island (NC 80), is known to undergo nourishment (which we address in section 4.3). However, because it is a private island, and its nourishment projects are funded privately, Figure Eight Island is not included in the database we used to eliminate nourished shorelines. Browns Island (NC 84), a third island where shoreline roughening is apparent, is occupied by Camp Lejeune, a U.S. military base, and shoreline stabilization data are not available. In addition, some of the short-term roughening signals may indicate that local wave climates were weighted toward high-

 Table 2

 Total Length of Shorelines Considered and Perrentage of Total With Significant Correlations for Each Study Region

			Short-term shoreline change			Long-term shoreline change		
Region	Total length (km)	% of shoreline with significant correlation	1km	3km	5km	1km	3km	5km
Mid-Atlantic	487.6	Total	48.6	55.2	54.4	50.6	68.3	70.0
		Positive	10.1	19.3	29.1	46.4	52.1	52.2
		Negative	38.4	35.8	25.3	4.3	16.1	17.9
North Carolina	264.9	Total	85.4	67.1	16.6	59.4	56.1	48.9
		Positive	67.9	10.0	4.6	0.0	13.0	7.7
		Negative	17.5	57.1	12.1	59.4	43.1	41.3
Florida	277.9	Total	61.1	73.1	47.4	5.9	56.3	17.1
		Positive	21.8	41.5	41.5	5.9	6.1	6.1
		Negative	39.2	31.6	5.9	0.0	50.2	11.0
Texas	575.1	Total	15.0	63.7	90.2	24.5	14.0	14.0
		Positive	0.0	3.8	3.8	0.0	0.0	4.8
		Negative	15.0	59.9	86.4	24.5	14.0	9.2

angle-waveinfluence over relatively short durations, possibly related to single storm events involving large waves approaching from high angles (Lazarus et al., 2012). Because coastline diffusion or antidiffusion theoretically occurs more rapidly as the spatial scale is reduced, the fact that the short-term positive correlations tend to occur at the smallest length scales is consistent with the theoretical framework-especially given that larger-scale and longer-term correlations strongly tend to be negative, consistent with the positive effective diffusivity representing relatively long-term forcing.

3.2. Texas

We analyzed -575 km of sandy, barrier island shoreline along the Gulf Coast of Texas. Individual islands ranged in length from 10.2 to 95.9 km. The shoreline sections for TX 2 (South Padre Island), 11, 12, and 13(Galveston Island) have experienced nourishment but were included in the analysis for the sake of discussion. For context, we calculated an average effective diffusivity of 1.089 m^2/s for Texas (TableS2); we expect to find correlations indicating coastline smoothing for this region.

The percentage of shoreline with a significant correlation between curvature and short-term shoreline change increases from 15% to 90% with increasing spatial scale (Table 2). Significant correlations are almost entirely negative, indicating smoothing (Figure 4). This significant smoothing signal is also observed for long-term shoreline change, though for a smaller percentage of the shoreline (9- 24%). Correlation coefficients range from -0.75 to 0.06 for short-term shoreline change and from -0.63 to 0.1 for long-term shoreline change (see Table 1 for all data). The correlation coefficients increase in maximum magnitude and range as the spatial scale increases (Figure 4, Table 1). While smoothing occursat all three spatial scales (1, 3, and 5 km), values are more negative and there are more significant values (i.e., the smoothing signal is stronger) at larger-spatial scales.

Whilea fewshorelines in Texas appear to have a roughening signal, the correlations in these cases are much smaller in magnitude than those of the smoothing signal and are often not significant (Figure 4; Table 1). In most cases, this signal can be explained by local history. For example, Texas 8 (FigureS3) has a positive correlation coefficient indicating roughening for the 3- and 5-km smoothing windows at both short and long timescales (this signal is significant only at the 5-km long-term scale; Figure 4). Historical satellite imagery (via Google Earth) reveals that an inlet was formerly present in this location which has now filled in. Since the inlet closed during the period covered by our shoreline change data, this roughening signal is likely the result of the shoreline becoming locally convex in shape, while accreting seaward, as waves swept the relict ebb tidal delta onshore. Texas 12 also exhibits a significant, positive (roughening) signal on 3- and 5-km scales for short-term shoreline change (Figure 4a). This is likely a result of the island's history of

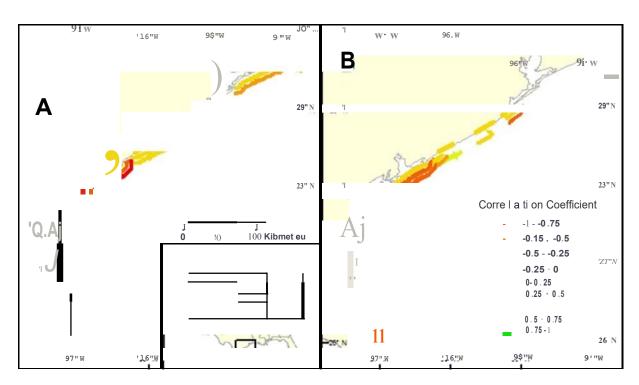


Figure 4. Map showing the significant correlation coefficients between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century-scale) shoreline change. For both timescales, data are plotted in the following order: moving away from the coast, 1, 3, and 5 km smoothing. Starsmark shoreline sections discussed in detail in the text.

nourishment projects resulting in the creation of a shoreline convexities. The correlations for the other nourished shoreline sections in Texas are not significant, close to zero, and/ or negative (Table 1).

3.3. Mid-Atlantic (New York to Virginia)

We analyzed ~485 km of sandy,barrier island shoreline between Montauk Point, NewYork and Assateague Island, Virginia. Individual is lands range in length from 9.26 to 79.86 km. Virtually, all the shorelines along the coast of NewYork and New Jersey havebeen nourished or have stabilization structuressuch asgroynes or seawalls in place; thus, all shorelines were included in the analysis regardless of nour ishme nt or stabilization.

Approximately 50% of the shoreline has a significant correlation between shoreline curvature and sho rtter m shoreline change at all spatial scales considered (Table 2; Figure 5). The percentage of the sho reline with a significant positive correlation, indicating roughening, increases from 10% to 30% as spat ial scale increases from 1 to 5 km. For long-term shoreline change, the percentage of the shoreline with asignificant correlation increasesfrom 50% to 70% with increasing spatial scale. Approximately 50% of the shoreline has a significant positive correlation between curvature and long-term shoreline change, on all spatial scales. These mainly positive correlations reflect the long-term roughening signal of sho reline stabilization and nourishment on the heavily developed barriers of the Mid-Atlan tic (Hapke et al., 2013), which obscures the smoothing signal that would be expected. The relatively few s moothing signals occur predominately in the short -term analysis. Correlation coefficients in this region range from -0 .42 to 0.73 for long-term change and from -0.83 to 0.55 for short-term change (Table 1).

One of the sho reline sections, NY 4 (Fire Island, Figure 5), displays a roughening signal on both short-ter m and long-term timescales despite not undergoing nourishment. This signal can be attributed to the presence of shoreface-attachedsand ridgesacting as an offshore sediment source (Safak et al., 2017; Section 4.3).

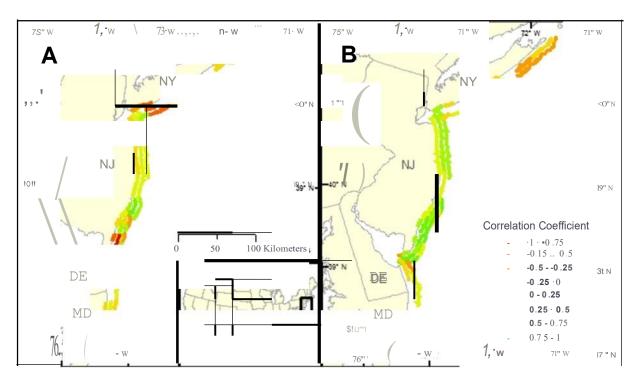


Figure 5. Map showing the significant correlation coefficients between shoreline curvature and shoreline change for the Mid-Atlantic Coast (from New York to Assateague Island, Virginia).(a) Correlations between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century-scale)shoreline change. For both timescales, data are plotted in the following order: moving away from the coast, 1, 3, and 5 km smoothing. Stars mark shoreline sections discussed in detail in the text; NY 4 is Fire Island.

3.4. Virginia

The Virginia Barrier Islands are characterized by short, uninhabited islands with a strong tidal influence. Islands range in length from 3.09 to 15.69 km. Tidal and *inlet* effects are at least as important as wave influence in determining island behavior in this region. Many of the shorelines are too short to evaluate at greater than the 1-km length scale, and others (e.g., Wallops Island, a NASA flight facility) do not have historic shoreline change data available. In addition, the timescales of analysis in this project do not match the timescalesof shoreline change in this region. While our shoreline change data is on decadal or centur ial timescales, the tidal-inlet dynamics cause the Virginia Barrier Islands to rotate and shift on shorter timescales, so that there is little overlap between the current position (and curvature) of the shoreline and the position (and curvature) of the shoreline at the start of the time spanned by the shoreline change data. For one example, Hog Island, shoreline change rates can be higher than 5 m/year, rotating the island by accreting on the northern end of the island and eroding on the southern (Hayden et al., 1991) and resulting in changes in shoreline location of hundreds of meters over the timescales of our analysis.

As a result of the mismatch between shoreline change rates and the duration over which shoreline change is calculated in this s tudy, no clear trend can be found, and most coefficients are on the extreme ends of the range of correlations, signifying a strong smoothing or roughening signal (see Table 1 for data). Many of the islands are short enough that few points rema ined for analysis, allowing outliers to have a strong influence on the overall trend. Few correlations are significant, and the mismatch in time-scales means it is unlikely the trends have any physical meaning, especially on timescales as long as 100 years. While positive correlations could represent curvature-related roughening resulting from locally antidiffusive wave climates, the mismatch between the timescales of our analysis and those of the shoreline changes in this region precludes meaningful interpretation. Although we did not perform our analysis for the short, tidally influenced barrier islands of South Carolina and Georgia, we would expect similar results for those shorelines.

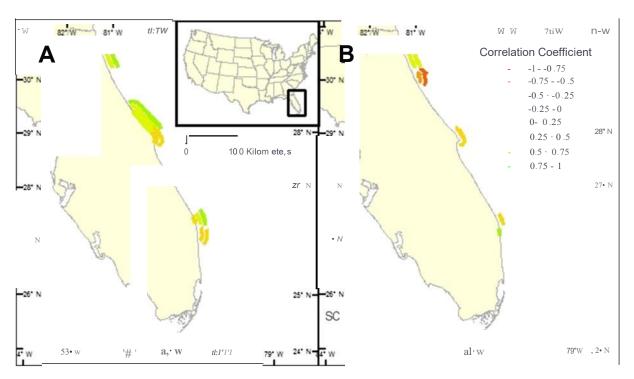


Figure 6. Mapshowing the signilicant correlation coefficients between shoreline curvature and shoreline change for the Atlantic Coast of Florida. (a) Correlations between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century-scale) shoreline change. For both timescales, data are plotted in the following order: moving away from the coast, 1, 3, and S km smoothing.

3.5. Flo ri da

Though characterized by longsandy barriers like the coasts of North Carolina and Texas, the Florida coast is also heavily developed and therefore subject to large and frequent nourishment projects. Due to the extent of nourishment, we analyzed only a portion of the Florida coast: -280 km of sandy barrier-island shoreline along the eastern coast of Florida. This included eight shorelines, ranging from 16.41 to 60.72 km in length. For context, we calculated a representative effective diffusivity of 2.575 m²/s for Florida (Table S2), corresponding to the prediction of strong smoothing signals (negative correlations between curvature and shoreline change).

Between 47% and 73% of the sho reline considered had a significant correlation between curvature and short-term shoreline change, for which smoothing signals dominate on larger-spatial scales and roughening over smaller (Table 2; Figure 6). Less of the overall sho reline has a significant correlation when examining long-term shoreline change, but the correlation is more likely to be negative, reflecting a smoothing signal (Figure 6).

4. Discussion

4.1. Variability in Wave Clim ate and Effective Diffusivity

Correlations between curvature and shoreline change depend on local wave climates, which vary alongshore. Even though the *regional* wave climate affecting the Carolina coast is marginally antidiffusive (i.e., a negative diffusivity, giving rise to the capes and cuspate coastline; Ashton & Murray, 2006a), numerical modeling indicates that wave-hadowing effects and coastline rotat ion combine to produce diffusive local wave climates (Ashton & Murray, 2006b), tending to keep shore lines smooth in the bays between the capes Texas (and Florida) are simpler in this sense, with local wave climates that are approximately thesame as the regional wave climates.

North Carolina and Texas have very similar local wave climates, as measured by the effective diffusivity for representative shoreline segments (TableS2). We might therefore expect the correlations between curvature and shoreline change (i.e., the distribution of correlation coefficients) to be similar. However, even with the

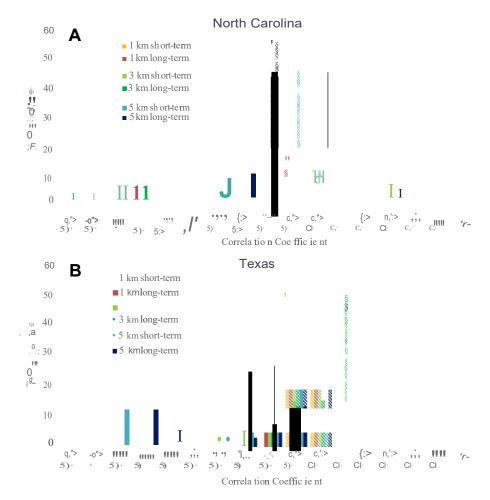


Figure 7. Distribution of correlations in terms of shoreline length for (a) North Carolina and (b)Texas. Solid boxes represent significant correlations, and shaded boxes in significant. Percent of shoreline refers to the total shoreline considered, not total shoreline existing.

inclusion of nourished shorelines in Texas and not North Carolina, correlations are on average more negative for Texas than North Carolina (i.e., the distribution is shifted to the left; Figure 7). A larger percentage of the shoreline exhibits a smoothing signal in Texas (Table 2), and correlations tend to be stronger than North Carolina. When roughening signals are observed, they are less likely to be significant and tend to be smaller for Texas than North Carolina.

What might explain this difference? In terms of theoretical frameworks and numerical model results, the likely answer involves wave-shadow effects, which play a key role in shaping the coastline of North Carolina but not Texas. The gradient in net alongshore sediment transport associated with a wave-shadow gradient tends to produce erosion, and therefore coastline concavity (as with Shackleford Banks, NC 87, in section 3.1.2). However, as the concave curvature increases in magnitude, the component of the alongshore transport gradient related to coastline curvature increases. This component of the gradient in net transport tends to cause accretion. In modeling studies (and likely on natural coastlines), as the curvature increases, the tendency to accrete (driven by coastline curvature) eventually balances the tendency to erode (driven by a wave-shadow gradient). Although fluctuations in wave climate will cause the curvature to fluctuate (Ratliff & Murray, 2014), the result is a background curvature in a quasi steady state-such as the curvature observed in the cuspatebays between capes. (In the case of Shackleford Banks in NC, the curvature was presumably in quasi steady state before Barden's Inlet opened up in 1933, disconnecting the cape from Cape Lookout from the Shackleford Banksshoreline. Because of the disconnection in the sediment transport pathway, which changed the boundary condition at the eastern end of the Shackleford shoreline, over the last several decades, the curvature of the shoreline has been decreasing as the eastern end erodes.)

In the quasi steady state, this background curvature theoretically does not contribute to any accretion nor does it contribute to the correlation between curvature and shoreline change. Instead, shoreline change in this context should be correlated with deviations from the background curvature. Where the curvature is greater than the background, accretion should result, and where the curvature is smaller than the background value, erosion should result. If we were able to calculate the background curvature, which will vary with position within a cuspate bay, and subtract the background from the observed curvature, we would expect the correlations to be stronger- approximately as strong in North Carolina as those in Texas. Calculation of background curvature is beyond the scope of this work but is a valuable topic for future examination. For the present, the stronger correlations on the Texas coast, despite a very similar effective diffusivity to that representing the Carolina coast, are consistent with the theoretical/modeling framework.

4.2. Space and Timescales of Relevance

In a simple diffusional system, we would theoretically expect to be able to see relationships between shore-line curvature and shoreline change down to small (1cm) spatial scales for short timescales. However, the longer the span of time considered, the more likely it is that small-scale relationships are obscured, as the memory of small-scaleshoreline excursions in the initial coastline diffuse away and the long-term shoreline position becomes dominated by larger-scale undulations. This is consistent with our results which involve relatively long-timescale shoreline change data; there are stronger correlations for the larger-spatial scales (i.e., 5 km) than the smaller ones(1, 3 km) and this trend is more evident for the centurial timescales than the decadal ones (see Figure 7, Tables 1 and 2).

The time and space scales overwhich our analysis is meaningful vary with the wide variety of environmental conditions and morphological processes which can affect shoreline change. In some cases, signals that did not fit our expectations were related to events in the history of a given shoreline reach, such as the creation or filling-in of an inlet. In these cases, shoreline change data with the same timescale but from a different time period would likely have resulted in a smoothing signal. In other cases, such as the Virginia Barrier Islands, the timescale of the shoreline change data sets does not match the timescale for the reshaping of the shoreline. When the final shoreline shape differs so dramatically from the initial shape (and from the shape at intermediate times), the record of cumulative shoreline change does not bear a strong relationship to the curvature of the final shoreline.

If the fact that shoreline change operates on a shorter timescale than our decadal and centurial shoreline change timescales was the only obstacle we could overcome it by using shorter-term (e.g., annual) shoreline change data. However, the strong tidal influence and rotational nature of the short Virginia Barrier Islands means that waves are not the only strong influence shaping these islands. While gradients in wave-driven alongshore transport are tending to smooth out some portions of the coastline, tidal-inlet processes are generating or exaggerating shoreline bulges in other portions. This combination of smoothing and roughening signals means we would not necessarily expectshoreline curvature to have a simple relationship withshoreline change rates. These examples lead to a broader consideration of processes that can create shoreline curvature, in opposition to the tendency for alongshore transport gradients reduce curvature.

4.3. Nourishment and Other Complicating Factors

Along with tidal-inlet processes, other processes can introduce shoreline change signals that complicate or obscure the relationship between shoreline curvature and shoreline change. These processes range from shoreline bulges resulting from nourishment(Browder& Dean, 2000; Dean, 2002; Dean& Yoo, 1992) to variations in underlying geology(Valvo et al., 2006).

In the case of nourishment, if shoreline change and curvature were analyzed during a period following the completion of a nourishment project and before any subsequent nourishments, the results would indicate smoothing, as the convex nourished beach erodes and surrounding convex shorelines accrete (e.g., Browder & Dean, 2000; Dean, 2002; Dean & Yoo, 1992). However, if nourishment occurs during the period analyzed, the artificial widening of the shoreline and corresponding shoreline convexity in the final shoreline shape looks like a roughening signal. On the timescales considered in our analysis, multiple nour-ishment episodes can obscure diffusional signals from waves. This result (Figure 5) resonates with the previous finding concerning the highly developed coasts of the Mid-Atlantic: Shorelines which in historic times experienced shorelineerosion are now exhibiting net accretional shoreline changes ignals resulting from the

cumulative impact of nourishment projects(Armstrong & Lazarus, 2019; Hapkeet al., 2013). Over long time-scales, the natural erosional signal appears completely obscured by human activity.

Heterogeneity in underlying geologyor offsho re bathymetry can also create signals of shoreline change. Offshore bathymetric features, such as shoreface-attached sand ridges, can influenceboth shoreline shape and shoreline change. Fire Island (NY 4) provides a clear example, displaying a roughening signal on scales greater than 1 kmin our analysis (Figure 5,Table 1), likely caused by the presence of sho reface-connected sand ridgesoffshore (Safak et al., 2017). These features apparently act as a cross-shore source of sediment, resulting in accretion and subtle convex bumps along the shoreline. In a low-angle wave climate such as found here, we would expect gradients in alongshore sediment transport associated with the convex curvature to result in erosion. However, in this case, it appears that the rate of cross-shore sediment flux building the undu lations is greater than the ratesediment is being removed by alongshore transport gradients related to shoreline curvature.

Alongshore variations in the composition of underlying geology can also create persistent perturbations to sho reline curvature (Lazarus & Murray, 2011; Valvo et al., 2006). As an eroding coastline encroaches on alongshore heterogeneities in the material that the shoreface is eroding into, portions of the coastline that are producing less material that is coarse enough to stay in the nearshore system will begin to erode more rapidly, producing concave curvature. Conversely, portions of the coastline where the shoreface is eroding into coarser material will tend to produce subtle convex bumps in the coastline (Lazarus & Murray, 2011; Valvo et al., 2006). This curvature tends to be diffused away by the smoothing action of waves, but new sho reline curvature signals are introduced as the shoreline transgresses through alongshore variable substrate (Lazarus & Murray, 2011). The reintroduct ion of these signals could explain why shorelines on even wave-dominated, pristine coastlines that are beingdiffusedstill retain curvature after millennia ofsmoothing (Lazarus & Murray, 2011).

4.4. Implications

Our resultsdemonstrate thatshoreline curvature can correlate significantly with shoreline change rates over several kilometer and decade to century space and timescales. The presence of a significant correlation between shoreline change and shoreline curvature on many coastlines, however small the correlation coefficient may be, demonstrates the importance of this relationship in understanding shoreline dynamics. This relationship is strongest on wave-dominated coasts with long, sandy barriers and relatively slow rates of shoreline change but can help explain shoreline behavior even on shorter islands with competing influences (e.g., tides) over relatively short timescales.

The demonstrated role of shore line curvature in determining shoreline change rates has implications for managing as well as for understanding sandy coasts. Large magn itude, significant correlations between shoreline curvature and shoreline change in some locations (e.g., Texas and North Carolina) suggest that consideringshoreline curvature in analyses of historical and predicted shoreline change could help improve agreement between models and data on low-lying, sandy coastlines where models have historically underperformed (e.g., Gutierrez et al., 2011; Yates & Le Cozannet, 2012). Although practical application is limited to wave-dominated coastlines, this analysis is broadly applicable to many types of shoreline and shoreline change data, across a range of time and spacescales. Calculatings horeline curvature is relatively straightforward, and we show that the results of correlation analyses exhibit low sensitivity to variations in methodology (see section 3.2.2). Thus, the results presented here suggest that correlations between curvature and shoreline change should be included in risk assessment and modeling efforts pertairting to sandy shorelines.

Ackn owl ed gm e nts

A grant from the National Science Foundation, Dynamicsof Coupled Natural-Human Systems Program (GrantICER-1715638) supported this m:irk. We also thank Evan Goldstein and Andrew Ashton for insightful conversations, and AlexWheatley for help creating the figures in the Supporting Information. The shorelines used in this study can bedownloaded from the Coastline Extractor at https:// www.ngdc.noaa.gov/ mgg/s horelines/, and the shoreline change data from https://pubs.usgs.go/of/2004/1089/ gis-da ta.html for Texas, https://pubs. usgs.gov/of/2010/1119/ for the Mid-Atlantic, and https://pubs.usgs.gov/of/ 2005/1326/ for the southeast. The correlation coefficienlli presented in this study can be found in Table I. The code used to calculate effective diffusivity can be found here: https:// github.com/kennethells/wispy.git

References

Anderson, D., Ruggiero, P., Antolinez, J. A. A., Mendez, F. J., & Allan, J. (2018). A climate index optimized for longshore sediment transport reveals interannual and multidecadal littoral cell rotations. *Journal of Geophysical Resrorch: Earth Surface, 123*,1958--1981. https://doi.org/10.1029/201SJF004o89

Antolinez, J. A.A., Murray, A.B., Mendez, F. J., Moore, L J., Farley, G., & Wood, J. (2018). Downscaling changing coastlines in a changing climate, the hybrid approach. *Journal of Geophysical Research: EarthSu.face, 123,* 229-251. https://doi.org/10.1002/2017JF004367

Armstrong, S. B., & Lazarus, E. D. (2019). Masked shoreline erosion at large spatial scales as a collective effect of beach nourishment. *Earths Future* 7, 74-84. https://doi.org/10.1029201&F001070

Arriaga, J., Rutten, J., Ribas, F., Falques, A., & Ruessink, G.(2017). Modeling the long-term diffusion and feeding capability of a meganourishment. O>astal Engineering, 121, 1-13. https://doi.org/10.1016.coastaleng.2016.ll0ll

- Ashton, A, list, J. H., Murray, AB., &Farris, A. S. (2003). Investigating linksbetween hotspots and alongshoresediment transport using field measurements and simulations. In *Proceedings of the Inter1111tio11111 Conference on Coastal Sediments 2003*. Aorida, ASCE: Clearwater Beach.
- Ashton, A., & Lorenw-Trueba, J. (2018). Morphodynamics of barrier response to sea-level rise. In I. J. Moore & AB. Murray (F,ds), Barrier dJ. Ill lmics and response to changing climate (pp. 277-304). NewYork: Springer.
- $Ashton, A., Murray, AB., \& Arnoul\ 0. (200)I.\ Formation\ of\ coastline\ features\ by\ large-scale\ instabilities\ induced\ by\ high-angle\ waves. \\ Nature, 414, 296-300.\ https://doi.org/10.1038/35104541$
- Ashton, A.D., & Murray, AB. (2006a). High -angle wave instability and emergent shareline shapes: I. Madeling of sandwaves, flying spits, and capes. *Journal of Geophysical Research*, 111, F04011. http://doi.org/10.1029/2005JR100422
- Ashton, A. D., & Murray, A. B. (2006b). High-a ngle wave instability and emergent shorelineshapes: 2. Waveclimate analysis and comparisons to nature. *JouT11111 of Geophysical Research*, 111, F04012. https://doi.org/10.1029/2005JF000423
- Ashton, A. D., Nienhuis, J., & ffils, K. (2016). On a neck, on a spit: Controlson the shape of freespits. Earth Surface DY111J.mics, 4(1), 19 210. https://doi.org/10.5194surf4-192016
- Browder, A.E., & Dean, R (2000). Monitoring and comparison to predictive models of the Perdido Keybeach nourishment project, Aorida, USA Coastal Engineering, 39,17 191. http://doi.org/0.1016/S023889(900057-5
- Browder, AG., & McNinch, J. E. (2006). linkingframework geologyand nearshore morphology: Correlation ofpaleo-channelswithshore-obliquesandbais and graveloutcrop;. *Marine Grology*, 231(1-4), 141-162. http://doi.org/10.1016/magec2006.06.006
- Coelho, C., Silva, R., Veloso-Gomes, F., & Pinto, F.T. (2006). A vulnerabilityanalysis approach fur the Portuguese west coast. In *Risk analysis V: Simulatwn and haZlJl"d mitigation* (pp. 251262). WITPress.
- Cooper, J. AG., Green, AN., & Loureiro, C. (2018). Geological constraints on mesoscale coastal barrier behaviour. Global and Planetary Change, 168.15-34. https://doi.org/10.1016.gloplacha.2018)6.006
- Cowell, P.J., Roy, P.S., &Jones, R.(1995). Simulation of large-scale coastal change using a marphological behavior model. *Marine Geology*, 126, 45-61.
- Davis, R., & Fitzgerald, D. (2003). Beaches and coasts. Malde n, Oxford, Carlton: Blackwell Science Ud
- Dean, R.(2002). Beach nourishment: Theory and practice. Hackensack, NJ: World Scientific.
- Dean, R., & Yoo, C.H.(1992). Beacknourishment perfurmance predictions. *Journal of Waterway, Port Coosta(and Ocean Engineering, 118(_6)*, 567 586. https://doi.org/10.1061 // (ASCE)0733 950 X{1992})118:6(567)
- Dean, R. G., & Dalrymple, R. A. (2002). Coastal processes with engineering applications. Cambridge, UK: Cambridge University Press. Falques, A. (2003). On the diffusivity in coastlinedynamics. Geophysical Research Letters, 30(21), 2119. https://doi.org/10.1029/2003GL017700
- Falques, A., & Calvete, D. (2005). Large-scale dynamics of sandy coastlines: Diffusivity and instability. JouTIIIII of Geophysical Resear: h, 110, C03007. https://doi.org/10.1029/2004JC002587
- FitzGerald, D. M, Fenster, M. S., Argow, B.A., & Buynevich, I. V. (2008). Coastal impactsdue to sea-level rise. *Annual Review of Furthand Planetary Sciences*, 36, 00147. https://doi.org/10.1146/annurev.earth.35.031306.140139
- Fletcher, C. H., Romine, B. M., Genz, AS., Barbee, M. M., Dyer, M., Anderson, T. R., et al. (2012). National assessment of shoreline change: Historical shoreline change in the Hawaiian Islands. U.S. Geological Survey Open-file Report 2011-1051:
- French, J., Payo, A, Murray, AB., Orfurd, J., Eliot, M., & Cowell, P. (2016). Appropriate complexity for the prediction of coastal and estuarine geomorphic behavior at decadal to centennial scales. *Geomorphology*, 256, 16. https://doi.doi.1016/j
- GibbsA. E., & Richmond, B. M. (2015). National assessment of shoreline change: Historical shoreline change along the north coast of Alaska, U.S.-Canadian Border to Icy Cape. U.S. Geological Survey Open-file Report 2015-1048:
- Gomitz, V. M., Daniels, RC., White, T. W., & Birdwell, K. R. (1994). The development of a coastal risk assessment database: Vulnerability to sea-level rise in the U.S. southeast *Journal of Coastal Resourch*, 12, 327 338.
- Gutierrez, B.T., Plan N.G. &Thieler, E. R (201). A Bayesian network to predict coastal vulnerability to sea level rise. JouTIIIII of Geophysical Research, 116,F02009. http://doi.org/10.10.29/20IOJF001891
- Hapke, C.J., Himmelstoss, E. A., Kratzrnann, M. G., List, J. H., & Thieler, E. R (2011). National assessment of shoreline change. Historical shoreline change along the New England and Mid-Atlantic coasts. U.S. Geological Survey Open-file Report 2010-1118:
- Hapke, C.J., Kratzmann, M. G., & Himmelstoss, E. A (2013). Geomorphic and human influence on large-scale coastal change. Geomorphology, 199,100-170. https://doi.org/10.1016/j.geomorph.2012.11.025
- Hapke C.J., & Reid, D. (2007). National assessment of shoreline changepart 4: Historical coastal cliff retreat along the California coast. U.S. Geological Survey Open-file Report 2007-1133:
- Hapke, C.J., Reid, D., Richmond, B. M., Ruggiero, P., & List, J. H. (2006). National assessment of shorelinechange part 3: Historical shoreline changeand associated coastal land lossalongsandy shorelinesof the Califurniacoast U.S.GeologicalSurvey Open-file Report 2006-1219.
- Hauser, C., Barrineau, P., Hammond, B., Saari, B., Rentschler, E., Trimble, S., et al. (2018). Roleof theforedune in controlling barrier island response to sea level rise. In I. J. Moore & AB. Murray (Eds.), Barrier dynamics and response to changing climate (pp.175-210). New York: Springer.
- Hayden, B. P., Dueser, R. D., Callahan, J. T., & Shugart, H. H. (1991). Long-term research at the Virginia coast reserve. *BioScience*, 41, 310-318. h ttps://doi.org/102.307/1211584
- Hinkel, J., & Klein, R. J. T. (2009). Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool. Global Environmental Change, 19, 384-395. https://doi.org/10.1016/j.gloenvcha.2009.03.002
- ldier, D., Falques, A, Rohmer, J., & Arriaga, J. (2017). Self-organized kilometer-scale shorelines and wave generation: Sensitivity to model and physical parameters. *Journal of Geophysirol Research: Ea.IthSurface*, 122, 1678-1697. https://doi.org/10.1002/2017JF004197
- Johnson, J.M., Moorel. J., Ells K., Murray, A. B., Adams, P. N., MacKenzie, RA ill, & Jaeger, J.M. (2015). Recentshifts in coastline change and shoreline stabilization linked to storm climate change. Earth Surface Processes and Landforms. https://doi.org/10.1002/esp.3650
- Komar, P. D. (1998). Beach processes and sedimenta tion. Englewood Cliffs, New Jersey: Prentice Hall.
- La7.aru.s, E., Ashton, A , Murray, A B., Tebbe ns,S. ,& Burroughs,S. (2011). Cumulative versustransientshorelinechange:Dependencies on temporal and spatial scale. *Jour 11111 of Geophysical Research*, 116,F02014. https://doi.org/10.1029/20IOJFOOI 835
- La7.aru.s, E. D., Ashton, A. D., & Murray. A. B. (2012). Large-scale patterns in hurricane-driven shorelinechange. In A. S. Sharma, A. Bunde, V.P. Dimri, & D.N. Baker (Eds.), EJCtremeevents and 1111 turol hazards: The complexity perspective (pp.139-152). Washington, DC: AGU. https://doi.org/10.1029/2011 GM001074

- La?.aTUS, E. D., & Murray, A. B. (2007). Process signatures in regional patternsofshoreline change on annual to decadal timescales. Geophysical Research Letters, 34, L19402. h ttp;://doi.org/10.10 29/2007GL031047
- La?.aTUS, E. D.,& Murray, A. B. (2011). An integrated hypothesis for regional patternsof shoreline change along the Northern North Carolina Outer Banks, USA. Marine Geology, 281, 8S-90. https://doi.org/10.1016/j.margeo.2011.02.002
- Leatherman, S. P., Zhang, K., & Douglass, B. C. (2000). Sea level riseshown to drivecoastal erosion. Bos, 81, 55-57.
- List, J. H., Farris, A. S., & Sullivan, C. (2006). Reversing storm hotspots on sandy beaches: Spatial and temporal characteristics. *Marine Geology*, 226, 261-279. https://doi.org/10.1016/j.margeo.2005.10.003
- McNinch, J.E.(2004). Geologic control in the nearshore: Shore-oblique sandbars and shoreline erosional hotspots, Mid-Atlantic Bight, USA. *Marine Geology*, 211(1-2), 121-141. h ttps://doi.org/10.1016/j.margeo.2004.07.006
- Miller, T. L, Morton, RA., & Sallenger, A.H. (2005), The national assessment of shoreline change: A GIS compilation of vector shorelines and associated shoreline change data for the U.S. Southeast Atlantic coast. U.S. Geological Survey Open-file Report 2005-1326.
- Miller, T. L., Morton, R. A., Sallenger, A.H., & Moore, L. J. (2004). The national assessment of shoreline change: A GIS compilation of vectorshorelines and associated shoreline change data for the U.S. gulfof Mexico. U.S. Geological Survey Open-file Report 2004-1089.
- Miselis, J. L., & Lorenzo-Trueba, J. (2017). Natural and human-induced variability in barrier-island response tosea level rise. *Geophysical Research Letters*, 44, 11,922-911,931.https://doi.org/10.1002/2017GL074811
- Moore, L.J., Goldstein, E. B., Duran Vinent, O., Walters, D., Kirwan, M., Lauzon, R, etal. (2018). The role of ecomorphodynamic feer lbacks and landscape couplings in influencing the response of barriers to changing climate. In L.J. Moore A. B. Murray (Eds.), *Barrier dynamics and response to changing dirnate* (pp. 305-336). New York: Springer.
- Moore, LJ., List, J. H., Williams, S. J., & Stolper, D. (2010). Complexities in barrierisland response to sea level rise: Insights from numerical model experiments, North Carolina Outer Banks. *Journal of Geophysical Resrorch*, 115, F03004. https://doi.org/10.1029/2009JF001299
- Morton, R. A., & Miller, T. L. (2005). National assessment of shoreline change: Part 2. Historical shoreline changes and associated coastal land lossalong the U.S. Southeast Atlantic Coast. U.S. Geological Survey Open-file Report 2005-1401:
- Morton, R.A., Miller, T. L., & Moore, L. J. (2004). National assessment of shoreline change: Part1, historical shoreline change and associated coastal landlossalong the U.S. Gulfof Mexico. U.S. Geological Survey Open-file Report 2004-1043:
- Morton, R.A., Miller, T. L., & Moore, L. J. (2005), Historical shoreline changes along the USGulfof Mexico: A summary of recent shoreline comparisons and analyses. *Journal of Coastal Research*, 21, 704-709.
- Murray, A. R, &Ashton, A. (2003). Sandy-roastline evolution as an example of pattern formation involving emergent structures and interactions. In *Proceedin8' of the International Conference on Coastal Sediments* 2003. Florida, ASCE: Clearwater Beach.
- Murray, A. R, & Ashton, A. D. (2013). Instability and finite-amplitude self-organization of large-scalecoastline shapes. *Philosophical Tronsactions*. Series A, Mathernatical Physical, and Engineering Sciences, 371(2004), 20120363. https://doi.org/10.1098rsta.20120363
- Murray, A. R, & Moore, L J. (2018). Geometric constraints on long-term barrier migration: From simple to surprising. In L. J. Moore & A. B. Murray (Eds.), *Barrier dynamics and response to changing clirnate* (pp. 211-242), New York: Springer.
- Nicholls, R.J., & Vega-Leiner!, A.C. (2008). Implications of sea-level rise for Europe's coasts: An introduction. Journal of Coastal Research, 24, 285-287
- Pilkey, O.H., & Cooper, J. A.G. (2004). Society and sea level rise. Science, 303(5665), 1781-1782. https://doi.org/10.1126science.1093515Plan N. G., Thieler, RE., & Passeri, D. L. (2016). Couplingcentennial-scaleshorelinechange tosea-levelrise and coastal morphology in the Gulf of Mexico using a Bayesian network. Earth's Future, 4, 143-158. https://doi.org/10.1002/2015EF000331
- Ratlif(K. M., & Murray, A. R (2014). Modesand emergent timescales of embayed beach dynamics. Geophysical Research Letters, 41, 7270-7275. https://doi.org/10.1002/2014GL061680
- Rogers, L. J., Moore, L J., Goldstein, E. B., Hein, C. J., Lorenzo-Trueba, J., & Ashton, A. D.(2015), Anthropogenic controls on overwash deposition: Evidence and consequences. *Journal of Geophysical Research: Earth Surface*, 120, 2609-2624. https://doi.org/10.1002/ 2015JF003634
- Ruggiero, P., Buijsman, M., Kaminsky, G. M., & Gelfenbaum, G.(2010). Modeling the effects of waveclimateand serliment supplyvariability on large-scaleshoreline change. *Marine Goology*, 273, 127 140. https://doi.org/10.1016/j.marge&010.02.008
- Ruggiero, P., Kratzmann, M.G., Himmelstoss, E. A., Reid, D., Allan, J., Kaminsky, G.M. (2013). National assessment of shoreline change: Historical shoreline changealong the Pacific Northwest Coast. U.S. Geological Survey Open-file Report 2012-1007:
- Safak, I., list, J.H., Warner, J. C., &Schwab, W. C.(2017). Persistent shorelineshape inducedfrom offshoregeologic frame\\< Jrk Effects of shoreface connected ridges. *Journal of Geophysical Research: Oceons*, 122, 8721-8738. https://doi.org/10.10022017JC01308
- Schupp, C.A., McNinch, J. E., & Lis J.H. (2006), Nearshoreshore-oblique bars, graveloutcrops, and their correlation to shoreline change. Marine Geology, 233(1-4), 63-79. http://doi.org/10.1016/j.margeo.2006.08.007
- Shaw, J., Taylor, R. B., Solomon, S., Christian, H. A., & Forbes, D. L. (1998). Potential impacts of global sea-level rise on Canadian coasts. Canadian Grogmpher, 42, 365-379.
- Slott, J.M., Murray, A. B., & Ashton, A. D. (2010). Large-scale responses of complex-shaperl coastlines to local shoreline stabilization and climate change. *Journal of Geophysiml Research*, 115, F03033. https://doi.org/10.10292009JF001486
- Smith, M. D., Murray, A. B., Gopalakrishnan, S., Keeler, A.G., Landry, C. E., McNamara, D., & Moore, L. J. (2015). Chapter 7-Geoengineering coastlines? From accidental to intentional. In *Coastal Zones, solutions for the 21st century* (pp. 99-122). Amsterdam, Oxford, Waltham: Elsevier. https://doi.org/10.1016/B978 -0-12-802748-(i.00007-3
- Valvo, L. M., Murray, A. B., & Ashton, A. (2006). How does underlying geology affect coastline change? An initial modeling investigation. Journal of Geophysical Research, 111, F02025. https://doi.org/10.1029/200SJF000340
- van den Berg, N., Falques, A., & Ribas, F. (2012). Modelinglarge scale shoreline sandwavesunder oblique wave incidence. *Journal of Geophysical Research*, 117,F03019. https://doi.org/10.1029/2011JF002177
- Vitousek, S., Barnard, P. L, Limber, P., Erikson, L, & Cole, B. (2017). A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. *Journal of Geophysical Research: Earth Surface*, 122,782806. https://doi.org/10.1002/2016JF004065
- Wessel, P., & Smith, W. H.F. (1996). A global, self-consisten hierarchical, high-resolution shoreline database. *Journal of Geophysical Research*, 101, 8741-8743.https://doi.org/10.1029/96JB00104
- Wong. P. P., Losada, I. J., Gattuso, J.-P., Hinkel, J., Khattabi, A., Mcinnes, K. I., et al. (2014). Coastal systems and low-lying areas. In C. B. Field, et al. (Eds.), Climate Change 2014: Impacts, adaptation, and vulnembility. Part A: Global and sectoml aspects. Contribution of Worlcing Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(pp. 361-409). Cambridge, UK: Cambridge Univ. Press.
- Yates, M. L., & Le Cozannet, G. (2012), Briefcommunication "Evaluating European Coastal Evolution using Bayesian Networks". *Natural Ha:qmls and Earth-System Sciences*, 12, 1173-1177. https://doi.org/10.5194nhess-12-1173-2012