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Abstract Low-lying, wave-dominated, sandy coas tlines can exhibit high rates of shoreline change that 
mayimpactcoastal infrastructure, habitation, recreation, and economy. Efforts to understand and 
quantify controls on shoreline change typically examine factors such as sea-level rise; anthropogenic 
modifications; geologic substrate, nearshore bathymetry,and regional geography; and sed iment grain 
size. The role of shoreline planform curvatu re, however, tends to be overlooked. Theoretical and 
numerical model considerations indicate that incidentoffsho re waves interacting with even subtle 
shoreline curvature can drive gradients in net alongshore sediment flux thatcancause significant erosion 
or accretion. However, these predictions or assumptions have not often been tested against observations, 
especially over larges patial and temporal scales. Here, we examined the correlation between shoreline 
curvature and shoreline change rates for spatially extended segments of the U.S. Atlantic and Gulf Coasts 
(-1,700 km total). Where shoreline stabilization ( nourishment or hard structures) does not dominate the 
sho reline change signal, we find a significant negative correlation between sho reline curvature and 
sho reline change rates (i.e., convex-seaward curvature [promontories] is associated withshoreline 
erosion, and concave-seaward curvature [embayments] with accretion) at spatial scales of 1- 5 km 
alongshore and timescales of decades to centu ries. This indicates that shoreline changes observed in 
these reaches can be explained in part by gradients in alongshore sediment flux acting to smooth spatial 
variations in sho reline curvature. Our results suggest that shoreline curvature should be included as a 
key variable in modeling and risk assessment of coastal change on wave-dominated, sandy coastlines. 

 
 

 
 
1. Introduction 
Along low-lying, wave-dominated,sandy coastlines, a variety of physical processes,affect shoreline change 
across a wide range of sp atial and tempora l scales. Despite their vulnerability to storms and sea-level rise- 
event-driven and  chronic  natural  hazards-  these environments  tend  to  be  intensively  developed (Wong 
et al., 2014), motivating effor ts to quantify present and historical rates ofshoreline change and assess erosion 
ris k, in the United States (Armstrong & Lazarus, 2019; Fletcher et al., 2012; Gibbs & Richmond, 2015; 
Gomitz et al., 1994; Hapke et al., 2006; Hapke et al., 2011; Hapke et al., 2013; Hapke  &  Reid,  2007; 
Morton et al., 2004; Morton et al., 2005; Morton & Miller, 2005; Ruggiero et al., 2013) and internat ionally 
(e.g., Coellio et al., 2006; Nicholls & Vega-Leinert, 2008;Shaw et al., 1998). Related to this empirical work 
are efforts to explain past and predict future trends in shoreline behavior with numerical models of coastal 
processes and environmental conditions (Ruggiero et al., 2010; Gutierrez et al., 2011; Hapke et al., 2013; 
Plant et al., 2016; Vitousek et al., 2017; Yates& Le Cozannet, 2012). However, modeled and observed sho re- 
line changes on sandy coastlines still tend to show poor agreement over larger-spatial (>101 km) and longer- 
temporal (>101 years)scales(e.g., Gutierrez et al., 2011; French et al., 2016; Yates & Le Cozannet, 2012).The 
number and variety of controls and processes that can affect sandyshoreline change, including sea-level rise 
(Ashton & Lorenzo-Trueba, 2018; Leatherman et al., 2000; Moore et al., 2010; Moore et al., 2018; Murray & 
Moore, 2018; Plant  et  al., 2016); anthropogenic  modifications (Armstrong  & Lazarus, 2019; Hapke et al., 
2013; Johnson et al., 2015; Miselis & Lorenzo-Trueba, 2017; Rogers et al., 2015;Smith et al., 2015);geologic 
su bstrate (Cooper et al., 2018; Hauser et al., 2018; Lazarus & Murray, 2011; Moore et al., 2010;Valvo et al., 
2006), nearshore bathymetry (Browder & McNinch, 2006; McNinch, 2004;Schupp et al., 2006),and regional 
geography (Cooper etal., 2018; Plant et al., 2016); wave climate (Anderson et al., 2018;Antolinez et al., 2018; 
Slott et al., 2010); and sediment grain size(Dean & Dalrymple, 2002;Komar,1998), makes determining their 
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Figure 1. The extentof the shorelines on the (a) Atlanticand ( b)Gulf coasts 
considered in our study. 

 
relative contributions difficult, whether empirically or with numerical 
modeling. The influence of these factors changes with spatial scale 
(Lazarus et al., 2011; List et al., 2006)- and at regional scales, a key but 
commonly overlooked driver of shoreline change is planform curvature. 

Here, we examine a correlation between shoreline curvature and shore- 
line change along - 1,700 km of sandy reaches of the U.S. Atlant ic and 
Gulf Coasts (Figure 1), over multiann ual to centenn ial timescales. This 
analysis spans spatial and temporal scales an order of magnitude larger 
than those considered previously (Lazarus & Murray, 2007,  2011; 
Lazarus et al., 2011, 2012). Research into coastal vulnerabilityat largespa- 
tial scales has tended to focus on shoreline transgression due to sea-level 
rise (FitzGerald et al., 2008; Gornitz et al., 1994; Gutierrez et al., 2011; 
Hinkel & Klein, 2009; Plant et al., 2016;Shawet al., 1998). While sea-level 
rise can drive long-term coastal erosion (Leatherman et al., 2000; Moore 

et al., 2010; Pilkey & Cooper, 2004; Vitouse k et al., 2017), so can interactions between incident offshore 
waves and subtle changes in shoreline planform curvature (Figure 2a), by setting up gradients in net along- 
sho re sediment transport that generate spatial patterns of shoreline erosion and accretion (Cowell et al., 
1995; Dean & Yoo, 1992; Lazarus et al., 2011; Lazarus & Murray, 2007, 2011; Valvo et al., 2006). (In th is 
context, "offshore waves" refers to waves seaward of the inne r cont inental shelf edge.) 

At any point along the shoreline planform, the magnitude of alongshore sediment flux can be related to sig- 
nificant wave height and relative angle between the incident offshore wave crest and the shoreline orienta- 
tion (Ashton & Murray, 2006a; Falques, 2003). Th is wave-driven alongsho re sed iment flux is maximized for 
relative angles of -4 5°. When prevailing waves approach from "low angles" (relative angles less than the 
flux-maximizing angle), gradients in alongshore transport tend to diverge at convex-seaward (promontory) 
segments of the shoreline, causing erosion, and converge at concave-seaward (embayed)segments, causing 
accretion (Ashton et al., 2001; Ashton & Murray, 2006a; Ar riaga et al., 2017; Falques, 2003). Conve rsely, 
under a "high angle" wave climate, these gradients in net sediment transport are reversed, such that 
large-scale coastline curvature tends to increase over time and emergent planform features develop 
(Ashton et al., 2001; Ashton & Murray, 2006a, 2006b; Falques, 2003; Idier et al., 2017; Murray & Ashton , 
2013; van den Berg et al., 2012). In most locations, on some days, the offsho re waves approach from high 
angles relative to the local shoreline orientat ion, and on some days, they approach from low angles. 

 
A 

 
 
 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 

Figure 2. (a) A schematic of gradients in alongshore currents created by shoreline curvature. Reproduced from Ashton 
and Murray (2006a).(b) Sign conventions used in this analysis. Convex (concave) seaward curvature is defined as posi- 
tive(negative). Accretion (erosion) is positive ( negative) shoreline change. A positive(negative) correlation represents 
roughening (smoothing) of the shoreline. 

wave waves 
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Whether a coastline experiences net roughening or net smoothing depends on the wave climate; when there 
is a greater influence on alongshore transport from low-angle offshore waves, a net smoothing results, and 
viceversa. (This distinction in terms of offshore waves applies in the limits of large alongshore lengthscales, 
relative to the cross-shore extent of the shorefa ce. On alongshore scales smaller than a few kilometers, for 
open ocean coasts, interactions between wave transformation and the curvature of seabed contours 
(Falques & Calvete, 2005) increase the proportion of high-angle offshore wave influence needed to cause 
coastline roughening.) Transport gradients tend to be larger (altering the coastline shape more rapidly) 
whereshoreline curvature is high, but evensubtle variations in curvature (involvinga small range of shore- 
line angles) can drive shoreline change (Lazarus & Murray, 2007; Valvo et al., 2006). 

Where shoreline planform curvature is low, long-term coastline evolution can be described with a diffusion 
equation, such that positive diffusivity corresponds to coastline smoothing and negative diffusivity corre- 
sponds to coastline roughening (Ashton & Murray, 2006a, 2006b; Falques, 2003; Ashton et al., 2003; 
Murray & Ashton 2003). Given that extensive reaches of the U.S. Atlantic and Gulf Coasts feature low cur- 
vatures with local waveclimates tending to be low-angle dominated (e.g., Ashton & Murray, 2006b; Johnson 
et al., 2015), a diffusive, smoothing signalshould be apparent over largespatial and long timescales across a 
broad span oflocations. In numerical modeling experiments, even where regional high-angle waveclimates 
(relative to the regional coastline trend) have shaped large-scale, emergent coastline features, such as cus- 
patecapesor free spits, wave-shadowingeffects, and local shoreline reorientation, result in diffusive prevail- 
ing conditions everywhere but near the cape tip or spit terminus (Ashton et al., 2016; Ashton & Murray, 
2006a, 2006b). Thus, model results and observations (or hindcasts) of local wave climates lead us to expect 
a coastline-smoothing signal, that is, positive diffusivity, in almost all locations (Ashton & Murray, 
2006b). On the other hand, how much the diffusive, low-angle waves dominate local wave climates varies 
from region to region (e.g., Johnson et al., 2015), leading to the prediction that coastline diffusion should 
be more dominant in some regions than others. 

Because diffusion of large-scale coastal features theoretically occurs more slowly than for small-scale ones 
(the characteristic timescale for coastline change, T, scales with the square of the alongshore length scale, 
L; T <X L2), to detect the influence of larger-scale (> km) coastline curvature should require longer-term 
(>101 years) shoreline comparisons. 

Theoretical and numerical model-based predictions for how shoreline changeshould be related to coastline 
curvature have not often beendirectly tested against observations. We build on work by Lazarus and Murray 
(2007) that identified a negative correlation between shoreline curvature and shoreline change (i.e., where 
planform curvature was offshore convex, defined as positive, shoreline change was landward, defined as 
negative; Figure 2b) along ~100 km of the Northern Outer Banks of North Carolina (USA). The correlation 
was statistically significant at 102 103 m spatial scales and multiannual timescales (Supporting Information 
FigureSl ). Here, we identify a predominant smoothingsignal (a negative correlation betweenshoreline cur- 
vature and shoreline change) on the wave-dominated, sandy shorelinesof the U.S. Atlantic and Gulf Coasts 
over decadal to centennial timescales and multi-km spatial scales. 

 
2. Methods 
We analyzed shoreline curvature and change for coastal barriers along the U.S. Atlantic and Gulf Coasts, 
spanning a total of - 1,700 km. 

2.1. Shoreline Curvatur e 

Tocalculate shoreline curvature, we downloaded shorelines from the Geophysical Data System (GEODAS) 
Coastline Extractor v 1.1.3 (https:// www.ngdc.noaa.gov/mgg/geodas/geodas.html). Shorelines in the 
Coastline Extractor come from the Global Self-consistent , Hierarchical, High-resolution Geography 
database (Wessel & Smith, 1996) and are based on the World Vector Shoreline Data. After importing the 
shorelines from the Coastline Extractor into ArcGIS, we divided them into sectionsdefined by morphologic 
(e.g., inlets) and anthropogenic (e.g., groynes) boundaries. 

In ArcGIS, we set points at 1-m increments along each shoreline segment and created a reference line by 
linking the segment endpoints. We moved the reference line 2,000-3,000 m offshore so that the entirety of 
the shoreline was on the landward side of the reference line, which serves as an arbitrary datum for 

https://www.ngdc.noaa.gov/mgg/geodas/geodas.html
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defining cross-shore positions. We assume the overall curvature of each segment is low, so that the distance 
along the reference line(x) and the distance from the reference line (y) correspond to (x, y) coordinates for 
each point on the shoreline. 

To isolate signatures of alongshore sediment flux related to coastline curvature, we removed 0.5 km from 
both ends of each shoreline section to reduce potential effects of inlets, which can cause convex bulges in 
the shoreline affected local changes in tidal deltas (Davis & Fitzgerald, 2003). However, where a jetty is pre- 
sent at the end of a shoreline section, we did not remove that terminal 0.5 km, because the shoreline curva- 
ture (concave-seaward; negative curvature) and shoreline change (accretion; positive change) updrift of the 
jetty is a result of gradients in along\lhore transport. Groynes result in the creation of locally concave and 
accreting shorelines updrift, similar to a jetty, but wave-shadowing downdrift results in locally concave 
and eroding shorelines. Rather than distinguish between these two effects, we treat a groyne as an inlet 
and remove 0.5 km from both sides in our analysis. 

We then filtered the (x,y) shoreline sections with a running average weighted by a Gaussian distribution 
with a length scale off(where L = l , 3, and 5 km,respectively), to remove small-scale (high frequency) var- 
iations and reveal the large-scale curvature of the shoreline (Lazarus & Murray, 2007): 

 
f(x) = -i 

 
 

2 
1 ---1.   r-}J 

-  e 2 (   T ) 

./27r 

 

(1) 

 

Truncating the tails of the Gaussian yields a total sum of the weights that is slightly less than 1 (--0.95).(The 
resultingshoreline positions could be multiplied by the inverse of this factor, to regain the full amplitude of 
the smoothed-shoreline undulations, although such a normalization would be canceled out in the correla- 
tion calculations, equation (2), and would thus not affect our results.) This truncation allowed us to retain 
more shoreline length for analysis, reducing the number of points needed to calculate a single value. This 
method differs slightly from that used in previous work (Lazarus & Murray, 2007) but results in filters of 
comparable size (Figure S2). Increasing the filter size reduces the number of data points obtainable from a 
given shoreline segment (because only points greater than half a smoothing window from the boundaries 
can be used); where a shoreline segment is not long enough to allowfor smoothing at all three length scales 
(1, 3, and 5 km), we only examined the applicable scales.We calculated curvature as the second derivative of 
the smoothed shoreline, under the assumption that localshorelineorientations deviated littlefrom the aver- 
age orientation of the shoreline segment (Lazarus & Murray, 2007). (See Figure S3 for detailsof the analysis 
for an example shoreline segment.) 

2.2. Shoreline Change 

We obtained shoreline change data separately, from the USGS National Assessment of Shoreline Change 
Project (Morton et al., 2004; Morton & Miller, 2005). Mean high water level was used to identify the shore- 
line. A "long-term" (-1<>2 years) rate ofshoreline change for a given shorelinesegment was obtained from a 
linear regression of shoreline change spanning the late-1800s, 1920s-1930s, 1970s, and 1998- 2002.A "short- 
term" (- 101 years)shoreline change rate was calculated using an endpoint method and shoreline data from 
the 1970s and 1998- 2002. Positive values of shoreline change represent accretion; negativevalues represent 
erosion (Figure 2b). Where extensive reaches of a given shorelinesegment did not have available shoreline 
change data, we removed the segment from the analysis. 

With theshoreline curvature and shoreline change data, we calculated a correlation coefficient (zero-lag) to 
determine the magnitude and sign of the relationship between curvature and shoreline change rate for each 
shoreline segment 

 
  (2) 

where µA and aA are the mean and standard deviation of A (curvature), respectively, and µ8 and a8 are the 
mean and standard deviation of B(shoreline change rate). The absolute valueof the correlation coefficients, 
which are nondimensional, isbounded by O( indicating no relationship between the twosignals) and 1 (indi- 
cating that all of the variance in one signal is related to variance in the other signal). By our convention 
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(Figure 2b), a negative correlation indicatesshoreline smoothing, and a positive correlation indicates shore- 
line roughening. 

We also identified shoreline segments that have experienced nourishment (Miller et al., 2004; Miller et al., 
2005). We excluded nourished segments from our analysis of North Carolina and Florida but have included 
nourished segments from Texas and the Mid-Atlantic to demonstrate the effects of nourishment on this type 
of analysis. Nourished segments included in our calculations are identified in Table 1. 

To provide context when analyzing the results of the correla tion calculations for select regions (North 
Carolina , Texas, and Florida), we calculated an average effective diffusivity, representing the time-integrated 
effects of the high- and low-angle waves in the wave climate, following the methods of Ashton and Murray 
(2006b). Coastline diffusion can be expressed by 

ay 
at ( 3) 

where By/Bt is shoreline change rate, D is shoreface depth (the depth to which erosion or  accretion  are 
spread),  and 8Qsf8$ is  the  rate of change of  alongshore sediment flux as the  relative angle between offshore 
wave crests and  the local shoreline, e,varies-   which is a function of relative angle and  height of offshore 
waves. We can define coastline diffusivityµ as 

 
  (4) 

To represent the net diffusive (or antidiffusive) effects of a wave climate, we use an effective diffusivity 
(Ash ton & Murray, 2006b): 

 

  (5) 

where µ net has dimensions of m2/s. (Wave data are typically available as statistics such as significant wave 
height and wave direction averaged over a sampling period t; µ1 is calculated for each data point using 
equation (4).)This effective diffusivity is O when the diffusive influence of all the low-angle waves in a wave 
climate equals the antidiffusive influence of all the high-angle waves. Greater positive magnitudes of µ net 
result from a greater dominance of low-angle waves,  and  or larger-wave heights (holding  the  proportion 
of influences from low- and high-angle waves constant). Greater negative magnitudes of µnet result from a 
greater dominance of high-angle waves, and or larger-wave heights (holding the proportion of influences 
from low- and high-angle waves constant). In either case, positive or negative, the magnitude can in princi- 
ple be large (e.g., >>1). The rate that subtle coastline undulations are smoothed out (or exaggerated) 
depends on the magnitude of µ n,·t 

2.3. Excluded Reaches 

We excluded from this analysis much of the wave-do minated, sandy coastline of South Carolina and 
Georgia. This stretch of coast is characterized by a large tidal range, and frequent tidal inlets as well as estu- 
aries; ocean-facing shoreline segments are therefore short, and the influence of tidal inlets isstrong.We also 
excluded segments that are extensively stabilized and heavily developed in North Carolina and Florida. 

 
3. Results 
The fullspatial extent of our analysis is shown in Figure1 and dataare reported in Table1. Here, we examine 
subsets of those results in detail. 

3.1. North Carolina 
3.1.1. Comparison to Previous Work 
Lazarusand Murray (2007) previously analyzed correlations between curvature and shoreline change along 
a section of the Northern Outer Banks of North Carolina from the Virginia state lineto Oregon Inlet ( NC P96 
in this study). Because here we use a somewhat different method , we focused on the same section and re-
analyzed the original data from that work (which extracted shoreline position from repeated lidar 
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Table 1 
Correlation Coefficient Data for all Spaceand Timescales for all Shoreline Six:tions 

 

Correlation ooefficie nt 

Short-term shoreline change Long-term shoreline change 
 

Shoreline section  1km  3km  Siem  1 km  3km  Siem 

New York 8 0.070324 - 0.12827 -0.1582 -0.03502 -0.20957 -0.36577 
New York 7 0.111674 0.372689 0.129199 -0.01643 -0.26676 -0.18264 
NewYork6 -0.16447 -0.2139 0.094883 0.072898 -0.35544 -0.41847 
New York 5 -0.04217 -0.01076 0.02657 -0.01125 -0.02875 -0.08844 
NewYork4 -0.00042 0.026879 0.164316 -0.07888 0.202794 0.11143 
NewYork3 0.019078 -0.06927 -054342 0.027861 --0.06655 0.023931 
NewYork2 -0.59108 -0.69198 -0.6239 -0.1626 -0.04233 0.164476 

New York 1 -0.39928 0.094831 0.309797 0.305994 0.079137 -0.23789 
NewJersey9 -0.08228 0.053764 0.205561 0.107832 0.348556 0.332377 
NewJersey8 0.145729 0.205536 -0.00939 0.045185 0.10853 0.052792 
New Jersey7 0.291612 0552746 0.412828 0.213461 0.624899 0.515199 
NewJersey6 0.217063 0.117759 0.120676 0.17374 0.402628 0.220784 
New Jersey 5 -0.2044 -0.16818 -0.48515 0.381102 0570934 0.612524 
New Jersey4 0.102028 0.339569 0.282275 0.10447 0.008002 0.082873 
NewJersey3 -0.61737 -0.83374 -0.40891 0.415036 0569583 0581117 
NewJersey2 -0.06871 0.011789 0.351761 0.089031 0.353269 0.226332 
New Jersey! -0.10345 0.105707 - 0.10639 0.419118 0.726764 0.608737 
Delaware 1 -0.17877 -0.4055 -0.26207 0.003589 -0.09073 -0.30117 
Maryland 1 0.005773 0.073997 0.242193 -0.02634 0.017682 0.150606 

Virginia! 2 -0.10359 -0.16801 -0.19339 0.029798 0.059715 0.055696 
Virginial 1 -0.40403 -0.14275 0.24763 -0.02237 0.520963 0.141626 
Virginia 10 -0.37967 -0.34945 0.000728 -0.02503 0.257716 0571434 
Virginia 9 -0.06196 -0.00568 -0.08664 0.145887 0.238378 0.164923 
Virginia 8 --0.15521 -0.36874 -0.6393 0.45665 0.42626 0501026 
Virginia 7 -0.25557 -0.74775 -0.7111 0.088547 0.106359 0.61136 
Virginia 6 0.037561 0.120676 0.746808 -0.26258 -0.39069 -0.68728 
Virginia 5 -0.54848 NIA NIA -0.94385 NIA NIA 

Virginia 4 -0.96205 -0.66748 NIA 0.925424 0.857653 NIA 

Virginia 3 0.064669 - 0.21759 NIA 0.111884 0.363048 NIA 

Virginia 2 0.125624 0.759211 0.803326 0.02661 0.620772 0.891446 
Virginia 1 0.744398 NIA NIA -0.01646 NIA NIA 

North Carolina P96 0.144269 -0.10529 -0.00876 -0.10541 -0.18824 -0.13276 
North Carolina P92  0.349557  -0.27417  -0.31334 0.025203  -0.28839  -0.2133 
North Carolina P91 -0.25219 NIA NIA 0.145667 NIA NIA 

North Carolina P90 0.250724 0.039114 0.142102 0.017522 --0.01094 0.143771 
North Carolina P89 0.021587 0.218485 0.102581 -0.24125 --0.01805 -0.18751 
North Carolina P88 0.079472 0.050025 0.04052 -0.06983 -0.06712 -0.06532 
North Carolina P87 -0.19644 0.324325 0.550742 0.027631 0.254313 0.579232 
North Carolina P85 -0.37264 -0.83128 NIA -0.51683 -0.91692 NIA 

North Carolina P84 -0.0911 0525982 NIA 0.124373 0591191 NIA 

North Carolina P83 -0.01929 -0.08488 0.122145 -0.00162 -0.25567 -0.24168 
North Carolina P81 -0.30684 -0.21183 -0.34157 -0.65238 -0.33897 0.316539 
North Carolina P80 -0.21832 0.071481 - 0.06178 0.17744 0.422571 -0.12204 
North Carolina P78 -0.56693 -0.78673 -0.70293 - 0.51285 -0.69875 -0.10446 
North Carolina P76 --0.09098 0.140232 - 0.14015 0.067391 0501133 0.1847 
South Carolina P68 -0.10677 -0.44164 - 0.68018 -0.33971 -0.81407 -0.90549 
Florida P19 0.025201 0.099415 0.279159 0.054233 0.095545 0.12083 
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Table 1 (continued) 
 

Correlation coefficient 
 

Shor t-term shoreline change Long-term shoreline change 
 

Shoreline section 1km 3km 5km 1km 3km 5km 

Florida Pl 8 0.124249 -0 .04477 - 0.13314 - 0.04349 -0 .37348 - 05 5988 
Florida Pl 7 - 0.03337 0.052037 0.01319 - 0.00258 0.040937 0.033951 
Florida Pl 6_2 0.093654 0.1549 0.255917 0.005374 0.006049 -0 .02489 
Florida Pl 6_1 - 0.09532 -0 .11464 -0 .05769 - 0.08013 - 0.09641 -0 .0637 
Florida PIS 0.021525 0.053018 -0 .02001 0.020112 0.024078 0.036264 
Florida PIO - 0.16552 0.161041 0.271616 - 0.05879 -0 .13993 -0 .09773 
Florida P9 0.087139 -0 .15064 - 0.21389 0.299981 -0 .01654 0.10858 
Texas 14 - 0.00358 -0 .12428 - 0.27463 0.035979 0.008918 0.000558 
Texas13 0.050743 0.004555 -0 .04873 0.045255 0.016686 -0 .00247 
Texas12 - 0.04612 0.135178 0.13365 - 0.04115 - 0.1909 -05 75 
Texas11 - 0.03796 -0 .37634 - 0.37393 - 0.04811 0.074985 0.071233 
Texas 10 - 0.07537 -0 .13733 - 0.20475 - 0.1033 -0 .07987 -0 .19432 
Texas 9 - 0.03402 -0 .0859 - 0.14875 - 0.00463 0.021958 - 0.03221 
Texas 8 - 0.11271 0.061099 0.044159 - 0.12668 0.029944 0.104228 
Texas 7 - 0.06834 -0 .17361 - 0.28095 - 0.10502 -0 .18407 - 0.25799 
Texas 6 - 0.19458 -0 .5778 - 0.71853 - 0.19394 - 0.54149 -0 .66695 
Texas 5 - 0.05542 -0 .25435 - 0.43196 - 0.00979 0.037675 -0 .00574 
Texas 4 0.009212 -0 .03978 - 0.05869 - 0.01434 -0 .06512 -0 .08189 
Texas 3 0.003582 -0 .06113 - 0.08572 0.003729 0.006362 - 0.01497 
Texas 2 - 0.04068 -0 .07482 - 0.09748 - 0.00601 -0 .01158 0.017724 
Texas 1 - 0.06139 -0 .58019 - 0.7515 - 0.13321 -0 .50223 -0 .63403 

Note. Shorelinesectionsare numbered moving fromsouth to north(e.g., NewYork1 is the southernmostsection of New 
York's shore line). Bold shoreline section names have not experienced nourishmen t, unbolded section names have 
experienced nou rishment. Bold values are significant at a 95% co nfidence interval. 

 
 

surveys) to make a direct quantitative comparison. Where Lazarus and Murray (2007) smoothed the 
calculated curvature and shoreline change values, we  smooth the shoreline itself. Comparing the  results 
of smoothing the calculated curvature versus smoothing the shoreline, we found no difference in the final 
curvature values. Likewise, we found a negligible difference in the correlation coefficients for smoothing 
(Lazarus & Murray, 2007) or not smooth ing (this study) the shoreline change data. 

The smoothing filters used in the respective analyses differ slightly (Figure S2). Our results thus differ in 
local detail, but not in overall trend. When we change the shape of our Gaussian so that it resembles the 
Hanning window used by Lazarus and Murray (2007), such that thesumof the weights is ~99% and the low- 
est weight is ~1% of the cen tral value, the length scales of the respective filters differ by a facto r of~ 1.5: data 
smoothed at a 1-km scale in our analysis are comparable to smoothing at a ~1.5-km scale by the process in 
Lazarus and Murray (2007). We have to reduce our length scale(¼ in equation (1)) by ~ f to weight our 
Gaussian in a way that is comparable to their Hanning window. 

Our method reproduced the same relationships demonstrated by Lazarus and Murray (2007; Figure S2), 
with values within a factor of 2 of those they reported (Table S1).The correlation between shoreline curva- 
ture and shoreline change isstrongest at longer (decadal) timescales, and it depends on length scale in a way 
that varies with timescale(Figure S2). 
3.1.2. New Anal ysis 
We analyzed ~265 km of sandy barrier island shoreline along North Carolina's coast- more than twice the 
reach covered previously (Lazarus& Murray,2007, 2011;Lazarus et al., 2011, 2012). Individual islands range 
in length from 2.7 to 121.44 km. We removed several nourished shoreline segments from the analysis 
(NC77,79,82, 86, 93, 94, and 95; Table1) and a few of the sho reline reaches(NC 84,85,and 91)are too short 
to be analyzed at all three length scales. 
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Figure 3. Map showing the significant correlation coefficients between shoreline curvature and shoreline change for the North and South Car olina Coasts. 
(a) Correlations between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century- 
scale) shoreline change. For both timescales, data are plotted in the following order: moving away from the coast, 1, 3, and 5 kmsmoothing. Stars mark shoreline 
sections discussed in detail in the text; NC87 is Shackleford Banks, NC 84 is Browns Island, and NC 80 is Figure Eight Island. 

 
 
 

For context, we calculated a representativeeffective diffusivity of 0.992 m2/s for North Carolina (see TableS2 
for detailson shoreline sections and wave dataused).Thus, wewould expect correlations between curvature 
and shoreline change to be negative, corresponding to coastline smoothing. At the 1-km smoothing scale, 
almost all (85%) of the shoreline has a significant correlation (using a 95% confidence interval criterion) 
between shoreline curvature and short-term shoreline change (Table 1; Figure 3). This percentage decreases 
to - 16% at the 5-km scale. The percentage of the shoreline with a significant positive correlation, indicating 
roughening, decreases from nearly 70% at the 1-km scale to - 5% at 5 km. This indicates small-scale rough- 
ening and large-scale smoothing over decadal timescales. Approximately 50% of the shoreline has a signifi- 
cant, negative correlation between shoreline curvature and long-term shoreline change at all spatial scales 
considered, indicating long-term (century-scale)smoothing.Significant correlation coefficients range from 
-0.83 to0.55 for short-term shoreline change and -0.91 to0.59 for long term (Table 1). Stronger magnitude 
correlations (both positive and negative) tend to occur at large spatial scales. 

Some of the significant roughening signals can be explained by local factors. For example, Shackleford 
Banks(NC 87) has a significant, positive correlation at the 3- and 5-km scales for both short- and long-term 
shoreline change (Figure 3). This apparent roughening signal likely arises from wave-shadowing effects 
leading to a local gradient in wave climate where the western end of the island is more strongly affected 
by waves from the east and northeast than the eastern end. The resulting gradient in net alongshore sedi- 
ment transport causes shoreline erosion creating a concave shoreline. The association between concavity 
and erosion corresponds to a roughening signal in our analysis. 

Another island with a roughening signal, Figure Eight Island (NC 80), is known to undergo nourishment 
(which we address in section 4.3). However, because it is a private island, and its nourishment projects 
are funded privately, Figure Eight Island is not included in the database we used to eliminate nourished 
shorelines. Browns Island (NC 84), a third island where shoreline roughening is apparent, is occupied by 
Camp Lejeune, a U.S. military base, and shoreline stabilization data are not available. In addition, some 
of the short-term roughening signals may indicate that local wave climates were weighted toward high- 
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Table 2 
Total Length of Shorelines Considered and Perrentage of Total With Significant Correlations for Each Study Region 

 

Short-term shoreline Long-term shoreline 
change  change 

Total % of shoreline with 
 Region length (km) significant correlation 1km 3km 5km 1km 3km 5km  

Mid-Atlantic 487.6 Total 48.6 55.2 54.4 50.6 68.3 70.0  

 Positive 10.1 19.3 29.1 46.4 52.1 52.2  
 Negative 38.4 35.8 25.3 4.3 16.1 17.9  
North Carolina 264.9 Total 85.4 67.1 16.6 59.4 56.1 48.9  
 Positive 67.9 10.0 4.6 0.0 13.0 7.7  
 Negative 17.5 57.1 12.1 59.4 43.1 41.3  
Florida 277.9 Total 61.1 73.1 47.4 5.9 56.3 17.1  
 Positive 21.8 41.5 41.5 5.9 6.1 6.1  
 Negative 39.2 31.6 5.9 0.0 50.2 11.0  
Texas 575.1 Total 15.0 63.7 90.2 24.5 14.0 14.0  

  Positive 0.0 3.8 3.8 0.0 0.0 4.8  
  Negative 15.0 59.9 86.4 24.5 14.0 9.2  

 
 

angle-waveinfluence over relatively short durations, possibly related to single storm events involving large 
waves approaching from high angles (Lazarus et al., 2012). Because coastline diffusion or antidiffusion 
theoretically occurs more rapidly as the spatial scale is reduced, the fact that the short-term positive 
correlations tend to occur at the smallest length scales is consistent with the theoretical framework- 
especially given that larger-scale and longer-term correlations strongly tend  to be  negative,  consistent 
with the positive effective diffusivity representing relatively long-term forcing. 

 
3.2. Texas 

We analyzed -575 km of sandy, barrier island shoreline along the Gulf Coast of Texas. Individual islands 
ranged in length from 10.2 to 95.9 km. The shoreline sections for TX 2 (South Padre Island), 11, 12, and 
13(Galveston Island) have experienced nourishment but wereincluded in the analysisfor the sake ofdiscus- 
sion. For context, we calculated an average effective diffusivity ofl.089 m2/s forTexas (TableS2); we expect 
to find correlations indicating coastline smoothing for this region. 

The percentage of shoreline with a significant correlation between curvature and short-term shoreline 
change increases from15% to 90%with increasing spatial scale(Table 2). Significant correlations are almost 
entirely negative, indicating smoothing (Figure 4). This significant smoothing signal is also observed for 
long-term shoreline change, though for a smaller percentage of the shoreline (9- 24%). Correlation 
coefficients range from -0 .75 to 0.06for short-term shoreline change and from -0.63 to 0.1 for long-term 
shoreline change (see Table 1 for all data). The correlation coefficients increase in maximum magnitude 
and range as the spatial scale increases (Figure4, Table 1). While smoothing occursat all three spatialscales 
(1, 3, and 5 km), values are more negative and there are more significant values(i.e., the smoothing signal is 
stronger) at larger-spatial scales. 

Whilea fewshorelines in Texas appear to havea roughening signal, the correlations in these cases are much 
smaller in magnitude than those of the smoothing signal and are often not significant (Figure 4; Table 1). In 
most cases, this signal can be explained by local history. For example, Texas 8 (FigureS3)has a positive cor- 
relation coefficient indicating roughening for the 3- and 5-km smoothing windows at both short and long 
timescales (this signal is significant only at the 5-km long-term scale; Figure 4). Historical satellite imagery 
(via Google Earth) reveals that an inlet was formerly present in this location which has now filled in. Since 
the inlet closed during the period covered by our shoreline change data, this rougheningsignal is likely the 
result of the shoreline becoming locally convex in sha pe, while accreting seaward, as waves swept the relict 
ebb tidal delta onshore. Texas 12 also exhibits a significant, positive (roughening) signal on 3- and 5-km 
scales for short-term shoreline change (Figure 4a). This is likely a result of the island's history of 
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Figure4. Map showing the significant correlation coefficients betweenshorelinecurvature and shorelinechange for the Texas Gulf Coast.(a) Correlations between 
shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline curvature and long-term (century-scale)shorelinechange. 
For both timescales, data areplottedin the followingorder: moving away from the coast, 1, 3, and 5 km smoothing. Starsmark shorelinesections discussed in detail 
in the text. 

 
 
 

nourishment projects resulting in the creation of a shoreline convexities. The correlations for the other 
nourished shoreline sections in Texas are not significant, close to zero, and/ or negative (Table 1). 

 
 

3.3. Mid-Atlantic (New York to Virginia) 

We analyzed ~485 km of sandy,barrier island shoreline between Montauk Point, NewYork and Assateague 
Island, Virginia. Individual is lands range in length from 9.26 to 79.86 km. Virtually, all the shorelines along 
the coast of NewYork and New Jersey havebeen nourished or have stabilization structuressuch asgroynes 
or seawalls  in  place;  thus,  all  shorelines  were  included  in  the  analysis  regardless  of  nour ishme nt 
or stabilization. 

Approximately 50% of the shoreline has a significant correlation  between shoreline  curvature  and sho rt- 
ter m shoreline change at all spatial scales considered (Table 2; Figure 5). The percentage of the sho reline 
with a significant positive correlation, indicating roughening, increases from 10% to 30% as spat ial scale 
increases from 1 to 5 km. For long-term shoreline change, the percentage of the shoreline with asignificant 
correlation increasesfrom 50% to 70%with increasingspatial scale.Approximately 50%of the shoreline has a 
significant positive correlation between curvature and long-term shoreline change, on all spatial scales. 
These mainly positive correlations reflect the long-term roughening signal of sho reline stabilization and 
nourishment on the heavily developed barriers of the Mid-Atlan tic (Hapke  et  al., 2013), which obscures 
the smoothing signal that would be expected. The relatively few s moothing signals occur  predominately 
in the short -term analysis. Correlation coefficients in this region range from -0 .42 to 0.73 for long-term 
change and from - 0.83 to 0.55 for short-term change (Table 1). 

One of the sho reline sec tions, NY 4 (Fire Island, Figure 5), displays a roughening signal on both short- 
ter m and long-term timescales despite not undergoing nourishment. This signal can be attributed to 
the presence of shoreface-attachedsand ridgesacting as an offshore sediment source (Safak et al., 2017; 
Section 4.3). 
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Figure 5. Map showing the significant correlation coefficients between shoreline curvature and shoreline change for the Mid-Atlantic Coast (from New York to 
Assateague Island, Virginia).(a) Correlations between shoreline curvature and short-term (decadal) shoreline change. (b) Correlations between shoreline 
curvature and long-term (century-scale)shoreline change. For both timescales, data areplottedin the following order: moving away from the coast, 1, 3, and 5 km 
smoothing.Stars mark shoreline sections discussed in detail in the text; NY 4 is Fire Island. 

 
 
 

3.4. Virginia 

The Virginia Barrier Islands are characterized by short, uninhabited islands with a strong tidal influence. 
Islands range in length from 3.09 to 15.69 km. Tidal and inlet effects are at least as important as wave 
influence in determining island behavior in this region. Many of the shorelines are too short to evaluate 
at greater than the 1-km length scale, and others (e.g., Wallops Island , a NASA flight facility) do not have 
historic shoreline change data available. In addition, the timescales of analysis in this project do not 
match the timescalesof shoreline change in this region. While our shoreline change data is on decadal 
or centur ial timescales, the tidal-inlet dynamics cause the Virginia Barrier Islands to rotate and shift on 
shorter timescales, so that there is little overlap between the current position (and curvature) of the shore· 
line and the position (and curvature) of the shoreline at the start of the time spanned by the shoreline 
change data. For one example, Hog Island, shoreline change rates can be higher than 5 m/year, rotating 
the island by accreting on the northern end of the island and eroding on the southern (Hayden et al., 
1991) and resulting in changes in shoreline location of hundreds of  meters  over  the  timescales of 
our analysis. 

As a result of the mismatch between shoreline change rates and the duration over which shoreline 
change is calculated in this s tudy, no clear trend can be found, and most coefficients are on the extreme 
ends of the range of correlations, signifying a strong smoothing or roughening signal (see Table 1 for 
data). Many of the islands are short enough that few points rema ined for analysis, allowing outliers to 
have a strong influence on the overall trend. Few correlations are significant, and the mismatch in time- 
scales means it is unlikely the trends have any physical meaning, especially on timescales as long as 100 
years. While positive corre lations could represent curvature-related roughening resulting from locally 
antidiffusive wave climates, the mismatch between the timescales of our ana lysis and those of the shore- 
line changes in this region precludes meaningful interpretation. Although we did not perform our analy· 
sis for the short, tidally influenced barrier islands of South Carolina and Georgia, we would expect similar 
results for those shorelines. 
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Figure 6. Mapshowing the signilicantcorrelationcoefficients between shorelinecurvature andshorelinechange for the Atlantic Coast of Florida.(a) Correlations 
between shoreline curvature and short-term (decadal)shoreline change. (b) Correlationsbetween shoreline curvature and long-term (century-scale)shoreline 
change. For both timescales, data are plotted in the following order: moving away from the coast, 1, 3, and S km smoothing. 

 
3.5. Flo ri da 

Though characterized by longsandy barriers like the coasts of North Carolina and Texas, the Florida coast is 
also heavilydeveloped and therefore subject to large and frequent nourishment projects. Due to the extent of 
nourishment, we analyzed only a portion of the Florida coast: -280 km of sandy barrier-island shoreline 
along the eastern coast of Florida. This included eight shorelines, ranging from 16.41 to 60.72 km in length . 
For context, we calculated a representative effective diffusivity of 2.575 m2/s for Florida (Table S2), corre- 
spon ding to the prediction of strong smoothing signals (negative correlations between curvature and 
shoreline change). 

Between 47% and 73% of the sho reline cons idered had a significant co rrelat ion between curvature and short· 
term shoreline change, for which smoothingsignals dominate on larger-spatial scales and roughening over 
smaller (Table 2; Figure 6). Less of the overall sho reline has a significant correlation when examining long-
term shoreline change, but the correlation is more likely to  be  negative,  reflecting  a  smoothing signal 
(Figure 6). 

 

4. Discussion 
4.1. Variability in Wave Clim ate and Effective Diffusivity 

Correlations between curvature and shoreline change depend on local wave climates, which vary 
alongshore. Even though the regional wave climate affecting the Carolina coast is marginally antidiffusive 
(i.e., a negative diffusivity, giving rise to the capes and cuspate coastline; Ashton & Murray, 2006a), numer- 
ical  modeling indicates  that wave-shadowing effects and  coastline  rotat ion  combine  to  produce  diffusive 
local wave climates (Ashton & Murray, 2006b), tending to keep shore lines smooth in the bays between 
the  capes. Texas (and  Florida)  are simpler in  this sense, with local wave climates that are approximately 
thesame as the regional wave climates. 

North Carolina and Texas have very similar local wave climates, as measured by the effective diffusivity for 
representative shoreline segments(TableS2). We might therefore expect the correlations between curvature 
and shoreline change (i.e., the dis tribution of correlat ion coefficients) to be similar. However, even with the 
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Figure 7. Distribution of correlations in termsof shoreline length for (a) North Carolina and ( b)Texas.Solid boxes 
represent significant correlations, and shaded boxesin significant. Percent of shoreline refers to the total sho reline 
considered, not totalshoreline existing. 

 

inclusion of nourished shorelines in Texas and not North Carolina, correlations are on average more 
negative for Texas than North Carolina (i.e., the distribution is shifted to the left; Figure 7). A larger 
percentage of the shoreline exhibits a smoothing signal in Texas (Table 2), and correlations tend to be 
stronger than North Carolina. When roughening signals are observed, they are less likely to be significant 
and tend to be smaller for Texas than North Carolina. 

What might explain this difference ? In terms of theoretical frameworks and numerical model results, the 
likely answer involves wave-shadow effects, which play a key role in shaping the coastline of North 
Carolina but not Texas. The gradient in net alongshore sediment transport associated with a wave-shadow 
gradient tends to produce erosion, and therefore coastline concavity (as with Shackleford Banks, NC 87, in 
section 3.1.2). However, as the concave curvature increases in magnitude, the component of the alongshore 
transport gradient related to coastline curvature increases. This component of the gradient in net transport 
tends to cause accretion. In modeling studies (and likely on natural coastlines), as the curvature increases, 
the tendency to accrete (driven by coastline curvature) eventually balances the tendency to erode (driven 
by a wave-s hadow gradient). Although fluctuations in wave climate will cause the curvature to fluctuate 
(Ratliff & Murray, 2014), the result is a background curvature in a quasi steady state-such as thecurvature 
observed in the cuspatebays between capes. (In the case ofShackleford Banks in NC, the curvature was pre- 
sumably in quasi steady state before Barden's Inlet opened up in 1933, disconnecting the cape from Cape 
Lookout from the Shackleford Banksshoreline. Because of the disconnection in the sediment transport path- 
way, which changed the boundary condition at the eastern end of the Shackleford shoreline, over the last 
several decades, the curvature of the shoreline has been decreasing as the eastern end erodes.) 

' 



AGU 

14 LAUZON ET AL. 

 

 

--10--0- Journal of Geophysical Research: Earth Surface 10.1029/ 2019JF005043 

In the quasi steady state, this background curvature theoretically does not contribute to any accretion nor 
does it contribute to the correlation between curvature and shoreline change. Instead, shoreline change in 
this context should be correlated with deviations from the background curvature. Where the curvature is 
greater than the background, accretion should result, and where the curvature is smaller than the back- 
ground value, erosion should result. If we were able to calculate the background curvature, which will vary 
with position within a cuspate bay, and subtract the background from the observed curvature, we would 
expect the correlations to be stronger- approximately as strong in North Carolina as those in Texas. 
Calculation of background curvature is beyond the scopeof thiswork but is a valuable topic for future exam- 
ination. For the present, the stronger correlations on the Texas coast, despite a very similar effective diffusiv- 
ity to that representing the Carolina coast, are consistent with the theoretical/modeling framework. 

4.2. Space and Timescales of Relevance 

In a simple diffusional system, we would theoretically expect to be able to see relationships between shore- 
line curvature and shoreline change down to small (1cm) spatial scales for short timescales. However, the 
longer the span of time considered, the more likely it is that small-scale relationships are obscured, as the 
memory ofsmall-scaleshoreline excursions in the initial coastline diffuse away and the long-term shoreline 
position becomes dominated by larger-scale undulations. This is consistent with our results which involve 
relatively long-timescale shoreline change data; there are stronger correlations for the larger-spatial scales 
(i.e., 5 km) than the smaller ones(1, 3 km) and this trend is more evident for the centurial timescales than 
the decadal ones (see Figure 7, Tables 1 and 2). 

The time and space scalesoverwhich our analysis is meaningful vary with the wide variety of environmental 
conditions and morphological processes which can affect shoreline change. In some cases, signals that did 
not fit our expectations were related to events in the historyof a given shoreline reach, such as the creation 
or filling-in of an inlet. In these cases, shoreline change data with the same timescale but from a different 
time period would likely have resulted in a smoothing signal. In other cases, such as the Virginia Barrier 
Islands, the timescale of the shoreline change data sets does not match the timescale for the reshaping of 
the shoreline. When the final shoreline shape differs so dramatically from the initial shape (and from the 
shape at intermediate times), the record of cumulative shoreline change does not bear a strong relationship 
to the curvature of the final shoreline. 

If the fact that shoreline change operates on a shorter timescale than our decadal and centurial shoreline 
change timescales was the onlyobstacle, we could overcome it by using shorter-term (e.g., annual) shoreline 
change data. However, the strong tidal influence and rotational nature of the short Virginia Barrier Islands 
means that waves are not the only strong influence shaping these islands. While gradients in wave-driven 
alongshore transport are tending to smooth out some portions of the coastline, tidal-inlet processes are gen- 
erating or exaggerating shoreline bulges in other portions. This combination of smoothing and roughening 
signals means we would not necessarily expectshoreline curvature to have a simple relationship withshore- 
line change rates. These examples lead to a broader consideration of processes that can create shoreline 
curvature, in opposition to the tendency for alongshore transport gradients reduce curvature. 

4.3. Nourishment and Other Complicating Factors 

Along with tidal-inlet processes, other processes can introduce shoreline change signals that complicate or 
obscure the relationship between shoreline curvature and shoreline change. These processes range from 
shoreline bulges resulting from nourishment(Browder& Dean, 2000; Dean, 2002; Dean& Yoo, 1992) to var- 
iations in underlying geology(Valvo et al., 2006). 

In the case of nourishment, if shoreline change and curvature were analyzed during a period following 
the completion of a nourishment project and before any subsequent nourishments, the results would 
indicate smoothing, as the convex nourished beach erodes and surrounding convex shorelines accrete 
(e.g., Browder & Dean, 2000; Dean, 2002; Dean & Yoo, 1992). However, if nourishment occurs during the 
period analyzed, the artificial widening of the shoreline and corresponding shoreline convexity in the final 
shoreline shape looks like a roughening signal. On the timescales considered in our analysis, multiple nour- 
ishment episodes can obscure diffusional signals from waves. This result (Figure 5) resonates with the pre- 
vious finding concerning the highly developed coasts of the Mid-Atlantic: Shorelines which in historic times 
experienced shoreline erosion are now exhibiting net accretional shoreline changesignals resulting from the 
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cu mulative impact of nourishment projects(Armstrong & Lazarus, 2019; Hapkeet al., 2013). Over long time- 
scales, the natu ral erosional signal appears completely obscured by human activity. 

Heterogeneity in underlying geologyor offsho re bathymetry can also create signals of shoreline change. 
Offshore bathymetric features, such as shoreface-attached sand ridges,can influenceboth shoreline shape 
and shoreline change. Fire Island (NY 4) provides a clear example, displaying a roughening signal on scales 
greater than 1 kmin our analysis (Figure 5,Table 1), likely caused by the presence of sho reface-connected 
sand ridgesoffshore (Safak et al., 2017). These features apparently act as a cross-shore source of sediment, 
resulting in accretion and subtle convex bumps along the shoreline. In a low-angle wave climate such as 
found here, we would expect gradients in alongshore sediment transport associated with the convex curva- 
ture to result in erosion. However, in this case, it appears that the rate of cross-shore sediment flux building 
the undu lations is greater than the ratesediment is being removed by alongshore transport gradients related 
to shoreline curvature. 

Alongshore variations in the composition of underlying geology can also create persistent perturbations to 
sho reline curvature (Lazarus & Murray, 2011; Valvo et al., 2006). As an eroding coastline encroaches on 
alongshore heterogeneities in the material that the shoreface is eroding into, portions of the coastline that 
are producing less material that is coarse enough to stay in the nearshore system will begin to erode more 
rapidly, producing concave curvature. Conversely, portions of the coastline where the shoreface is eroding 
into coarser material will tend to produce subtle convex bumps in the coastline (Lazarus & Murray, 2011; 
Valvo et al., 2006). This curvature tends to be diffused away by the smoothing action of waves, but new 
sho reline curvature signals are introduced as the shoreline transgresses through alongshore variable sub- 
strate (Lazarus & Murray, 2011). The reintroduct ion of these signals could explain why shorelines on even 
wave-dominated, pristine coastlines that are beingdiffusedstill retain curvature after millennia ofsmooth- 
ing (Lazarus & Murray, 2011). 
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4.4. Implications 

Our resultsdemonstrate thatshoreline curvature can correlate significantlywithshoreline change ratesover 
several kilometer and decade to century space and timescales. The presence of a significan t corre lat ion 
between shoreline change and shoreline curvature on many coastlines, however small the correlation coef- 
ficient may be, demonstrates the importance of this relationship in understanding shoreline dynamics.This 
relationship is strongest on wave-dominated coasts with long, sandy barriers and relatively slow rates of 
shoreline change but can help explain shoreline behavior even on shorter islands with competing influences 
(e.g., tides) over relatively short timescales. 

The demonstrated role of shore line curvature in determining shoreline change rates has implications for 
managing as well as for understanding sandy coasts. Large magn itude, significant corre lations between 
shoreline curvature and shoreline change in some locations (e.g., Texas and North Carolina) suggest that 
consideringshoreline curvature in analysesof histor ical and predicted shoreline change could help improve 
agreement between models and data on low-lying, sandy coastlines where models have historically under- 
performed (e.g., Gutierrez et al., 2011;Yates & Le Cozannet, 2012). Although practical application is limited 
to wave-dominated coastlines, this analysis is broadly applicable to many types of shoreline and shoreline 
change data, across a range of time and spacescales.Calculatings horeline curvature is relatively straightfor- 
ward, and we show that the results ofcorrelation analyses exhibit low sensitivity to variations in methodol- 
ogy (see section 3.2.2).Thus, the results presented here suggest that correlations between curvature and 
shoreline change should be included in risk assessment and modeling efforts pertairting to sandy shorelines. 
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