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Abstract—The thermal inertia of buildings, along with the
flexibility associated with thermostatically controlled loads (TCL)
allows heating, ventilation and cooling (HVAC) systems to be used
for grid demand response (DR). In this work, we consider a
hydronic HVAC system that serves multiple units in a residential
building to meet their space heating requirements. We aim to
determine the optimal power flow to each unit that minimizes the
power costs incurred by the building’s occupants while keeping in
consideration their thermal comfort. The DR program is assumed
to allow the building temperatures to deviate from the set-points
up to a maximum limit. Despite the complex, non-linear structure
of the problem, we show how the optimal solutions can be
obtained efficiently using quadratic programming. Since HVAC
systems can run on either electricity or natural gas, we study the
efficacy of the DR regime for both hourly electricity prices and
flat gas prices over the course of 24 hours. We also study the
optimal thermal power and the evolution of unit temperatures
for various energy pricing schemes.

I. INTRODUCTION

Heating, ventilation and cooling (HVAC) systems accounted
for approximately 30% of the total energy consumed by the
commercial building sector in the United States in 2017 [1].
According to another report [2], 56% of all energy consumed
in homes in the state of New York in 2009 was used for
space heating alone. Since a large part of the country consis-
tently experiences winter temperatures close to freezing point,
domestic heating requirements can rise substantially. This in
turn leads to an increase in demand for electricity and gas.
In response, system operators have to ramp up generation
which is often achieved by turning on peaking power plants.
These plants are not only expensive to operate but are also
environmentally polluting. The higher running costs for such
plants result in higher hourly prices paid by the consumers.
Demand response (DR) in buildings is one possible way
among many others to prevent elevated energy costs. In this
paper, we focus on DR-compliance for the HVAC systems in
residential complexes. The slow thermal dynamics and hence
the thermal storage capabilities of buildings mean that in the
presence of an adequate control scheme, heating loads can
be shifted or curtailed, although at the cost of some thermal
discomfort to the occupants [3].

Recently, the use of DR for load shifting and load cur-
tailment in HVAC systems has received increased attention
among researchers. The prospects of employing DR in both
commercial and residential HVAC systems have been studied.
The authors in [3] aimed to ascertain the potential of introduc-
ing DR programs to HVAC systems in residential areas. The

DR was implemented using a deadband which represented the
occupants’ tolerance to variation in the indoor temperature.
Unlike our work, the authors in [3] did not consider the role
of energy prices in the effectiveness of DR in their study.

Some DR programs may use real-time pricing (RTP) as a
means to shift the demand to low load, low price periods.
The authors in [4] studied price-based DR strategies for
controlling electric space heating loads using a hardware-
in-the-loop framework. In [5], the authors proposed a load
management strategy for HVAC systems which was based on
model predictive control (MPC) using a data-driven approach
to model the thermal dynamics of the building. Unlike [5],
we consider a multi-unit residential building, and a physical
model for a hydronic (water-based) HVAC system. One benefit
of using a physics-based model is that with some modification,
this model can potentially be applied to other HVAC systems
as well.

In this work, we consider a hydronic HVAC system that
serves multiple units in a residential building to meet their
space heating requirements, as shown in Fig. 1. With each
unit having a temperature set-point, we aim to determine
the optimal mass flow of the heated water to each unit that
minimizes the weighted sum of the thermal discomfort and the
energy costs incurred over a time horizon. This paper considers
three power pricing schemes: flat, time-of-use (ToU), and
hourly. The flat pricing scheme represents the situation where
the boiler is heated by natural gas. On the other hand, the ToU
and the hourly pricing schemes are applicable to electricity-
powered HVAC systems. We assume that the DR program
allows the building temperatures to deviate from the set-points
to within a certain range, as agreed upon by the building
operator and the power utility. We develop mathematical ex-
pressions for modeling the temperature evolution in residential
units over time. Despite the complex, apparent non-convex
structure of the problem, we show how the optimal solutions
can be obtained using quadratic programming. Finally, we
use our model to run simulations to determine the optimal
thermal power and the evolution of unit temperatures for the
three energy pricing schemes. Our initial results show that
our solution may have a strong potential for saving significant
electricity cost by using buildings for grid DR.

The rest of this paper is organized as follows: Section
II provides details of the system model and poses our pro-
posed control strategy as an optimization problem; Section
III reformulates the problem by expressing the variables in
terms of known constants and the supplied power; Section



Notation Description
J set of all units in a building
∆j temperature set-point for unit j
τ the length of the entire time horizon
µ duration of each time slot
K total number of time slots (= τ

µ )
Pj(t) power consumed by unit j at time t
Tj(t) zone temperature of unit j at

time t
P total(t) total power consumed by all

units at time t
w weighting parameter
π(t) energy price at time t
Cj thermal capacitance of unit j
Rj thermal resistance of unit j

T∞(t) ambient temperature at time t
ṁj(t) mass flow rate of the heated water towards

unit j at time t
ρ maximum permitted deviation from the

temperature set- point
Sp specific heat capacity of water
hR heat exchange coefficient
TS temperature of the supplied water

TR,j(t) temperature of the water returning
from unit j at time t

TR(t) temperature of the water returning
to the boiler at time t

TABLE I: Table of notations.

IV provides a discussion on the simulation results. Finally,
Section V summarizes the findings of this paper.

II. PROBLEM FORMULATION

In this work we consider a set of units J located in a
residential building. Each unit j has a pre-determined tem-
perature set-point, ∆j . Furthermore, ρ represents the maxi-
mum permitted temperature swing about ∆j . This ‘deadband’
represents the flexibility in the HVAC load that is needed
for implementing a DR program. The building is taken to
be equipped with valves that can control the mass flow rate
of the water depending on the heating requirements of each
individual unit. We assume that the temperature of each unit
is uniform. We use a typical R-C model to represent the
thermal properties of the indoor units. It is further assumed
that the these thermal parameters are known to (or well-
estimated by) the utility. The HVAC system is assumed to
operate at 100% efficiency, i.e., all the power used to heat up
the water is converted to thermal power for heating the units1.
The power consumed to heat up unit j at time t is given by
Pj(t). The space temperature of each unit is denoted by Tj(t).
Furthermore, P total(t) is the total thermal power required to
heat up all the units at time t.

We consider a hydronic HVAC system in which heated
water is distributed from a central source to spaces within

1Without loss of generality, we consider a heating scenario although our
model and analysis extend to cooling as well.

a building (or part of a building). We take the central source
to be a boiler which may be heated by either natural gas or
electricity. The temperature of the water leaving the boiler is
denoted by TS and is assumed to be constant for the entire
time horizon. The living spaces are heated using fan coil units.
The HVAC system is equipped with valves to control the mass
flow rate of water at time t, ṁj(t), to the fan coil unit in space
j. The temperature of the water returning to the boiler at time
t is denoted by TR,j(t). Fig. 1 shows a simplified schematic
of the HVAC system being studied here.

We pose our objective as an optimization problem that aims
to minimize the weighted sum of (i) total energy costs for
the consumers and (ii) the thermal discomfort experienced
in all units over the entire time horizon. Mathematically, the
objective is to minimize,∫ τ

0

{wπ(t)P total(t) + (1− w)
∑
j∈J

[Tj(t)−∆j ]
2}dt, (1)

subject to,

(C′1) Ṫj(t) =
1

CjRj
[T∞(t)− Tj(t)] +

1

Cj
Pj(t),

(C′2) Pj(t) = ṁj(t)Sp(TS − TR,j(t)),

(C′3) Pj(t) = hR

(TS + TR,j(t)

2
− Tj(t)

)
,

(C′4) 0 ≤ ṁj(t) ≤
1

φj
,

(C′5) − ρ ≤ Tj(t)−∆j ≤ ρ,

where w and φS,j are constants and τ is the duration of the
time horizon. The initial temperature of unit j is Tj(0) = T 0

j .
Additionally, π(t) denotes the energy price at time t. Let
Cj and Rj represent the thermal capacitance and resistance,
respectively, of unit j. Moreover, T∞(t) is the ambient tem-
perature at time k and is assumed to be known a priori. Let
Sp be the specific heat capacity of water. Furthermore, TS
is the constant temperature of the water at the energy source,
whereas TR,j(t) is the temperature of the water returning from
the building at time t. Finally, hR is a constant representing
the heat exchange coefficient between water and air.

For the objective function in (1), (C′1) models the evolution
of unit j’s temperature over time. Constraint (C′2) links the
power consumed with the mass flow rate and the change in
temperature of the heating water. Constraint (C′3) expresses the
power consumed in terms of the heat exchanging coefficient
and the temperature difference between the heating water and
the surrounding air in the unit. The temperature of the water
is approximated to be the average of the temperature of the
supplied and returning water. Constraint (C′4) enforces upper
and lower bounds on ṁj(t). Finally, constraint (C′5) constrains
the temperature swing about the set-point to be at most ρ.

The temperature of the water returning from the units to
the boiler at time t is given by TR(t). This overall return
temperature of the water can be obtained by the following
equation:

TR(t) =

∑
j∈J ṁj(t)TR,j(t)∑

j∈J ṁj(t)
(2)



Fig. 1: Schematic of the hydronic HVAC system.

III. ANALYSIS

Inspecting the constraints for the objective in (1), we notice
that (C′2) makes the problem non-convex. Additionally, the
problem contains several variables (like ṁj(t), Pj(t), Tj(t)
and TR,j(t)) that must be determined optimally . Since we
wish to study the efficacy of using residential TCLs for DR, we
attempt here to reformulate our problem and express it in terms
of a single control knob, Pj(t). We also express Tj(t) in terms
of known constants and the supplied power. In the process,
we express our problem as a convex (quadratic) problem with
linear constraints. Towards that end, we first manipulate the
constraint (C′2) to give,

Pj(t)

ṁj(t)Sp
= TS − TR,j(t). (3)

Also, constraint (C′3) can be manipulated to give,

2
(Pj(t)
hR

+ Tj(t)
)

= TS + TR,j(t). (4)

Adding (3) and (4), we get,

1

ṁj(t)
=

2TSSp
Pj(t)

− 2Sp
hR
− 2Tj(t)Sp

Pj(t)
. (5)

Using (C′4) and setting Xj(t) = 1
ṁj(t)

, we get φj ≤
Xj(t) <∞. We can then simplify (5) to be,

Pj(t) ≤ G[TS − Tj(t)], (6)

where G =
2Sp

φj+
2Sp
hR

is a constant.

Following the manipulations above, our problem is simpli-
fied to minimizing (1) subject to constraints (C′1), (C′5) and
(6). This results in two continuous variables, Tj(t) (the state
variable) and Pj(t) (the control variable). However, in practice
ṁj(t), and hence Pj(t), typically change only at discrete time
intervals. Therefore, we can discretize the time scale for the
valve operation into time slots. Each time slot is denoted by k
and its duration is given by µ. We consider a total of K time
slots where K = τ

µ . Thus, we express our control variable
at time slot k as Pj(k). Since the ambient temperature, T∞,
varies slowly, the variation within a time slot is expected to
be small; so we represent it as a discrete variable T∞(k).

It is noteworthy that using time-sampled versions of Tj(t)
can introduce significant errors in our computations. There-
fore, we proceed to express the continuous-time state variable
in terms of the discrete-time control variable. By modifying
our existing notation and taking k = b tµc, unit j’s temperature

at time t is given by,

Tj(t) = Hk,je
− (t−kµ)

CjRj + T∞(k) +RjPj(k),

for t ∈ [kµ, (k + 1)µ], (7)

where

Hk,j = H0,je
− kµ
CjRj + T∞(0)e

− (k−1)µ
CjRj

+

k−1∑
l=1

T∞(l)
(
e
− (k−l−1)µ

CjRj − e
−(k−l)µ
CjRj

)
− T∞(k)+

Pj(0)Rje
− (k−1)µ

CjRj +
k−1∑
l=1

Pj(l)
(
Rje

− (k−l−1)µ
CjRj −

Rje
− (k−l)µ

CjRj

)
− Pj(k)Rj . (8)

The reader is directed to the detailed technical report of this
paper [10] for further details of the derivation of (8).

In this work, we assume Pj(0) = 0. Moreover, as T∞ and
Pj only change at the slot boundaries, temperature Tj(t) varies
smoothly within the time slot. Therefore, it suffices to impose
constraints (C′5) and (6) only at the slot boundaries.

K∑
k=1

{
wπ(k)P total(k) + (1− w)

∑
j∈J

Υj(k)
}
, (9)

subject to,
(C1) − ρ ≤ Tj(kµ)−∆j ≤ ρ, k ∈ [0,K],

(C2) Pj(k) ≤ G[TS − Tj(kµ)], k ∈ [0,K],

(C3) Tj(kµ) = Hk,j + T∞(k) +RjPj(k), k ∈ [0,K],

where

Υj(k) = −
CjRjH

2
k,j

2

(
e
− 2µ
CjRj − 1

)
+

µ[T 2
∞(k) +R2

jP
2
j (k) + 2T∞(k)RjPj(k)]−

2CjR
2
jHk,jPj(k)

(
e
− µ
CjRj − 1

)
+ µ∆2

j−

2µ∆j [T∞(k) +RjPj(k)]− 2∆jCjRjHk,j

(
e
− µ
CjRj − 1

)
.

(10)

Further details on the derivation of (10) may be found in [10].
Note that the above formulation has been expressed in terms
of only the discrete variable Pj(k); all other time-dependent
variables have been eliminated. It may be seen that the cost
function for the optimization problem in (9) is quadratic and
the constraints linear in Pj(k). Once the optimal values for
Pj(k) have been determined for all k ∈ [1,K], (7), (4) and
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Fig. 2: Ambient temperature over a 24-hour period.

(3) may be used to obtain the unit temperatures, the return
temperature of the water and the mass flow rate, respectively.

IV. NUMERICAL STUDY

Parameter Value
Cj 4000 kJ ◦C−1

Rj 5◦C kW−1

TS 70◦ C
µ 10 min.
φj 1 kg s−1

w 0.5
Cp 4200 J kg−1

hR 5 kW ◦C−1

TABLE II: Simulation parameters and their values.

In this section, we use our model to run simulations to deter-
mine the optimal power and the evolution of unit temperatures
for various energy pricing schemes. We consider a hydronic
HVAC system that serves four units in a residential building.
Let these units be given by j1, j2, j3 and j4. We assume that
∆j1 = 21◦C, ∆j2 = 23◦C, ∆j3 = 25◦C, and ∆j4 = 27◦C.
It is further assumed that the building operator follows a DR
program whereby the units’ temperatures are allowed to vary
within 2◦C of their temperature set-points. The baseline case
for our simulations is when ρ = 0◦C, i.e., the scenario where
the building operator does not participate in any DR program.
The values for other simulation parameters may be found in
Table II.

In January 2014, northeastern USA was affected by the
‘Nor′easter’ winter storm [6], resulting in ambient tempera-
tures as low as -24◦C. In the simulation results that follow,
we use ambient temperatures observed on January 3, 2014
(see Fig. 2). This assumption enables us to observe the
effectiveness of our control strategy under extreme weather
conditions, which in turn result in high energy demand. We
consider three energy pricing schemes for our HVAC system;
flat, ToU and hourly (see Figs. 3a–3c). The flat energy prices
refer to the scenario where the building’s HVAC system uses
natural gas, whereas the ToU and hourly prices are applicable
to an electrical HVAC system (depending on which pricing
scheme the power utility employs). The flat pricing scheme

used here reflects the average natural gas prices in the US in
2013 [7], whereas the hourly prices are based on New York
independent system operator’s (NYISO) day-ahead market
prices for January 3, 2014 [8]. The ToU pricing scheme
consists of two periods: the ‘peak period’ between 3 PM and 9
PM, and the ‘off-peak period’ for the rest of the day. As can
be seen in Fig. 3b, the peak period has significantly higher
energy prices than the off-peak period. While computing the
optimal controls for our system, we assume that the prices are
known (or are well-estimated) in advance.

Fig. 3 shows the effect of different pricing schemes on the
total power consumed by the HVAC system and the average
temperature deviation from the units’ set-points, over a 24-
hour period. Figs. 3d–3f present a comparison of the demand
experienced by the grid when ρ = 0◦C and ρ = 2◦C for the
three pricing schemes. Finally, Figs. 3g–3i depict the thermal
discomfort experienced by the building’s occupants when each
of the three pricing schemes is employed.

We begin our analysis by studying the effects of the flat
pricing scheme on the total power consumption of the building,
as seen in Fig. 3d. The figure shows that the curves for both
ρ = 0◦C and ρ = 2◦C exhibit largely identical trends over
the 24-hour period. The constant energy prices mean that the
power consumption in both cases is only responsive to the
changing values of T∞(k). For instance, the change in power
consumption levels immediately before Points A′ and B′ in
Fig. 3d are in response to the changing ambient temperatures
at Points A and B in Fig. 2.

Fig. 3g shows the thermal discomfort (averaged over all
units) experienced by the occupants of a DR-compliant res-
idential building under the flat pricing. The figure shows
that apart from the first hour, the average thermal discomfort
remains constant at approximately 0.0045◦C below the tem-
perature set-point. The steady thermal discomfort levels can
be attributed to the power consumption trend which is only
affected by the ambient temperature when flat pricing is used.

Next, we study the effects of using ToU prices on the total
power consumption of the building, as seen in Fig. 3e. Points C
and D in Fig. 3b represents the beginning and end of the peak
period, respectively. As is evident from Fig. 3e, for ρ = 0◦C,
the HVAC system is unaffected by the onset of the peak period
as it has to strictly maintain the units’ temperature at their
set-points. The curve for ρ = 0◦C is only affected by the
changes in T∞(k). In contrast, the curve for ρ = 2◦C exhibits
two regions of sharp increase in power consumption. One of
these occurs just before the onset of the peak period, while the
other occurs immediately after end of this peak period. The
preheating phenomenon observed up to Point C′ in Fig. 3e
exploits the slow thermal dynamic properties of the building
to maintain the units’ temperature within acceptable limits.
Prior to the onset of the peak period, the HVAC system rapidly
increases the supplied heat, while keeping in consideration the
maximum allowable thermal discomfort. This operation results
in no thermal power being supplied to the units between the
time instances Point C′ and Point D′. Following the end of the
peak period, the system once again ramps up the total power
to approximately 580 kW. This allows the building to regain
the thermal discomfort levels that were seen prior to the peak
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Fig. 3: (a)-(c): The three pricing schemes being studied. (d)-(f): The total power consumed by the units when a DR program is being implemented (ρ = 2◦C)
compared to the baseline scenario over a 24-hour period. (g)-(i): The thermal discomfort averaged over all units observed over a 24-hour period

% Financial Savings Maximum temperature deviation (◦C) Peak-to-average power consumption
ρ = 0◦C ρ = 2◦C

Flat Pricing 0.15 0.02 1.97 1.98
ToU pricing 15.10 0.43 1.97 16.41

Hourly pricing 19.73 0.83 1.97 16.35
TABLE III: Effect of pricing schemes on various performance metrics.

period. Following this action, the curve for ρ = 2◦C follows
a trend similar to that seen for ρ = 0◦C.

Fig. 3h shows the change in average thermal discomfort
over time for ToU pricing. The plot shows a steep rise in
average thermal discomfort around hour 15. This is due to the
preheating operation of the HVAC system that has previously
been discussed. Since the HVAC system does not provide any
heat between hours 15 and 21, hence the thermal discomfort
increases in the opposite direction during this interval. Fol-
lowing a subsequent rise in power consumption, the thermal

discomfort is restored to the level seen in the off-peak period
earlier.

Figs. 3f and 3i show the variation in the total power con-
sumed and the average thermal discomfort for hourly prices.
As before, the curve for ρ = 0◦C in Fig. 3f remains unaffected
by the changes in energy price levels. The power consumption
plot for ρ = 2◦C, on the other hand, is characterized by (i) a
series of ‘spikes’ of varying magnitudes and (ii) periods when
no thermal power is supplied to the units. A steep rise in power
consumption precedes any increase in the hourly prices. For



instance, the consumed power rises to approximately 570 kW
prior to the rise in the energy prices after hour 5. This mode of
operation reduces the supplied thermal power to 0 for periods
of (relatively) high energy prices, as is the case for the interval
between hours 5 and 12 and hours 16 to 20. Therefore, the
HVAC system responds to the fluctuations in energy prices by
consuming large amounts of power for short periods of time
and relying on the building’s ability to act as a storage buffer
for heat to keep the thermal discomfort within permitted limits.

The plot for thermal discomfort versus time in Fig. 3i
shows how thermal discomfort increases in the event of power
spikes. The largest deviation from the temperature set-point
was seen to be approximately +0.81◦C. This value is due to the
consistently high energy prices between hours 5 and 12, which
causes the HVAC system to preheat the building. The intervals
when the HVAC system shuts down witness an increase in the
thermal discomfort in the negative direction.

Table III presents the expected % financial savings, max-
imum thermal discomfort and the peak-to-average ratios for
the power consumed in the DR-compliant case for each of
the three pricing schemes. The % financial savings have been
determined with respect to the case when ρ = 0◦C. The table
shows that for flat pricing, DR-compliance results in negligible
savings, compared to the case where no DR is used. This result
was expected owing to the largely similar power consumption
trends seen in Fig. 3d. The significantly higher % financial
savings seen for the ToU and the hourly pricing schemes can
be attributed to the preheating operation of the HVAC system.
This mode of action helps restrict power consumption during
intervals when the energy prices are relatively high. Therefore,
our optimization strategy results in significant financial savings
for DR-compliant electrical HVAC systems.

Table III also shows the maximum temperature deviation
from the set-point for all three pricing schemes. It can be
seen that for the energy price values used in this paper,
the maximum temperature deviation for the hourly pricing
is nearly twice that recorded for ToU pricing. This is due
to the fact that the period of relatively high energy prices
lasts longer for the hourly pricing scheme (hours 5 to 12)
than for ToU pricing (hours 15 to 21). Therefore, hourly
pricing causes the system to preheat the units to a greater
extent. The table also records the peak-to-average ratio of
the total power consumption for all pricing schemes when
ρ = 0◦C and ρ = 2◦C. It may be seen that this ratio is
almost unaffected by the DR program when flat pricing is
implemented. However, the preheating operation for both ToU
and hourly pricing results in a much higher peak-to-average
ratio in both cases. Although this paper’s primary focus is to
devise a control strategy for HVAC systems in DR-compliant
residential buildings, the results for the peak-to-average ratio
can offer interesting insights for larger users of electricity.

Commercial and industrial power consumers pay two types
of tariffs in their electricity bill: one for the total energy
used and another for the maximum demand in a particular
window of time during the billing period [9]. The latter is
called demand charge which is levied on a per-kW basis.
The utility first determines the consumer’s peak demand in a
predetermined time interval (e.g. a 15- or 60-minute window).

This value is then multiplied by a demand charge (in $/kW).
As seen in Table III, the peak-to-average ratio for the power
consumed in the DR-compliant case is significantly higher
than that in the no-DR case. Therefore, for our control strategy
to be applicable to large consumers, further constraints on the
instantaneous power consumption would have to be enforced.

V. CONCLUSION

In this work, we studied a hydronic HVAC system that
serving a multi-unit residential building. We aimed to de-
termine the optimal thermal power flow to each unit that
simultaneously minimized the thermal discomfort and the
power costs incurred over a time horizon based on three
different energy pricing schemes. We developed mathemati-
cal expressions for modeling the temperature evolution in a
residential unit over time.Finally, we used our model to run
simulations to determine the optimal power consumption at
each instance for given ambient temperatures and the evolution
of unit temperatures for various pricing schemes. Our initial
results showed that our solution may have a strong potential for
saving significant electricity cost by using residential buildings
for grid DR. However, for our control strategy to be applicable
to large consumers who are liable to pay peak demand charge
as part of their electricity bills, constraints on the maximum
instantaneous power consumption would have to be enforced.
Consideration of such changes in the optimal HVAC control
problem is left for future work.
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