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Abstract
The Cahn–Hilliard equation is a classic model of phase separation in binary mixtures
that exhibits spontaneous coarsening of the phases. We study the Cahn–Hilliard equa-
tion with an imposed advection term in order to model the stirring and eventual mixing
of the phases. The main result is that if the imposed advection is sufficiently mixing,
then no phase separation occurs, and the solution instead converges exponentially to a
homogeneous mixed state. The mixing effectiveness of the imposed drift is quantified
in terms of the dissipation time of the associated advection–hyperdiffusion equation,
and we produce examples of velocity fields with a small dissipation time. We also
study the relationship between this quantity and the dissipation time of the standard
advection–diffusion equation.
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1 Introduction

Spinodal decomposition refers to the phase separation of a binary mixture, such as
alloys that are quenched below their critical temperature. A well-studied model is the
Cahn–Hilliard equation (Cahn and Hilliard 1958; Cahn 1961), where the evolution of
the normalized concentration difference c between the two phases is governed by the
equation

∂t c + γ D �2c = D�(c3 − c). (1.1)

Here, D > 0 is a mobility parameter, and
√

γ is the Cahn number, which is related
to the surface tension at the interface between phases. The coefficient γ D is a hyper-
diffusion that regularizes the equation at small length scales by overcoming the
destabilizing −D�c term. The concentration c is normalized such that the regions
{c = 1} and {c = −1} represent domains that are pure in each phase. For simplicity,
we will only consider (1.1) on the d-dimensional torus Td .

When γ is small, solutions to (1.1) spontaneously form domains with c = ±1
separated by thin transition regions (see Fig. 1). This has been well studied by many
authors [see, for instance, (Elliott and Songmu 1986; Elliott 1989; Pego 1989)], and the
underlyingmechanism can be understood as follows. The free energy of this system, E ,
can be decomposed into the sum of the chemical free energy, Echem, and the interfacial
free energy, Eint, where

Echem def= 1
4

∫
Td

(c2 − 1)2 dx and Eint def= 1
2γ

∫
Td

|∇c|2 dx .

Using (1.1), one can directly check that E decreases with time, and hence, solutions
should approach minimizers of E after a long time. Minimizing the chemical free
energy Echem favors forming domains where c = ±1. Minimizing the interfacial free
energy Eint favors interfaces of thickness √

γ separating the domains. As a result, the
typical behavior of equation (1.1) is to spontaneously phase-separate as in Fig. 1.

In this paper, we study the effect of stirring on spontaneous phase separation. When
subjected to an incompressible stirring velocity field u(t, x), equation (1.1) ismodified
to

∂t c + u · ∇c + γ�2c = �(c3 − c). (1.2)

Fig. 1 Solution of the Cahn–Hilliard equation (1.1) on the 2D torus with D = 0.001, γ = .01/(2π)2 at
times t = 0, 2, 5 and 20. The phases c = 1 and c = −1 are red and blue, respectively, and c = 0 is green
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Fig. 2 Decay of H1, L2, and H−1 norms for the random shear flow for A = 0.5 (left) and A = 2 (right).
On the left, the norms settle to equilibrium values; on the right, they decay exponentially

Fig. 3 Final concentration c for the two cases in Figure 2

For simplicity, we have set the mobility parameter D to be 1. The advective Cahn–
Hilliard equation (1.2) has been studied by many authors (Chan et al. 1988; Läuger
et al. 1995; Náraigh and Thiffeault 2007a, b, 2008; Liu et al. 2013) for both passive
and active advection. Under a strong shear flow, for instance, it is known that solutions
to (1.2) equilibrate along the flow direction and spontaneously phase separates in the
direction perpendicular to the flow (Berthier 2001; Bray 2003; Shou and Chakrabarti
2000; Hashimoto et al. 1995).

Ourmain result is to show that if the stirring velocity field is sufficientlymixing, then
no phase separation occurs. More precisely, we show that if the dissipation time of u is
small enough, then c converges exponentially to the total concentration c̄ = ∫

Td c0 dx ,
where c0 denotes the initial data. This is illustrated by the numerical simulations in
Fig. 2, where the velocity field u was chosen to be alternating horizontal and vertical
shear flows with randomized phases (see Pierrehumbert 1994; Náraigh and Thiffeault
2007a, 2008). When the shear amplitude, A, is small, the norms of the solution settle
to some nonzero value after a large time. As the amplitude is increased, the flowmixes
faster, and we see the solution decays exponentially to c̄ = 0 (Fig. 3).
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1.1 Decay of the Advective Cahn–Hilliard equation

To state our main result, we need to first introduce the notion of dissipation time. Let
u be a divergence-free vector field and consider the equation

∂tθ + u · ∇θ + γ (−�)αθ = 0, (1.3)

with α > 0, periodic boundary conditions, and mean-zero initial data. For α = 1,
this is the advection–diffusion equation; for α = 2, it is the advection–hyperdiffusion
equation. Incompressibility of u and the Poincaré inequality immediately imply that
‖θt‖L2 is decreasing as a function of t , and

‖θ(s + t)‖L2 ≤ e−(2π)2αγ t ‖θ(s)‖L2 . (1.4)

Thus, we are guaranteed

‖θ(s + t)‖L2 ≤ 1
2‖θ(s)‖L2 , for every t ≥ ln 2

(2π)2αγ
, (1.5)

and every s ≥ 0. However, u generates gradients through filamentation, which causes
solutions to dissipate ‖θ(t)‖L2 faster. This may result in the lower bound in (1.5) being
attained at much smaller times, and the smallest time t at which this happens is known
as the dissipation time [see, for instance, (Fannjiang and Wołowski 2003; Feng and
Iyer 2019)].

Definition 1.1 (Dissipation time). Let Su,α
s,t be the solution operator to (1.3) on T

d ×
(0,∞). That is, for any f ∈ L2(Td), the function θ(t) = Su,α

s,t f solves (1.3) with
initial data θ(s) = f , and periodic boundary conditions. The dissipation time of u is

τ ∗
α (u, γ )

def= inf

{
t ≥ 0

∣∣∣∣‖Su,α
s,s+t‖L̇2→L̇2 ≤ 1

2 for all s ≥ 0

}
. (1.6)

Here, L̇2 is the space of all mean-zero, square integrable functions on the torus Td .

While this definition makes sense for any α > 0, we are mainly interested in
the case when α is either 1 or 2. Note that (1.5) implies τ ∗

α (u, γ ) ≤ O(1/γ ) as
γ → 0. If, however, u is mixing, then this can be dramatically improved [see, for
instance, (Constantin et al. 2008; Zlatoš 2010; Coti Zelati et al. 2018; Wei 2018; Feng
and Iyer 2019; Feng 2019)]. In fact, (Feng and Iyer 2019) bound τ ∗

1 (u, γ ) explicitly in
terms of the mixing rate of u. Moreover, when u is exponentially mixing, Coti Zelati
et al. (2018), Wei (2018), Feng (2019) show that τ ∗

1 (u, γ ) ≤ O(|ln γ |2) as γ → 0.
With this notion, we can now state our main result.

Theorem 1.2 Let d ∈ {2, 3}, u ∈ L∞((0,∞); W 1,∞(Td)), and c be the solution
of (1.2) with initial data c0 ∈ H2(Td).
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(1) When d = 2, for any β > 1, μ > 0, there exists a time

T0 = T0(‖c0 − c̄‖L2 , c̄, β, γ, μ)

such that if τ ∗
2 (u, γ ) < T0, then for every t ≥ 0, we have

‖c(t) − c̄‖L2 ≤ βe−μt‖c0 − c̄‖L2 . (1.7)

(2) When d = 3, for any β > 1, μ > 0, there exists a time

T1 = T1(‖c0 − c̄‖L2 , c̄, β, γ, μ)

such that if
(1 + ‖∇u‖L∞)1/2τ ∗

2 (u, γ ) < T1, (1.8)

then (1.7) still holds for every t ≥ 0.

Remark 1.3 The times T0 and T1 can be computed explicitly, as can be seen from the
proof of the theorem and equations (2.16) and (2.27).

We emphasize that T0 and T1 only depend on the mean concentration c̄, the vari-
ance of the initial data ‖c0 − c̄‖2

L2 , the Cahn number
√

γ , and the exponential decay
constants β,μ. Once T0 and T1 are determined from these parameters, in order to
apply Theorem 1.2, we need to produce velocity fields u that satisfy τ ∗

2 (u, γ ) < T0
when d = 2, and the condition (1.8) when d = 3. We do this in Sect. 1.2, by using
sufficiently mixing flows with a large amplitude. In general, however, smallness of the
dissipation time (such as the conditions required in Theorem 1.2) is weaker than mix-
ing, and there may be simpler examples of velocity fields that satisfy the requirements
of Theorem 1.2.

Several authors have used mixing properties of the advection term to quench
reactions, prevent blow-up, and stem the growth of nonlinear PDEs [see, for
instance, (Fannjiang et al. 2006; Hou and Lei 2009; Berestycki et al. 2010; Kise-
lev and Xu 2016; Bedrossian and He 2017; Iyer et al. 2019)]. Our results are similar
in spirit to those in Iyer et al. (2019), where the authors used related ideas to prove
decay of solutions to a large class of nonlinear parabolic equations. These results were
formulated for second-order PDEs where the diffusive term is the Laplacian, but they
can easily be generalized to apply when the diffusive term is the bi-Laplacian as we
have in (1.2). Unfortunately, the assumptions required for the results in Iyer et al.
(2019) to apply are not satisfied by the nonlinear term, even when d = 2, and thus,
we cannot use them here.

Our 3D result is qualitatively different (and weaker) from the 2D case and from
the results in Iyer et al. (2019). Indeed, Theorem 1.2 in 2D and all the results in Iyer
et al. (2019) only rely on smallness of the dissipation times τ ∗

1 or τ ∗
2 . In 3D, however,

Theorem 1.2 now requires smallness of (1 + ‖∇u‖)1/2L∞τ ∗
2 . The reason for this is that

we are able to estimate the nonlinear term ‖�(c3 − c)‖L2 by ‖c − c̄‖L2‖�c‖2
L2 in

2D and by ‖∇c‖L2‖�c‖2
L2 in 3D. The growth of ‖c − c̄‖L2 can easily be controlled

independent of the advecting flow, and so the 2D result can be formulated only in
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terms of the dissipation time τ ∗
2 (u, γ ). The quantity ‖∇c‖L2 , however, is expected

to depend intrinsically on (and grow with) the advecting flow, and the result in 3D
involves both τ ∗

2 (u, γ ) and the size of the flow (condition (1.8)).
In the next section, we produce velocity fields where this is arbitrarily small. We

remark, however, that while we can find velocity fields for which (1+‖∇u‖L∞)1/2τ ∗
2

is arbitrarily small, it appears impossible to produce velocity fields for which
(1 + ‖∇u‖L∞)τ ∗

2 is arbitrarily small. To see this, the proof in Poon (1996) [see also
equation (9) in Miles and Doering (2018)] can be easily adapted to obtain the lower
bound

τ ∗
2 (u, γ ) ≥ 1

C‖u‖C2
ln

(
1 + C‖u‖C2

γ

)

for some explicit dimensional constant C . (Here, by ‖u‖C2 we mean the spatial C2

norm supt‖u‖C2(Td ).) When τ ∗
2 (u, γ ) is small, we expect ‖u‖C2 to be large, and in this

case the above shows (1+‖u‖C2)τ ∗
2 (u, γ ) grows at least logarithmically with ‖u‖C2 .

1.2 Incompressible Velocity Fields with Small Dissipation Time

In order to apply Theorem 1.2, we need to produce incompressible velocity fields u for
which τ ∗

2 (u, γ ) is arbitrarily small when d = 2, and for which (1+‖∇u‖1/2L∞)τ ∗
2 (u, γ )

is arbitrarily small when d = 3. We do this here by rescaling mixing flows. This
has been studied previously by Constantin et al. (2008), Kiselev et al. (2008), Zlatoš
(2010), Coti Zelati et al. (2018), Feng and Iyer (2019), and Feng (2019) when the
diffusive term is the standard Laplacian. With minor modification, the proofs can be
adapted to our context, where the diffusive term is the bi-Laplacian.

Proposition 1.4 Let v ∈ L∞([0,∞); C2(Td)), and define u A(x, t) = Av(x, At). If v

is weakly mixing with rate function h, then

τ ∗
2 (u A, γ )

A→∞−−−→ 0 .

If further v is strongly mixing with rate function h, and

t h(t)
t→∞−−−→ 0, (1.9)

then
(1 + ‖∇u A‖L∞)1/2τ ∗

2 (u A, γ )
A→∞−−−→ 0.

For ease of presentation, we defer the definition of weak and strong mixing used
above to Sect. 3 (see Definition 3.1). To the best of our knowledge, the existence of
smooth, time-independent or even time-periodic, mixing flows on the torus is open.
Various interesting and explicit examples of mixing flows were constructed in Yao and
Zlatoš (2017), Alberti et al. (2019), Elgindi and Zlatoš (2019). Unfortunately, none of
these examples are spatially regular enough to be used in Proposition 1.4.

Fortunately, there aremany known examples of (spatially) smooth, time-dependent,
flows on the torus that are exponentially mixing, and any such flow will satisfy the

123



Journal of Nonlinear Science

conditions required by Proposition 1.4. The simplest example we are aware of is to use
alternating horizontal/vertical sinusoidal shear flows with randomized phases. These
were introduced by Pierrehumbert (1994) and used to produce our Figure 2. One can
show that these flows, and a variety of other examples, are exponentially mixing using
techniques in Bedrossian et al. (2019).

We also remark that the mixing requirement in Proposition 1.4 is morally much
stronger than what is needed in order to apply Theorem 1.2. Indeed, for Theorem 1.2
one only needs flows whose dissipation time τ ∗

2 is sufficiently small. Proposition 1.4
ensures smallness of τ ∗

2 (u A, γ ) by using the property that the flow v sends a fraction of
the total energy to high frequencies, which then gets rapidly damped by the diffusion.
The mixing assumptions on v, however, ensure a much stronger property, namely that
the flow v eventually sends all the energy to high frequencies [see Drivas et al. (2019)
for a longer discussion]. Thus, the mixing hypothesis in Proposition 1.4 is most likely
much stronger than what may be needed to apply Theorem 1.2. In theory, it should also
be easier to find flows directly satisfying the requirements of Theorem 1.2, without
using Proposition 1.4.

When the diffusion operator is the standard Laplacian, this was done in Iyer et al.
(2019). Here, the authors showed that for any τ0 > 0, there exists a sufficiently strong
and fine cellular flow, u, for which τ ∗

1 (u, γ ) < τ0. This provides a simple, explicit,
smooth, time independent family of velocity fields with arbitrarily small dissipation
time (when the diffusion operator is the standard Laplacian), and in Iyer et al. (2019)
the authors used it to prevent blow-up in the Keller–Segel and other second-order,
nonlinear, parabolic PDEs.

We expect that for any τ0 > 0, one can also construct sufficiently strong and fine
cellular flows for which τ ∗

2 (u, γ ) < τ0. (We recall here τ ∗
2 (u, γ ) is the dissipation

time when the diffusion operator is the bi-Laplacian.) Unfortunately, the proof in Iyer
et al. (2019) does not generalize, and thus, we are presently unable to produce cellular
flows for which τ ∗

2 (u, γ ) is small enough, or for which (1.8) holds.

1.3 Relationships Between theVarious Dissipation Times

Since for any α, γ > 0, the quantity τ ∗
α (u, γ ) is a measure of the rate at which u

mixes, it is natural to study its behavior as α and γ vary. When α = 1, the behavior
of τ ∗

α (u, γ ) as γ → 0 was recently studied in Coti Zelati et al. (2018), Feng and
Iyer (2019), Feng (2019) and quantified in terms of the mixing rate. We will instead
study the behavior of τ ∗

α (u, γ ) when γ is fixed and α varies. Moreover, since τ ∗
1 (u, γ )

and τ ∗
2 (u, γ ) are particularly interesting from a physical point of view, we focus our

attention on the relationship between these two quantities. Our first result is an upper
bound for τ ∗

2 (u, γ ) in terms of τ ∗
1 (u, γ ).

Lemma 1.5 There exists an explicit dimensional constant C such that for every
divergence-free u ∈ L∞([0,∞); C2(Td)), and every γ > 0, we have

τ ∗
2 (u, γ ) ≤ Cτ ∗

1 (u, γ )(1 + ‖u‖C2 τ ∗
1 (u, γ )). (1.10)
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Since velocity fields with small τ ∗
1 (u, γ ) are known, one use of Lemma 1.5 is to

produce velocity fields for which τ ∗
2 (u, γ ) and (1 + ‖∇u‖L∞)1/2τ ∗

2 (u, γ ) are small.
For instance, if u is mixing at a sufficiently fast rate, then the results of Wei (2018),
Coti Zelati et al. (2018), Feng and Iyer (2019), Feng (2019) along with Lemma 1.5 can
be used to produce velocity fields for which τ ∗

2 (u, γ ) and (1 + ‖∇u‖L∞)1/2τ ∗
2 (u, γ )

are arbitrarily small. Lemma 1.5, however, cannot be used to produce cellular flows
for which τ ∗

2 (u, γ ) is arbitrarily small. Indeed, with the τ ∗
1 bound in Iyer et al. (2019),

or even the best expected heuristic for cellular flows, the right-hand side of (1.10)
diverges.

1.4 Plan of the Paper

In Sect. 2, we prove our main result (Theorem 1.2). In Sect. 3 we recall the definition
of weak and strong mixing and prove Proposition 1.4. In Sect. 4, we prove Lemma 1.5
bounding τ ∗

2 in terms of τ ∗
1 . Finally, for completeness, we conclude with an appendix

estimating the dissipation time τ ∗
2 in terms of the mixing rate of the advecting velocity

field.

2 Decay of the Advective Cahn–Hilliard Equation

This section is devoted to the proof of Theorem 1.2. We begin by recalling the well-
known existence of global strong solutions to equation (1.2). Elliott andSongmuElliott
and Songmu (1986) proved well-posedness in the absence of advection. Since the
advection is a first-order linear term, their proof can easily be adapted to our setting.
We state the result here for convenience.

Proposition 2.1 Let γ > 0, u ∈ L∞([0,∞); W 1,∞(Td)) be divergence-free and
c0 ∈ H2(Td). There exists a unique strong solution to (1.2) in the space

c(t, x) ∈ L2
loc([0,∞); H4(Td)) ∩ L∞

loc([0,∞); H2(Td)) ∩ H1
loc([0,∞); L2(Td)).

For the remainder of this section, let β > 1, γ > 0, andμ > 0 be as in the statement
of Theorem 1.2.Without loss of generality, wemay further assume β ∈ (1, 2]. We also
fix a divergence-free velocity field u ∈ L∞([0,∞); W 1,∞(Td)), c0 ∈ H2(Td) and
let c be the unique strong solution to equation (1.2) with initial data c0. The existence
of such a solution is guaranteed by Proposition 2.1.

The main idea behind the proof of Theorem 1.2 is to split the analysis into two
cases. First, when the time average of ‖�c‖L2 is large, standard energy estimates will
show that the variance of c decreases exponentially. Second, when the time average
of ‖�c‖2

L2 is small, we will use the advection term to show that the variance of c still
decreases exponentially, at a comparable rate.

We begin with a lemma handling the first case.
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Lemma 2.2 For any t0 ≥ 0 and β > 1, we have

sup
0≤τ≤γ ln β

‖c(t0 + τ) − c̄‖2L2 ≤ β‖c(t0) − c̄‖2L2 . (2.1)

Moreover, if for some τ ∈ (0, γ ln β) and μ > 0 we have

1

τ

∫ t0+τ

t0
‖�c‖2L2 ds ≥ β + 2γμ

γ 2 ‖c (t0) − c̄‖2L2 , (2.2)

then
‖c(t0 + τ) − c̄‖L2 ≤ e−μτ‖c(t0) − c̄‖L2 . (2.3)

For clarity of presentation, we momentarily postpone the proof of Lemma 2.2. We
will now treat the two- and three-dimensional cases separately.

2.1 The Two-Dimensional Case

Suppose the time average of ‖�c‖2
L2 is small. In this case, we will show that if

τ ∗
2 (u, γ ) is small enough, then the variance of c still decreases by a constant fraction
after time τ ∗

2 (u, γ ).

Lemma 2.3 For any t0 ≥ 0, there exists a time

T ′
0 = T ′

0(‖c(t0) − c̄‖L2 , c̄, β, γ, μ) ∈ (0, γ ln β]
such that if

τ ∗
2 (u, γ ) ≤ T ′

0(‖c(t0) − c̄‖L2 , β, γ, μ, c̄), (2.4a)

1

τ ∗
2 (u, γ )

∫ t0+τ∗
2 (u,γ )

t0
‖�c‖2L2 ds ≤ β + 2γμ

γ 2 ‖c(t0) − c̄‖2L2 , (2.4b)

then (2.3) still holds at time τ = τ ∗
2 (u, γ ). Moreover, the time T ′

0 can be chosen to be
decreasing as a function of ‖c(t0) − c̄‖L2 .

Remark The time T ′
0 can be computed explicitly in terms of ‖c(t0) − c̄‖L2 , β, γ , μ,

and c̄, as can be seen from (2.16).

Momentarily postponing the proof of Lemma 2.3, we prove Theorem 1.2 in 2D.
Proof of Theorem 1.2 when d = 2. Define

T0 = min

{
T ′
0,

ln β

2μ

}
,

where T ′
0 is the time given by Lemma 2.3 with t0 = 0. For conciseness, let τ ∗

2 =
τ ∗
2 (u, γ ), and suppose τ ∗

2 < T ′
0. If

1

τ ∗
2

∫ τ∗
2

0
‖�c‖2L2 ds ≥ β + 2γμ

γ 2 ‖c (t0) − c̄‖2L2 , (2.5)
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and since T ′
0 < γ ln β by choice, Lemma 2.2 applies and we must have

‖c(τ ∗
2 ) − c̄‖L2 ≤ e−μτ∗

2 ‖c0 − c̄‖L2 . (2.6)

If on the other hand (2.5) does not hold, then Lemma 2.3 applies and (2.6) still holds.
Since T ′

0 is a decreasing function of ‖c − c̄‖L2 , we may restart the above argument
at time τ ∗

2 . Proceeding inductively, we find

‖c(nτ ∗
2 ) − c̄‖L2 ≤ e−μnτ∗

2 ‖c0 − c̄‖L2 ,

for all n ∈ N.
Now for any time t ≥ 0, let n ∈ N be such that t ∈ (nτ ∗

2 , (n + 1)τ ∗
2 ). Since

t − nτ ∗
2 ≤ τ ∗

2 ≤ γ ln β, Lemma 2.2 applies and (2.1) yields

‖c(t) − c̄‖L2 ≤ √
β‖c(nτ ∗

2 ) − c̄‖L2 ≤ √
βe−μnτ∗

2 ‖c0 − c̄‖L2

≤ √
βe−μt+μτ∗

2 ‖c0 − c̄‖L2 ≤ βe−μt‖c0 − c̄‖L2 .

The last inequality follows from τ ∗
2 ≤ ln β/(2μ). This completes the proof. 
�

2.2 The Three-Dimensional Case

In this case, in order to prove the analog of Lemma 2.3, we need a stronger assumption
on τ ∗

2 (u, γ ).

Lemma 2.4 For any t0 ≥ 0, there exists a time T ′
1 = T ′

1(‖c(t0) − c̄‖L2 , c̄, β, γ, μ)

such that if

(1 + ‖∇u‖L∞)1/2τ ∗
2 (u, γ ) ≤ T ′

1, (2.7)

1

2τ ∗
2 (u, γ )

∫ t0+2τ∗
2 (u,γ )

t0
‖�c‖2L2 ds ≤ β + 2γμ

γ 2 ‖c(t0) − c̄‖2L2 , (2.8)

then
‖c(t0 + 2τ ∗

2 (u, γ )) − c̄‖L2 ≤ e−2μτ∗
2 (u,γ )‖c(t0) − c̄‖L2 . (2.9)

Moreover, the time T ′
1 can be chosen to be decreasing as a function of ‖c(t0) − c̄‖L2 .

Remark The time T ′
1 can be computed explicitly in terms of ‖c(t0) − c̄‖L2 , β, γ , μ,

and c̄, as can be seen from (2.27).

Momentarily postponing the proof of Lemma 2.4, we prove Theorem 1.2 in 3D.
Proof of Theorem 1.2 when d = 3. Let T ′

1 be the time given by Lemma 2.4 with
t0 = 0, and define

T1 = min

{
T ′
1,

ln β

4μ

}
.

The remainder of the proof is now identical to the proof when d = 2 (page 8) with
Lemma 2.3 replaced with Lemma 2.4. 
�
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2.3 Variance Decay in 2D (Lemmas 2.2 and 2.3)

It now remains to prove the lemmas. The variance decay when ‖�c‖L2 is large follows
directly from the energy inequality in both 2D and 3D. We prove this first.

Proof of Lemma 2.2 For simplicity and without loss of generality, we assume t0 = 0.
Multiplying equation (1.2) by c − c̄ and integrating over Td , we obtain

∂t‖c − c̄‖2L2 = 2〈�(c3 − c − γ�c), c − c̄〉
≤ −6‖c∇c‖2L2 + 2‖c − c̄‖L2‖�c‖L2 − 2γ ‖�c‖2L2 . (2.10)

Here, the notation 〈 f , g〉 = ∫
Td f g dx denotes the standard L2 inner-product on T

d .
Drop the first term in (2.10) and apply Young’s inequality to find

∂t‖c − c̄‖2L2 ≤ −γ ‖�c‖2L2 + 1

γ
‖c − c̄‖2L2 , (2.11)

and hence,
‖c(t) − c̄‖2L2 ≤ ‖c0 − c̄‖2L2 et/γ for all t ≥ 0. (2.12)

In particular, if t ∈ (0, γ ln β), we see that (2.1) holds with t0 = 0.
For (2.3), note that integration of (2.11) from 0 to τ with (2.1) and (2.2) gives

‖c(τ ) − c̄‖2L2 ≤ ‖c0 − c̄‖2L2

(
1 + βτ

γ

)
− γ

∫ τ

0
‖�c‖2L2 ds ≤ ‖c0 − c̄‖2L2 (1 − 2μτ) .

Since 1 − 2μτ ≤ e−2μτ , this proves (2.3) as desired. 
�
We now turn to Lemma 2.3, where the time integral of ‖�c‖2

L2 is assumed small. In
this case, by definition of τ ∗

2 , the linear terms halve the variance of c in time τ ∗
2 . If τ ∗

2
is small enough, then we show that the nonlinear terms cannot increase the variance
too much in this time interval.

Proof of Lemma 2.3 For notational convenience, we use Ss,t to denote Su,2
s,t , the solu-

tion operator in Definition 1.1 with α = 2. As before, we also use τ ∗
2 to denote

τ ∗
2 (u, γ ). For simplicity, and without loss of generality, we will again assume t0 = 0.
By Duhamel’s principle, we know

c(τ ∗
2 ) − c̄ = S0,τ∗

2
(c0 − c̄) +

∫ τ∗
2

0
Ss,τ∗

2
(�(c3(s) − c(s))) ds.

By definition of τ ∗
2 = τ ∗

2 (u, γ ), and the fact that Su,α
s,t is an L2-contraction, we have

‖c(τ ∗
2 ) − c̄‖L2 ≤ B

2
+

∫ τ∗
2

0
‖�(c3 − c)‖L2 ds, (2.13)
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where B
def= ‖c0 − c̄‖L2 . We now estimate the second term on the right of (2.13).

First, note

‖�(c3 − c)‖L2 = ‖6c|∇c|2 + 3c2�c − �c‖L2

≤ 6‖c − c̄‖L∞‖∇c‖2L4 + 6|c̄|‖∇c‖2L4 + 3‖c − c̄‖2L∞‖�c‖L2

+ 6|c̄|‖c − c̄‖L∞‖�c‖L2 + (3c̄2 + 1)‖�c‖L2 . (2.14)

By the Gagliardo–Nirenberg inequality, we know

‖c − c̄‖L∞ ≤ C‖�c‖d/4
L2 ‖c − c̄‖1−d/4

L2 ,

‖∇c‖L4 ≤ C‖�c‖(4+d)/8
L2 ‖c − c̄‖(4−d)/8

L2 ,

for some dimensional constant C . Here, and subsequently, we assume C is a purely
dimensional constant that may increase from line to line. Substituting this in (2.14)
when d = 2, we find

‖�(c3 − c)‖L2 ≤ C‖�c‖2L2‖c − c̄‖L2

+ C |c̄|‖�c‖3/2
L2 ‖c − c̄‖1/2

L2 + (3c̄2 + 1)‖�c‖L2

≤ C(1 + c̄2)(1 + ‖c − c̄‖L2)(‖�c‖L2 + ‖�c‖2L2). (2.15)

If we choose T ′
0 small enough to ensure T ′

0 < γ ln β, then (2.1), (2.4b), (2.13) and
(2.15) yield

‖c(τ ∗
2 ) − c̄‖L2 ≤ B

2
+ Cβ,μτ ∗

2

γ 2 (1 + c̄2)(1 + B2)B.

Here, Cβ,μ is a constant that only depends on β, μ that may increase from line to line.
Now choosing

T ′
0 = min

{
γ 2

4Cβ,μ(1 + c̄2)(1 + B2)
, γ ln β,

1

4μ

}
(2.16)

we see that whenever τ ∗
2 ≤ T ′

0, we must have

‖c(τ ∗
2 ) − c̄‖L2 ≤ 3B

4
≤ (1 − μτ ∗

2 )B ≤ e−μτ∗
2 ‖c0 − c̄‖L2 ,

as claimed. Clearly, the choice of T ′
0 above is decreasing in B, finishing the proof. 
�

2.4 Variance Decay in 3D (Lemma 2.4)

To prove variance decay in 3D, we first need an H1 bound. For the remainder of this
subsection, we assume d = 3.
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Lemma 2.5 Define the free energy, E , by

E(t)
def= 1

4

∫
T3

(c2 − 1)2 dx + 1
2γ

∫
T3

|∇c|2 dx .

Then, for any t0, τ ≥ 0 we have

‖∇c(t0 + τ)‖2L2 ≤ 2E(t0)

γ
+ ‖∇u‖L∞

2π2γ
eτ/γ ‖c(t0) − c̄‖2L2 . (2.17)

Proof Without loss of generality assume, t0 = 0. Multiplying (1.2) by c3 − c − γ�c
and integrating over T3, we have

∂tE + 〈u · ∇c, c3 − c − γ�c〉 = −‖∇(c3 − c − γ�c)‖2L2 . (2.18)

Since u is divergence-free,

|〈u · ∇c, c3 − c − γ�c〉| = |〈u · ∇c, γ�c〉| ≤ γ ‖∇u‖L∞‖∇c‖2L2 .

Use this in (2.18), integrate in time, then use Poincaré’s inequality to get

∫ τ

0
‖∇(c3 − c − γ�c)‖2 ds + E(τ ) ≤ E(0) + γ ‖∇u‖L∞

∫ τ

0
‖∇c‖2L2 ds

≤ E(0) + γ ‖∇u‖L∞

4π2

∫ τ

0
‖�c‖2L2 ds. (2.19)

Time-integrating (2.11) and using (2.12), we find

γ

∫ τ

0
‖�c‖2L2 ds ≤ 1

γ

∫ τ

0
‖c − c̄‖2L2 ds + ‖c(t0) − c̄‖2L2 ≤ eτ/γ ‖c0 − c̄‖2L2 . (2.20)

Finally, we substitute (2.20) in (2.19) to obtain

1
2γ ‖∇c(τ )‖2L2 ≤ E(τ ) ≤ E(0) + ‖∇u‖L∞

4π2 eτ/γ ‖c0 − c̄‖2L2 ,

which immediately implies (2.17) as claimed. 
�
We now prove Lemma 2.4.

Proof of Lemma 2.4 As before, we assume without loss of generality that t0 = 0. In
the 3D case, we will express c(2τ ∗

2 ) using Duhamel’s principle. However, for reasons
that will be explained below, we need to use a starting time of t1 ∈ [0, τ ∗

2 ], which
might not be 0. Note that for any t1 ∈ [0, τ ∗

2 ], we have

c(2τ ∗
2 ) − c̄ = St1,2τ∗

2
(c(t1) − c̄) +

∫ 2τ∗
2

t1
Ss,2τ∗

2
(�(c3 − c)) ds.
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Since 2τ ∗
2 − t1 ≥ τ ∗

2 , the above implies

‖c(2τ ∗
2 ) − c̄‖L2 ≤ 1

2‖c(t1) − c̄‖L2 +
∫ 2τ∗

2

t1
‖�(c3 − c)‖ ds. (2.21)

To bound the first term on the right, we note that if 2T ′
1 ≤ γ ln β, then (2.1) implies

‖c(t1) − c̄‖L2 ≤ √
β B, (2.22)

where B
def= ‖c0 − c̄‖L2 .

To bound the second term on the right-hand side, recall the Gagliardo–Nirenberg
interpolation inequalities in 3D guarantee

‖c − c̄‖L∞ ≤ C‖∇c‖1/2
L2 ‖�c‖1/2

L2 ,

‖∇c‖L4 ≤ C‖∇c‖1/4
L2 ‖�c‖3/4

L2 .

Expanding ‖�(c3 − c)‖L2 as in (2.14), and using these inequalities, we see

‖�(c3 − c)‖L2 ≤ C‖�c‖2L2‖∇c‖L2 + C |c̄|‖�c‖3/2
L2 ‖∇c‖1/2

L2

+ (3c̄2 + 1)‖�c‖L2 ,

≤ C(1 + c̄2)(1 + ‖∇c‖L2)(‖�c‖L2 + ‖�c‖2L2). (2.23)

The difference from the 2D case is precisely at this step, as the above estimate does
not allow us to bound the second term on the right of (2.21) using (2.8) and (2.1)
alone. Indeed, to bound this term, we now need a time-uniform bound on ‖∇c‖L2 , in
combination with (2.8) and (2.1). Unfortunately, the only such bounds we can obtain
depend on u, and thus, our criterion in 3D involves both ‖∇u‖L∞ and τ ∗

2 .
To carry out the details, note first that by Chebyshev’s inequality and (2.8) we can

choose t1 ∈ [0, τ ∗
2 ] so that

‖�c(t1)‖2L2 ≤ 2β + 4γμ

γ 2 B2. (2.24)

Using the Gagliardo–Nirenberg inequality and (2.24), we note that the free energy E
at time t1 can be bounded by

E(t1) ≤ 1
4‖c(t1)‖4L4 + 1

2γ ‖∇c(t1)‖2L2 + 1
4

≤ 2‖c(t1) − c̄‖4L4 + 1
2γ ‖∇c‖2L2 + 2c̄4 + 1

4

≤ C‖c(t1) − c̄‖5/2
L2 ‖�c(t1)‖3/2L2 + γ

8π2 ‖�c(t1)‖2L2 + 2c̄4 + 1
4

≤ Cβ5/4(2β + 4γμ)3/4

γ 3/2 B4 + β + 2γμ

4π2γ
B2 + 2c̄4 + 1

4
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≤ Cβ,μ B4

γ 2 + 2(c̄4 + 1).

Thus, for any time t ∈ [t1, 2τ ∗], we use Lemma 2.5 and obtain

‖∇c(t)‖2L2 ≤ 2E(t1)

γ
+ ‖∇u‖L∞

2π2γ
e(t−t1)/γ ‖c(t1) − c̄‖2L2

≤ Cβ,μ

γ 3 (1 + ‖∇u‖L∞)(1 + c̄4)(B4 + 1). (2.25)

The use of (2.8), (2.23) and (2.25) in (2.21) yields

‖c(2τ∗
2 ) − c̄‖L2 ≤

√
βB

2
+ (1 + c̄2)

(
1 + Cβ,μ

γ 3/2 (1 + ‖∇u‖L∞)1/2(1 + c̄2)(1 + B2)

)

·
(

Cβ,μ

γ 2 B2 + Cβ,μ

γ
B

)
τ∗
2

≤
√

βB

2
+ Cβ,μτ∗

2
γ 7/2 (1 + ‖∇u‖L∞ )1/2(1 + c̄4)(1 + B3)B. (2.26)

Thus, if we choose

T ′
1
def= min

{(
3

4
−

√
β

2

)
γ 7/2

(1 + B3)(1 + c̄4)Cβ,μ

,
γ ln β

2
,

1

8μ

}
, (2.27)

then our assumption (2.7) and the bound (2.26) imply (2.9) as claimed. Note that,
since we have previously assumed β ≤ 2, the choice of T ′

1 will be strictly positive.
Finally, the fact that T ′

1 is decreasing in ‖c0 − c̄‖L2 follows directly from (2.27). 
�

3 The Dissipation Time of Mixing Flows

In this section, we prove Proposition 1.4. Since working on closed Riemannian man-
ifolds introduces almost no added complexity, we will prove Proposition 1.4 in this
setting. Let M be a d-dimensional, smooth, closed Riemannian manifold, with met-
ric normalized so that vol(M) = 1. Let � denote the Laplace–Beltrami operator
on M , and u ∈ L∞([0,∞); W 1,∞(M)) be a divergence-free vector field. We begin
by recalling the definition of weakly mixing and strongly mixing that we use.

Definition 3.1 Let h : [0,∞) → (0,∞) be a continuous decreasing function that
vanishes at ∞. Given φ0 ∈ L̇2(M), let φ denote the solution of

∂tφ + u(t, x) · ∇φ = 0, (3.1)

on M , with initial data φ0.
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(1) We say u is weakly mixing with rate function h if for every φ0, ψ ∈ Ḣ1(M) and
every s, T ≥ 0 we have

(
1

T

∫ T

0
|〈φ(s + t), ψ〉|2 dt

)1/2

≤ h(T )‖φ(s)‖H1‖ψ‖H1 .

(2) We say u is strongly mixing with rate function h if for every φ0, ψ ∈ Ḣ1(M) and
every s, t ≥ 0 we have

|〈φ(s + t), ψ〉| ≤ h(t)‖φ(s)‖H1‖ψ‖H1 .

The use of H1 norms in Definition 3.1 is purely for convenience and is motivated
by Lin et al. (2011), Thiffeault (2012), and Feng and Iyer (2019). The traditional
choice in the dynamical systems literature is to use C1 norms instead. This difference,
however, is not significant as varying the norms used in Definition 3.1 only changes
the mixing rate function (see, for instance, “Appendix A” in Feng and Iyer (2019)).

In Feng and Iyer (2019), Feng (2019), the authors estimated the dissipation time
τ ∗
1 (u, γ ) in terms of the weak (or strong) mixing rate function h. With minor modifi-
cations, their work can be modified to give the following estimate for τ ∗

2 .

Theorem 3.2 Let u ∈ L∞([0,∞); C2(M)) be a divergence-free vector field, and
h : [0,∞) → (0,∞) be a continuous decreasing function that vanishes at ∞.

(1) There exists constants C1, C2 > 0 such that if u is weakly mixing with rate function
h, then for all sufficiently small γ we have

τ ∗
2 (u, γ ) ≤ t∗ + C1‖u‖C2 t2∗ . (3.2)

Here, t∗ is the unique solution of

γ ‖u‖C2 t2∗ = C2 (h(t∗/
√
2))8/(4+d). (3.3)

(2) There exists constants C1, C2 > 0 such that if u is strongly mixing with rate
function h, then for all sufficiently small γ , we have (3.2), where t∗ is the unique
solution of

γ ‖u‖C2 t2∗ = C2 h2(t∗/2
√
2). (3.4)

The proof of Theorem 3.2 is very similar to that in Feng (2019, Chapter 4), and we
provide a sketch in “Appendix A.” We now prove Proposition 1.4 using Theorem 3.2.

Proof of Proposition 1.4 Rescaling time by a factor of A, we immediately see that

τ ∗
2 (u A, γ ) = 1

A
τ ∗
2

(
v,

γ

A

)
. (3.5)

For the first assertion in Proposition 1.4, we assume v is weakly mixing with rate
function h. Using (3.2) and (3.5), we see that

τ ∗
2 (u A, γ ) ≤ 1

A

(
t∗(A) + C1‖v‖C2 t2∗ (A)

)
, (3.6)
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where t∗(A) solves

γ

A
‖v‖C2 t2∗ (A) = C2 (h(

t∗(A)√
2

))8/(4+d). (3.7)

Clearly, this implies t∗(A) → ∞ as A → ∞. Since h vanishes at ∞, this in turn
implies that t2∗ (A)/A → 0 as A → ∞. Consequently, the right-hand side of (3.6)
vanishes as A → ∞, proving the first assertion of Proposition 1.4.

For the second assertion, we assume v is strongly mixing with rate function h
satisfying (1.9). In this case, Theorem 3.2 and (3.5) imply (3.6) still holds, provided
t∗(A) is defined by

γ

A
‖v‖C2 t2∗ (A) = C2 h2

(
t∗(A)

2
√
2

)
. (3.8)

Note that this still implies t∗(A) → ∞ as A → ∞. Using this along with (1.9), we
see that

t2∗ (A)

A
≤ ε

t2∗ (A)

for any ε > 0, and all sufficiently large A. Using this in (3.6) yields A1/2τ ∗
2 (u A, γ ) →

0 as A → ∞, concluding the proof. 
�

4 Relationship Between �∗
1 and �∗

2 (Lemma 1.5)

In this section, we prove Lemma 1.5 bounding τ ∗
2 (u, γ ) in terms of τ ∗

1 (u, γ ). Through-
out we fix u ∈ L∞([0,∞); C2(Td)), and assume θ is a solution of (1.3) with α = 2
and mean-zero initial data θ0 ∈ L̇2(Td). As before, we abbreviate τ ∗

α (u, γ ) to τ ∗
α .

The proof of Lemma 1.5 is similar to that of Theorem 1.2 in 3D.We divide the anal-
ysis into two cases: the first where the time average of ‖�θ‖2

L2 is large (Lemma 4.1),

and the second where the time average of ‖�θ‖2
L2 is small (Lemma 4.2). Lemma 1.5

will be proven after these two lemmas.

Lemma 4.1 If for some t0 ≥ 0, λ, τ > 0, we have

1

τ

∫ t0+τ

t0
‖�θ‖2L2 ds ≥ λ‖θ(t0)‖2L2 , (4.1)

then
‖θ(t0 + τ)‖L2 ≤ e−λγ τ‖θ(t0)‖L2 . (4.2)

Proof Multiplying (1.3) by θ and integrating, we obtain

‖θ(t0 + τ)‖2L2 = ‖θ(t0)‖2L2 − 2γ
∫ t0+τ

t0
‖�θ‖2L2 ds.

Inequalities (4.1) and 1 − x ≤ e−x yield (4.2) as desired. 
�
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Lemma 4.2 There exists an explicit dimensional constant C1 such that if

λ
def= 1

4γ τ ∗
1 (20C1‖u‖C2 τ ∗

1 + 11)
,

and for some t0 ≥ 0 we have

1

2τ ∗
1

∫ t0+2τ∗
1

t0
‖�θ‖2L2 ds ≤ λ‖θ(t0)‖2L2 , (4.3)

then (4.2) still holds at time τ = 2τ ∗
1 .

Proof Without loss of generality assume t0 = 0. By Chebyshev’s inequality, there
exists t1 ∈ [0, τ ∗

1 ] such that

‖�θ(t1)‖2L2 ≤ 2λ‖θ0‖2L2 . (4.4)

Since
∂tθ + u · ∇θ − γ�θ = −γ�2θ − γ�θ,

Duhamel’s principle implies

θ(2τ ∗
1 ) = Su,1

t1,2τ∗
1
θ(t1) − γ

∫ 2τ∗
1

t1
Su,1

s,2τ∗
1
(�2θ(s) + �θ(s)) ds,

where S is the solution operator from Definition 1.1. Since 2τ ∗
1 − t1 ≥ τ ∗

1 , and S is
an L2 contraction, then Poincaré’s inequality gives

‖θ(2τ ∗
1 )‖L2 ≤ ‖θ0‖L2

2
+ 2γ

∫ 2τ∗
1

t1
‖�2θ‖L2 ds. (4.5)

To estimate the second term on the right, we multiply (1.3) with α = 2 by �2θ and
integrate in space to obtain

1
2∂t‖�θ‖2L2 + γ ‖�2θ‖2L2 ≤ C1‖u‖C2 ‖�θ‖2L2 ,

for some explicit dimensional constant C1. Integration in time together with (4.3)
and (4.4) yields

2γ
∫ 2τ∗

1

t1
‖�2θ‖2L2 ds ≤ λ(4C1‖u‖C2 τ ∗

1 + 2)‖θ0‖2L2 .

Using this in (4.5), we have

‖θ(2τ ∗
1 )‖L2 ≤

(
1
2 + 2

(
γ τ ∗

1 λ(2 + 4C1‖u‖C2 τ ∗
1 )

)1/2) ‖θ0‖L2 .
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By our choice of λ, this implies

‖θ(2τ ∗
1 )‖L2 ≤ (1 − 2λγ τ ∗

1 )‖θ0‖L2 ≤ e−2λγ τ∗
1 ‖θ0‖L2 ,

finishing the proof. 
�
The proof of Lemma 1.5 follows quickly from Lemmas 4.1 and 4.2.

Proof of Lemma 1.5 IteratingLemmas 4.1 and 4.2 repeatedly,we see that for any t0 ≥ 0
and n ∈ N we have

‖θ(t0 + 2nτ ∗
1 )‖L2 ≤ e−2nλγ τ∗

1 ‖θ(t0)‖L2 .

Thus, we must have τ ∗
2 ≤ (ln 2)/(λγ ), from which (1.10) follows. 
�

Appendix A. Dissipation Time Bounds of Mixing Vector Fields

In this section, we prove Theorem 3.2. As in Sect. 3, we assume here that M is a
smooth, closed, Riemannian manifold with volume 1, and � is the Laplace–Beltrami
operator on M . We also fix a divergence-free vector field u ∈ L∞([0,∞); C2(M)),
and let θ be the solution to the advection–hyperdiffusion equation (1.3) with α = 2
on the manifold M , with mean-zero initial data θ0 ∈ L̇2(M).

The idea behind the proof of Theorem 3.2 is to divide the analysis into two cases.
When ‖�θ‖L2/‖θ‖L2 is large, the energy inequality implies ‖θ‖L2 decays rapidly.
On the other hand, when ‖�θ‖L2/‖θ‖L2 is small, we use the mixing assumption on u
to show that ‖θ‖L2 still decays rapidly. The outline of the proof is the same as that
of Theorem 1.2; however, the proof of the second case is substantially different. We
begin by stating two lemmas handling each of the above cases.

Lemma A.1 The solution θ satisfies the energy inequality

∂t‖θ‖2L2 = −2γ ‖�θ‖2L2 . (A.1)

Consequently, if for some c0 > 0 we have

‖�θ(t)‖2L2 ≥ c0‖θ(t)‖2L2 , for all 0 ≤ t ≤ t0,

then

‖θ(t)‖2L2 ≤ e−2γ c0t‖θ0‖2L2 , for all 0 ≤ t ≤ t0. (A.2)

Lemma A.2 Let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of the Laplacian, where each
eigenvalue is repeated according to its multiplicity. Suppose u is weakly mixing with
rate function h. There exists positive, finite dimensional constants C̃, c̃ such that for all
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γ sufficiently small the following holds: If λN is an eigenvalue of the Laplace–Beltrami
operator such that 1

h−1

(
1

c̃λ(d+4)/4
N

)
≤ 1

C̃λN
√

γ ‖u‖1/2
C2

, (A.3)

and if
‖�θ0‖2L2 < λ2N ‖θ0‖2L2 (A.4)

holds, then we have

‖θ(t0)‖2L2 ≤ exp

(
−γ λ2N t0

4

)
‖θ0‖2L2 , (A.5)

at a time t0 given by

t0
def= h−1

( 1

c̃λ(d+4)/4
N

)
. (A.6)

If instead u is strongly mixing, then the analog of Lemma A.2 is as follows.

Lemma A.3 Suppose u is strongly mixing with rate function h. There exists a finite
dimensional C̃ > 0 such that for all γ sufficiently small the following holds: If λN is
an eigenvalue of the Laplace–Beltrami operator such that

2h−1
(

1

2λN

)
≤ 1

C̃λN
√

γ ‖u‖1/2
C2

, (A.7)

and if (A.4) holds, then (A.5) holds at a time t0 given by

t0
def= 2h−1

(
1

2λN

)
. (A.8)

Finally, for the proof of Theorem 3.2 we need Weyl’s Lemma [see, for
instance, (Minakshisundaram and Pleijel 1949)], which describes the asymptotic
growth of the eigenvalues of the Laplace–Beltrami operator.

Lemma A.4 (Weyl’s Lemma). Let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of the
Laplacian, where each eigenvalue is repeated according to its multiplicity. We have

λ j ≈ 4π �( d
2 + 1)2/d

vol(M)2/d
j2/d , (A.9)

asymptotically as j → ∞.

Momentarily postponing the proof of Lemmas A.1–A.3, we prove Theorem 3.2.

1 When γ is sufficiently small such a λN is guaranteed to exist.
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Proof of Theorem 3.2 For the first assumption, we assume u is weakly mixing with
rate function h. Let c̃, C̃ be the constants from Lemma A.2. Note that the intermediate
value theorem readily implies the existence of a unique λ∗ > 0 such that

h−1

(
1

c̃λ(d+4)/4∗

)
= 1

C̃λ∗
√

γ ‖u‖1/2
C2

. (A.10)

Further, it is easy to see that λ∗ → ∞ as γ → 0. Thus, for all sufficiently small γ ,
Weyl’s lemma implies λ j+1 −λ j = o(λ j ) as j → ∞. Hence, for all sufficiently large
λ∗, one can always find N large enough such that

λ2∗
2

≤ λ2N ≤ λ2∗. (A.11)

Now choosing c0 = λ2N and repeatedly applying Lemmas A.1 and Lemma A.2, we
obtain an increasing sequence of times (t ′k), such that t ′k → ∞, t ′k+1 − t ′k ≤ t0, and

‖θs(t
′
k)‖2L2 ≤ exp

(
− γ λ2N t ′k

4

)
‖θ0‖2L2 .

This immediately implies

τ ∗
2 (u, γ ) ≤ 8 ln 2

γ λ2N
+ t0. (A.12)

Choosing

t∗
def=

√
2

C̃λ∗
√

γ ‖u‖1/2
C2

,

and using (A.10), (A.11), and (A.12) yields (3.2) as claimed.
The proof of the second assertion of Theorem 3.2 is almost identical to that of the

first assertion. The only change required is to replace Lemma A.2 with A.3. 
�
It remains to prove Lemmas A.1–A.3.

Proof of LemmaA.1 Multiplying (1.3) by θ , integrating over M , and using the fact
that u is divergence-free immediately yield (A.1). The second assertion of LemmaA.1
follows from this and Gronwall’s lemma. 
�

For Lemmas A.2 and A.3, we will need a standard result estimating the difference
between θ and solutions to the inviscid transport equation.

Lemma A.5 Let φ be the solution of (3.1) with initial data θ0. There exists a dimen-
sional constant Cd such that for all t ≥ 0, we have

‖θ(t) − φ(t)‖2L2 ≤ √
2γ t ‖θ0‖L2

(
Cd ‖u‖C2

∫ t

0
‖�θ‖2L2 ds + ‖�θ0‖2L2

)1/2

.

(A.13)
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Proof Subtracting (1.3) and (3.1) shows

∂t (θ − φ) + u · ∇(θ − φ) + γ�2θ = 0.

Multiplying this by θ(t) − φ(t) and integrating over space and time give

‖θ(t) − φ(t)‖2L2 = −2γ
∫ t

0

∫
M

(θ − φ)�2θ dx ds ≤ 2γ ‖θ0‖L2

∫ t

0
‖�2θ‖L2 ds.

(A.14)

On the other hand, multiplying (1.3) by �2θ and integrating over M give

∂t‖�θ‖2L2 + 2〈u · ∇θ,�2θ〉 + 2γ ‖�2θ‖2L2 = 0.

Integrating the middle term by parts, using the fact that u is divergence-free, and
integrating in time yields

2γ
∫ t

0
‖�2θ‖2L2 ds ≤ Cd‖u‖C2

∫ t

0
‖�θ‖2L2 ds + ‖�θ0‖2L2 ,

for some dimensional constant Cd . Substituting this in (A.14) and using the Cauchy–
Schwartz inequality give (A.13) as claimed. 
�

We now prove Lemma A.2.

Proof of LemmaA.2 We claim that our choice of λN and t0 will guarantee

∫ t0

0
‖�θ(s)‖2L2 ds ≥ λ2N t0‖θ0‖2L2

8
. (A.15)

Once this is established, integrating (A.1) in time immediately yields (A.5).
Thus, to prove Lemma A.2, we only need to prove (A.15). Suppose, for contra-

diction, the inequality (A.15) does not hold. Letting PN : L̇2(M) → L̇2(M) denote
the orthogonal projection onto the span of the first N eigenfunctions of the Laplace–
Beltrami operator, we observe

λ2N t0‖θ0‖2L2

8
>

∫ t0

0
‖�θ(s)‖2L2 ds ≥ λ2N

∫ t0

t0/2
‖(I − PN )θ(s)‖2L2 ds

≥ λ2N
2

∫ t0

t0/2
‖(I − PN )φ(s)‖2L2 ds − λ2N

∫ t0

t0/2
‖(I − PN ) (θ(s) − φ(s))‖2L2 ds

≥ λ2N t0
4

‖θ0‖2L2 − λ2N
2

∫ t0

t0/2
‖PN φ(s)‖2L2 ds − λ2N

∫ t0

0
‖θ(s) − φ(s)‖2L2 ds.

(A.16)

We will now bound the last two terms in (A.16).
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For the last term in (A.16), we use Lemma A.5 to obtain

∫ t0

0
‖θ(s) − φ(s)‖2L2 ds

≤
∫ t0

0

√
2γ s ‖θ0‖L2

(
Cd‖u‖C2

∫ s

0
‖�θ(t)‖2L2 dt + ‖�θ0‖2L2

)1/2

ds

≤ C
√

γ t3/20 ‖θ0‖L2

(
‖u‖C2

∫ t0

0
‖�θ(t)‖2L2 dt + ‖�θ0‖2L2

)1/2

≤ C
√

γ t3/20 λN ‖θ0‖2L2

(‖u‖C2 t0 + 1
)1/2

. (A.17)

For the last inequality above, we used our assumption that the inequality (A.15) does
not hold.

To estimate the second term on the right of (A.16), let e j denote the eigenfunction
of the Laplace–Beltrami operator corresponding to the eigenvalue λ j . Now

∫ t0

t0/2
‖PN φ(s)‖2L2 ds ≤

N∑
j=1

∫ t0

0
|〈φ(s), e j 〉|2 ds ≤ t0h2(t0)‖φ0‖2H1

N∑
j=1

λ j .

Using Weyl’s lemma (A.9) and the assumption (A.4), we see

∫ t0

t0/2
‖PN φ(s)‖2L2 ds ≤ Ct0h2(t0)‖φ0‖2L2λ

(d+4)/2
N , (A.18)

for some constant C = C(M).
We now let C1 be the larger of the constants appearing in (A.17) and (A.18). Using

these two inequalities in (A.16) shows

1
8 > 1

4 − C1λN
√

γ t0
(
1 + t0‖u‖C2

)1/2 − C1λ
(d+4)/2
N h2(t0). (A.19)

If we choose c̃ ≥ √
16C1, then by equation (A.6) the last term on the right is at

most 1/16. Next, when γ is sufficiently small we will have t0‖u‖C2 ≥ 1. Thus,
if C̃ ≥ 16

√
2C1 and λN is the largest eigenvalue for which (A.3) holds, then the

second term above is also at most 1/16. This implies 1/8 > 1/8, which is the desired
contradiction. 
�

The proof of Lemma A.3 is very similar to that of Lemma A.2.

Proof of LemmaA.3 Follow the proof of Lemma A.2 until (A.18). Now, to estimate
the second term on the right of (A.16), the strongly mixing property of u gives

∫ t0

t0/2
‖PN φ(s)‖2L2 ds ≤ λN

∫ t0

t0/2
‖φ(s)‖2H−1 ds ≤ λN

∫ t0

t0/2
h2(s)‖θ0‖2H1 ds

≤ t0
2

λN h2(t0/2) ‖�θ0‖L2‖θ0‖L2 ≤ t0
2

λ2N h2(t0/2) ‖θ0‖2L2 .

(A.20)
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Above, the last inequality followed from interpolation and the assumption (A.4).
Now let C1 be the constant appearing in (A.17). Using (A.17) and (A.20) in (A.16)

implies
1
8 > 1

4 − C1λN
√

γ t0
(
1 + t0‖u‖C2

)1/2 − 1
4λ

2
N h2(t0/2).

If t0 is defined by (A.8), then the last term above is at most 1/16. Moreover, if
C̃ = 29/2 C1 and λN is the largest eigenvalue of the Laplace–Beltrami operator sat-
isfying (A.7), then the second term above is also at most 1/16. This again forces
1/8 > 1/8, which is our desired contradiction. 
�

References

Alberti, G., Crippa, G., Mazzucato, A.L.: Exponential self-similar mixing by incompressible flows. J. Am.
Math. Soc. 32(2), 445–490 (2019). https://doi.org/10.1090/jams/913

Bedrossian, J., He, S.: Suppression of blow-up in Patlak–Keller–Segel via shear flows. SIAM J.Math. Anal.
49(6), 4722–4766 (2017). https://doi.org/10.1137/16M1093380

Bedrossian, J., Blumenthal, A., Punshon-Smith, S.: Almost-sure exponential mixing of passive scalars by
the stochastic Navier–Stokes equations. (2019). arXiv:1905.03869

Berestycki, H., Kiselev, A., Novikov, A., Ryzhik, L.: The explosion problem in a flow. J. Anal. Math. 110,
31–65 (2010). https://doi.org/10.1007/s11854-010-0002-7

Berthier, L.: Phase separation in a homogeneous shear flow:morphology, growth laws, and dynamic scaling.
Phys. Rev. E 63(5), 051503 (2001)

Bray, A.: Coarsening dynamics of phase-separating systems. Philos. Trans. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 361(1805), 781–792 (2003)

Cahn, J.W.: On spinodal decomposition. Acta Metall. 9(9), 795–801 (1961). https://doi.org/10.1016/0001-
6160(61)90182-1

Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys.
28(2), 258–267 (1958). https://doi.org/10.1063/1.1744102

Chan, C.K., Perrot, F., Beysens, D.: Effects of hydrodynamics on growth: spinodal decomposition under
uniform shear flow. Phys. Rev. Lett. 61, 412–415 (1988). https://doi.org/10.1103/PhysRevLett.61.412

Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion andmixing in fluid flow. Ann.Math. (2) 168(2),
643–674 (2008). https://doi.org/10.4007/annals.2008.168.643

Coti Zelati, M., Delgadino, M.G., Elgindi, T.M.: On the relation between enhanced dissipation time-scales
and mixing rates. ArXiv e-prints (2018). arXiv:1806.03258

Drivas, T.D., Elgindi, T.M., Iyer, G., Jeong, I.-J.: Anomalous dissipation in passive scalar transport. arXiv
e-prints (2019). arXiv:1911.03271

Elgindi, T.M., Zlatoš, A.: Universal mixers in all dimensions. Adv. Math. 356, 106807 (2019). https://doi.
org/10.1016/j.aim.2019.106807

Elliott, C.M.: The Cahn-Hilliard model for the kinetics of phase separation. In: Mathematical Models for
Phase Change Problems (Óbidos, 1988), volume 88 of International Series of NumericalMathematics,
pp. 35–73. Birkhäuser, Basel (1989)

Elliott, C.M., Songmu, Z.: On the Cahn–Hilliard equation. Arch. Rational Mech. Anal. 96(4), 339–357
(1986). https://doi.org/10.1007/BF00251803

Fannjiang, A., Wołowski, L.: Noise induced dissipation in Lebesgue-measure preserving maps
on d-dimensional torus. J. Stat. Phys. 113(1–2), 335–378 (2003). https://doi.org/10.1023/A:
1025787124437

Fannjiang, A., Kiselev, A., Ryzhik, L.: Quenching of reaction by cellular flows. Geom. Funct. Anal. 16(1),
40–69 (2006). https://doi.org/10.1007/s00039-006-0554-y

Feng, Y.: Dissipation enhancement by mixing. Ph.D. Thesis, Carnegie Mellon University (2019)
Feng, Y., Iyer, G.: Dissipation enhancement by mixing. Nonlinearity 32(5), 1810–1851 (2019). https://doi.

org/10.1088/1361-6544/ab0e56
Hashimoto, T., Matsuzaka, K., Moses, E., Onuki, A.: String phase in phase-separating fluids under shear

flow. Phys. Rev. Lett. 74(1), 126 (1995)

123

https://doi.org/10.1090/jams/913
https://doi.org/10.1137/16M1093380
http://arxiv.org/abs/1905.03869
https://doi.org/10.1007/s11854-010-0002-7
https://doi.org/10.1016/0001-6160(61)90182-1
https://doi.org/10.1016/0001-6160(61)90182-1
https://doi.org/10.1063/1.1744102
https://doi.org/10.1103/PhysRevLett.61.412
https://doi.org/10.4007/annals.2008.168.643
http://arxiv.org/abs/1806.03258
http://arxiv.org/abs/1911.03271
https://doi.org/10.1016/j.aim.2019.106807
https://doi.org/10.1016/j.aim.2019.106807
https://doi.org/10.1007/BF00251803
https://doi.org/10.1023/A:1025787124437
https://doi.org/10.1023/A:1025787124437
https://doi.org/10.1007/s00039-006-0554-y
https://doi.org/10.1088/1361-6544/ab0e56
https://doi.org/10.1088/1361-6544/ab0e56


Journal of Nonlinear Science

Hou, T.Y., Lei, Z.: On the stabilizing effect of convection in three-dimensional incompressible flows.
Commun. Pure Appl. Math. 62(4), 501–564 (2009). https://doi.org/10.1002/cpa.20254

Iyer, G., Xu, X., Zlatoš, A.: Convection-induced singularity suppression in the Keller-Segel and other
non-linear PDEs. arXiv e-prints (2019). arXiv:1908.01941

Kiselev, A., Xu, X.: Suppression of chemotactic explosion by mixing. Arch. Ration. Mech. Anal. 222(2),
1077–1112 (2016). https://doi.org/10.1007/s00205-016-1017-8

Kiselev, A., Shterenberg, R., Zlatoš, A.: Relaxation enhancement by time-periodic flows. Indiana Univ.
Math. J. 57(5), 2137–2152 (2008). https://doi.org/10.1512/iumj.2008.57.3349

Läuger, J., Laubner, C., Gronski, W.: Correlation between shear viscosity and anisotropic domain growth
during spinodal decomposition under shear flow. Phys. Rev. Lett. 75, 3576–3579 (1995). https://doi.
org/10.1103/PhysRevLett.75.3576

Lin, Z., Thiffeault, J.-L., Doering, C.R.: Optimal stirring strategies for passive scalar mixing. J. Fluid Mech.
675, 465–476 (2011). https://doi.org/10.1017/S0022112011000292

Liu, J., Dedè, L., Evans, J.A., Borden, M.J., Hughes, T.J.: Isogeometric analysis of the advective Cahn–
Hilliard equation: spinodal decomposition under shear flow. J. Comput. Phys. 242, 321–350 (2013).
https://doi.org/10.1016/j.jcp.2013.02.008

Miles, C.J., Doering, C.R.: Diffusion-limited mixing by incompressible flows. Nonlinearity 31(5), 2346
(2018). https://doi.org/10.1088/1361-6544/aab1c8

Minakshisundaram, S., Pleijel, Å.: Some properties of the eigenfunctions of the Laplace-operator on Rie-
mannian manifolds. Can. J. Math. 1, 242–256 (1949). https://doi.org/10.4153/CJM-1949-021-5

Náraigh, L.Ó., Thiffeault, J.-L.: Bubbles and filaments: Stirring a Cahn-Hilliard fluid. Phys. Rev. E 75,
016216 (2007a). https://doi.org/10.1103/PhysRevE.75.016216

Náraigh, L.Ó., Thiffeault, J.-L.: Dynamical effects and phase separation in cooled binary fluid films. Phys.
Rev. E 76, 035303 (2007b). https://doi.org/10.1103/PhysRevE.76.035303

Náraigh, L.Ó., Thiffeault, J.-L.: Bounds on the mixing enhancement for a stirred binary fluid. Physica D
237(21), 2673–2684 (2008). https://doi.org/10.1016/j.physd.2008.04.012

Pego, R.L.: Front migration in the nonlinear Cahn–Hilliard equation. Proc. R. Soc. Lond. Ser. A 422(1863),
261–278 (1989)

Pierrehumbert, R.: Tracer microstructure in the large-eddy dominated regime. Chaos Solitons Fractals 4(6),
1091–1110 (1994)

Poon, C.-C.: Unique continuation for parabolic equations. Commun. Partial Differ. Equ. 21(3–4), 521–539
(1996). https://doi.org/10.1080/03605309608821195

Shou, Z., Chakrabarti, A.: Ordering of viscous liquid mixtures under a steady shear flow. Phys. Rev. E
61(3), R2200 (2000)

Thiffeault, J.-L.: Using multiscale norms to quantify mixing and transport. Nonlinearity 25(2), R1–R44
(2012). https://doi.org/10.1088/0951-7715/25/2/R1

Wei, D.: Diffusion and mixing in fluid flow via the resolvent estimate. arXiv e-prints (2018).
arXiv:1811.11904

Yao, Y., Zlatoš, A.: Mixing and un-mixing by incompressible flows. J. Eur. Math. Soc. (JEMS) 19(7),
1911–1948 (2017). https://doi.org/10.4171/JEMS/709

Zlatoš, A.: Diffusion in fluid flow: dissipation enhancement by flows in 2D. Commun. Partial Differ. Equ.
35(3), 496–534 (2010). https://doi.org/10.1080/03605300903362546

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1002/cpa.20254
http://arxiv.org/abs/1908.01941
https://doi.org/10.1007/s00205-016-1017-8
https://doi.org/10.1512/iumj.2008.57.3349
https://doi.org/10.1103/PhysRevLett.75.3576
https://doi.org/10.1103/PhysRevLett.75.3576
https://doi.org/10.1017/S0022112011000292
https://doi.org/10.1016/j.jcp.2013.02.008
https://doi.org/10.1088/1361-6544/aab1c8
https://doi.org/10.4153/CJM-1949-021-5
https://doi.org/10.1103/PhysRevE.75.016216
https://doi.org/10.1103/PhysRevE.76.035303
https://doi.org/10.1016/j.physd.2008.04.012
https://doi.org/10.1080/03605309608821195
https://doi.org/10.1088/0951-7715/25/2/R1
http://arxiv.org/abs/1811.11904
https://doi.org/10.4171/JEMS/709
https://doi.org/10.1080/03605300903362546

	Phase Separation in the Advective Cahn–Hilliard Equation
	Abstract
	1 Introduction
	1.1 Decay of the Advective Cahn–Hilliard equation
	1.2 Incompressible Velocity Fields with Small Dissipation Time
	1.3 Relationships Between the Various Dissipation Times
	1.4 Plan of the Paper

	2 Decay of the Advective Cahn–Hilliard Equation
	2.1 The Two-Dimensional Case
	2.2 The Three-Dimensional Case
	2.3 Variance Decay in 2D (Lemmas 2.2 and 2.3)
	2.4 Variance Decay in 3D (Lemma 2.4)

	3 The Dissipation Time of Mixing Flows
	4 Relationship Between tau1* and tau2* (Lemma 1.5)
	Appendix A. Dissipation Time Bounds of Mixing Vector Fields
	References




