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'Nicholas School of the Environment, Duke University, Durham, NC, USA, *De partment of Physics and Physical
Oceanography, University of North Carolina Wilmington, Wilmington, NC, USA, ®Environmen tal Dynamics Lab, School
of Geography and Environmental Science, University of Southampton, Southampton, UK

Abstract Low-lying, wave-dominated, sandy coastlines can exhibit high rates of shoreline change that
mayimpactcoastal infrastructure, habitation, recreation, and economy. Efforts to understand and
quantify controls on shoreline change typically examine factors such as sea-level rise; anthropogenic
modifications; geologic substrate, nearshore bathymetry,and regional geography; and sediment grain
size. The role of shoreline planform curvatu re, however, tends to be overlooked. Theoretical and
numerical model considerations indicate that incidentoffsho re waves interacting with even subtle
shoreline curvature can drive gradients in net alongshore sediment flux thatcancause significant erosion
or accretion. However, these predictions or assumptions have not often been tested against observations,
especially over larges patial and temporal scales. Here, we examined the correlation between shoreline
curvature and shoreline change rates for spatially extended segments of the U.S. Atlantic and GulfCoasts
(-1,700 km total). Where shoreline stabilization (nourishment or hard structures) does not dominate the
shoreline change signal, we find a significant negative correlation between shoreline curvature and

sho reline change rates (i.e., convex-seaward curvature [promontories] is associated withshoreline
erosion, and concave-seawrd curvature [embayments] with accretion) at spatial scales of 1-5 km
alongshore and timescales of decades to centu ries. This indicates that shoreline changes observed in
these reaches canbe explained in part by gradients in alongshore sediment flux acting to smooth spatial
variations in shoreline curvature. Our results suggest that shoreline curvature should be included as a
key variable in modeling and risk assessment of coastal change on wave-dominated, sandy coastlines.

1. Introduction

Along low-lying, wave-dominated,sandy coastlines, a variety of physical processes,affect shoreline change
across a wide range of sp atial and tempora | scales. Despite their vulnerability to storms and sea-level rise-
event-driven and chronic natural hazards- these environments tend to be intensively developed (Wong
et al., 2014), motivating efforts to quantify present and historical rates ofshoreline change and assess erosion
ris k, in the United States (Armstrong & Lazarus, 2019; Fletcher et al., 2012; Gibbs & Richmond, 2015;
Gomitz et al., 1994; Hapke et al., 2006; Hapke et al., 2011; Hapke et al., 2013; Hapke & Reid, 2007;
Morton et al., 2004; Morton et al., 2005; Morton & Miller, 2005; Ruggiero et al., 2013) and internat ionally
(e.g., Coellio et al., 2006; Nicholls & Vega-Leinert, 2008;Shaw et al., 1998). Related to this empirical work
are efforts to explain past and predict future trends in shoreline behavior with numerical models of coastal
processes and environmental conditions (Ruggiero et al., 2010; Gutierrez et al., 2011; Hapke et al., 2013;
Plant et al., 2016; Vitousek et al.,2017; Yates& Le Cozannet, 2012). However, modeled and observed shore-
line changes on sandy coastlines still tend to show poor agreement over larger-spatial (>10' km) and longer-
temporal (>10' years)scales(e.g., Gutierrez et al., 2011; French et al., 2016; Yates & Le Cozannet, 2012).The
number and variety of controls and processes that can affect sandyshoreline change, including sea-level rise
(Ashton & Lorenzo-Trueba, 2018; Leatherman et al., 2000; Moore et al., 2010; Moore et al., 2018; Murray &
Moore, 2018; Plant et al., 2016); anthropogenic modifications (Armstrong & Lazarus, 2019; Hapke et al.,
2013;Johnson etal.,2015; Miselis & Lorenzo-Trueba, 2017; Rogersetal.,2015;Smith et al.,2015);geologic
su bstrate (Cooper et al., 2018; Hauser et al., 2018; Lazarus & Murray, 2011; Moore et al., 2010;Valvo et al.,
2006), nearshore bathymetry (Browder & McNinch, 2006; McNinch, 2004;Schupp et al., 2006),and regional
geography (Cooperetal.,2018; Plant et al., 2016); wave climate (Andersonetal.,2018; Antolinezetal.,2018;
Slottetal., 2010);and sediment grain size(Dean & Dalrymple, 2002;Komar,1998), makes determining their
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750 300 30:](0” relative contributions difficult, whether empirically or with numerical
‘ modeling. The influence of these factors changes with spatial scale
(Lazarus et al., 2011; List et al., 2006)- and at regional scales, a key but
commonly overlooked driver of shoreline change is planform curvature.
Here, we examine a correlation between shoreline curvature and shore-

Figure 1. The extentofthe shorelines on the (a) Atlanticand (b)Gulfcoasts

considered in our study.

£7s]

® line change along - 1,700 km of sandy reaches of the U.S. Atlant ic and
Gulf Coasts (Figure 1), over multiann ual to centenn ial timescales. This

\ I\ analysis spans spatial and temporal scales an order of magnitude larger
than those considered previously (Lazarus & Murray, 2007, 2011;
Lazarus et al., 2011, 2012). Research into coastal vulnerabilityat largespa-

tial scales has tended to focus on shoreline transgression due to sea-level
rise (FitzGerald et al., 2008; Gornitz et al., 1994; Gutierrez et al., 2011;
Hinkel & Klein, 2009; Plant et al., 2016;Shawet al., 1998). While sea-level
rise can drive long-term coastal erosion (Leatherman et al., 2000; Moore
et al., 2010; Pilkey & Cooper, 2004; Vitouse k et al., 2017), so can interactions between incident offshore
waves and subtle changes in shoreline planform curvature (Figure 2a), by setting up gradients in net along-
sho re sediment transport that generate spatial patterns of shoreline erosion and accretion (Cowell et al.,
1995; Dean & Yoo, 1992; Lazarus et al., 2011; Lazarus & Murray, 2007, 2011; Valvo et al., 2006). (In this
context, "offshore waves" refers to waves seaward of the inne r continental shelfedge.)

Atany point along the shoreline planform, the magnitude of alongshore sediment flux can be related to sig-
nificant wave height and relative angle between the incident offshore wave crest and the shoreline orienta-
tion (Ashton & Murray, 2006a; Falques,2003). This wave-driven alongshore sediment flux ismaximized for
relative angles of -4 5°. When prevailing waves approach from "low angles" (relative angles less than the
flux-maximizing angle), gradients in alongshore transport tend to diverge at convex-seaward (promontory)
segments of the shoreline, causing erosion, and converge at concave-seaward (embayed)segments, causing
accretion (Ashton et al., 2001; Ashton & Murray, 2006a; Arriaga et al., 2017; Falques, 2003). Conve rsely,
under a "high angle" wave climate, these gradients in net sediment transport are reversed, such that
large-scale coastline curvature tends to increase over time and emergent planform features develop
(Ashton et al., 2001; Ashton & Murray, 2006a, 2006b; Falques, 2003; Idier et al., 2017; Murray & Ashton,
2013; van den Berget al., 2012). In most locations, on some days, the offsho re waves approach from high
angles relative to the local shoreline orientat ion, and on some days, they approach from low angles.

A
wave waves
wou g k
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Figure 2. (a) A schematic ofgradients in alongshore currents created by shoreline curvature. Reproduced from Ashton
and Murray (2006a).(b) Signconventions used in this analysis. Convex (concave)seaward curvature is defined as posi-
tive(negative). Accretion (erosion) is positive (negative)shorelinechange. A positive(negative) correlation represents
roughening (smoothing) of the shoreline.
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Whether a coastline experiences net roughening or net smoothing depends on the wave climate; when there
is a greater influence on alongshore transport from low-angle offshore waves, a net smoothing results, and
viceversa. (This distinction in terms of offshore waves appliesin the limits of large alongshore lengthscales,
relative to the cross-shore extent of the shorefa ce. On alongshore scales smaller than a few kilometers, for
open ocean coasts, interactions between wave transformation and the curvature of seabed contours
(Falques & Calvete, 2005) increase the proportion of high-angle offshore wave influence needed to cause
coastline roughening.) Transport gradients tend to be larger (altering the coastline shape more rapidly)
whereshoreline curvature is high, but evensubtle variations in curvature (involvinga small range of shore-
line angles) can drive shoreline change (Lazarus & Murray, 2007; Valvo et al., 2000).

Where shoreline planform curvature is low, long-term coastline evolution can be described with a diffusion
equation, such that positive diffusivity corresponds to coastline smoothing and negative diffusivity corre-
sponds to coastline roughening (Ashton & Murray, 2006a, 2006b; Falques, 2003; Ashton et al., 2003;
Murray & Ashton 2003). Given that extensive reaches of the U.S. Atlantic and Gulf Coasts feature low cur-
vatures with local waveclimates tending to be low-angle dominated (e.g., Ashton & Murray, 2006b; Johnson
etal., 2015), a diffusive, smoothing signalshould be apparent over largespatial and long timescales across a
broad span oflocations. In numerical modeling experiments, even where regional high-angle waveclimates
(relative to the regional coastline trend) have shaped large-scale, emergent coastline features, such as cus-
patecapesor free spits, wave-shadowingeffects, and local shoreline reorientation, result in diffusive prevail-
ing conditions everywhere but near the cape tip or spit terminus (Ashton et al., 2016; Ashton & Murray,
2006a, 2006b). Thus, model results and observations (or hindcasts) oflocal wave climates lead us to expect
a coastline-smoothing signal, that is, positive diffusivity, in almost all locations (Ashton & Murray,
2006b). On the other hand, how much the diffusive, low-angle waves dominate local wave climates varies
from region to region (e.g., Johnson et al., 2015), leading to the prediction that coastline diffusion should
be more dominant in some regions than others.

Because diffusion of large-scale coastal features theoretically occurs more slowly than for small-scale ones
(the characteristic timescale for coastline change, T, scales with the square of the alongshore length scale,
L; T <xL2), to detect the influence of larger-scale (> km) coastline curvature should require longer-term
(>10! years) shoreline comparisons.

Theoretical and numerical model-based predictions forhow shoreline changeshouldbe related to coastline
curvature have not often beendirectly tested against observations. Webuildon work by Lazarusand Murray
(2007) thatidentified a negative correlation between shoreline curvature and shoreline change (i.e., where

planform curvature was offshore convex, defined as positive, shoreline change was landward, defined as

negative; Figure 2b)along ~100 km ofthe Northern Outer Banks of North Carolina (USA). The correlation

wasstatisticallysignificantat 102 10° m spatial scalesand multiannual timescales (Supporting Information

FigureSl). Here, we identify a predominantsmoothingsignal (anegative correlation betweenshoreline cur-
vature and shoreline change) on the wave-dominated, sandy shorelinesof the U.S. Atlantic and GulfCoasts

over decadal to centennial timescales and multi-km spatial scales.

2. Methods

We analyzed shoreline curvature and change for coastal barriers along the U.S. Atlantic and Gulf Coasts,
spanning a total of - 1,700 km.

2.1. Shoreline Curvature

Tocalculateshoreline curvature, we downloaded shorelines from the Geophysical Data System (GEODAS)
Coastline Extractor v 1.1.3 (https:// www.ngdc.noaa.gov/mgg/geodas/geodas.html). Shorelines in the
Coastline Extractor come from the Global Self-consistent , Hierarchical, High-resolution Geography
database (Wessel & Smith, 1996) and are based on the World Vector Shoreline Data. After importing the
shorelines from the Coastline Extractor into ArcGIS, we divided them into sectionsdefined by morphologic
(e.g., inlets) and anthropogenic (e.g., groynes) boundaries.

In ArcGIS, we set points at 1-m increments along each shoreline segment and created a reference line by
linking the segment endpoints. We moved the reference line 2,000-3,000 m offshore so that the entirety of
the shoreline was on the landward side of the reference line, which serves as an arbitrary datum for
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defining cross-shore positions. We assume the overall curvature of each segment is low, so that the distance
along the reference line(x) and the distance from the reference line (y) correspond to (X, y) coordinates for
each point on the shoreline.

To isolate signatures of alongshore sediment flux related to coastline curvature, we removed 0.5 km from
both ends of each shoreline section to reduce potential effects of inlets, which can cause convex bulges in
the shoreline affected local changes in tidal deltas (Davis & Fitzgerald, 2003). However, where a jetty is pre-
sent at the end of a shoreline section, we did not remove that terminal 0.5 km, because the shoreline curva-
ture (concave-seaward; negative curvature) and shoreline change (accretion; positive change) updrift of the
jetty is a result of gradients in along\lhore transport. Groynes result in the creation of locally concave and
accreting shorelines updrift, similar to a jetty, but wave-shadowing downdrift results in locally concave
and eroding shorelines. Rather than distinguish between these two effects, we treat a groyne as an inlet
and remove0.5 km fromboth sides in our analysis.

We then filtered the (X,y) shoreline sections with a running average weighted by a Gaussian distribution
with a length scale off(where L = 1, 3, and 5 km,respectively), to remove small-scale (high frequency) var-
iations and reveal the large-scale curvature of the shoreline (Lazarus & Murray, 2007):

2
1 —1. 3

f(x)= =+ 20 ) 1
W e T "

Truncating the tails of the Gaussian yields a total sum of the weights that is slightly less than 1 (--0.95).(The
resultingshoreline positions could be multiplied by the inverse of this factor, to regain the full amplitude of
the smoothed-shoreline undulations, although such a normalization would be canceled out in the correla-
tion calculations, equation (2), and would thus not affect our results.) This truncation allowed us to retain
more shoreline length for analysis, reducing the number of points needed to calculate a single value. This
method differs slightly from that used in previous work (Lazarus & Murray, 2007) but results in filters of
comparable size (Figure S2). Increasing the filter size reduces the number of data points obtainable from a
given shoreline segment (because only points greater than half a smoothing window from the boundaries
can be used); where a shoreline segment is not long enough to allowfor smoothing at all three length scales
(1, 3,and 5 km), we only examined the applicable scales. We calculated curvature as the second derivative of
the smoothed shoreline, under the assumption that localshorelineorientations deviated littlefrom the aver-
ageorientation ofthe shoreline segment (Lazarus & Murray, 2007). (See Figure S3 for detailsofthe analysis
for an example shoreline segment.)

2.2. Shoreline Change

‘We obtained shoreline change data separately, from the USGS National Assessment of Shoreline Change
Project (Morton et al., 2004; Morton & Miller, 2005). Mean high water level was used to identity the shore-
line. A "long-term" (-1<>2 years) rate ofshoreline change for a given shorelinesegment was obtained from a
linear regression of shoreline change spanning the late-1800s, 1920s-1930s, 1970s, and 1998-2002.A "short-
term" (- 10! years)shoreline change rate was calculated using an endpoint method and shoreline data from
the 1970s and 1998-2002. Positive values of shoreline change represent accretion; negativevalues represent
erosion (Figure 2b). Where extensive reaches of a given shorelinesegment did not have available shoreline
change data, we removed the segment from the analysis.

With theshoreline curvature and shoreline change data, we calculated a correlation coefficient (zero-lag) to
determine the magnitude and sign of the relationship between curvature and shoreline change rate for each

shoreline segment

=" OB

where A and aA are the mean and standard deviation of A (curvature), respectively, and p8 and ag are the
mean and standard deviation of B(shoreline change rate). The absolute valueof'the correlation coefficients,
which are nondimensional, isbounded by O( indicating no relationship between the twosignals) and 1 (indi-
cating that all of the variance in one signal is related to variance in the other signal). By our convention
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(Figure 2b),anegative correlationindicatesshoreline smoothing, and a positive correlation indicates shore-
line roughening.

We also identified shoreline segments that have experienced nourishment (Miller et al., 2004; Miller et al.,
2005). We excluded nourished segments from our analysis of North Carolina and Florida but have included
nourished segments from Texas and the Mid-Atlantic to demonstrate the effects of nourishment on this type
of analysis. Nourished segments included in our calculations are identified in Table 1.

To provide context when analyzing the results of the correla tion calculations for select regions (North
Carolina , Texas, and Florida), we calculated an average effective diffusivity, representing the time-integrated
effects of the high- and low-angle waves in the wave climate, following the methods of Ashton and Murray
(2006b). Coastline diffusion can be expressed by

a
) 100,2y 3)

at pae ax’
where By/Bt is shoreline change rate, D is shoreface depth (the depth to which erosion or accretion are
spread), and 8Qsf8% is the rate of change of alongshore sediment flux as the relative angle between offshore
wave crests and the local shoreline, €, varies- which is a function of relative angle and height of offshore
waves. We can define coastline diffusivityp as

18Q,
T “
To represent the net diffusive (or antidiffusive) effects of a wave climate, we use an effective diffusivity
(Ash ton & Murray, 2006b):

n
i=obili
Fr:a: Ez:::tl 1 (5)

where u nerhas dimensions of m?/s. (Wave data are typically available as statistics such as significant wave
height and wave direction averaged over a sampling period t; w7 is calculated for each data point using
equation (4).)This effective diffusivity is O when the diffusive influence of all the low-angle waves in a wave
climate equals the antidiffusive influence of all the high-angle waves. Greater positive magnitudes of u net
result from a greater dominance of low-angle waves, and or larger-wave heights (holding the proportion
of influences from low- and high-angle waves constant). Greater negative magnitudes of unet result from a
greater dominance of high-angle waves, and or larger-wave heights (holding the proportion of influences
from low- and high-angle waves constant). In either case, positive or negative, the magnitude can in princi-
ple be large (e.g., >>1). The rate that subtle coastline undulations are smoothed out (or exaggerated)
depends on the magnitude ofu ¢

2.3. Excluded Reaches

We excluded from this analysis much of the wave-do minated, sandy coastline of South Carolina and
Georgia. This stretch of coast is characterized by a large tidal range, and frequent tidal inlets as well as estu-
aries; ocean-facing shoreline segments are therefore short, and the influence of tidal inlets isstrong.We also
excluded segments that are extensively stabilized and heavily developed in NorthCarolina and Florida.

3. Results

The fullspatial extent of our analysis is shown in Figure1 and dataare reported in Table1. Here, we examine
subsets of those resultsin detail.

3.1. North Carolina

3.1.1. Comparison to Previous Work

Lazarusand Murray (2007) previously analyzed correlations between curvature and shoreline change along
asection of the Northern Outer Banks of North Carolina from the Virginia state lineto Oregon Inlet (NC P96
in this study). Because here we use a somewhat different method , we focused on the same section and re-
analyzed the original data from that work (which extracted shoreline position from repeated lidar

LAUZON ETAL.



=p>
Q
=

00 Journal of Geophysical Research: Earth Surface 10.1029/2019JF005043

Table 1
Correlation Coefficient Data for all Spaceand Timescales for all Shoreline Six:tions

Correlation ooefficie nt

Short-term shoreline change Long-term shorelinechange
Shoreline section lkm 3km Siem 1 km 3km Siem
New York 8 0.070324 - 0.12827 -0.1582 -0.03502 -0.20957 -0.36577
New York 7 0.111674 0.372689 0.129199  -0.01643 -0.26676 -0.18264
NewYork6 -0.16447 -0.2139 0.094883 0.072898 -0.35544 -0.41847
New York 5 -0.04217 -0.01076 0.02657 -0.01125 -0.02875 -0.08844
NewY ork4 -0.00042 0.026879 0.164316  -0.07888 0.202794 0.11143
NewYork3 0.019078 -0.06927 -054342 0.027861 --0.06655 0.023931
NewYork2 -0.59108 -0.69198 -0.6239 -0.1626 -0.04233 0.164476
New York1 -0.39928 0.094831 0.309797 0.305994 0.079137 -0.23789
NewlJersey9 -0.08228 0.053764 0.205561 0.107832 0.348556 0.332377
NewlJersey8 0.145729 0.205536 -0.00939 0.045185 0.10853 0.052792
New Jersey7 0.291612 0552746 0.412828 0.213461 0.624899 0.515199
Newlersey6 0.217063 0.117759 0.120676 0.17374 0.402628 0.220784
NewJersey 5 -0.2044 -0.16818 -0.48515 0.381102 0570934 0.612524
New Jersey4 0.102028 0.339569 0.282275 0.10447 0.008002 0.082873
NewlJersey3 -0.61737 -0.83374 -0.40891 0.415036 0569583 0581117
Newlersey2 -0.06871 0.011789 0.351761 0.089031 0.353269 0.226332
New Jersey! -0.10345 0.105707 -0.10639 0.419118 0.726764 0.608737
Delaware 1 -0.17877 -0.4055 -0.26207 0.003589 -0.09073 -0.30117
Maryland 1 0.005773 0.073997 0.242193 -0.02634 0.017682 0.150606
Virginia! 2 -0.10359 -0.16801 -0.19339 0.029798 0.059715 0.055696
Virginial 1 -0.40403 -0.14275 0.24763 -0.02237 0.520963 0.141626
Virginia 10 -0.37967 -0.34945 0.000728 -0.02503 0.257716 0571434
Virginia 9 -0.06196 -0.00568 -0.08664 0.145887 0.238378 0.164923
Virginia 8 --0.15521 -0.36874 -0.6393 0.45665 0.42626 0501026
Virginia 7 -0.25557 -0.74775 -0.7111 0.088547 0.106359 0.61136
Virginia 6 0.037561 0.120676 0.746808  -0.26258 -0.39069 -0.68728
Virginia 5 -0.54848 NIA NIA -0.94385 NIA NIA
Virginia 4 -0.96205 -0.66748 NIA 0.925424 0.857653 NIA
Virginia 3 0.064669 - 0.21759 NIA 0.111884 0.363048 NIA
Virginia 2 0.125624 0.759211 0.803326 0.02661 0.620772 0.891446
Virginia 1 0.744398 NIA NIA -0.01646 NIA NIA
North Carolina P96 0.144269 -0.10529 -0.00876 -0.10541 -0.18824 -0.13276
North Carolina P92 0.349557 -0.27417 -0.31334 0.025203 -0.28839 -0.2133
North Carolina P91 -0.25219 NIA NIA 0.145667 NIA NIA
North Carolina P90 0.250724 0.039114 0.142102 0.017522 --0.01094 0.143771
North Carolina P89 0.021587 0.218485 0.102581  -0.24125 --0.01805 -0.18751
North Carolina P88 0.079472 0.050025 0.04052 -0.06983 -0.06712 -0.06532
North Carolina P87 -0.19644 0.324325 0.550742 0.027631 0.254313 0.579232
North Carolina P85 -0.37264 -0.83128 NIA -0.51683 -0.91692 NIA
North Carolina P84 -0.0911 0525982 NIA 0.124373 0591191 NIA
North Carolina P83 -0.01929 -0.08488 0.122145  -0.00162 -0.25567 -0.24168
North Carolina P81 -0.30684 -0.21183 -0.34157 -0.65238 -0.33897 0.316539
North Carolina P80 -0.21832 0.071481 -0.06178 0.17744 0.422571 -0.12204
North Carolina P78 -0.56693 -0.78673 -0.70293 - 0.51285 -0.69875 -0.10446
North Carolina P76 --0.09098 0.140232 -0.14015 0.067391 0501133 0.1847
South Carolina P68 -0.10677 -0.44164 - 0.68018 -0.33971 -0.81407 -0.90549
Florida P19 0.025201 0.099415 0.279159 0.054233 0.095545 0.12083
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Table 1 (continued)

Correlation coefficient

Shor t-term shoreline change Long-term shoreline change

Shoreline section lkm 3km Skm lkm 3km Skm
Florida P18 0.124249 -0.04477 -0.13314 -0.04349 -0.37348 - 055988
Florida P17 -0.03337 0.052037 0.01319 - 0.00258 0.040937 0.033951
Florida P16_2 0.093654 0.1549 0.255917 0.005374 0.006049 -0 .02489
Florida P16_1 -0.09532 -0 .11464 -0 .05769 -0.08013 -0.09641 -0 .0637
Florida PIS 0.021525 0.053018 -0 .02001 0.020112 0.024078 0.036264
Florida PIO - 0.16552 0.161041 0.271616 -0.05879 -0 .13993 -0.09773
Florida P9 0.087139 -0 .15064 -0.21389 0.299981 -0.01654 0.10858
Texas 14 -0.00358 -0.12428 -0.27463 0.035979 0.008918 0.000558
Texas13 0.050743 0.004555 -0 .04873 0.045255 0.016686 -0 .00247
Texas12 -0.04612 0.135178 0.13365 -0.04115 -0.1909 -05 75
Texasl1 -0.03796 -0.37634 -0.37393 -0.04811 0.074985 0.071233
Texas 10 -0.07537 -0.13733 -0.20475 -0.1033 -0 .07987 -0 .19432
Texas 9 -0.03402 -0 .0859 -0.14875 -0.00463 0.021958 -0.03221
Texas 8 -0.11271 0.061099 0.044159 -0.12668 0.029944 0.104228
Texas 7 - 0.06834 -0 .17361 - 0.28095 -0.10502 -0 .18407 -0.25799
Texas 6 -0.19458 -0 .5778 -0.71853 -0.19394 -0.54149 -0 .66695
Texas 5 -0.05542 -0 .25435 -0.43196 -0.00979 0.037675 -0 .00574
Texas 4 0.009212 -0 .03978 - 0.05869 -0.01434 -0 .06512 -0 .08189
Texas 3 0.003582 -0.06113 -0.08572 0.003729 0.006362 -0.01497
Texas 2 - 0.04068 -0.07482 -0.09748 -0.00601 -0.01158 0.017724
Texas 1 -0.06139 -0 .58019 -0.7515 -0.13321 -0 .50223 -0 .63403

Note. Shorelinesectionsare numbered moving fromsouth to north(e.g., NewYork1 is the southernmostsection of New
York's shore line). Bold shoreline section names have not experienced nourishmen t, unbolded section names have
experienced nourishment. Bold values are significant at a 95% confidence interval.

surveys) to make a direct quantitative comparison. Where Lazarus and Murray (2007) smoothed the
calculated curvature and shoreline change values, we smooth the shoreline itself. Comparing the results
of smoothing the calculated curvature versus smoothing the shoreline, we found no difference in the final
curvature values. Likewise, we found a negligible difference in the correlation coefficients for smoothing
(Lazarus & Murray, 2007) or not smooth ing (this study) the shoreline change data.

The smoothing filters used in the respective analyses differ slightly (Figure S2). Our results thus differ in
local detail, but not in overall trend. When we change the shape of our Gaussian so that it resembles the
Hanning window used by Lazarus and Murray (2007), such that thesumof'the weights is ~99% and the low-
est weightis~1% of'the cen tral value, the length scales of the respective filters differ by a factor of~1.5:data
smoothed at a 1-kmscale in our analysis are comparable to smoothing at a ~1.5-km scale by the processin

Lazarus and Murray (2007). We have to reduce our length scale(%4 in equation (1)) by ~ f to weight our

Gaussian in a way that is comparable to their Hanningwindow.

Our method reproduced the same relationships demonstrated by Lazarus and Murray (2007; Figure S2),
with values within a factor of 2 of those they reported (Table S1).The correlation between shoreline curva-
ture and shoreline change isstrongest at longer (decadal) timescales, and it depends on length scaleina way
that varies with timescale(Figure S2).

3.1.2. New Anal ysis

We analyzed ~265 km of sandy barrier island shoreline along North Carolina's coast- more than twice the
reach covered previously (Lazarus& Murray,2007,2011;Lazarus et al., 2011, 2012). Individual islands range
in length from 2.7 to 121.44 km. We removed several nourished shoreline segments from the analysis
(NC77,79,82, 86,93, 94, and 95; Tablel) and a few of the sho reline reaches(NC 84,85,and 91)are too short
to be analyzed at all three lengthscales.
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Figure 3. Map showing the significant correlation coefficients between shoreline curvature and shoreline change for the North and South Carolina Coasts.
(a) Correlations between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century-
scale) shoreline change. For both timescales, data are plotted in the following order: moving away from the coast, 1, 3, and 5 kmsmoothing. Stars mark shoreline
sections discussed in detail in the text; NC87 is Shackleford Banks, NC 84 is BrownsIsland, and NC 80 is Figure Eight Island.

Forcontext, we calculated arepresentativeeffective diffusivity of0.992 m?/s for North Carolina (see TableS2
for detailson shoreline sections and wave dataused). Thus, wewould expect correlations between curvature
and shoreline change to be negative, corresponding to coastline smoothing. At the 1-km smoothing scale,
almost all (85%) of the shoreline has a significant correlation (using a 95% confidence interval criterion)
between shoreline curvature and short-term shoreline change (Table 1; Figure 3). This percentage decreases
to - 16% at the 5-km scale. The percentage of the shoreline with a significant positive correlation, indicating
roughening, decreases from nearly 70%at the 1-km scaleto - 5% at 5 km. This indicates small-scale rough-
ening and large-scale smoothing over decadal timescales. Approximately 50% of the shoreline has a signifi-
cant, negative correlation between shoreline curvature and long-term shoreline change at all spatial scales
considered, indicating long-term (century-scale)smoothing.Significant correlation coefficients range from
-0.83t00.55 for short-term shoreline change and -0.91 t00.59 for long term (Table 1). Stronger magnitude
correlations (both positive and negative) tend to occur at large spatial scales.

Some of the significant roughening signals can be explained by local factors. For example, Shackleford
Banks(NC 87) has a significant, positive correlation at the 3- and 5-km scales for both short- and long-term
shoreline change (Figure 3). This apparent roughening signal likely arises from wave-shadowing effects
leading to a local gradient in wave climate where the western end of the island is more strongly affected
by waves from the east and northeast than the eastern end. The resulting gradient in net alongshore sedi-
ment transport causes shoreline erosion creating a concave shoreline. The association between concavity
and erosion corresponds to a roughening signal in our analysis.

Another island with a roughening signal, Figure Eight Island (NC 80), is known to undergo nourishment
(which we address in section 4.3). However, because it is a private island, and its nourishment projects
are funded privately, Figure Eight Island is not included in the database we used to eliminate nourished
shorelines. Browns Island (NC 84), a third island where shoreline roughening is apparent, is occupied by
Camp Lejeune, a U.S. military base, and shoreline stabilization data are not available. In addition, some
of the short-term roughening signals may indicate that local wave climates were weighted toward high-
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Table 2
Total Length of Shorelines Considered and Perrentage of Total With Significant Correlations for Each Study Region
Short-term shoreline Long-term shoreline
change change
Total % ofshoreline with
Region length (km) significant correlation lkm 3km Skm lkm 3km Skm
Mid-Atlantic 487.6 Total 48.6 55.2 544 50.6 68.3 70.0
Positive 10.1 19.3 29.1 46.4 52.1 52.2
Negative 38.4 35.8 253 43 16.1 17.9
North Carolina 264.9 Total 85.4 67.1 16.6 59.4 56.1 48.9
Positive 67.9 10.0 4.6 0.0 13.0 7.7
Negative 17.5 57.1 12.1 59.4 43.1 41.3
Florida 277.9 Total 61.1 73.1 47.4 5.9 56.3 17.1
Positive 21.8 41.5 41.5 5.9 6.1 6.1
Negative 39.2 31.6 5.9 0.0 50.2 11.0
Texas 575.1 Total 15.0 63.7 90.2 24.5 14.0 14.0
Positive 0.0 3.8 3.8 0.0 0.0 4.8
Negative 15.0 59.9 86.4 24.5 14.0 9.2

angle-waveinfluence over relatively short durations, possibly related to single storm events involving large
waves approaching from high angles (Lazarus et al., 2012). Because coastline diffusion or antidiffusion
theoretically occurs more rapidly as the spatial scale is reduced, the fact that the short-term positive
correlations tend to occur at the smallest length scales is consistent with the theoretical framework-
especially given that larger-scale and longer-term correlations strongly tend to be negative, consistent
with the positive effective diffusivity representing relatively long-term forcing.

3.2. Texas

We analyzed -575 km of sandy, barrier island shoreline along the Gulf Coast of Texas. Individual islands
ranged in length from 10.2 to 95.9 km. The shoreline sections for TX 2 (South Padre Island), 11, 12, and
13(Galveston Island) have experienced nourishmentbut wereincluded in the analysisfor the sake ofdiscus-
sion. For context, we calculated an average effective diffusivity ofl.089 m?/s forTexas (TableS2); we expect
to find correlations indicating coastline smoothing for this region.

The percentage of shoreline with a significant correlation between curvature and short-term shoreline
change increases from15% to 90%with increasing spatial scale(Table 2). Significant correlations are almost
entirely negative, indicating smoothing (Figure 4). This significant smoothing signal is also observed for
long-term shoreline change, though for a smaller percentage of the shoreline (9- 24%). Correlation
coefficients range from -0 .75 to 0.06for short-term shoreline change and from -0.63 to 0.1 for long-term
shoreline change (see Table 1 for all data). The correlation coefficients increase in maximum magnitude
and range as the spatial scale increases (Figure4, Table 1). While smoothing occursat all three spatialscales
(1, 3, and 5 km), values are more negative and there are more significant values(i.e., the smoothing signal is
stronger) at larger-spatial scales.

Whilea fewshorelines in Texas appear to havea roughening signal, the correlations in these cases are much
smaller in magnitude than those of the smoothing signal and are often not significant (Figure 4; Table 1). In
most cases, this signal can be explained by local history. For example, Texas 8 (FigureS3)has a positive cor-
relation coefficient indicating roughening for the 3- and 5-km smoothing windows at both short and long
timescales (this signal is significant only at the 5-km long-term scale; Figure 4). Historical satellite imagery
(via Google Earth) reveals that an inlet was formerly present in this location which has now filled in. Since
the inlet closed during the period covered by our shoreline change data, this rougheningsignal is likely the
resultofthe shorelinebecoming locally convex in sha pe, while accreting seaward, as waves swept the relict
ebb tidal delta onshore. Texas 12 also exhibits a significant, positive (roughening) signal on 3- and 5-km
scales for short-term shoreline change (Figure 4a). This is likely a result of the island's history of
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Figure4. Mapshowingthesignificantcorrelation coefficientsbetweenshorelinecurvature andshorelinechange forthe Texas GulfCoast.(a) Correlations between
shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century-scale)shorelinechange.
Forboth timescales,data areplottedin the followingorder: moving away from the coast, 1, 3,and 5 kmsmoothing. Starsmark shorelinesections discussedin detail

in the text.

nourishment projects resulting in the creation of a shoreline convexities. The correlations for the other
nourished shoreline sections in Texas are not significant, close to zero, and/ or negative (Table 1).

33. Mid-Atlantic (New York to Virginia)

We analyzed ~485 km of sandy,barrier island shoreline between Montauk Point, NewYork and Assateague
Island, Virginia. Individual is lands range in length from 9.26 to 79.86 km. Virtually, all the shorelines along
the coast of NewYork and New Jersey havebeen nourished or have stabilization structuressuch asgroynes
or seawalls in place; thus, all shorelines were included in the analysis regardless of nour ishme nt
or stabilization.

Approximately 50% of the shoreline has a significant correlation between shoreline curvature and sho rt-
ter m shoreline change at all spatial scales considered (Table 2; Figure 5). The percentage of the sho reline
with a significant positive correlation, indicating roughening, increases from 10% to 30% as spat ial scale
increases from 1 to 5 km. For long-term shoreline change, the percentage of the shoreline with asignificant
correlation increasesfrom 50% to 70%with increasingspatial scale.Approximately 50%of the shoreline has a
significant positive correlation between curvature and long-term shoreline change, on all spatial scales.
These mainly positive correlations reflect the long-term roughening signal of sho reline stabilization and
nourishment on the heavily developed barriers of the Mid-Atlan tic (Hapke et al., 2013), which obscures
the smoothing signal that would be expected. The relatively few s moothing signals occur predominately
in the short -term analysis. Correlation coefficients in this region range from -0 .42 to 0.73 for long-term
change and from - 0.83 to 0.55 for short-term change (Table1).

One of the shoreline sec tions, NY 4 (Fire Island, Figure 5), displays a roughening signal on both short-
ter m and long-term timescales despite not undergoing nourishment. This signal can be attributed to
the presence of shoreface-attachedsand ridgesacting as an offshore sediment source (Safak et al., 2017;
Section 4.3).
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Figure 5. Mapshowingthe significant correlation coefficients betweenshoreline curvature and shoreline change for the Mid-Atlantic Coast (from New York to
Assateague Island, Virginia).(a) Correlations between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline
curvature and long-term (century-scale)shoreline change. For both timescales, data areplottedin the following order: moving away from the coast, 1, 3, and 5 km
smoothing.Stars mark shoreline sections discussed in detail in the text; NY 4 is Fire Island.

34. Virginia

The Virginia Barrier Islands are characterized by short, uninhabited islands with a strong tidal influence.
Islands range in length from 3.09 to 15.69 km. Tidal and in/et effects are at least as important as wave
influence in determining island behavior in this region. Many of the shorelines are too short to evaluate
at greater than the 1-km length scale, and others (e.g., Wallops Island, a NASA flight facility) do not have
historic shoreline change data available. In addition, the timescales of analysis in this project do not
match the timescalesof shoreline change in this region. While our shoreline change data is on decadal
or centur ial timescales, the tidal-inlet dynamics cause the Virginia Barrier Islands to rotate and shift on
shorter timescales, so that there is little overlap between the current position (and curvature) of the shore-
line and the position (and curvature) of the shoreline at the start of the time spanned by the shoreline
change data. For one example, Hog Island, shoreline change rates can be higher than 5 m/year, rotating
the island by accreting on the northern end of the island and eroding on the southern (Hayden et al.,
1991) and resulting in changes in shoreline location of hundreds of meters over the timescales of
our analysis.

As a result of the mismatch between shoreline change rates and the duration over which shoreline
change is calculated in this s tudy, no clear trend can be found, and most coefficients are on the extreme
ends of the range of correlations, signifying a strong smoothing or roughening signal (see Table 1 for
data). Many of the islands are short enough that few points rema ined for analysis, allowing outliers to
have a strong influence on the overall trend. Few correlations are significant, and the mismatch in time-
scales means it is unlikely the trends have any physical meaning, especially on timescales as long as 100
years. While positive corre lations could represent curvature-related roughening resulting from locally
antidiffusive wave climates, the mismatch between the timescales of our ana lysis and those of the shore-
line changes in this region precludes meaningful interpretation. Although we did not perform our analy-
sis for the short, tidally influenced barrier islands of South Carolina and Georgia, we would expect similar
results for those shorelines.
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Figure 6. Mapshowing thesignilicantcorrelationcoefficientsbetween shorelinecurvature andshorelinechange for the Atlantic Coastof Florida.(a) Correlations
between shoreline curvature and short-term (decadal)shoreline change. (b) Correlationsbetween shoreline curvature and long-term (century-scale)shoreline
change. For both timescales, data areplotted in the following order: moving away from the coast, 1, 3, and S kmsmoothing.

3.5. Florida

Though characterized by longsandy barriers like the coasts of North Carolina and Texas, the Florida coast is
also heavilydeveloped and therefore subject to large and frequent nourishment projects. Due to the extent of
nourishment, we analyzed only a portion of the Florida coast: -280 km of sandy barrier-island shoreline
along the eastern coast of Florida. This included eight shorelines, ranging from 16.41 to 60.72 km in length.
For context, we calculated a representative effective diffusivity of 2.575 m?/s for Florida (Table S2), corre-
spon ding to the prediction of strong smoothing signals (negative correlations between curvature and
shoreline change).

Between47% and 73% ofthe sho reline considered had asignificant correlation between curvature and short-
term shoreline change, for which smoothingsignals dominate on larger-spatial scales and roughening over
smaller (Table 2; Figure 6). Less of the overall sho reline has a significant correlation when examining long-
term shoreline change, but the correlation is more likely to be negative, reflecting a smoothing signal
(Figure 6).

4. Discussion
4.1. Variability in Wave Clim ate and Effective Diffusivity

Correlations between curvature and shoreline change depend on local wave climates, which vary
alongshore. Even though the regional wave climate affecting the Carolina coast is marginally antidiffusive
(i.e., anegative diffusivity, giving rise to the capes and cuspate coastline; Ashton & Murray, 2006a), numer-
ical modeling indicates that wave-hhladowng effects and coastline rotation combine to produce diffusive
local wave climates (Ashton & Murray, 2006b), tending to keep shore lines smooth in the bays between
the capes Texas (and Florida) are simpler in this sense, with local wave climates that are approximtdy
thesame as the regional wave climates.

North Carolina and Texas have very similar local wave climates, as measured by the effective diffusivity for
representative shoreline segments(TableS2). We might therefore expect the correlations between curvature
and shoreline change(i.e., the distribution of correlation coefficients) to be similar. However, evenwiththe
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inclusion of nourished shorelines in Texas and not North Carolina, correlations are on average more
negative for Texas than North Carolina (i.e., the distribution is shifted to the left; Figure 7). A larger
percentage of the shoreline exhibits a smoothing signal in Texas (Table 2), and correlations tend to be
stronger than North Carolina. When roughening signals are observed, they are less likely to be significant
and tend to be smaller for Texas than North Carolina.

‘What might explain this difference ? In terms of theoretical frameworks and numerical model results, the
likely answer involves wave-shadow effects, which play a key role in shaping the coastline of North
Carolina but not Texas. The gradient in net alongshore sediment transport associated with a wave-shadow
gradient tends to produce erosion, and therefore coastline concavity (as with Shackleford Banks, NC 87, in
section 3.1.2). However, as the concave curvature increases in magnitude, the component of the alongshore
transport gradient related to coastline curvature increases. This component of the gradient in net transport
tends to cause accretion. In modeling studies (and likely on natural coastlines), as the curvature increases,
the tendency to accrete (driven by coastline curvature) eventually balances the tendency to erode (driven
by a wave-shadow gradient). Although fluctuations in wave climate will cause the curvature to fluctuate
(Ratliff & Murray, 2014), the result is a background curvature in a quasi steady state-such as thecurvature
observed in the cuspatebays between capes. (In the case ofShackleford Banks in NC, the curvature was pre-
sumably in quasi steady state before Barden's Inlet opened up in 1933, disconnecting the cape from Cape
Lookoutfromthe Shackleford Banksshoreline. Because ofthe disconnection inthe sedimenttransportpath-
way, which changed the boundary condition at the eastern end of the Shackleford shoreline, over the last
several decades, the curvature of the shoreline has been decreasing as the eastern end erodes.)
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In the quasi steady state, this background curvature theoretically does not contribute to any accretion nor
does it contribute to the correlation between curvature and shoreline change. Instead, shoreline change in
this context should be correlated with deviations from the background curvature. Where the curvature is
greater than the background, accretion should result, and where the curvature is smaller than the back-
ground value, erosion should result. If we were able to calculate the background curvature, which will vary
with position within a cuspate bay, and subtract the background from the observed curvature, we would
expect the correlations to be stronger- approximately as strong in North Carolina as those in Texas.
Calculation ofbackground curvature is beyond the scopeofthiswork butis a valuable topic for future exam-
ination. Forthepresent, the strongercorrelations onthe Texas coast, despiteaverysimilareffective diffusiv-
ity to thatrepresenting the Carolina coast, are consistent with the theoretical/modeling framework.

4.2. Space and Timescales of Relevance

Inasimple diffusional system, we would theoretically expectto be able to see relationships between shore-
line curvature and shoreline change down to small (1cm) spatial scales for short timescales. However, the
longer the span of time considered, the more likely it is that small-scale relationships are obscured, as the
memory ofsmall-scaleshoreline excursions in the initial coastline diffuse away and the long-term shoreline
position becomes dominated by larger-scale undulations. This is consistent with our results which involve
relatively long-timescale shoreline change data; there are stronger correlations for the larger-spatial scales
(i.e., 5 km) than the smaller ones(1, 3 km) and this trend is more evident for the centurial timescales than
the decadal ones (see Figure 7, Tables 1 and 2).

The time and space scalesoverwhich ouranalysisis meaningful vary with the wide variety ofenvironmental
conditions and morphological processes which can affect shoreline change. In some cases, signals that did
not fit our expectations were related to events in the historyofa given shoreline reach, such as the creation
or filling-in of an inlet. In these cases, shoreline change data with the same timescale but from a different
time period would likely have resulted in a smoothing signal. In other cases, such as the Virginia Barrier
Islands, the timescale of the shoreline change data sets does not match the timescale for the reshaping of
the shoreline. When the final shoreline shape differs so dramatically from the initial shape (and from the
shape at intermediate times), the record of cumulative shoreline change does not bear a strong relationship
to the curvature of the finalshoreline.

If the fact that shoreline change operates on a shorter timescale than our decadal and centurial shoreline
change timescales was the only obstacle we could overcome it by using shorter-term (e.g., annual) shoreline
change data. However, the strong tidal influence and rotational nature of the short Virginia Barrier Islands
means that waves are not the only strong influence shaping these islands. While gradients in wave-driven
alongshore transport are tending to smooth out some portions of the coastline, tidal-inlet processes are gen-
erating or exaggerating shoreline bulges in other portions. This combination of smoothing and roughening
signals means we would not necessarily expectshoreline curvature to have asimple relationship withshore-
line change rates. These examples lead to a broader consideration of processes that can create shoreline
curvature, in opposition to the tendency for alongshore transport gradients reduce curvature.

4.3. Nourishment and Other Complicating Factors

Along with tidal-inlet processes, other processes can introduce shoreline change signals that complicate or
obscure the relationship between shoreline curvature and shoreline change. These processes range from
shoreline bulges resulting from nourishment(Browder& Dean, 2000; Dean, 2002; Dean& Yoo, 1992) to var-
iations in underlyinggeology(Valvo et al., 2006).

In the case of nourishment, if shoreline change and curvature were analyzed during a period following
the completion of a nourishment project and before any subsequent nourishments, the results would
indicate smoothing, as the convex nourished beach erodes and surrounding convex shorelines accrete
(e.g., Browder & Dean, 2000; Dean, 2002; Dean & Yoo, 1992). However, if nourishment occurs during the
period analyzed, the artificial widening of the shoreline and corresponding shoreline convexity in the final
shoreline shape looks like a roughening signal. On the timescales considered in our analysis, multiple nour-
ishment episodes can obscure diffusional signals from waves. This result (Figure 5) resonates with the pre-
vious findingconcerningthe highly developed coastsofthe Mid-Atlantic: Shorelines whichinhistorictimes
experiencedshorelineerosionarenowexhibitingnetaccretionalshorelinechangesignalsresulting fromthe
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cumulative impact of nourishment projects(Armstrong & Lazarus, 2019; Hapkeet al., 2013). Over long time-
scales, the natural erosional signal appears completely obscured by human activity.

Heterogeneity in underlying geologyor offsho re bathymetry can also create signals of shoreline change.
Offshore bathymetric features, such as shoreface-attached sand ridges,can influenceboth shoreline shape
and shoreline change. Fire Island (NY 4) provides a clear example, displaying a roughening signal on scales
greater than 1 kmin our analysis (Figure 5,Table 1), likely caused by the presence of sho reface-connected
sand ridgesoffshore (Safak et al., 2017). These features apparently act as a cross-shore source of sediment,
resulting in accretion and subtle convex bumps along the shoreline. In a low-angle wave climate such as
found here, we would expect gradients in alongshore sediment transport associated with the convex curva-
ture to result in erosion. However, in this case, it appears that the rate of cross-shore sediment flux building
the undulations is greater than the ratesediment is being removed by alongshore transport gradients related
to shoreline curvature.

Alongshore variations in the composition of underlying geology can also create persistent perturbations to
shoreline curvature (Lazarus & Murray, 2011; Valvo et al., 2006). As an eroding coastline encroaches on
alongshore heterogeneities in the material that the shoreface is eroding into, portions of the coastline that
are producing less material that is coarse enough to stay in the nearshore system will begin to erode more
rapidly, producing concave curvature. Conversely, portions of the coastline where the shoreface is eroding
into coarser material will tend to produce subtle convex bumps in the coastline (Lazarus & Murray, 2011;
Valvo et al., 2006). This curvature tends to be diffused away by the smoothing action of waves, but new
sho reline curvature signals are introduced as the shoreline transgresses through alongshore variable sub-
strate (Lazarus & Murray, 2011). The reintroduction of these signals could explain why shorelines on even
wave-dominated, pristine coastlines that are beingdiffusedstill retain curvature after millennia ofsmooth-
ing (Lazarus & Murray, 2011).

44. Implications

Our resultsdemonstrate thatshoreline curvature can correlate significantlywithshoreline change ratesover
several kilometer and decade to century space and timescales. The presence of a significan t corre lation
between shoreline change and shoreline curvature on many coastlines, however small the correlation coef-
ficient may be, demonstrates the importance of this relationship in understanding shoreline dynamics.This
relationship is strongest on wave-dominated coasts with long, sandy barriers and relatively slow rates of
shoreline change but can help explain shoreline behavior even on shorter islands with competing influences
(e.g., tides) over relatively short timescales.

The demonstrated role of shore line curvature in determining shoreline change rates has implications for
managing as well as for understanding sandy coasts. Large magn itude, significant corre lations between
shoreline curvature and shoreline change in some locations (e.g., Texas and North Carolina) suggest that
consideringshoreline curvature in analysesof histor ical and predicted shoreline change could help improve
agreement between models and data on low-lying, sandy coastlines where models have historically under-
performed (e.g., Gutierrez etal.,2011;Yates & Le Cozannet, 2012). Although practical application is limited
to wave-dominated coastlines, this analysis is broadly applicable to many types of shoreline and shoreline
change data, across a range of time and spacescales.Calculatings horeline curvature is relatively straightfor-
ward, and we show that the results ofcorrelation analyses exhibit low sensitivity to variations in methodol-
ogy (see section 3.2.2).Thus, the results presented here suggest that correlations between curvature and
shoreline change shouldbe included in risk assessment and modeling efforts pertairting tosandy shorelines.
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