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Abstract—This paper concerns the open question of creating
control policies of autonomous vehicles (AVs) that lead to
courteous motion. The study is built on a two-agent interaction
between two agents (M and H), where each agent plans its
motion by optimizing a trade-off of goal fulfillment, safety,
and courtesy losses. The paper has three contributions: First,
the “double-blindness” issue in intent inference, i.e., inferring
H’s intent requires knowledge about H’s inference of M’s
intent, is addressed. An empathetic intent inference algorithm
is proposed, where H’s intent, along with its inference of M’s
intent, are jointly inferred. Second, vehicle dynamics is explicitly
incorporated into the intent inference to acknowledge its influence
on decision making in driving through the drivers’ knowledge
about dynamical properties of surrounding vehicles. Lastly, a
courtesy loss that leverages intent inference is introduced. This
loss measures the expected additional loss to H caused by M’s
motion from a baseline where M behaves rationally and in favor
of H. Simulation studies are conducted to demonstrate that
(1) joint inference and knowledge about vehicle dynamics are
important for the performance of intent decoding and motion
planning, and (2) the proposed courtesy definition leads to more
rational motions than those from an existing study.

Index Terms—autonomous vehicles, Bayesian games, intent
inference, human-machine interactions, courtesy.

I. INTRODUCTION

The past decade has witnessed several major milestones in
autonomous driving. It is expected that autonomous vehicles
(AVs) and human-driven vehicles (HVs) will co-exist on road
in the near future, and that AV-AV and AV-HV interactions
will become ubiquitous. Scenarios such as lane changing,
lane merging, and traffic intersections, where AV-involved
interactions occur, are widely investigated [9], [26], [6]. Such
interactions are not fully collaborative, thus requiring AVs
to continuously decode the intents and predict future actions
of surrounding vehicles in order to plan its own actions
accordingly. However, intents of human drivers and other
AVs can be unanticipated (e.g., due to cultural differences)
or dynamically shifting (e.g., due to environment changes),
and false inference of driver intents could lead to incorrect
predictions of how interactions evolve, which, in turn, may
cause uncourteous or even dangerous actions of AVs.

To connect dots from intent inference to courteous driving,
this paper starts by investigating two key issues in driver
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Fig. 1. A comparison between interactions at an intersection, with empathetic
and non-empathetic M: By allowing H to have a potentially incorrect
understanding of M’s intent, M manages to recognize H’s aggressiveness
earlier, thus avoiding the situation where it has to perform an emergency
brake.

intent inference that are only partially addressed in existing
literature, namely, (1) the double-blindness of intents, and (2)
the influence of vehicle dynamics on intent inference. The
proposed inference algorithm then enables a refined definition
of courteous motion that enforces rationality of the courtesy.
Below we provide an overview of the key challenges, related
work, and our approaches.

(1) Double-blindness of intents: To infer the intent of a
surrounding vehicle (denoted by “H” hereafter) based on the
interaction history, one needs to know how H infers the intent
of the host vehicle (denoted by “M” hereafter). In other words,
M needs to be empathetic about the fact that H is unaware of
M’s actual intent, and therefore H only behaves according to
its own expectation of M’s future actions. The importance of
acknowledging the double-blindness of intents is illustrated
in Fig. 1, where M would have applied an emergency brake
as it approaches an aggressive H (i.e., who cares little about
collision), has M held the belief that H understands its true
intent; in contrast an empathetic M would otherwise recognize
H’s aggressiveness earlier and choose to yield (see Sec. IV for
detailed analysis).

The example here can be formalized as a Bayesian game
without common knowledge priors [17]. Existing work in
Bayesian games and autonomous driving have mostly cir-
cumvented this issue by assuming certain degree of common
knowledge and model simplification: Some (e.g., [12], [14])
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merely considered M as a bystander of the interaction, ne-
glecting the influence of M’s past actions on H’s. Nikolaidis
et al. [11] modeled H’s intent as inferred based on past actions
of both M and H, yet assumed that H’s motion planning is in-
dependent from M’s future actions, and thus H’s understanding
of M’s intent was not considered in M’s inference!. Again in
a two-agent setting, Sun et al. [21] proposed to incorporate
M’s future actions into the inference of H’s future actions.
However, their approach assumed that the actual actions to be
taken by M was known by H. Peng et al. introduced Bayesian
persuasion to autonomous driving, where M manipulated H’s
belief of M’s intent through actions [13]. The inference,
however, is heuristic rather than game-theoretic?. Liu et al. [8]
explicitly investigated the double-blindness of intents in a
collaborative game with quadratic control objectives. The
study demonstrated that by “blaming all”, i.e., considering
H’s potential misunderstanding of M’s intent while inferring
H’s intent, parameter estimation (intent inference) showed
improved convergence. However, it is yet to know how double-
blind intent inference should be done in non-cooperative
games.

In this paper, we develop an empathetic intent inference
algorithm where the intents of both agents are jointly inferred,
e.g., when performed by agent M, the inference outcome
includes the probability distributions of H’s intent and H’s
expectation of M’s intent, conditioned on past state trajectories
of both agents. The inference will rely on a likelihood function
that measures the difference between the observed and the
inferred action of H. The latter is derived based on the
assumption that both agents model each other using a baseline
driving strategy where an agent chooses its motion uniformly
from the Nash equilibrium set of the game (see Sec. II-A).

(2) Knowledge about vehicle dynamics: Both intent in-
ference and motion planning of human drivers rely on the
drivers’ knowledge about physical properties of the driving
environment. Fig. 2 compares two cases: In the first case,
M yields to H by recognizing that H, a heavy-duty vehicle,
has less acceleration or deceleration ability; in the second
one, where M does not have the correct knowledge about
the vehicle dynamics of H, M reaches an incorrect inference
of H’s intent and causes a collision. To acknowledge the
importance of physics knowledge in learning and inference,
there has recently been a surge of studies on integrating
such knowledge into predictive models [23], [16]. For ex-
ample, [24] proposed to regularize the prediction of intrinsic
physical properties of objects through a physical simulator.
Similarly, [20] regularized the prediction of object trajectories
and human movements through physical constraints. Specific
to autonomous driving, however, we have seen few studies that
investigate the influence of physics knowledge, or the lack of
it, on intent inference.

'We note that the assumption (human beings are reactive and do not
consider the preference of a machine) is arguably sound given the specific
human-robot interaction setting in [11], yet there is no evidence that it
generalizes to driving interactions.

2E.g., following Peng et al., the aggressiveness of H is negatively related to
its distance from M. This prior could be misleading, e.g., when an aggressive
H is far from M yet approaching fast.
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Fig. 2. A comparison between interactions with and without M’s correct
knowledge about H’s physical properties: When M fails to incorporate H’s
slow acceleration and deceleration into its intent inference, it believes that
H is able to stop as it approaches the intersection, thus reaching a wrong
inference of H’s intent and future actions.

In this paper, we model the action set as acceleration (or
deceleration) rates, and allow agents to have different action
sets. We consider the awareness of others’ action set as the
knowledge of vehicle dynamics. This knowledge is necessary
for intent inference, since the computation of game equilibria
relies on the payoff values of each agent, which are defined by
the control objectives parameterized by the actions to be taken.
We demonstrate through simulation studies that knowing the
acceleration range of the other agent improves the inference
of its intent.

(3) Courtesy in driving: The lack of social gracefulness of
driving has recently been brought up as a potential issue of
AVs in interactions with human drivers [4], [5]. Within a more
focused scope of courteous driving, Sun et al. [22] defined
courtesy as to minimize the inconvenience caused by M for H
(see details in Sec. IV). While plausible, the authors assumed
H’s intent to be known by M. However, we found that this
courtesy definition may create irrationally courteous behavior.
An example is illustrated in Fig. 3: While M is much closer
to the intersection, it chooses to yield to H if the courtesy loss
is sufficiently weighted. This behavior of M is not expected
by H, since it is sub-optimal for M (without considering the
courtesy loss) under any future motion of H, i.e., even if H
rushes through, moving forward is still a better choice for M
than braking.

This paper investigates a new courtesy definition that better
bounds the rationality of courteous behavior. We follow Sun
et al. [22], where the courtesy loss is defined as the difference
between H’s actual payoff and its hypothetical payoff when M
is fully collaborative. Differently, however, we require M to
only collaborate using motions from its inferred equilibrium
motion set, i.e., M collaborates rationally. Similar to [19], [22],
[3], we allow M to proactively predict H’s future motion as a
reaction to M’s, and combine this proactive control objective
with the courtesy loss. Through an intersection case study,
we show that a proactive M pretends to be aggressive and
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Fig. 3. A comparison between interactions (a) with an existing courtesy
loss [22] and (b) the proposed loss

forces H to yield, whereas a courteous M only claims the
right of way when doing so is inferred to be rational and in
favor of H. We also demonstrate through a simulation that
the developed courteous motion planning algorithm can be
extended to interactions with three or more vehicles.

Below we summarize new contributions of this paper over
the existing studies®: Inference contents: [14], [11], [8], [21]
and this paper perform inference of both H’s actions and
intent, while [19], [22] assume H’s intent to be known by
M. Other studies (e.g., [7]) model M’s controller as a black
box that does not explicitly depend on H’s intent. Inference
mechanism: [11], [8], [19], [22], [21] and this paper make
inference based on mechanistic models of driver decision
making, e.g., model predictive control or bounded memory
adaptation [11]. In parallel, researchers have studied data-
driven approaches to intent and motion prediction, e.g., based
on deep neural networks [27], [2], [14]. Although these work
present promising solutions, purely data-driven approaches of-
ten require a large collection of labeled camera and Lidar data,
and ignore the underlying Bayesian game-theoretic nature of
interactions. These drawbacks of data-driven methods could
lead to less verifiable generalization or explainability in pre-
dictions. Besides these supervised approaches, there have been
notable efforts in learning to predict vehicle motion through
imitation learning [10], [25], [1]. To the authors’ knowledge,
however, there have been few studies along this line that
explicitly address the double-blindness challenge in inference
or incorporate the driver’s knowledge of the dynamics of
surrounding vehicles. In addition, the control objectives or
policies learned through imitation do not guarantee any social-
adept driving performance. The present work, along with [8],
is among the only few studies that explicitly address the issue
of double-blind intents during vehicle interactions, and the
presented work is the first to investigate this issue for non-
cooperative games in intelligent vehicle settings. The presented
work is also the first to highlight the importance of knowledge
about vehicle dynamics in intent inference, and to investigate
the rationality of courteous driving enabled by empathetic
intent inference.

31t should be noted that the short survey here is by no means complete.
Only representative and most relevant work are included for comparison.

A preliminary version of this paper has appeared in [18], and
this paper significantly improves the width and depth of the
study. In addition to [18], this paper (1) examines the effect
of empathetic intent inference with rigorous statistical tests;
(2) examines the effect of knowledge of vehicle dynamics;
(3) proposes a more reasonable formulation of the courtesy
loss (see Sec. III-C); (4) extends the proposed framework to
a three-agent case study; and (5) uses a more realistic action
space defined on vehicle acceleration rather than displacement.
This paper also provides additional analyses of case studies
that are not found in [18].

The rest of the paper is structured as follows: In Sec. II,
we formulate the intent inference problem and introduce an
empathetic inference algorithm. Courteous motion planning
will be introduced in Sec. III, and case studies in Sec. IV.
Sec. V discusses limitations of the proposed methods and
future directions. Sec. VI concludes the paper.

II. INTENT INFERENCE

In this section, we will formulate the intent inference
problem and propose an algorithm for a vehicle M to estimate
the intent of the other vehicle H. The inference by M is based
on the assumptions that H uses a baseline motion planning
policy as introduced below, and that H also believes that M
uses the same policy.

A. The interaction game and the baseline control policy

State and action: Denote the state and the action of agent
i€ {H,M} at time t as s;(t) and u;(¢), respectively. In case
studies ( Sec. IV), the state of a vehicle is represented by
its x- and y-coordinates (s;(t) € R?), and the action by its
acceleration rate (u;(t) € R). Vehicle motion is defined as
a sequence of actions of a fixed length L starting from the
current time step ¢: &;(t) = [w;(t),w;(¢+1),--- ,u;(t+L—1)].
We allow ¢ to have a finite set of candidate motions to choose
from, and denote this set as =;. The dependency of variables
on time ¢ will be omitted for brevity when necessary. Control
objective: For two agents ¢ and j, the instantaneous loss of
agent ¢ at time ¢ is denoted as c¢(&;; &5, 0;,8i,8;,t), which is a
function of ¢’s future motion &;, and parameterized by the other
agent j’s future motion ¢, ¢’s intent ;, and the current states
of both agents (s; and s;). Specifically, the instantaneous loss
is modeled as the weighted sum of the safety loss cgafery € R
and the task loss ¢y € R:

c(&i:€5,0i,8:,85,t) = Caatery (&35 &5 80585, 1) + Oiciask (&, 83, 1)

1
For the intersection case, Cggery measures the future distances
between ¢ and j, and cy,g penalizes motions that fail to move
the ego agent across the intersection within L time steps (see
Sec. IV for detailed definitions). The intent parameter 6; € R
represents the aggressiveness of the vehicle ;. While intent
can be defined as all parameters that jointly shape the control
objective of an agent, this paper focuses on aggressiveness due
to multiple practical reasons. First, aggressiveness represents
the balance between the two representative losses of self
goal and safety; second, introducing other intent parameters
could further complicate the case studies, without significantly
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strengthening the contribution of the paper. Note that we use
“aggressiveness” to attribute motion planning, and “empathy”
for intent inference. Therefore, an agent can be both “empa-
thetic” and ‘“‘aggressive”.

Note that cgrery involves the distance between 4 and j, and
thus requires §; and §; as inputs, the latter of which is unknown
by 4. The dependency of variables on s; and s; will be omitted
for brevity.

The interaction game: The payoff for ¢ in the game
is defined by the accumulative loss C(&;&5,0;) =
Zf;{fl c(&i;€;5,0,,7) for feasible ;. Denote éj as 1’s estima-
tion of j’s intent. The game at time ¢ yields a Nash equilibrium
set Q(6;,0;,1) = {(&1,€ £7)}, where §* is 4’s estimation of j’s
planned motion. Each element of Q satlsﬁes

&F = argmin C(&,f 0;),
{€ieB:i}
§; = argmin C(§;;¢7,0;).
{€5€E5}
As an example, at an intersection without a stop sign, either
M or H yielding to the other will satisfy Eq. (2).

It should be noted that for ¢ to infer the intent of j, ¢ needs
to put itself in j’s shoes, i.e., to see the equilibrium set from j5’s
perspective. Since j does not know 6;, a necessary correction
is to introduce 6; and {* as i’s inference of j’s inference
of i’s intent and planned motion, respectively, and define

Q(6;,6;,t) = {( £)} as the version of the equilibrium set
that j could see according to i *.

The baseline control policy: We model ¢ to believe that j
plans its motion by choosing uniformly from Q(6;,6;,t), i.e
from ¢’s perspective, j’s motion follows the probability mass
function:

p(§]7 é% éjat) X

2

{&i365 €

3)
We call this control policy a baseline to the variations to be
introduced in Sec. III.

B. Inference of intent and motion

Eq. (4) formulates the inference problem. The key idea is to
find combinations of intents of ¢ and j such that the resulting
motion of j with the highest probability mass at time ¢t — 1,
denoted by 5;(15 — 1), should have its first action (denoted by
ﬁ; (t—1)) match the observed action of j at time ¢—1 (denoted
by u;(t —1)). In other words, what j could have done should
match what it actually did.

winal(t ~ 1)~ u,(t - DI}
o t “4)
subject to £;(t —1) = arg max p(&;; 0;, 05, — 1)

§€EE;

In this paper, we use a finite intent set © for both agents to
represent different levels of aggressiveness in driving. Since
both © and = are finite, the inference is made through an
enumeration over the joint intent space © x ©. The outcome

K
of the enumeration is a set S(t) = {(6;*79;‘) }k , Where
=1

“Note that we designate the first argument of Q(-,-,t) to the ego agent,
thus 4 and j are flipped when we put ¢ in j’s shoes.

(&,&) and (&5,&) € Q(0;,0;, 1)}

each element is a global solution to Eq. (4). To quantify
the uncertainty in inference and later incorporate it into
motion planning, we assign equal probability mass (1/K) to
each of the solutions, based on which we can compute the
empirical joint distribution p(6;, éj; t) defined on © x ©, and
the marginals p(6;;t) and p(éj;t) defined on ©, by counting
the appearances of all elements of © in S(¢). Formally, these
distributes are defined as

G 0 LK, if (0;,0;) € S(t)
p(97,79]7t) X { O7 otherwise (5)
and ~ 0
p(@l,t) = z p(@ 0 )
) 0;€0 o (6)
p(h;:t) = Z p(0i,0;;1).
51‘6@

From the joint distribution p(éi,éj;t), ¢ can infer j’s
planned motion and j’s expectation of ¢’s planned motion,
as explained below.

a) Distribution of j’s planned motion: Recall that each
(6 ,9;‘) € S(t) deduces a conditional distribution of j’s
motion starting from ¢ — 1 (p(fjgﬁ*,OJ*,t — 1)) through
Q(Q;‘, 0r,t — 1) We can calculate the marginal p(§;;t — 1)
based on p(fj,ﬁ*, 0;, 1) and p(élv, éj; t). Note that this is
the distribution of j’s motion at ¢ — 1 rather than ¢ since we
formulated the game at t — 1. Although one can formulate a
new game at ¢ using s;(t) and s;(¢) instead of s;(¢ — 1) and
8;(t — 1) to derive p(¢;;t), in this paper we will approximate
p(&;;t) using p(&;;¢ — 1) to simplify the computation.

b) Distribution of j’s expectation of i’s planned motion:
Similarly, we can also deduce from S(t) a conditional dis-
tribution of ’s motion starting from ¢, which is denoted by

p(&i; 0 ,9;‘7 t), and the marginal p(&;;t). We shall emphasize
that p(&;; t) is not the distribution of motion that ¢ will follow,
but only represents i’s understanding of what j expects ¢ to
do.

C. Leveraging past observations

Note that if we consider agents’ intent to be time invari-
ant during the interaction, all previous observations can be
leveraged for the inference, leading to the following modified
problem:

min

0:(N)}Y2000
subject to f; (1) = argmax p(&;; 0:(7),0;,7)

€%

Zl\u (m)ll

T=1

)

forre{1,---,t—1}.

Here we allow 6; to freely change along time since j may
change its mind about ¢, while keeping éj fixed for all time
steps. It is possible to impose a structure on {é[ tT_:ll so that
6, changes gradually, i.e., j does not change its mind about ¢
abruptly. We will leave this exploration to future studies.

An important insight is that solutions to Eq. (7), denoted
by S(t), can be found in a recursive way based on solu-

tions to Eq. (4). To explain, consider an intent candidate
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9j that exists in both S(t — 1) and S(t). Let solutions in
S(t — 1) that contain ; be in the form of (a,6;), where
a=|a, - ,a;_1) € AC Ol is a time series of intents of
i. Similarly, let solutions in S(t) that contain 6; be in the form
of (b, éj) where b € B is an intent of ¢. Also let the operation
of appending b to the array a be [a,b]. Then ([a,b],6;) for
alla € A and b € B is a solution to Eq. (7) at t. Following
this property, we have p(6;;t) oc 5(8;;t—1)p(6;;t). Note that
for any candidate éj absent in S(t — 1) or S(t), it also does
not exist in S(¢) and its corresponding probability mass in
ﬁ(éj; t) is zero. The update of ﬁ(éj; t) will trigger that of the
joint probability p(éi,éj;t) and the marginal p(fj;t). Their
updated counterparts are denoted by 13(57; , éj; t) and ﬁ(éj; t),
respectively. Specifically, these distributions are updated as

(05, 550) = p(d, 65502021

p(0: Jj ) = ( J )p(9j;t)

Z (&3 63,05, 1)p(0;, 055 )

(éi,éj)GGX@

. ()
p(&j5t) =

In the following, we will assume that the true intent of both
agents do not change during the interaction, and thus keep
using the notation p to emphasize that the probability mass
distributions are updated based on all past observations.

The intent inference algorithm is summarized in Alg. 1.

Algorithm 1: Algorithm for inferring j’s intent at time ¢

input : states s;(t — 1) and s;(¢ — 1), observed action of
J u;(t — 1), past inference results p(6;;t — 1)
output: solutions to Eq. (4) S(¢), joint intent pmf
p(0;,0;; ), marginal intent pmf p(6;; ¢), action
_pmf p(§;;5)
1 for (6;,6;) € © x © do
2 Compute Q(@Z—,éj,t —1) and p(fj;éi,éj,t —1);
3 Find 5;[(15 -1)= argmax, c= p(&5; 6;, éj,t -1);
4 Compute d(6;,0;) = Hﬁ;r(t — 1) —u(t—1)]3;
5 end
6 Find S(t) := {(67,67)} for all )
(07,0%) = argmin(éi’éj)e(_)xg d(;,0;);
7 Compute p(6;, éj; t) using Eq. (5);
8 Compute p(éj; t) using Eq. (6);
9 Compute ;E(éi, éj; t), ﬁ(éj;t), and ﬁ(éj; t) using Eq. (8);

III. MOTION PLANNING

We now introduce three motion planning formulations (con-
trol policies) that incorporate the inference outcomes from
Alg. 1, namely, reactive, proactive, and courteous planning.
These policies are different from the baseline (Sec.II-A) in that
the latter uses point estimates of intents (without uncertainty
information), and is indifferent towards differences in ego pay-
offs across equilibria. The introduction of these policies thus
creates an inevitable inconsistency between intent inference
and motion planning, i.e., the policy used by H is different
from what M believes what H uses. This leads to the question
of whether an agent should infer control policies of other

agents (and others’ inference of their own policy) in addition
to their intents. In this paper, however, we restrict the study
by fixing agents’ beliefs on others’ policies. Extensions to a
higher-level inference problem will be discussed in Sec. V.

A. Reactive motion

Given the distribution of j’s future motions ﬁ(éj;t), a
reactive agent plans its motion by minimizing the expected
loss within a time window:

: reactive I £
Jain - CFG) = Ee e {C(fuﬁjﬁi)] O
Since =; is a finite set, we resort to an enumeration to solve
Eq. (9). The same applies to proactive and courteous agents.

B. Proactive motion

A proactive agent ¢ plans by taking into consideration the
dependency of j’s planning on ¢’s next action. Specifically, @
calculates the conditional distribution p(£;;&;,¢) based on &
and ﬁ(éj; t), assuming that j will quickly respond to &;. To do
so, % first finds the set of optimal motions of j for every 9j €0
given ;. This set is denoted by Q;(§;) = Uéjeer(fi,éj)
where Q;(&i,0;) = {&;& = argming ez C(&,&,0;)}
Then for each element fj* € Q;(&), we can compute

p0;:t)1(EF € Q;(&:.0)))
1Q; (&, 05)]

P&t = ., (10

éj €0

where 1(-) is an indicator function. For éj € E;/Q;(&), we
set p(£;;&;,t) = 0. We can now formulate the motion planning
problem for a proactive agent:

min Cfroactlve(&) = Eéjfvﬁ(fj;fi,t) [C(&, Ej, 97):|

§i€E;

C. Courteous motion

We start by defining a rational courteous motion of i,
denoted by &/, as one that belongs to the equilibrium set
Q(éj, 6;, t) and is in favor of j. Formally, the set of all rational
courteous motions, {55 }, can be derived from the following
set of motion pairs:

Q7(0;,0;,1) ={(&,&)I(§. &) =  argmin
(&:,€5)€2(6;,6:,t)

C;}.
(1)

Since éj and él are uncertain, we can calculate the qonditional
probability p(¢7;6;,0;,t) and the marginal p(&];t) using

Q’(0;,0;,t) and p(0;,0;;1):

p(€]50:,0;,t) o< [{&55¢; € (€1,¢5) and (&, &) € Q7(0;,0, 1)}
plEity = > p&0:,0;,t)p(0;,05t).

(éi,éj)eeX("‘)
_ (12)
Essentially, p(&/;¢) defines the distribution of motions that ¢

believes would be in favor of j.
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Following [22], the courtesy loss of ¢ is defined as the
non-negative expected difference between the actual control
objective value of j (C;) and a best-case objective (C’;’e“):
Lgounesy(é.i) —

Bg,.6,~p(0,.6,50) |085{0, C5(&55 &, 05) — Cjb“t(éiﬁj)}} ;
(13)
where the best-case value is defined as j’s minimal expected

control objective value when ¢ picks a rational courteous
motion from which j benefits the most.

&eQIj%?,éi,t) B (e 8., {07 (&3 6 ej)} :
(14)
As mentioned in Sec. II-B, p(¢;; 0;, éj, t) in Eq. (14) is
approximated by p(¢;;6;,0;,t —1).
A courteous agent solves the following problem where the
courtesy loss is added to the proactive control objective:

C;:ourtesy (é.z) — Cfroaetive (&) + BL:ourtesy (&)’

C«?est(éi, é]) —

&z, (15)
The weight 8 > 0 tunes the importance of courtesy in the
objective. Compared to the courtesy definitions in [22], Eq. 15
incorporates the uncertainty of j’s intent and future actions,
and constrains the calculation of j’s best-case value using
rational motions of . Therefore, ¢ does not go out of its way

to help j.

IV. CASE STUDIES

We present three case studies to show the importance of
empathy and knowledge about vehicle dynamics in intent
inference, and the merit of the proposed courtesy definition
in motion planning. All studies are based on an interaction
between M and H at a four-way intersection.

A. Simulation setup

The setup of the intersection case is illustrated in Fig. 1,
where M moves up (along y-axis) and H moves left (along x-
axis). The intent candidate set is set to © = {1.0,10%}. Only
for 103, the agent can tolerate contacts with the other agent.

Motion representation: To avoid high-dimensional plan-
ning problems within intent inference, we introduce a surro-
gate action a; as a scalar that determines the initial acceleration
of ¢ for a finite horizon L = 100. The surrogate action set is
A; ={-2.0,-1.0,0.0,1.0,2.0,3.0} x cv;, where the scalar «;
represents the acceleration ability of 7. The unit of the action
is m /4% where a time step 6 = 1/20 seconds. We assume
that &; follows a linear function parameterized by a; and
satisfies the following constraints: (1) the initial acceleration
at time ¢ is u(t) = a;;; (2) the final acceleration at time
t+ L —11is zero: u(t + L — 1) = 0. These assumptions
lead to the following computation of action u(k) within &; for
k={t,-,t+L—1} ulk) =ae; (1—(t+L—1)""k).
Note that since agents move in straight lines, we use u to
represent the magnitude of the acceleration. Lastly, for the first
time step, we assume that both agents have observed u = 0
(constant speed) from each other.

Losses: csk penalizes the agent if it fails to move across the
intersection within L steps. Taking M as an example, the loss

is defined as ¢y sk = exp(—sg\? (t+L—1)+0.4), where sg\?
is the state of M in the = direction. The safety loss is defined
as Csfety = €xp (Y(—D + ¢)), where D = ||sps — sg||3 when
both cars are in the interaction area €2 (see Fig. 1), D = co.
The interaction area is introduced so that the instantaneous
safety loss will be zero at any time step (in the time window)
as long as one vehicle does not enter §2. This treatment of the
safety loss is necessary: Without considering an interaction
area, M will choose not to move across the intersection even
if H stops constantly outside of the intersection, because there
would be a high loss due to close distance to H had M
passed by. v is empirically set to 5.0 so that the safety penalty
increases significantly as the two cars approach each other; ¢
is empirically set to 0.13w? where w = 4.5 (unit: meters) is
the length of the car. This setting creates a safe zone for an
agent since the penalty quickly approaches zero when D > b.
For the courteous agent, /3 is set to 0.1.

Implementation issues: It is worth mentioning that since
the agents do not follow the baseline control policy, their
motions do not necessarily belong to an equilibrium set. This
leads to occasions where the probability mass of the true intent
of j becomes zero as inferred by i, or where the updated
probability distribution, e.g., p(6;;t), has all zero entries as
every candidate intent value has been eliminated during the
inference process. In the implementation, we set ﬁ(éj; t) back
to the uniform distribution when the latter happens.

B. Intent inference with baseline motion

The intent inference we introduced depends on the as-
sumption that both agents follow the baseline control policy.
Therefore it is necessary to verify the performance of the
intent inference method when applied to interactions between
baseline agents.

Experiment Setup: We conduct a set of experiments where
both M and H are modeled to follow the baseline policy, an
assumption used by the inference algorithm (see Sec. II-A).
The results are summarized in (Tab. I), with four combinations
of aggressiveness of M and H being the rows, and empathetic
v.s. non-empathetic the columns. For each element in the table,
we track the probability p(fy = 0) and average it over an
interaction period of 100 time steps. Due to the probabilistic
nature of the baseline policy, we report the mean and standard
deviations of the averaged probabilities over 50 independent
interactions. A paired sample t-test is performed to evaluate
the difference between the accuracy of empathetic and non-
empathetic inferences, and the p-value is reported in the last
column.

Summary: A few remarks on the results are as follows:
(1) The averaged probabilities do not approach 1 since the
inference at the beginning of the interaction is often wrong.
(2) Statistical tests on the experimental results show that the
effect of empathy is most significant when both agents are
non-aggressive, and diminishes when either agent becomes
aggressive. These observations are consistent with intuition:
First, an aggressive H often takes actions (e.g., rushing through
the intersection) that can only be explained by its aggressive-
ness, irrespective to its inference of M’s intent (éM); second,
an aggressive M acts in a legible (yet non-courteous) way
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Fig. 4. Snapshots of the interaction between empathetic AV and the human
drive vehicle.

that forces a non-aggressive H to yield, which reveals its non-
aggressiveness. (3) Lastly, we should clarify that the presented
algorithm allows O to freely change over time, and therefore
its inference only depends on the latest observation rather than
the state-action history. This makes the inference of 6, often
incorrect. However, the contribution of empathy is in allowing
0 wm to be different from the actual value 6);, which opens up
the hypothesis space of Oy, i.c., certain values of f are only
probable when we allow H to have wrong understanding of
M.
TABLE 1

MEAN (STANDARD DEVIATION) OF INTENT INFERENCE ACCURACY
p(0g = 0 ) WITH AND WITHOUT EMPATHY

O O with empathy without empathy p-value
1 1 73.04% (15.84%) | 53.38% (20.15%) | 0.0343
1 10° 83.74% (8.49%) 73.62% (7.60%) 0.1111

103 1 81.86% (12.34%) | 85.16% (10.26%) | 0.6203

10° | 103 81.00% (8.87%) 74.60% (12.24%) | 0.3854

C. The importance of empathy in intent inference

We now investigate the importance of empathy in intent
inference. We show that if M is modeled to believe that H
already knows its true intent, then M will incorrectly infer
H’s intent.

Experiment setup: Both agents are set to be reactive, with
Oy = 1 and 0 = 103. We set H to be more aggressive
than M, so that when M incorrectly infers H’s intent (as non-
aggressive), it will fail to realize that H will not yield. In
the non-empathetic case, we fix éM = 1 for M’s inference
processes, and keep H as an empathetic agent.

Summary: Fig. 4 and Fig. 5 show interactions for the
empathetic and the non-empathetic cases, respectively. We
observe that M in the non-empathetic case moves forward until
it is compelled to yield at ¢ = 17. In the empathetic case, this
abrupt change of motion does not happen. Instead, M realizes
the aggressiveness of H earlier, and chooses to stop before it
enters the interaction zone.

Analysis: Details of the interactions are explained below.
We start with the non-empathetic case. At the first time step,
as both vehicles observe a = 0, the equilibrium sets can be
derived as in Tab. II. From H’s perspective, ap; = 0 leads
to éM = 102 following Alg. 1 (essentially, between éM =1
and éM = 103, the latter has equiliria, apy = 3 or apr = 0,
with a smaller average discrepancy to aps = 0). Similarly,
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Fig. 5. Snapshots of the interaction between non-empathetic AV and the
human drive vehicle.

from M’s perspective, fixing éM to 1 leads to éH = 1. Based
on this initial inference and their states, both vehicles take
a = 3 at t = 1. These actions are observed by each other at
t = 2. Both agents keep their inference since a = 3 can be
explained by their current beliefs of each others’ intents, i.e.,
there exists an equilibrium for which ay = 3 and éH =1,
and another for which ay; = 3 and 0 u = 103, Therefore the
predicted actions are ap; = ay = 3, causing both agents to
brake with a(t = 2) = —1. This iteration between acceleration
and braking continues until £ = 16 when both agents choose
to brake with @ = —2. During this period, M consistently has
the wrong inference of H due to its fixation on 63, = 1, and
causes it to approach the interaction zone with a high speed.

In the empathetic case, the difference is that M starts by
considering H as aggressive without the fixation. This causes
M to immediately slow down, which also allows H to quickly
correct its inference of M.

TABLE 11
EQUILIBRIUM SETS AT t = 1, REACTIVE M VS. REACTIVE H, 05, = 1,
0 =103
(Y (% {a]\/[(tZ].),aH(t:l)}
1 1 {3, -1} or {-1, 3}
1 103 {-1, 3}
10% 1 {3, -1}
103 | 103 {3, 0} or{0, 3}

D. The influence of knowledge about vehicle dynamics on
intent inference

Experiment setup: To show the importance of knowledge
about vehicle dynamics, we now model M and H to have
different acceleration ability, specifically, ap; = 0.002 and
ag = 0.0002. Both M and H are reactive, with g = 0;; =
1 to avoid confounding effects. For the case where M has
incorrect knowledge about H’s dynamics, we set & = 0.002
during M’s intent inference session.

Observation: We use Fig. 6 and Fig. 7 to compare the
outcomes of correct and incorrect & . Fig. 6 demonstrates
the interaction when aj; and ap are known to both agents:
M realizes that H will not be able to stop due to its low
deceleration rate, and thus chooses to yield. When M has the
incorrect knowledge about &g, which is shown in Fig. 7, M
fails to predict H’s future motion, which causes a collision.
This simple example shows that vehicle dynamics needs to be
carefully considered in intent inference. It is true, however, that
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different aspects of dynamics may become relevant to other
interaction settings. For example, in a winding road where M
needs to pass H, M may need to understand stability properties
of H, such as its height of the center of gravity, to predict H’s
driving style.

Analysis: Tab. III summarizes the equilibrium set at t = 1
when aj; and a g are known to both agents. At the first time
step, as M observes ay = 0, it thinks that 9H = 103 follows
the same reasoning process we presented in the previous
subsection. On the other hand, ap; = 0 in this setting does
not offer H a clue about M’s intent. Since it is difficult for
H to stop in time due to its low deceleration, its best action
through the whole interaction is to move forward as fast as
possible (ay = 3). At the same time, M will hold on to the
believe that H is aggressive since it explains the observations
of ag = 3. Therefore M always chooses to yield to H until
H passes the intersection zone. It is worth noting that even if
M believes H to be non-aggressive, it will still yield since it
understands that braking is not an option for H.

TABLE III
EQUILIBRIUM SETS AT t = 1, REACTIVE M VS. REACTIVE H, 0y =1,
0g =1, apr = 0.002, oy = 0.0002

[2Ys (% {a]u(til),aH(t:U}
1 1 {-1, 3} or {3, -2}
1 10% {-1, 3}
10° 1 {-1, 3} or {3, -2}
10% | 10° {3, -1} or{-1, 3}

Now we turn to the case where M does not acquire the
correct knowledge about a . Specifically, M observes H’s
action as a¥¥ = uy/ag. With &g = 10ay, the observed
action of H is 10 times smaller than their actual values. This
structured bias causes a series of incorrect inference during the
interaction, as we explain below. At ¢ = 1, the equilibrium set
from M’s perspective follows Tab. II instead of Tab. III. With
the initial observation of az; = 0, M infers that H is aggressive
(éH = 10%) and that it will keep its speed (&g = 0). As a
result, M chooses to brake: ap(t = 1) = —1. At t = 4,
the slow acceleration of H makes M believe that H will brake,
since between the equilibrial choices of azy = —1 and ag = 3,
its observed action, a% = 0.3, is closer to the former than the
latter. Based on this misunderstanding, M starts to accelerate,
which in turn, causes H to slow down, which further makes
M to believe that H is non-aggressive at t = 9. Tab. IV shows
the Nash equilibrium sets at ¢ = 9 from M’s perspective. M
continues to move with ay; = 3, while believing that H will
be able to stop before the intersection zone with ayy = —2 as
the black circle indicates. However, due to its weak braking
ability, H is not able to avoid the collision at £ = 37.

TABLE IV
EQUILIBRIUM SETS FROM M’S PERSPECTIVE AT ¢t = 9, REACTIVE M VS.
REACTIVEH, Oy = 1,05 = 1, aps = 0.002, ay = 0.002

Ov | 0 | {an(tE=9),an(t=9)}
1 1 {-2,3} or {3, -1}
1 10° {-2, 3}
103 1 {-2,3} or {3, -1}
10% | 103 {2, 3}
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Fig. 6. Snapshots of the interaction between reactive M vs. reactive H with
different ability (ar = 0.0002, aps = 0.002), and the change in 6,7 by H
and 6 by M.
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Fig. 7. Snapshots of the interaction between reactive M vs. reactive H with
different ability (o = 0.0002, aepr = 0.002), while M thinks H’s ability
is 0.002.

E. The merit of the proposed courtesy definition

Here we reuse the intersection case to illustrate the merit
of the proposed courtesy definition, in comparison with [22].
We show that our definition leads to more rational behavior
of M.

Experiment setup: To implement [22] as a benchmark, we
choose the best-case objective value of H to follow “alternative
IT” in the paper where M’s motion planning were only to help
H. Specifically, the benchmark implementation uses:

C,?est,benCh(Qi7 9]) = EHlelél ]Eijp(éj;éi,éj,t) [CJ (fj; fi, 9])} s
o (16)
and follows Eq. (13) and Eq. (15) to form its control objective.
Note that Eq. (16) is only different from Eq. (14) in the
scope of &; (full set of feasible motions as opposed to rational
motions).
We use two cases to show the difference between the two
courtesy definitions. The first setting is the same as before,
where M and H starts at the same distance from the interaction

zone. In the second setting, we set the initial states of M and H
to sp7(0) = (0.0, —1.2) and sy (0) = (3.0,0.0), respectively.

SNote that in [22], the alternative losses are called “baseline”. Here we
use the term “best-case” to avoid confusion with the baseline control policy
introduced in Sec. II-A
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(a) Case 1 Proposed & Benchmark: M yields to H when start from the same distance to center
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(b) Case 2 Benchmark: M yields to H although it is much closer to the intersection
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Fig. 8. Comparison between the proposed courtesy motion and the bench-
mark: (a) when M and H start from the same distance to the center, both
produce the same courteous interactions; (b) when M starts much closer to
the center than H, but still has enough space to yield, it takes a full brake
using the benchmark courtesy loss; (c) under the same setting as (b) and using
the proposed courtesy loss, M chooses to rush through, since this is the most
courteous choice within its perceived equilibrium motion set.

This makes M closer to the interaction zone than H, yet the
distance (1.2) is enough for M to take a full brake and stop
outside of the intersection zone, if it plans to yield to H. We
set Opy =0y =1, apy = ag = 0.002, 3 = 10 to encourage
courteous behavior, and H as reactive.

Analysis: Fig. 8 compares the interactions from the two
courtesy definitions and from the two cases. In the first case,
M chooses to yield with both definitions. This verifies the
correctness of the implementation. In the second case, and with
the benchmark courtesy, M takes a full brake, since doing so
would allow H to pass with minimal loss (thus minimizing
Leeuresy) . We argue that this behavior of M, however, is
irrational. More concretely, full brake does not belong to the
equilibrium set of motion pairs that M perceives based on its
current inference of H. In fact, even if H chooses to rush
through (by taking ay = 3), M would still have a better
payoff should it also choose to accelerate (ap; = 3) due to
its shorter distance to the center. Importantly, according to M,
this knowledge is known by H, and therefore M should believe
that H will not expect M to take a full brake, but rather to rush
through.

F. Study on the courtesy factor

In this subsection, we investigate the effect on AV’s behavior
by the courtesy factor 5.

Experiment Setup: We set up three cases where [ is set
to 0, 1, or 10. M follows the courteous motion introduced
in Sec. III-C. H is reactive. Both agents are non-aggressive:
0y = 0pr = 1. The acceleration abilities are equal: ap; =
ag = 0.002.
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e C» »
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Fig. 9. A comparison between interactions (a) the courtesy loss weight § = 0,
(b) the courtesy loss weight 8 = 1, (c) the courtesy loss weight 5 = 10

Observation: When S = 0 (Fig. 9(a)), M becomes proac-
tive, i.e., it pretends to be aggressive, persuading H to believe
that p(fy; = 10%) = 1 and to yield to M. When § = 1
(Fig. 9(b)), M tries to persuade H to yield until it has to yield
at ¢ = 17. Although M shows some courtesy by letting H
cross first, it does not follow what H would like it to do.
When 8 = 10 (Fig. 9(c)), M strictly follows the motion M
believes to be favored by H.

Summary: By increasing the value of 3, M behaves more
courteously by taking actions closer to what is in favor of H;
on the other hand, when 3 decreases, M behaves closer to a
proactive agent.

G. Extension of knowledge and courtesy

Lastly, we demonstrate a case where we extend the interac-
tion to three agents, as shown in Fig. 10. This case is adjusted
from an accident involving an autonomous vehicle in Tempe,
Arizona [15], and is set at an intersection where the vertical
lanes have green lights but left-turn lanes have no privilege.
H1, as a human-driven vehicle, attempts to turn left; while H2,
the other human-driven vehicle, attempts to rush through the
intersection. Neither of the cars realizes the existence of each
other, since the view is blocked by M, an AV that is waiting
on the left turn lane with no cars behind it. Ideally, M should
realize the potential danger as it can observe both HI and H2,
and unblock the sight by slightly moving backwards. We show
that this can be achieved by the proposed intent inference and
motion planning framework, provided that M identifies the
correct inference task and courtesy objective.

Specifically, we set the motion planning objective of M to
be the sum of those of H1 and H2, and extend the inference
to the visibility of H1 and H2 from each other. For simplicity,
both agents are set as non-aggressive, and this knowledge is
assumed to be known by all. Under this setting, M’s inference
enumerates over two possibilities: When H1 and H2 can see
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Fig. 10. Demonstration of an extension of knowledge and courtesy in multi-
vehicle interactions: (a) When H1 and H2 have no potential collision, M does
not move; (b) When H1 and H2 have potential collision while M is non-
courteous, the collision happens; (c) M identifies the potential collision by
realizing the blocking of sight between H1 and H2 through inference, and
prevents the collision by moving backward to clear the view.

each other, the two should draw equilibrial actions from a
game; otherwise, each should perform motion planning by
assuming a fixed environment. M infers by matching the
observed actions of H1 and H2 with those from these two
hypothetical cases.

Observation: We show in Fig. 10 that the implementation
achieves what we expected: When H1 and H2 have no future
collision (Fig. 10a), M has uninformed inference of their
visibility, and flat objective with respect to its own action.
When there is a potential collision, M realizes the block of
sight early on (Fig. 10c), since H1 should otherwise start to
brake as it enters the interaction zone.

V. DISCUSSION

We now discuss several limitations of the present study and
propose future directions.

a) The inconsistency between intent inference and motion
planning: One may notice that during motion planning,
incorporates the uncertainty of its inference about j’s future
motion. However, in intent inference, ¢ assumes that j uses a
point estimation of ¢’s intent in its planning. More concretely,
the planning of ¢ relies on the joint probability mass function
ﬁ(éi, éj; t). However, when 7 puts itself in j’s shoes during the
inference, it believes that j chooses from equilibrium motions
derived from games where ¢ has a fixed intent. To address this
inconsistency, ¢ would need to model j to have considered
a distribution of intents of ¢ in j’s planning, leading to an
inference of the distribution (of éi) by . It is not yet clear
whether considering this modeling complexity is necessary.

b) Provable necessity and sufficiency of empathy: We
demonstrate in Sec. IV that a non-empathetic agent creates
false inference of others’ intent, which leads to undesirable
consequences. However, we have not yet investigated the
conditions under which empathy will be necessary or sufficient
for the inference algorithm to achieve correct convergence.

c) Inference of the control policy: Discussion so far
suggested intent inference without considering the variants
of control policies may not be effective when one has a
wrong guess of the others’ policy. The question is then how
inference of policies can be incorporated, for example, to
differentiate a proactive agent that pretends to be aggressive
from an aggressive agent. In a discrete setting as presented in
this paper, the inference can be done by enumerating over all
candidate policies. This, however, will not accommodate the
estimation of hyper-parameters such as /3. Another potential
approach is to introduce a meta-objective as a weighted sum of
loss functions collected from all policies, and to infer the true
policy by estimating these weights, in addition to the intent
parameters. The same approach could be used for the inference
of the degree of lawfulness of HVs with respect to traffic rules.

d) Computational challenges: Extending the proposed
inference and planning algorithms to continuous domains will
be necessary for their scalability. However, doing so will
introduce computational challenges since both involve non-
convex optimization problems. In addition, the incorporation
of a high-dimensional distribution of inferred motions in
motion planning can be intractable. One potential solution is to
compute inference results offline through an enumeration over
possible interactions in typical scenarios such as lane changing
and intersection, and perform scenario-specific table lookup at
runtime.

e) Scalability to multi-agent interactions: The proposed
algorithm 1is algorithmically scalable to multi-agent interac-
tions provided that all other agents only consider the ego agent
as the only agent they interact with. Additional complexity
is introduced when other agents interact with both the ego
agent and a third agent. In this context, and strictly following
the modeling of this paper, the ego agent would need to put
on each of the other agents’ shoes and infer their inference
about others (including itself). This will lead to significantly
higher computational cost than two-agent cases. One potential
solution is to assume that other agents consider their surround-
ing agents, except the ego agent, as part of the environment,
i.e., moving obstacles. Doing so reduces the computation of
equilibrium for multi-agent games back to that of two-agent
games. The validity of this approach, however, can only be
tested by human studies.

VI. CONCLUSIONS

This paper had three novel contributions to the literature
on intelligent vehicles. First, we explicitly addressed the
double-blindness issue in intent inference for two-agent non-
cooperative interactions. We showed empirically that allowing
agents to have empathy in inference, i.e., to understand that
others might have false understanding of their intents, can help
to achieve correct intent inference. Second, we verified that
the knowledge about vehicle dynamics was also important to
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correctly infer intents. And lastly, we discussed the limitation
of an existing courteous driving policy that avoided inconve-
nience caused by the AV, in that inconvenience in interactions
could be expected by other drivers as part of the consequence
of rational interactions. We proposed a new courteous policy
that bounded the courteous motion of the AV using its inferred
set of equilibrium motions.
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