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Abstract Truth discovery is a key problem in data analytics which has re-
ceived a great deal of attention in recent years. In this problem, we seek to
obtain trustworthy information from data aggregated from multiple (possi-
bly) unreliable sources. Most of the existing approaches for this problem are
of heuristic nature and do not provide any quality guarantee. Very recently,
the first quality-guaranteed algorithm has been discovered. However, the run-
ning time of the algorithm depends on the spread ratio of the input points and
is fully polynomial only when the spread ratio is relatively small. This could
severely restrict the applicability of the algorithm. To resolve this issue, we
propose in this paper a new algorithm which yields a (1 + ϵ)-approximation
in near quadratic time for any dataset with constant probability. Our algo-
rithm relies on a data structure called range cover, which is interesting in its
own right. The data structure provides a general approach for solving some
high dimensional optimization problems by breaking down them into a small
number of parametrized cases.
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1 Introduction

Truth discovery is an important problem arising in data analytics, and has
received a great deal of attentions in recent years in the fields of data mining,
database, and big data [6,9,10,11,7,12,13,14]. Truth discovery seeks to find
trustworthy information from a dataset acquired from a number of sources
which may contain false or inaccurate information. There are numerous ap-
plications for this problem. For example, the latest search engines are able to
answer user queries directly, instead of simply listing webpages that might be
relevant to the query. This process involves retrieving answers from potentially
a large number of related webpages. It is quite common that these webpages
may provide inaccurate or inconsistent information. Thus a direct answer to
the query needs the search engine to be able to extract the most trustworthy
information from all these webpages, which is exactly the problem of truth
discovery.

Truth discovery is an unsupervised learning problem. Besides the input
data, no prior knowledge about the reliability of each data source is provided.
In such settings, an intuitive approach is to view all data sources equally
reliable and obtain the solution by using the idea of averaging or majority
rule. A major issue of this approach is that the yielded answer may be quite
far away from the truth. This is because a small number of unreliable data
sources could significantly deviate the final solution. To deal with this issue,
truth discovery treats data sources differently by estimating the reliability
for each of them. This greatly increases the level of challenge for the problem.
Moreover, since the truth discovery problem often occurs in big data scenarios,
the number of data sources could be quite large and the dimensionality of the
data could be rather high, which brings another dimension of challenges to the
problem.

A widely accepted geometric modeling of the truth discovery problem is the
follows. Data from each source is formulated as a set of real number attributes,
and thus can be viewed as a vector in Rd, where d is the number of attributes.
Each data source is associated with a positive variable (or weight) representing
its reliability. Formally, the truth discovery problem can be defined as follows.

Definition 1 (Truth Discovery [7,11]). Let P = {p1, p2, . . . pn} be a set of
points in Rd space, where each pi represents the data acquired from the i-th
source among a set of n sources. The truth discovery problem is to find the
truth vector p∗ and wi (i.e., reliability) for each i-th source such that the
following objective function is minimized,

minΣn
i=1wi∥pi − p∗∥2, s.t. Σn

i=1e
−wi = 1. (1)

The meaning of the above truth discovery formulation was discussed in [4]
from an information theory’s point of view. It is shown that the constraint on
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wi in Definition 1 ensures that the entropy is minimized when p∗ approaches
to the truth vector. For this reason, the problem is also called the Entropy
based Geometric Variance problem [4].

Despite extensive studies on this problem, most of the existing techniques
are of heuristic nature, and do not provide any guarantee on the quality of
solution. It is not until very recently that the true discovery problem has
a theoretically guaranteed solution [4]. This result ensures that a (1 + ϵ)-
approximation of the problem can be achieved in O(dn2 + (n∆)σnd) time,
where n is the number of input points (i.e., data sources), d is the dimen-
sionality of the space, ∆ is the spread ratio of the input points, and σ is any
fixed small positive number. The result is based on an elegant sampling tech-
nique which is capable of handling high dimensional data. A main issue of
this method is that its running time depends on the spread ratio of the input
points, and is polynomial only when the spread ratio is relatively small (i.e.,
∆ = O(

√
n)). This could severely restrict its applicability.

To overcome this main issue, we present in this paper a faster algorithm for
the truth discovery problem. With constant probability, our algorithm achieves
a (1 + ϵ)-approximation in O(dn2(log n+ log d)) time, which is completely in-
dependent of the spread ratio. The running time roughly matches the needed
O(dn2) time for a trivial case (i.e., p∗ is close to one of the input points) in [4],
and thus can be viewed as near optimal. Our algorithm is also space efficient,
using only nearly linear space, while the space complexity of [4] also depends
on the spread ratio. Our algorithm relies on a new data structure called range
cover, which is interesting in its own right. Roughly speaking, range cover is a
data structure designed for a class of optimization problems (in high dimen-
sional space) which are decomposable into a number of “easier” cases, where
each case can be characterized by a parameterized assumption. For exam-
ple, truth discovery can be formulated as a problem of finding a truth vector
p∗ ∈ Rd from a given set P of points in Rd so that a certain objective function
(the exact formulation will be discussed later) is minimized. We are able to
show that although directly optimizing the objective function is challenging,
the problem is much easier to solve if some additional information (e.g., the
distance r between p∗ and P ) is known. Thus, by viewing the additional in-
formation as a parameterized assumption, we can solve the truth discovery
problem by searching for the best assumption. The range cover data structure
shows that even though the number of parameterized assumptions could be
very large (or even infinite), it is sufficient to sample only a small number of
assumptions to ensure a good approximate solution. This leads to a small-size
data structure (i.e., O(n log n) space) and a faster algorithm for truth discov-
ery. Since the idea of decomposing problem into cases is not restricted only to
the truth discovery problem, we expect that this data structure will provide
new approaches to other problems.

Related Geometry Problems: The truth discovery problem can be viewed
as a special variant of the 1-mean problem since the truth vector is the weighted
mean of input points with unknown weights. Therefore, it might seem possi-
ble to apply the core-set ideas [1,2,3] to reduce the number of input points.
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However, this turns out to be difficult for the truth discovery problem. The
reason is the follows. Even if we preprocess the data points into a core-set, the
problem of finding the truth vector for a relatively small set of data points
in high dimensional space is still non-trivial, and thus techniques presented in
this paper are still needed.

2 Range Cover Data Structure

In this section, we present the aforementioned range cover data structure.

Range cover is motivated by several high dimensional optimization prob-
lems (such as truth discovery). In these problems, an input point set P is given
in Rd space, and the objective is to find a point q in Rd so that a certain objec-
tive function is optimized. A commonly used approach for such problems is to
examine a number of candidate points selected by some algorithms/strategies.
But directly applying such an approach could require too many (e.g., expo-
nential in d) points to be examined in high dimensional space. A possible way
to overcome this difficulty is to characterize all possibilities of q into a small
number of cases so that in each case q is associated with a certain parametrized
assumption which could help solve the problem more efficiently. For instance,
in some optimization problem, q could be much easier to obtain if we know in
advance the nearest neighbor (say p) of q in P and its distance r to q (i.e.,
∥p − q∥ = r) for some parameter r. We expect that these parameterized as-
sumptions form a space with much lower dimensionality than d, and thus the
overall time complexity can be significantly reduced.

From the above discussion we know that for the range cover data structure
to be efficient, the problem needs to be decomposable into a small number
of “easier” cases. For this purpose, we will take advantage of the distribution
of the points in P , such as their locality and point aggregation properties.
To understand how point aggregation can be useful, consider the following
parameterized assumption on q: Assume that p is the nearest neighbor of q in
P and r is their distance. Denote this assumption by NN q(p, r). If a subset of
points, v = {p1, p2, . . . , pm}, are close to each other compared to r, i.e. their
diameter D(v) is no larger than λr for some predefined small constant λ > 0,
then points in v can be viewed as a single ‘heavy’ point (simply denoted by v
for convenience), and assumptions

NN q(p1, r),NN q(p2, r), . . . ,NN q(pm, r)

can be covered (or replaced) by a single assumption NN q(v, r) without losing
much quality. We formally define NN q(v, r) for aggregated subset v as follows.

Assumption 1 NN q(v, r): For a subset v of P , NN q(v, r) is an assumption
about q if the following holds: The diameter D(v) of v is no more than λr for
some small constant λ > 0, and r ≤ ∥p′−q∥ ≤ (1+λ)r, where p′ is the nearest
neighbor of q in v.
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Another property of P that can be made use of is the domination relation.
If q is very close to an aggregated subset of points v ⊆ P compared to points
in P \ v, it can often be viewed as a degenerated case for the problem and is
relatively easy to solve. To cover such cases, we define the following assumption
DOMq(v) for predefined constants ξ > 0 and λ > 0.

Assumption 2 DOMq(v): For a subset v of P , DOMq(v) is an assumption
about q if the following holds: There exists a point pv ∈ v such that D(v) ≤
λ∥q − pv∥ and ∥pv − q∥ ≤ ξ∥p−v − q∥ for any point p−v ∈ P \ v, where D(v)
is the diameter of v.

With the above definitions of assumptions, we know that the goal of the
range cover data structure is to generate a small number of assumptions

DOMq(v1),DOMq(v2), . . . ,DOMq(vh)

and

NN q(v
′
1, r1),NN q(v

′
2, r2), . . . ,NN q(v

′
g, rg),

so that for any q ∈ Rd, at least one of these assumptions holds. We call such
a collection of assumptions an assumption coverage.

The main idea of range cover is to build a series of views of P formed by
aggregated subsets from different scales of r, which is a controlling factor and
can be interpreted as the distance of observation. Range cover identifies, for
each r, a collection of disjoint aggregated subsets v of P with diameter no
larger than λr for some predefined small constant λ > 0. The collection can
be used as a sketch of P observed from distance r, which takes much less space
than P . These views (from different distances r) jointly provide an easy way
to access the “skeleton” information of P , and allow us to produce a small-
size assumption coverage. Particularly, for a given r, instead of generating
assumptions NN q({p}, r) for each point p ∈ P , we produce coarse-grained
assumptions NN q(v, r) for every v in this view. Furthermore, by utilizing
domination relation, we do not need to consider small values of r, and thus
can further reduce the size of the assumption coverage. This is because the
aggregation-based views of P from small enough r’s correspond to situations
where q is very close to some point and the domination relation holds. Note
that when determining point aggregation, we need not to consider too large r
as well, since for large enough r the whole point set P is an aggregated set.

To generate the assumption coverage, an obvious challenge is how to reduce
the number of possible values of r for which we need to build a view of P .
Even though there is no need to consider too large and too small values for
r, the gap between the maximum and minimum values often depends on the
spread ratio of P , which could lead to pseudo-polynomial running time for
algorithms using the range cover data structure. Below we will show how to
overcome this challenge and obtain a small-size range cover.
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2.1 Range Cover and Assumption Coverage

The range cover data structure uses the aggregation tree as an ingredient. The
aggregation tree is a variant of the Hierarchical Well-Separated Tree (HST)[8]
which is defined conveniently for point aggregation in a well-behaved manner.
The definition is as follows.

1. Every node v (called aggregation node) represents a subset P (v) of P , and
the root represents P .

2. Every aggregation node v is associated with a representative point l(v) ∈
P (v) and a size s(v) which is an upper bound on the diameter of P (v).

3. Every leaf node corresponds to one point in P with size s(v) = 0, and each
point appears in exactly one leaf node.

4. The two children v1 and v2 of any internal node v form a partition of v
with max{s(v1), s(v2)} < s(v).

5. For every aggregation node v with parent vp,
s(vp)
rout

is bounded by a polyno-
mial function P(n, d) ≥ 1 (called distortion polynomial), where rout is the
minimum distance between any point in P (v) and any point in P \ P (v).

The following theorem shows that an HST with polynomial distortion
(therefore, the aggregation tree also) can be built within near linear time.

Theorem 1 [8] An HST with distortion O(
√
dn5) can be built in O(dn log n)

time with success probability 1− 1/n.

Below we will show how to build a range cover data structure from a given
aggregation tree Tp which ensures to form an assumption coverage.

Consider an aggregation node v from distance r. If the diameter of v is not
larger than λr for a predefined constant λ > 0, all points in v can be viewed
as an aggregated subset and thus is part of the view from r. If r is so large
that even the parent v′ of v in Tp is an aggregated subset, v can be replaced
by v′ in the view. This means that an aggregation node v should not appear
in the view from a far enough distance r. Also if r is small, either v has a
too large diameter and thus cannot be an aggregated subset or v dominates
q (i.e. the solution point). In the former case, v should be replaced by one
of its descendant in the view. In the latter case, we do not include v in the
view from distance r, with the belief (which will be proved later) that the
absence of v can be compensated by including the DOMq(v) assumption in
the assumption coverage.

The above observation implies that for any aggregation node v, there exists
a range (rL, rH) of the value of r, such that v is only “visible” when r lies in
the range. This immediately suggests the following scheme. Divide the set of
all positive real numbers into intervals

((1 + λ)t, (1 + λ)t+1], t = . . . ,−2,−1, 0, 1, . . . ,

and associate each of them with a bucket. If an interval (a, b] lies within the
interval (rL, rH) of an aggregation node v, then insert v into the bucket of
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Algorithm 1 RangeCover(Tp, λ, ξ)

Input: A aggregation tree Tp built over a set P of points in Rd; an approximation factor
0 < λ < 1

4
, a controlling factor 0 < ξ < 1.

Output: A number of sets of aggregation nodes, each of which is associated with an interval
((1 + λ)t, (1 + λ)t+1] for some integer t.

1: For every interval ((1+ λ)t, (1+ λ)t+1], create an empty bucket Bt. (Note that Bt will
not be actually created until some aggregation node v is inserted into it.)

2: For every non-root node v of Tp, let vp be its parent in Tp, rH be s(vp)/λ, and rL be
max{s(v)/λ, ξs(vp)/(16P(n, d))}. Do
– For every integer t satisfying the condition of rL ≤ (1 + λ)t < rH , insert v into

bucket Bt.

(a, b]. The collection of these buckets is then the desired range cover data
structure.

Given input points P , for any constant factors 0 < λ < 1/4 and ξ > 0 in
Assumption 1 and Assumption 2, we build the aggregation tree Tp and the
corresponding range cover data structure R by calling RangeCover(Tp, λ, ξ),
and let the assumption coverage Aλ,ξ (or simply A for convenience) contain
the following assumptions:

1. DOMq(v), for every aggregation node v of Tp

2. NN q(v, r), for every aggregation node v of Tp and r such that interval
(r, (1 + λ)r] is one of the nonempty bucket in R and v is a aggregation
node in this bucket.

Clearly obtaining A from R is quite straightforward, and |A| has a size no
larger than that of R.

The following theorem shows that A is indeed an assumption coverage.

Theorem 2 For any q in Rd, at least one of the assumptions in A holds.

Proof Let p′ be the nearest neighbor of q in P . If ∥q − p′∥ = 0, DOMq({p′})
holds. In the following we assume that ∥q− p′∥ > 0. Let t′ be the integer such
that (1 + λ)t

′
< ∥q − p′∥ ≤ (1 + λ)t

′+1. Let v′ be a aggregation node of Tp

which is the highest ancestor of {p′} in Tp such that s(v′) ≤ λ(1 + λ)t
′
. Since

{p′} is a leaf of Tp and s({p′}) = 0 ≤ λ(1 + λ)t
′
, such a v′ always exists.

Based on the relationship between v′, t′ and the range cover data structure,
we have 4 cases to consider.

– (a) v′ is the root of Tp,

– (b) (1+λ)t
′
< max{s(v′)/λ, ξs(v′p)/(16P(n, d))}, where v′p is the parent of

v′ in Tp,

– (c) (1 + λ)t
′ ≥ s(v′p)/λ, and

– (d) max{s(v′)/λ, ξs(v′p)/(16P(n, d))} ≤ (1 + λ)t
′
< s(v′p)/λ.

Below we analyze each of the four cases.
Case (a): Since s(v′) ≤ λ(1+λ)t

′ ≤ λ∥q− p′∥ and v′ represents the whole
point set P (as it is the root of Tp), we know that P \ v′ is empty. This means
that the assumption DOMq(v

′) holds for q.
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Case (b): Note that by the definition of t′, we know that (1 + λ)t
′ ≥

s(v′)/λ. Therefore if case (b) occurs, we have (1 + λ)t
′ ≤ ξs(v′p)/(16P(n, d)).

By (1 + λ)t
′
< ∥q − p′∥ ≤ (1 + λ)t

′+1 and λ < 1, it follows that ∥q − p′∥ ≤
ξs(v′p)/(8P(n, d)). Let po be any point in P \ v′. Then we know that ∥po −
p′∥ ≥ s(v′p)/P(n, d), by the property of aggregation tree. Therefore, we have
ξ∥po − p′∥ ≥ 8∥q − p′∥. Thus, we get

∥po − q∥ ≥ ∥po − p′∥ − ∥q − p′∥ ≥ (8/ξ − 1)∥q − p′∥.

By the fact ξ < 1, we have ∥q− p′∥ ≤ ξ∥po − q∥. Also since (1+λ)t
′ ≥ s(v′)/λ

and (1 + λ)t
′
< ∥q − p′∥ ≤ (1 + λ)t

′+1, we have ∥q − p′∥ ≥ s(v′)/λ. This
indicates that DOMq(v

′) holds for case (b).

Case (c): This case actually never occurs. This is because, by the definition
of v′, s(v′p) > λ(1 + λ)t

′
, since otherwise v′ cannot be the highest ancestor of

{p′} satisfying the inequality s(v′) ≤ λ(1 + λ)t
′
.

Case (d): Note that this case means that v′ is placed in bucket ((1 +
λ)t

′
, (1+λ)t

′+1]. Thus NN q(v
′, (1+λ)t

′
) is in A. We show that NN q(v

′, (1+

λ)t
′
) holds for q. Indeed, this follows immediately from previous discussion on

v′:

s(v′) ≤ λ(1 + λ)t
′

and

(1 + λ)(̇1 + λ)t
′
≥ ∥p′ − q∥ > (1 + λ)t

′
.

Since in all cases at least one assumption in A holds for q, the theorem
follows. ⊓⊔

The following theorem indicates that the size of the assumption coverage
is small.

Theorem 3 Given an aggregation tree Tp and factors 0 < λ < 1/4 and 0 <
ξ < 1, the range cover data structure can be built in O(1/λ log(1/ξ)n(log n +
log d)) time and takes O(1/λ log(1/ξ)n(log n + log d)) space. Consequently,
|A| = O(1/λ log(1/ξ)n(log n+ log d)).

Proof From Algorithm 1, we know that every aggregation node v is in-
serted into O(log1+λ rH/rL) buckets (see Step 2 of the algorithm). Note that
log1+λ rH/rL is no larger than

log1+λ((s(vp)/λ)/(ξs(vp)/16P(n, d))) = O(1/λ log(1/ξ)(log n+ log d)).

Since the total number of aggregation node is O(n), the theorem follows. ⊓⊔
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3 Solving Truth Discovery with Assumption Coverage

In this section, we show how to use the assumption coverage to solve the truth
discovery problem. Given any point set P in Rd and a small constant 0 < ϵ < 1,
we first build an assumption coverage A with factors λ and ξ whose values
depend on ϵ only and will be determined later. We then show how to obtain a
(1 + ϵ)-approximation of the problem in polynomial time. Let p∗ be the truth
vector (i.e., optimal solution) of the problem.

We first borrow a useful lemma from [9]. It shows that once p∗ is deter-
mined, the weights wi can also be determined. Thus we only need to find an
approximate truth vector p∗.

Lemma 1 [9] If the truth vector p∗ is fixed, the following value for each weight
wl minimizes the the objective function (1) (in Definition 1),

wl = log(

∑n
i=1∥p∗ − pi∥2

∥p∗ − pl∥2
). (2)

There are two types of assumptions about p∗ in A which covers all possi-
bilities of p∗: NN p∗(v, r) and DOMp∗(v). Below we discuss each of them.

The following lemma shows that DOMp∗(v) is easy to solve.

Lemma 2 By setting λ ≤ 1/4 and ξ ≤ ϵ/4, if DOMp∗(v) holds for the truth
vector p∗, there exists a point p′ ∈ v ⊆ P such that p′ is a (1+ϵ)-approximation
of the truth discovery problem (using the objective function (1) in Definition
1).

Proof Since DOMp∗(v) holds for p∗, let pv ∈ v be the point defined in As-
sumption 2. Then for any po ∈ P \ v, we have ∥po− p∗∥ ≥ (1− ϵ/4)∥po− pv∥
(by triangle inequality). For any pi ∈ v, we know from the fact λ ≤ 1/4 and
DOMp∗(v) that ∥pv − pi∥ ≤ ∥pi − p∗∥. For every point p ∈ P , determine
its weight based on Equation (??). Then the weights defined in this way
together with p∗ will minimize the objective function (1) by Lemma 1.

Now move p∗ to pv and leave the weights of all points unchanged. Estimate
how much the value of the objective function (1) changes. For any point p ∈ v,
its contribution w∥p−p∗∥2 to the objective function will decrease. For any p ∈
P \v, its contribution will change by a factor no more than 1/(1−ϵ/4)2 ≤ 1+ϵ
(since ϵ < 1). Therefore, moving p∗ to pv increases the objective value only
by a factor no more than (1 + ϵ). If we update the weights accordingly using
Lemma 1, the objective value can only decrease even further. This proves that
pv is a (1 + ϵ)-approximation. ⊓⊔

From the above lemma, we know that if DOMp∗(v) holds for some v, then
one of the input point in P will be a (1 + ϵ)-approximation. This means that
we can handle all such cases by trying every input point as p∗ by computing
the objective function (1) in equation (??), and choosing the one with the
minimum objective value as the solution. This takes O(dn2) time.

The following lemma shows thatNN p∗(v, r) can also be handled efficiently.
We leave the proof to the next subsection.
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Lemma 3 If NN p∗(v, r) holds for any factor 0 < λ < 1/4, then a (1 + ϵ)-
approximation can be computed in time O(dn) with constant probability, where
ϵ is a small constant in (0, 1).

The above lemmas suggest that we can compute an approximate p∗ by the
following algorithm.

1. Compute a aggregation tree from P .
2. Set ξ = ϵ/4, λ = 1/5, compute a range cover from the aggregation tree.
3. Compute A from the range cover.
4. Try every p ∈ P as a candidate for the truth vector. Choose the one, say

p1, that minimizes the objective function.
5. For every NN p∗(v, r) in A, compute a candidate for p∗. Choose the one,

say p2, that minimizes the objective function.
6. Choose from p1 and p2 the one that minimizes the objective function

In the above algorithm, Step 1 takes O(dn log n) time. Step 2 needs
O(n(log n + log d)) time (where ϵ is hidden in the O(·) notion). Step 3 costs
O(n(log n + log d)) time. Step 4 can be done in O(dn2) time. Step 5 takes
O(dn2(log n+log d)) time, since we test at mostO(n(log n+log d)) assumptions
in A. Step 6 requires only O(1) time. For the space usage, it can be computed
O(dn log n)+O(n(log n+log d))+O(n(log n+log d))+O(dn)+O(dn)+O(1) =
dn(log n+ log d). Thus we have the following main theorem.

Theorem 4 Given any set P of n points in Rd, with constant probability, it
is possible to compute a (1 + ϵ)-approximate solution for the truth discovery
problem in O(dn2(log n+ log d)) time and O(dn(log n+ log d)) space.

3.1 Solving NN p∗(v, r)

In this section we prove Lemma 3. We assume that NN p∗(v, r) holds for p∗,
where v ⊆ P and r > 0.

Lemma 1 reveals how the weight wi of every pi ∈ P is related to p∗. It
is clear from the objective function (1) and Lemma 1 that p∗ is the weighted
mean of P . Since we do not know p∗ in advance, wi is also unknown for every
pi ∈ P . The truth discovery problem can be viewed as a problem of finding the
weighted mean of a point set with unknown weights. Our strategy for solving
this problem consists of two main steps: (1) we partition P into a number of
subsets (or sub-clusters), with each having some nice property. The weights of
the points in some clusters are approximately known, while the weights of the
points in other clusters are unknown, but have an upper and lower bound; (2)
we apply a technique in [4] to find the approximate weighted mean point of
each subset, and combine them to estimate p∗.
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3.1.1 Partitioning P for Estimating Weights

We first show how to estimate the weights of some points by NN p∗(v, r)
without knowing p∗. This is crucial for our algorithm to be efficient for any
point set P .

Let p1 ∈ v denotes the representative point l(v) of v. We label the rest of
points in P as p2, p3, . . ., pn. For each point pi ∈ P , define r′i = max(∥p1−pi∥, r)
and ri = ∥p∗ − pi∥. For NN p∗(v, r), let pis ∈ v be the nearest neighbor of p∗

in P . Below we derive the relationship between ri and r′i.
First, we consider the case that max(∥p1−pi∥, r) = r. In this case, we have

ri ≥ ∥pis − p∗∥ ≥ r = r′i by assumption NN p∗(v, r) and the fact that pis is
the nearest neighbor of p∗. Also we have

ri ≤ ∥p1 − p∗∥+ ∥p1 − pi∥ ≤ ∥p1 − p∗∥+ r,

and

∥p1 − p∗∥ ≤ ∥p1 − pis∥+ ∥p∗ − pis∥ ≤ D(v) + (1 + λ)r ≤ (1 + 2λ)r.

Thus, ri ≤ (2 + 2λ)r = (2 + 2λ)r′i. Putting all together, we have r′i ≤ ri ≤
(2 + 2λ)r′i.

Then, we consider the case that max(∥p1−pi∥, r) = ∥p1−pi∥. In this case,
r′i = ∥p1 − pi∥ ≥ r. Again, we have

∥p1 − p∗∥ ≤ ∥p1 − pis∥+ ∥p∗ − pis∥ ≤ D(v) + (1 + λ)r ≤ (1 + 2λ)r.

Therefore, (1 + 2λ)r′i ≥ ∥p1 − p∗∥. Thus,

ri = ∥pi − p∗∥ ≤ ∥p1 − pi∥+ ∥p1 − p∗∥ ≤ ∥p1 − pi∥+ (1 + 2λ)r′i = (2 + 2λ)r′i.

Next, we consider 2 subcases, r′i ≥ 2r and r′i < 2r. If r′i < 2r, since ri ≥ r, we
have ri > r′i/2. If r

′
i ≥ 2r, since ∥p1 − p∗∥ ≤ (1 + 2λ)r, we have ∥p1 − p∗∥ ≤

(1 + 2λ)r′i/2. This means that

ri = ∥pi − p∗∥ ≥ ∥p1 − pi∥ − ∥p1 − p∗∥ ≥ r′i − (1 + 2λ)r′i/2 = (1− 2λ)r′i/2.

To conclude, we have (1− 2λ)r′i/2 ≤ ri ≤ (2 + 2λ)r′i.
From the above analysis and the fact that λ < 1/4, we can obtain the

following.

ri/4 ≤ r′i ≤ 4ri. (3)

For each pi ∈ P , let wi = log((
∑

pj∈P r2j )/(r
2
i )), i.e., wi is the optimal

weight determined by Lemma 1. Let w′
i = log((

∑
pj∈P r′2j )/(r

′2
i )). From in-

equality (2), we obtain the following:

wi − log 256 ≤ w′
i ≤ wi + log 256. (4)

This means that w′
i can be used as an approximation of wi if wi is large

enough.
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For any pi ∈ P , if w′
i ≥ 8/β ≥ log 256/β for any 0 < β < 1, we have the

following (by (??))
(1− β)wi ≤ w′

i ≤ (1 + β)wi.

This means that wi can be well approximated by w′
i in this case. Let Pβ denote

the set {pi ∈ P |w′
i ≥ 8/β}.

Next, we further show that there is at most one point pi in P with weight
wi < log 36/25 which, if exists, can be identified by a simple procedure. By
the definition of wi, we know that wi < log 36/25 can happen only when
∥p∗ − pi∥ > 5∥p∗ − pj∥ for any i ̸= j. This means that for any j, l ̸= i,

∥pj −pl∥ ≤ ∥p∗−pj∥+∥p∗−pl∥ ≤ 2max(∥p∗−pj∥, ∥p∗−pl∥). Thus, we have

∥pj − pi∥ ≥ ∥p∗ − pi∥ − ∥p∗ − pj∥
> 5max(∥p∗ − pj∥, ∥p∗ − pl∥)−max(∥p∗ − pj∥, ∥p∗ − pl∥)
= 4max(∥p∗ − pj∥, ∥p∗ − pl∥) ≥ 2∥pj − pl∥.

Hence, for any j, l ̸= i, the inequality ∥pj − pl∥ < ∥pi − pj∥/2 holds. In other
words, pi is isolated from the rest of the points in P . It is easy to see that such
a pi is unique, if exists. The following procedure searches for such a pi.

1. Choose an arbitrary point p from P .
2. Find a point p′ in P farthest away from p.
3. Find a farthest point p′′ from p′ in P .
4. Compare the pairwise distances among the three points in {p, p′, p′′}. Throw

away the pair of points with the smallest pairwise distance. Output the re-
maining point as p̂.

From the above discussion, it is easy to see that if there is a point pi with
weight wi < log 36/25, it must be p̂. Clearly, this procedure takes only O(dn)
time.

For a constant 0 < β < 1/2 (whose value will be determined later), let
Pu = P \ (Pβ ∪ {p̂}) and P< = {p̂} \ Pβ . Then, Pu, P<, Pβ form a partition of
P . Pβ contains all points pi in P whose weights wi have already been roughly
determined (i.e., approximated by w′

i); P< has at most one point, which will
be the one with weight smaller than log 36/25, if exists; Pu contains all the
remaining points whose weights are not known yet. Pu, P<, Pβ together with
w′

i can be obtained in O(dn) time since it takes a total of O(n) distance
computations.

Following a similar idea in [4], we further decompose Pu by using the log-
partition technique, where γ > 0 is a constant to be determined later. (Note
that the log-partition cannot be explicitly obtained since we do not know the
weights wi. We assume that such a partition exists and will be used in our
later analysis.)

Definition 2 The log-partition of Pu divides points in Pu into k groups

G1, . . .Gk as follows, where k = ⌈log1+γ
16/β

log 36/25⌉ + 1: Gi = {pj ∈ Pu|(1 +

γ)i−1 log 36/25 ≤ wj ≤ (1 + γ)i log 36/25}.
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Note that the above partition indeed involves all points in Pu. This is
because by the definition of P< and Pβ , and the fact that (1 − β)wi ≤ w′

i ≤
(1 + β)wi for all point pi ∈ Pβ , we know that log 36/25 ≤ wi ≤ 16β for each
point pi ∈ Pu. This implies that G1, . . .Gk, P<, Pβ form a partition of P . Also,
we apply log-partition to Pu instead of P as in [4]. In this way the value of k
is bounded, making our algorithm efficient for any data.

3.1.2 Applying the Simplex Lemma

In the following we provide details on the simplex lemma in [4] and how to use
it to solve the truth discovery under assumption NN p∗(v, r), given a partition
of P as shown in Section 3.1 (i.e., G1, . . .Gk, P<, Pβ).

The basic idea comes from the following lemma from [4].

Lemma 4 (Modified Simplex Lemma [4]). Given an unknown weighted point-
set Q ⊂ Rd, which is implicitly divided into k mutually exclusive groups
{Qj |1 ≤ j ≤ k}, and k points {oj |1 ≤ j ≤ k} satisfying the condition that
for each j, the distance between oj and the weighted mean of the unknown Qj

is no more than a fixed value L ≥ 0. Let Γ = {j|w(Qj)
w(Q) ≥ ϵ

k}, where w(·) is

the total weight of a point-set. Then it is possible to construct a grid of size
((8k/ϵ)k) inside the simplex determined by {oj |j ∈ Γ}. such that at least one
grid point τ satisfies the following

∥τ −m(Q)∥ ≤ 2

√
ϵ

1− ϵ
δ(Q) + (1 + ϵ)L, (5)

where m(Q) and δ(Q) are the weighted mean and standard deviation of Q,
respectively.

Figure 1 gives an example to illustrate the main idea of computing weighted
mean points. To summarize, the simplex lemma gives us an oracle procedure,
denoted by SIMPLEX(ϵ, k, o1, . . . , ok), which returns a grid of size ((8k/ϵ)k)
and ensures that one of the grid point is close to the weighted mean of Q =⋃
Qi if oi is a good approximation of the weighted mean of each Qi.
Suppose that we are applying SIMPLEX(ϵ, k, o1, . . . , ok) for clusters Q =⋃k

i=1 Qi with approximate center oi for each Qi. The analysis in [4] established
the following fact for SIMPLEX.

Fact 1 If for each Qi, the inequality
w(Qj)
w(Q) ≥ ϵ

k (where w(·) denotes the total

weight of a point set) holds and the distance between its approximate mean oi
and the actual weighted mean of Qi is no larger than O(ϵδ(Qi)/

√
k) (where

δ(·) denotes the weighted standard deviation), there exists a grid point o′ in
the grid produced by SIMPLEX(ϵ, k, o1, . . . , ok) such that the distance between
the actual mean of Q and o′ is no larger than O(

√
ϵδ(Q)).

With the above fact, our idea is to apply SIMPLEX on P<, Pβ , Pu to
produce a grid such that one of the gird points is close to the optimal truth
vector p∗. Since we aim for a (1+O(ϵ))-approximation, it is sufficient to have
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M1
M

M

O O

O

1

2

3

3

2

Fig. 1: An example illustrating how to use Simplex Lemma to find the weighted
mean of a point set which is partitioned into sub-clusters with weighted means
M1,M2,M3, respectively. We first find points (O1, O2, O3 in the figure) close to
the weighted means of the clusters, and then build a simplex using O1, O2, O3

as the vertices and with grids in its interior. The actual weighted mean O is
close to the one of the grid point O.

the distance from the grid point to p∗ no larger than O(
√
ϵδ(P )), as it is shown

in [4] that this gives a (1+O(ϵ))-approximation for the objective function. By
Fact 1, we only need to find approximate means o<, oβ , ou for P<, Pβ , Pu,
respectively, such that the distance from each of them to their corresponding
actual means of P<, Pβ , Pu is no larger than O(ϵδ(P<)), O(ϵδ(Pβ)), O(ϵδ(Pu)),
respectively.

Note that it is trivial to find an approximate mean for P< since P< contains
at most one point, and its mean can be obtained automatically. Hence, the
remaining issue is to estimate the weighted mean of Pu and Pβ .

Finding oβ : The weighted mean of Pβ can be directly computed by using
w′

i as an approximation of the actual weight wi. If the value of β is chosen
properly, the computed mean should differ from the actual mean by a distance
no more than O(ϵδ(Pβ)). This can be shown by the following lemma. It is easy
to see that it suffices to set β = ϵ2.

Lemma 5 Let P = {p1, p2, . . . , pn} be a set of weighted points with each pi
associated with a weight wi ≥ 0. For i = 1, 2, . . . , n, let w′

i > 0 be a number
satisfying inequality (1−β)wi ≤ w′

i ≤ (1+β)wi for some constant 0 < β < 1/2.
Then ∥m − m′∥2 ≤ 4βδ2(P ), where m and δ(P ) are the weighted mean and
weighted deviation of P , respectively, and m′ is the weighted mean of P with
new weights w′

i for each pi.
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Proof Let W =
∑n

i=1 wi. Since m is the weighted mean of P , it is known that∑n
i=1 wi∥pi −m′∥2 = W∥m−m′∥2 +

∑n
i=1 wi∥m− pi∥2. Thus,

∥m−m′∥2 = (

n∑
i=1

wi∥pi −m′∥2 −
n∑

i=1

wi∥m− pi∥2)/W

≤ ((1− β)−1
n∑

i=1

w′
i∥pi −m′∥2 −

n∑
i=1

wi∥m− pi∥2)/W.

From the fact that m′ is the weighted mean of P with weights w′
i for each

pi, we have
n∑

i=1

w′
i∥pi −m′∥2 ≤

n∑
i=1

w′
i∥pi −m∥2.

Applying this to the above inequality, we get

∥m−m′∥2 ≤
n∑

i=1

((1− β)−1w′
i − wi)∥m− pi∥2/W.

Finally by the fact that w′
i ≤ (1 + β)wi, the above inequality becomes

∥m−m′∥2 ≤ 2

1− β
β

n∑
i=1

wi∥pi −m∥2/W =
2

1− β
βδ2(P ).

The lemma follows from the fact that β < 1/2. ⊓⊔

Finding ou: We start by assuming that w(Pu) ≥ ϵw(P )/3 (where w(·) is used
to denote the total weight of a point set), since otherwise the contribution of
ou is insignificant (by Fact 1). We apply another round of the aforementioned
SIMPLEX procedure to find its weighted mean from the approximate means
of G1, . . . ,Gk. This means that we need to find the approximate weighted
means o1, o2, . . . , ok and set ϵ′ = ϵ2 such that SIMPLEX(ϵ′, k, o1, o2, . . . , ok)
gives us a grid with at least one grid point close to the weighted mean of Pu

(i.e. the distance is no more than O(
√
ϵ′δ(Pu)) = O(ϵδ(Pu))). Note that this

part is exactly the same problem in [4] (applying SIMPLEX to perform a log-
partition). Below we briefly sketch the technique and point out the difference.

The idea is to use the unweighted mean of each Gi to estimate the weighted
mean of Gi. The estimation is a good approximation since points in the same
group Gi will have roughly the same weight; thus the weighted mean of Gi

is approximately the unweighted mean of Gi. Computing the mean of Gi is
not simple, since we do not know explicitly which points are in Gi. Below we
describe a sampling technique to estimate the unweighted mean of Gi. Note
that the total weight W of all points in P is at least n log n as shown in [4]
and every point in Gi has a weight no larger than 16/β (by the definition of

Pu). Thus, if the total weight of Gi is no smaller than ϵ′w(Pu)
k ≥ ϵ′ϵW

3k = ϵ3W
3k

(note that by Fact 1, we only need to find the means for those Gi satisfying
this condition), the number of points in Gi will be greater than ϵ3βn log n/48k,
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Algorithm 2 (1 +O(1)ϵ)-approximate Truth Discovery from NN p∗(v, r)

Input: A set P of n points in Rd space. Assumption NN p∗(v, r). β = ϵ2. Constants γ, k

solved from 2γ
√
k ≤ ϵ2 and k = ⌈log1+γ

16
ϵ2 log 36/25

⌉ + 1. c1 = 4k
αγ2 log 16k2

γ2 . c2 = 4k
γ2 .

α = ϵ3β/48k.
Output: An approximate truth vector.

1: Identify P<, Pβ , Pu by computing w′
i for each pi ∈ P .

2: Compute the weighted mean o′3 of Pβ using weights w′
i.

3: Randomly sample c1 points from P . Enumerate all subsets of c2 points from the sample.
Compute means of these subsets, and put all the means into a set M .

4: For every k-subset {o1, . . . ok} of M , apply SIMPLEX(ϵ2, k, o1, . . . , ok) to produce a
grid. Put all grid points in into a point set G.

5: For every o′2 in G, if P< contains a point o′1, then build a grid by applying
SIMPLEX(ϵ, 3, o′1, o

′
2, o

′
3); otherwise, build a grid using SIMPLEX(ϵ, 2, o′2, o

′
3).

6: Try all the grid points produced above. Output the one that minimized the objective
function (1).

which means that at least a constant fraction (α = ϵ3β/48k) of points in P is
in Gi. This allows us to obtain the mean point by using the following sampling
approach: for some constants c1 and c2 with c1 > c2, first randomly sample c1
points from P ; with constant probability, the mean of one of the c2-subset of
the sampled points is approximately the mean of Gi, and thus approximately
the weighted mean of Gi. To summarize, it is shown in [4] that by setting

2γ
√
k ≤ ϵ′, c1 = 4k

αγ2 log
16k2

γ2 and c2 = 4k
γ2 , where α = ϵ3β/48k, with constant

probability, the sampling method produces at least one point whose distance
to the actual weighted mean of Gi is O(ϵ′δ(Gi))/

√
k. Thus it can be used as oi

and applied by SIMPLEX to produce the desired grid.

Algorithm 2 summarizes the above discussion and shows how to use SIM-
PLEX to produce an approximate truth vector, given P partitioned into
P<, Pβ , Pu as above. The running time and space usage match those appear in
Lemma 3. To obtain a (1 + ϵ)-approximation, we only need to do a scaling on
the constants without affecting the asymptotic running time. Below we briefly
explain the main steps.

In Step 1 we partition P into P<, Pβ , Pu as mentioned before. In Step 2
an approximate weighted mean of Pβ is computed. In Steps 3 and 4, we try
to guess k weighted means {o1, . . . ok} for the clusters G1, . . .Gk resulted from
the log-partition of Pu by using random sampling. We apply SIMPLEX to
these approximate means {o1, . . . ok} to produce a small grid. The set G of
grid points contains at least one point which is a good approximate weighted
mean of Pu. In Steps 5 and 6, we already have approximate weighted means
o′1 and o′3 of P< and Pβ , respectively, and a set G which contains an approx-
imate weighted mean o′2 of Pu. We then try all possible o′2 from G and use
SIMPLEX on o′1, o

′
2, o

′
3 to produce grids and one of such grids contains the

desired approximation of the truth vector.



Faster Algorithm for Truth Discovery via Range Cover 17

References

1. Agarwal, P. K., Har-Peled S., and Varadarajan S. R.: Geometric approximation via core-
sets. Combinatorial and computational geometry 52, pp. 1-30(2005).

2. Chen, K.: On coresets for k-median and k-means clustering in metric and euclidean spaces
and their applications. SIAM Journal on Computing, 39.3: pp. 923-947(2009).

3. Dan, F. and Langberg, M.: A unified framework for approximating and clustering data.
Proc. 43rd annual ACM Symposium on Theory of Computing, pp. 569-578(2011).

4. Ding, H., Gao, J., and Xu, J.: Finding Global Optimum for Truth Discovery: Entropy
Based Geometric Variance. Leibniz International Proceedings in Informatics (LIPIcs),
32nd International Symposium on Computational Geometry (SoCG 2016), Vol. 51, 34:1-
34:16(2016).

5. Ding, H. and Xu, J.: A Unified Framework for Clustering Constrained Data without Lo-
cality Property. Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA
2015), pp. 1471-1490, January 4-6, 2015, San Diego, California, USA.

6. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: The role of
source dependence. PVLDB, 2(1): 550-561(2009).

7. Li, Y., Gao, J., Meng, C., Li, Q., Su, L., Zhao, B., Fan, W., Han, J.: A Survey on Truth
Discovery, CoRR abs/1505.02463(2015).

8. Har-Peled, S.: Geometric approximation algorithms. Vol. 173. Boston: American mathe-
matical society(2011).

9. Li, H., Zhao, B., Fuxman, A.: The Wisdom of Minority: Discovering And Targeting The
Right Group of Workers for Crowdsourcing. Proc. of the International Conference on
World Wide Web (WWW’14), pp. 165-176(2014).

10. Li, Q., Li, Y., Gao, J., Su, L., Zhao, B., Demirbas, M., Fan, W., Han, J.: A Confidence-
Aware Approach for Truth Discovery on Long-Tail Data. PVLDB 8(4): 425-436(2014).

11. Li, Q., Li, Y., Gao, J., Zhao, B., Fan, W., Han, J.: Resolving Conflicts in Heteroge-
neous Data by Truth Discovery and Source Reliability Estimation. Proc. the 2014 ACM
SIGMOD International Conference on Management of Data (SIGMOD’14), pp. 1187-
1198(2014).

12. Pasternack, J., Roth, D.: Knowing what to believe (when you already know something).
Proc. of the International Conference on Computational Linguistics (COLING’10),
pp. 877-885(2010).

13. Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., Movellan, J.: Whose Vote Should Count
More: Optimal Integration of Labelers of Unknown Expertise. Advances in Neural Infor-
mation Processing Systems (NIPS’09), pp. 2035-2043(2009).

14. Yin, X., Han, J., and Yu, P.S.: Truth discovery with multiple conflicting information
providers on the web: Proc. of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’07), pp. 1048-1052(2007).


	Introduction
	Range Cover Data Structure
	Solving Truth Discovery with Assumption Coverage

