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ABSTRACT
In the frame of the Solar system, the Doppler and aberration effects cause distortions in the form
of mode couplings in the cosmic microwave background (CMB) temperature and polarization
power spectra and, hence, impose biases on the statistics derived by the moving observer.
We explore several aspects of such biases and pay close attention to their effects on CMB
polarization, which, previously, have not been examined in detail. A potentially important bias
that we introduce here is boost variance—an additional term in cosmic variance, induced by
the observer’s motion. Although this additional term is negligible for whole-sky experiments,
in partial-sky experiments it can reach 10 per cent (temperature) to 20 per cent (polarization)
of the standard cosmic variance (σ ). Furthermore, we investigate the significance of motion-
induced power and parity asymmetries in TT, EE, and TE as well as potential biases induced
in cosmological parameter estimation performed with whole-sky TTTEEE. Using Planck-like
simulations, we find that our local motion induces ∼ 1–2 per cent hemispherical asymmetry
in a wide range of angular scales in the CMB temperature and polarization power spectra;
however, it does not imply any significant amount of parity asymmetry or shift in cosmological
parameters. Finally, we examine the prospects of measuring the velocity of the Solar system
w.r.t. the CMB with future experiments via the mode coupling induced by the Doppler and
aberration effects. Using the CMB TT, EE, and TE power spectra up to � = 4000, the Simons
Observatory and CMB-S4 can make a dipole-independent measurement of our local velocity,
respectively, at 8.5σ and 20σ .
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1 IN T RO D U C T I O N

The motion of the Solar system with respect to the cosmic mi-
crowave background (CMB) creates mode couplings in the observed
temperature and polarization anisotropies. These mode couplings
can be interpreted as leakage of nearby harmonic multipoles into
each other in the moving frame, inducing a scale-dependent change
in the estimated power spectrum (Challinor & van Leeuwen 2002).
The leakage is a result of the relativistic Doppler and aberration
effects (Lorentz boost) caused by the motion of the observer (us)
in the rest frame of the CMB. The largest component of this effect
is the well-known CMB dipole moment – which is the rest-frame
monopole leaking into the observed dipole in the moving frame
(Kamionkowski & Loeb 1997; Yasini & Pierpaoli 2016; Yasini &
Pierpaoli 2017a) – but the leakage exists among other multipoles as
well. The mode coupling arising from the motion-induced leakage
is usually disregarded, with the exception of the dipole, but it has
been shown that depending on the geometry and sky/frequency
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coverage of the specific CMB experiment it can have non-trivial
consequences and can potentially lead to biases in CMB statistics
(Chluba 2011; Dai & Chluba 2014; Jeong et al. 2014; Yasini &
Pierpaoli 2017b).

In the half portion of the sky towards the direction of motion, the
primary effects of the boost on the power spectrum are (i) an overall
increase in total power, and (ii) a decrease in the size of angular
fluctuations1 (Yasini & Pierpaoli 2017b). The opposite holds in the
antipodal half of the sky. These changes (i and ii) naturally lead to
an asymmetry in the observed CMB power spectrum and any other
statistics inferred from opposite halves of the sky. In this paper we
examine several statistics that could be potentially affected by the
boost, and assess the amount of motion-induced bias in them using
realistic simulations.

In particular we look at (i) the impact of the Doppler and aberra-
tion effects on the CMB temperature and polarization power spectra
and their corresponding cosmic variance, (ii) potential power and

1This can be interpreted as power leaking to higher multipoles in the
direction of motion.
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parity asymmetries induced in CMB maps as well as (iii) possible
shifts in cosmological parameters in all-sky experiments. We also
investigate (iv) prospects of future experiments for measuring our
local velocity w.r.t. the CMB using motion-induced harmonic mode
coupling. Some of these issues have been studied previously, but
here we redo them using state-of-the-art theoretical modeling of the
boost and include polarization and cross-spectra which are usually
ignored.

We also introduce software that offers an accurate boosting
formalism called COSMOBOOST,2 which employs the generalized
Doppler and aberration kernel developed in Yasini & Pierpaoli
(2017b) based on previous work by Dai & Chluba (2014). The
calculations of the Doppler and aberration effect in this formalism
are performed in harmonic space and hence the results are not
prone to errors that incur in real-space boosting due to pixellization
and finite window function (Yoho et al. 2013; Jeong et al. 2014).
COSMOBOOST (Yasini 2019) also calculates the motion-induced
spectral deviations of the CMB from blackbody in harmonic space
(Yasini & Pierpaoli 2017b), which might also have an impact on
deriving parameters from observations. However, these effects are
expected to be small and would primarily impact other aspects of
CMB data analysis (e.g. calibration) not considered here, and we
therefore ignore them in this paper.

1.1 Boost variance

The motion of the observer changes the uncertainty associated
with determining the underlying theoretical power spectrum from
observations. We will show that in a naive analysis of the power
spectrum, the boost changes the so-called cosmic variance; we
call the resulting additional term boost variance and investigate its
angular dependence and its relevance in different locations of the
sky (see Section 3.3).

1.2 Power asymmetry

We will closely examine the effect of the Lorentz boost as a source of
power asymmetry in the CMB (Dai et al. 2013; Aluri et al. 2015a,b;
Das 2018; Shaikh et al. 2019) when observed in different portions
of the sky, and in particular opposite hemispheres. This problem
has been studied in Notari, Quartin & Catena (2014) and Quartin &
Notari (2015) for CMB temperature; here we repeat the exercise
using COSMOBOOST and include polarization spectra as well.
Using simulations we show that Lorentz boost induces non-trivial
(per cent level) hemispherical power asymmetry in TT, EE, and TE
power spectra of a Planck-like experiment, and then compare the
results with the observations from Planck (Akrami et al. 2019) (see
Section 4).

1.3 Parity asymmetry

Aside from the well-known power asymmetry, the Planck maps
deviate from the expected statistical isotropy through the so-called
parity asymmetry, i.e. the odd multipoles carry more power than
the even multipoles (Aluri & Jain 2012). Using simulations, we
examine whether this could be caused by the motion of the
observer (Naselsky et al. 2012) and investigate any potential parity
asymmetry induced by the boost (see Section 5).

2 syasini/CosmoBoost

1.4 Cosmological parameter estimation

The motion-induced change in the power spectrum propagates
to the inferred cosmological parameters as well. This issue has
been reviewed in particular for the Planck parameter estimation
in Catena & Notari (2013) using only the temperature power
spectrum, a simplified treatment of the foreground mask, and a
suboptimal boosting scheme. Here we revisit the problem but also
include (i) polarization, (ii) the final Planck noise configuration
and foreground mask, and (iii) the use of the accurate boosting
formalism COSMOBOOST in simulating the power spectra (see
Section 6). Furthermore, the effects on high �(> 800) and low
�(< 800) modes are examined separately to investigate potential
discrepancies induced in these two ranges for Planck. The outcome
of the combination of various updates with respect to Catena &
Notari (2013) is not immediately obvious – as some would lead
to larger and others to smaller effects in parameter estimation.
Therefore, it is worth redoing this exercise to ensure the Planck
parameters are not biased by the Doppler and aberration effects.

1.5 Boost detection

It is possible to infer the direction and amplitude of our local bulk
motion with respect to the CMB by measuring the coupling between
the nearby multipoles. This effect was introduced in Kosowsky &
Kahniashvili (2011) and Amendola et al. (2011) based on the
original calculations by Challinor & van Leeuwen (2002), and
later detected by Planck in Aghanim et al. (2014) using the CMB
temperature. Since the amplitude of the coupling signal depends on
the slope of fluctuation in the CMB angular power spectrum (see
Section 7), it actually leaves a larger signature in polarization than
in temperature.3 However, the polarization noise in Planck makes
this component of the boost-coupling signal subdominant with
respect to the one in temperature, and hence undetectable. The next
generation of CMB surveys, however, will have lower noise levels,
and will therefore measure the polarization power spectrum better,
and extend the range of modes measurable in temperature. Although
the upcoming experiments such as the Simons Observatory (SO)
(Abitbol et al. 2019) and CMB-S4 (Abazajian et al. 2019a,b) are
planned to observe a smaller fraction of the sky compared with
Planck, their higher sensitivities will map the power spectrum
with a greater precision at smaller scales, allowing for a better
measurement of the motion-induced mode coupling. It is therefore
worthwhile to exploit their enhanced capabilities to make a more
accurate measurement of our local velocity, independent of the
dipole component. Such measurements will be extremely valuable
in lifting the degeneracy between the kinematic and intrinsic
components of the CMB dipole (Roldan, Notari & Quartin 2016;
Yasini & Pierpaoli 2017a). We will examine the prospects of this
detection with SO and CMB-S4, and the synergy between these
experiments and Planck.

1.6 Outline

The outline of this paper is as follows: Section 2 contains a summary
of the notation and approximations used in this paper. In Section 3,
we review the Doppler and aberration Kernel formalism and then
investigate the effect of Lorentz boost on the CMB temperature
and polarization harmonic multipoles and power spectra as well

3The polarization power spectrum EE fluctuates with a larger slope than the
temperature power spectrum TT.
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as their associated cosmic variance. In Section 4, we examine
the hemispherical power asymmetry induced by the boost in both
temperature and polarization spectra. Section 5 briefly inspects
possible motion-induced parity asymmetries induced in CMB tem-
perature and polarization power spectra. In Section 6, we examine
the potential bias induced by the boost in cosmological parameter
estimation for a Planck-like experiment. And, finally, in Section 7,
the prospects of boost detection using large-sky CMB experiments
such as SO and CMB-S4 are discussed. A summary of the results
is presented in Section 8.

2 N OTATION AND APPROX IMATIONS

Throughout this paper, tilde ( ˜) and prime (′) accents are reserved
for variables and indices in the boosted frame. The explicit use of
the prime notation repeatedly throughout the text is to remind the
reader that the variables of analysis are evaluated in a boosted
frame. Whenever necessary, the subscripts r and b are used to
distinguish the rest and boosted frames w.r.t. the CMB. Unless
noted otherwise, �C�′ = C̃�′ − C�′ refers to the boosted minus rest-
frame values of the estimated power spectrum. A primed index on
a rest-frame observable such as C�′ means C�|�=�′ . CXY

� refers to
the estimated power spectrum 1/(2� + 1)

∑
aX∗

�m aY
�m, where X, Y

∈ {T, E}, and CXX
�′ is used to indicate the underlying variance of

the harmonic multipoles 〈|a�, m|2〉. The estimated power spectrum
is typically expressed with a hat notation (Ĉ�); however, we chose
this unconventional notation (simply C�) for the estimator to avoid
the use of two accents (tilde and hat) for the estimated power
spectrum in the boosted frame. Whenever the word cosmic variance
is accompanied by the symbol σ , it refers to the square root of 〈(C�

− 〈C�〉)2〉.
The fiducial values for the cosmological parameters used in this

paper ωb, ωc, θ , As, ns, H0, and σ 8 are, respectively, 0.022, 0.119,
1.042, 2.3 × 10−9, 0.9667, 67.74, and 0.860. We also fix reionization
τ = 0.066 to avoid complications in dealing with small � values in
parameter estimation. The values of cosmological parameters used
are not the ones preferred by the most updated Planck 2018 results
(Aghanim et al. 2018); however, since here we are concerned only
with the amount of shift in these parameters induced by the boost,
their actual values are of little importance in this study. Finally, h, k,
and c refer to the Planck, Boltzmann, and speed of light in vacuum
constants, respectively.

We use the Planck 143-GHz mask4 as the primary mask in the
study. The 100- and 217-GHz masks have, respectively, smaller and
larger areas covered with respect to the 143-GHz mask. This means
that we should expect the boost effects in the power spectrum to be
slightly weaker for the former and stronger for the latter (Pereira
et al. 2010). For this reason, we chose to use the 143-GHz mask to
get a reasonable estimate of the effect in the combined maps.

In the calculations of the aberration kernel and its analytical
estimates, we do not account for the frequency dependence of the
boost because it is negligible for the cases studied here (especially
for experiments with relatively symmetric masks such as Planck).
These effects can become non-trivial for partial-sky surveys though
and should be taken into account. Additionally, we neglect any
effects due to extragalactic foregrounds (Chluba, Hütsi & Sunyaev
2005; Balashev et al. 2015). Also, for simplicity, we do not consider
the CMB B-mode power spectrum throughout this paper (see

4http://pla.esac.esa.int/pla/#maps

Yasini & Pierpaoli 2017b for details on motion-induced E to B
leakage).

3 TH E E F F E C T O F O U R MOT I O N O N
TEMPERATURE AND POLARI ZATI ON
STATISTICS

3.1 Doppler and aberration kernel formalism

The effects of the boost on the incoming photons in the observer’s
frame moving with the peculiar velocity vector v w.r.t. the CMB
are twofold: First, there is a change in the frequency of the photons
ν due to the Doppler effect

ν ′ = γ (1 + βμ)ν, (1)

and, secondly, there is a change in the observed angle of the photons
n̂ due to the aberration effect

n̂′ =
( (1 − γ −1)μ + β

1 + βμ

)
β̂ +

( γ −1

1 + βμ

)
n̂. (2)

Here γ = 1/
√

1 − β2, μ = n̂ · β̂, and β = ββ̂ = v/c is the dimen-
sionless velocity of the frame. For simplicity, it is conventional to
work in the coordinate system where ẑ = β̂ and rewrite equation (2)
as

μ′ = μ + β

1 + βμ
, (3)

where μ′ = n̂′ · β̂. Henceforth, we use this coordinate system for
all the analyses and rotate all-sky maps to this frame whenever
necessary. Using the transformation β → −β, one easily obtains
the inverse transformations ν → ν

′
and μ → μ

′
to find the variables

in the CMB frame.
Assuming the CMB is a perfect blackbody in its rest frame in

every direction with the specific intensity

Iν(n̂) = 2h

c2

ν3

ehν/kT (n̂) − 1
, (4)

it is easy to show, using the inverse of equation (1), that the
temperature in the observer’s moving frame is equal to

T̃ (n̂′) = T (n̂)

γ (1 − βμ′)
, (5)

and similarly for the polarization Stokes parameters QT and UT

in thermodynamic temperature units. Decomposing this equation
in spherical harmonic space yields the harmonic boost equation
(Dai & Chluba 2014; Yasini & Pierpaoli 2017b):

ãX
�′m =

∑
�

XKm
�′�(β) aX

�m. (6)

Here X ∈ {T, E} and XKm
�′�(β) is the Doppler and aberration kernel

(see Section A for full definition) . The kernel coefficient XKm
�′�

represents the amount of motion-induced leakage of multipole a�m

from the rest frame, into the observed ã�′m in the moving frame.
Obviously, when β = 0, the kernel reduces to the Kronecker
delta XKm

�′�(0) = δ�′�. Note that there is no cross-leakage among
different m modes. This simplification arises because of the β̂ = ẑ
assumption, since in this frame the angular distortions due to the
aberration effect are only in the direction of the polar angle θ̂ , with
no change in the azimuthal direction φ̂.

Fig. 1 shows the shape of the kernel T Km
�′�′+��′ for a few different

multipoles �
′
, and a range of −8 < ��

′
< 8. Each point represents

the amount of motion-induced leakage from multipole �
′ + ��

′
into
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Figure 1. The general behaviour of the Doppler and aberration kernel for
thermodynamic temperature T. The kernel coefficient T Km

�′� denotes the
amount of motion-induced leakage from the spherical harmonic coefficient
a�m in the rest frame, into the observed a�′m. The y-axis shows the leakage
components from a range of −8 < ��

′
< 8 neighbours into observed modes

�
′ =500, 1500, and 2500 at m = 0. As we increase �

′
, the kernel becomes

more non-linear and the contribution from farther neighbours becomes
more important and, hence, non-negligible. The kernel coefficients generally
become smaller as m → �

′
. Also, at �

′ 
 2 the polarization kernel EKm
�′�

converges to T Km
�′�.

the observed �
′
mode. In the moving frame, a multipole �

′
observed

in the hemisphere towards the direction of motion leaks into its
higher neighbours (�

′ + 1, �
′ + 2, etc.) and receives a contribution

from its lower neighbours (�
′ − 1, �

′ − 2, etc.). And the opposite
happens in the other hemisphere. With this in mind, one can interpret
the ��

′
< 0 (��

′
> 0) terms in the kernel as the contribution of

modes towards (away from) the direction of motion.
At low �

′
the kernel starts very linearly (≈β�

′
) with a sharp

peak at ��
′ = 0 (Challinor & van Leeuwen 2002). But as we pass

�
′ � 1/β ≈ 800, the behaviour of the kernel becomes non-linear

(deviates from the β�
′

approximation), and the central element
��

′ = 0 does not have the highest value anymore (Chluba 2011).
In other words, at this range, the leakage from farther neighbours
becomes far greater than one would naively expect. For the high
values of �

′
presented in the plot, the kernel for polarization is

practically the same; the difference between the temperature and
polarization kernel coefficients is of the order of ∼1/(�2 − 2).

3.2 Boosted power spectrum

3.2.1 Analytical estimate

The harmonic boost equation (equation 6) indicates that in the
observer’s frame the multipole �

′
comprises the mode �

′
of the

rest frame, as well as the motion-induced leakage from the first
neighbours �

′ + 1 and �
′ − 1, second neighbours �

′ + 2 and �
′ −

2, and so on. The leakage from the nearby modes leads to a mode
coupling between multipoles as well as a change in the estimated
power spectrum

C̃XX
�′ = 1

2�′ + 1

∑
�,m

∣∣
XKm

�′�(β)
∣∣2

CXX
� . (7)

Jeong et al. (2014) has shown that the ensemble average of this
expression can be well approximated by

C̃
XX

�′ = CXX
�′ − β�′cos θ ′ dCXX

�′

d�′ + O(β2), (8)

where CXX
�′ = 〈CXX

�′ 〉 and θ ′ = arccos μ′ is the polar angle in the
moving frame and the overline indicates an angular average :

cos θ ′ =
∫


obs
cos θ ′ sin θ ′dθ ′dφ′∫


obs
sin θ ′dθ ′dφ′ , (9)

where 
obs is the observation patch in the sky. In the following
subsection, we will show that equation (8) well approximates
the statistical average of the motion-induced shift in the power
spectrum, but it does not properly correct all effects of the boost on
an individual realization.

3.2.2 Simulations

Using the formalism presented in the previous subsection, we now
examine the amount of motion-induced distortion in the CMB power
spectra using 100 rest-frame and boosted simulations. In order to
gauge the significance of the effect in the observed CMB sky, we
follow the example in Jeong et al. (2014) and split the Northern
hemisphere into five equal-area strips (assuming the observer is
moving towards ẑ). Then, we look at the relative difference between
the rest-frame and boosted-frame power spectra in each of these
strips for an individual simulation, as well as the average of the
ensemble.

Fig. 2 shows the motion-induced fractional change �C�′/C�′ in
five equal-area bands in the Northern hemisphere for TT and EE
power spectra. There are obvious general characteristics in the plot
that are expected for the ensemble average of the boost according to
equation (8): (i) The effect is more prominent in the strips closer to
the North Galactic Pole because the Doppler and aberration effects
are stronger in directions closer to the apex of motion. (ii) In the
Northern hemisphere, there is an overall increase in the power that
becomes larger as we get to smaller angular scales (higher � modes)
– this is a direct consequence of the fact that the aberration effect
changes the relative size of smaller anisotropies more strongly than
it does for large scales.5 (iii) Since the amount of power leakage
depends on the slope of the power spectrum, the relative changes in
TT and EE fluctuate out of phase with respect to the corresponding
rest-frame spectra (second term in equation 8). By the same token,
since the EE has more pronounced fluctuations than the TT power
spectrum, the relative change is in general larger in polarization than
in temperature. As we will discuss in more detail in Section 7, for
an experiment with low instrumental noise, this very fact makes the
detection of the boost – using mode coupling – easier in polarization
than in temperature (see Appendix B for the TE power spectrum
plots). It is also worth noting that although the behaviour of the
kernel becomes non-linear in β for � � 1/β � 800, equation (8) still
performs very well in approximating the ensemble average of the
boosted power spectra in this range.

Another feature that can be seen in Fig. 2 is that the power
in an individual mode �

′
of the boosted realization (C̃�′ ) may

differ substantially from the rest-frame one (C�) beyond what is
represented by the ensemble average in equation (8). Statistically,
the effect of the boost in the map �C�′ deviates from the ensemble

5To put it simply and perhaps more intuitively, it takes more aberration effect
to make the quadrupole look like the octupole (� = 2 → �

′ = 3) than it does
for � = 1000 → �

′ = 1001. Therefore, for the same β the former would be
a smaller effect than the latter – i.e. aberration affects smaller scales more
strongly than large scales.
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1712 S. Yasini and E. Pierpaoli

Figure 2. Induced relative change in the CMB power spectra (�C�′/C�′ = C̃�′/C�′ − 1) due do the Doppler and aberration effects induced in a frame moving
towards the Northern Galactic Pole. Individual plots, respectively, show this change for TT (left-hand panel) and EE (right-hand panel), in five equal-area strips
in the Northern hemisphere (top panel). The thick solid lines (orange for TT and blue for EE) show the average of 100 simulations Gaussian smoothed over
a δ�

′ = 10 scale. The effect becomes larger towards the direction of motion (highest panels in both plots) and in general is more prominent in EE than in TT.
The analytical formula from Jeong et al. (2014) (dashed cyan) emulates the average effect extremely well, but if used for correcting individual power spectra,
it leaves residuals in the data. The shaded bands (orange for TT and blue for EE) around the simulation average show the 1σ region for the boost residuals left
in individual realizations of the power spectrum, which can be as large as 20 per cent of cosmic variance (purple band) at � � 3000 for both TT and EE (see
equation 10).

average �C�′ by6

〈(�C�′ − �C�′ )2〉 = (β�cos θ )2

〈(
dC�′

d�′ − dC�′

d�′

)2
〉

� (β�cos θ )2

2�′ + 1
C2

�′ , (10)

6We assume that equation (8) holds for an individual realization C̃�′ .

where the second equality is derived heuristically. Equation (10)
indicates that using the ensemble average to correct the motion-
induced effects on C̃� would leave a non-negligible amount of
residuals in the power spectrum. As depicted in the top panels
of both plots in Fig. 2, the residuals left in a single realization of the
power spectra binned by δ�

′ = 10 can be as large as 20 per cent of the
rest-frame cosmic variance (σ ) on a wide range of angular scales.
These residuals can be potentially important for small-area surveys
such as ACTPol, which uses the Jeong approximation to correct for
the Doppler and aberration effects (see Section 3.4). As pointed out
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earlier, by using the accurate formalism of COSMOBOOST, which
corrects the motion-induced effects at the map level in harmonic
space, these residuals can be entirely removed. Another strategy
for removing these residuals – similar to what is done for cosmic
variance – would be to employ a large bin size when correcting the
effect statistically; they virtually vanish for δ�

′
> 50; however, their

ratio w.r.t. cosmic variance remains unchanged.
An important point that might not be immediately obvious from

Fig. 2 is that the oscillating patterns emerge in the Southern
hemisphere with the opposite sign (cos θ → −cos θ : �C�/C� →
−�C�/C� in O(β)). The crucial consequence of this statement is
that when one calculates the power spectrum over a patch of the
sky that is symmetric w.r.t. cos θ , the motion-induced effects cancel
each other to first order in β. As we will show in Section 6, this
is roughly the case for Planck, which has a mask that is fairly
symmetric w.r.t. the peculiar velocity unit vector β̂ (also see section
IV.B in Jeong et al. 2014).

3.3 Boost variance

3.3.1 Analytical estimate

Aside from inducing a shift in the statistical average of the power
spectrum at every �, the Doppler and aberration effects also change
the variance of each mode. In what follows, we will quantify this
variance analytically. For simplicity, we drop the XX superscript
from all CXX

� and CXX
� , and the prime (

′
) accent in this subsection.

We are interested in measuring the variance of the (CMB rest-
frame) harmonic coefficients 〈|a�m|2〉 ≡ C�, also known as the
theoretical power spectrum of the underlying cosmological model.
The power spectrum estimated from the map (Tegmark 1997) C� =∑

m|a�m|2/(2� + 1) has the following first cumulant (ensemble
mean):

〈C�〉 = C�. (11)

Similarly, for the second cumulant, we have (see Appendix C1 or
C3)

σ 2
� = 〈(C� − C�)2〉 = 2

2� + 1
C2

�, (12)

which is known as cosmic variance (Knox 1995; Scott et al. 2016).
A simple interpretation of this equation is that in every ensemble
of power spectrum realizations with the mean value C�, at every �

roughly 68 per cent of the C� are within σ � of the mean.
In a moving frame, an observed multipole �

′
leaks into and

receives a contribution from its nearby neighbours (� ± 1, � ±
2, etc.). This phenomenon, which roughly depends on the slope
of the power spectrum (see equation 8), increases the uncertainty
associated with cosmic variance: The variance of each mode
depends not only on the mean C�, it also weakly depends on the slope
dC�/d� because of the observer’s motion. We call this source of
extra uncertainty induced by the observer’s motion boost variance.
A simple calculation of the squared deviation of the boosted power
spectrum C̃� from the theoretical C� yields (see Appendix C2)

cosmic variance︷ ︸︸ ︷ boost variance︷ ︸︸ ︷
σ̃ 2

� = 〈(C̃� − C�)2〉 � 2

2� + 1
C2

� +
(

β�cos θ
dC�

d�

)2

. (13)

The motion of the observer increases the variance of the ensemble
of observed power spectra both towards (cos θ > 0) and away from
(cos θ < 0) the direction of motion, and has a minimal effect on the

motion’s equatorial plane (cos θ � 0). In a partial sky experiment,
the sample variance can be easily calculated from this expression
via σ̃ 2

� /fsky, where fsky is the fraction of sky covered by the survey
(Scott, Srednicki & White 1994).

3.3.2 Simulations

Fig. 3 shows the significance of boost variance for the five
equal-area cuts of Fig. 2. Here the left- and right-hand plots
show the relative motion-induced change in the standard deviation
�σXX

� /〈CXX
� 〉 = (σ̃ XX

� − σXX
� )/〈CXX

� 〉 for temperature (X = T) and
polarization (X = E), respectively. As expected, the change due to
boost variance is larger towards the direction of motion (higher
panels) and smaller angular scales (higher �), and the effect is
generally larger in polarization than in temperature. In the topmost
panel, which represents fsky = 10 per cent of the sky towards β̂, the
effect is around 10 per cent of rest-frame cosmic variance (σ �) in
TT and 20 per cent in EE.

It is important to point out that equation (13) represents the
relevant variance in a naive analysis of the power spectrum without
any boost corrections implemented (e.g. in a study where the
theoretical power spectrum or cosmological parameters are being
inferred from the observed C̃� in a moving frame, without correcting
the Doppler and aberration effects). However, if the effect of
the boost is already being corrected for in the theoretical mean
C� → C̃�, as is done in e.g. SPTPol (see section 7.4 in Henning
et al. 2018), then the variance reduces to

˜̃σ 2
� = 〈(C̃� − C̃�)2〉 � 2

2� + 1
C̃

2
�

= 2

2� + 1

(
C� − β�cos θ

dC�

d�

)2

. (14)

After correcting the effect statistically, this would be the proper
expression to use for cosmic variance in the boosted frame.
Expanding the above equation in β and subtracting the rest-frame
cosmic variance 2C2

�/(2� + 1) yields a boost variance equal to
� −4βcos θC�dC�/d�. Here the ‘boost variance around the boosted
mean’ is about an order of magnitude smaller than the expression in
equation (13), which shows the boost variance around the unboosted
mean. Fig. 4 shows the relative difference of this extra variance w.r.t.
cosmic variance (σ ).

The motion-induced effects in the power spectrum change the
mean and variance of the inferred cosmological parameters. Here
we estimate the change in the variance using the Fisher matrix. By
propagating the variance in equation (14) to inferred cosmological
parameters via the Fisher matrix Fij = ∑

� C̃
−2
� ∂iC̃�∂j C̃� (Tegmark

1997) up to �max = 5000, we found that the error bars on all
parameters are affected at most by 0.015σ in both TT and EE,
assuming cos θ = 1; this includes only the change in variance and
not the shift in parameters, which can be an order of magnitude
larger. Therefore, correcting the boost in the average (or theoretical)
power spectrum should sufficiently remove any bias propagated to
the inferred parameters from C̃�.

3.4 Accounting for the boost: practical guide

After the theoretical insights of the previous sections, it is sensible
to ask what is the best strategy to correct for the boost in using
the CMB to derive cosmological parameters. Here is a summary of
possible deboosting methods:
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1714 S. Yasini and E. Pierpaoli

Figure 3. Boost variance (shift in the cosmic variance due to the Doppler and aberration effects) in the five equal-area strips of Fig. 2, normalized by the
rest-frame power spectrum. Individual plots, respectively, show this change for TT (left-hand) and EE (right-hand) spectra. The solid lines (orange for TT and
blue for EE) show the average difference between cosmic variance in the boosted frame σ̃� (equation 13) and rest frame σ� (equation 12) for 100 simulations
Gaussian smoothed over a δ�

′ = 10 scale. The increase due to the boost variance can be as large as 10 per cent of rest-frame cosmic variance (purple band) for
TT, and 20 per cent for EE at � � 3000. Similar to what happens to the average of the power spectrum shown in the previous plot, the variance also becomes
larger towards the direction of motion (higher panels in both plots) and in general is more prominent in EE than in TT. Unlike the average, however, the
variance does not change the sign in the Southern hemisphere (not shown here). Our analytical formula in equation (13) approximates the effect closely, but
slightly overestimates it at its peaks.

Figure 4. Relative change in cosmic variance due to the boost after
correcting the mean power spectrum C� → C̃�.

(1) Real space deboosting, The Doppler and aberration effects
can be corrected at the map level on individual pixels. This approach
potentially underestimates the boost effect at small angular scales,
and is sensitive to the pixel window function (Yoho et al. 2013).

(2) Harmonic space deboosting. The spherical harmonic coef-
ficients a�m can be deboosted with the Doppler and aberration
kernel formalism of COSMOBOOST. This is the most accurate way
to deboost the CMB without leaving any residuals in the average or
variance of C� (Yasini & Pierpaoli 2017b).

(3) Corrections to the power spectrum. Equation (8) (Jeong et al.
2014) provides an excellent estimate for the effect of the boost
on the theoretical power spectrum C�. If the analysis demands a
comparison between the observed (boosted) power spectrum C̃�′ and

the theoretical C� – e.g. likelihood analysis in parameter estimation
– there are two ways this equation can be used to correct for the
boost: (i) boost the theoretical power spectrum for a given model
C� → C̃� directly, and (ii) use the ensemble average C̃�′ to deboost
the observed power spectrum C̃�′ . In both cases, the correct variance
to use is represented by equation (14).

Note: If no boost correction is performed on the observed C̃�′ at all,
the average and variance are biased, respectively, by equations (8)
and (13).

Assuming the amplitude and direction of the boost are known,
the most accurate way to deboost an observed map is to use
COSMOBOOST. In this approach, the individual spherical harmonic
coefficients are deboosted and no residuals are left neither in the map
nor in the estimated power spectrum. Moreover, the final product
can be reliably used in cross-correlation analysis. The downside
is that calculating and storing the kernel coefficients can become
numerically prohibitive at very high �.

Alternatively, if one is interested only in the power spectrum
C� (and not the map or a�m), one can use the Jeong et al. (2014)
formula to correct for the boost effects. In such a case, it is advisable
to apply equation (8) to the theoretical (rest-frame) power spectrum
for a given set of parameters before comparing to the data. The
variance in this case is given by equation (14).
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Footprints of Doppler and aberration effects in CMB experiments 1715

Which experiments should care to explicitly correct for the
boost? The CMB power spectrum of whole-sky and/or symmetric-
sky experiments (e.g. Planck and SO) will not be impacted by
the boost: The dependence of the observed spectrum on cos θ

ensures that the corrections are negligible (cos θ � 0). However,
should a smaller area of the experiment be used in cross-correlation
analysis with other types of surveys, it might be appropriate to
deboost, given the effect of the boosting on individual � modes (see
Fig. 2).

In partial-sky experiments, the effects of the boost should be
evaluated on the basis of where the area observed is located on the
sky, as well as the attainable precision in cosmological parameter
estimation (also influenced by instrumental characteristics like
beam size and noise level). If no boost correction is applied (e.g.
BICEP, POLARBEAR), the average and variance of the power
spectrum are biased according to equations (8) and (13), which can
be used to assess the approximation made.

Other experiments have used the Jeong et al. (2014) formula to
try and correct for the Doppler and aberration effects. ACTPol
(Louis et al. 2017) uses the boosted ensemble average C̃� to
subtract the average effect from the observed power spectrum C̃�′ .
SPTPol (Henning et al. 2018) opted for the strategy of boosting the
theoretical C� before comparing it with the observational points in
the likelihood analysis. In both these cases, the standard (rest-frame)
cosmic variance should be replaced with equation (14). In general,
if a map-level correction with COSMOBOOST is not feasible, the
latter approach is recommended since it introduces a minimal error
due to leftover boost effects (Section 3.2).

4 H EM ISP HER ICAL POWER A SYMMETRY IN
THE POW ER SP ECTRUM

Since the Doppler effect increases the brightness of the incoming
radiation on all angular scales in the direction of motion – and
decreases it on the opposite side – it creates a power asymmetry in
the two hemispheres. It was discovered in Eriksen et al. (2004) that
the WMAP power spectrum calculated over different patches of the
sky does not seem to be statistically isotropic. This anomaly was
later confirmed in the Planck maps as well (Planck Collaboration
XXIII 2014; Planck Collaboration XVI 2016; Akrami et al. 2019).
It is worth looking into how the motion of the observer affects
the power distribution in the CMB, and possibly shed light on
the hemispherical asymmetry anomaly observed in the CMB map.
This exercise has been performed for the CMB temperature in
Notari et al. (2014) and Quartin & Notari (2015), but here we
repeat it using the accurate formalism of COSMOBOOST, and also
include polarization [see Mukherjee, De & Souradeep (2014) for an
analytical examination using bipolar spherical harmonics (Hajian &
Souradeep 2003)].

As discussed in the previous section, the observed power
spectrum increases in the direction of motion proportional to
β�′cos θ ′dC�′/d�′ (see Fig. 2). Since cos θ ′ is positive in the
Northern hemisphere and negative in the Southern hemisphere,
this naturally leads to a power asymmetry in the observed CMB
anisotropies both in temperature and polarization. In order to gauge
the amount of motion-induced asymmetry in the CMB sky, we take
the following steps: We split the Planck foreground mask into the
Northern and Southern hemispheres, then rotate them to the β̂ → ẑ
frame. We then apply these masks to 100 rest-frame and boosted
simulations. We then calculate the power spectra of all maps and
look at the relative difference between the boosted and rest-frame
results in each hemisphere.

Figure 5. Motion-induced hemispherical asymmetry for a Planck-like
experiment in (a) temperature and (b) E-mode polarization. The faint lines
in the background (orange for TT and blue for EE) are 100 individual
simulations plotted on top of each other to show the overall variance of the
effect. The dark jagged lines are the average of the 100 simulations in all
panels. The coloured smooth lines are the average of simulations Gaussian
smoothed over the scale of δ�

′ = 10. As evident from the bottom panels
of each plot, Doppler and aberration effects induce a per cent level power
asymmetry between the hemispheres, which is more accentuated in EE. See
equation (16) in the text for the definition of the statistics presented in the
bottom panels.

Fig. 5 shows the relative motion-induced power asymmetry in the
galactic Northern and Southern hemispheres for 100 simulations of
a Planck-like experiment. The boost is performed assuming the
observer is moving in the direction of the CMB dipole with β =
0.001 23 and β̂ = (264◦, 48◦) in galactic coordinates. The average
(jagged lines) are Gaussian smoothed (coloured lines) with δ�

′ =
10 for visual guidance, indicating the general behaviour of the
oscillations. The top and middle panels of each subfigure depict
the relative difference between the power spectrum in the boosted
frame (C̃XX

�′ ) and rest frame (CXX
�′ ),

�CXX
�′

CXX
�′

≡ C̃XX
�′ − CXX

�′

CXX
�′

, (15)

where X is T (orange) or E (blue). As expected, both TT and EE
increase in the Northern hemisphere (β�cos θ > 0) and decrease
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1716 S. Yasini and E. Pierpaoli

Figure 6. Relative difference between the Northern and Southern hemi-
sphere power spectra in (a) temperature (top panel) and (b) E-mode
polarization (bottom panel) of the Planck SMICA map binned (red circles)
and also Gaussian smoothed (red dashed lines) by δ�

′ = 50. The average
of 100 simulations (grey lines) are shown here for comparison, as well
as an individual simulation binned (orange and blue circles) and Gaussian
smoothed (orange and blue lines). The Gaussian-smoothed lines for Planck
and simulations are provided for easier visual tracking of the general features
of the power asymmetry. The oscillations in north–south difference in power
spectra of Planck SMICA marginally follow the ones induced by the boost
in simulations, suggesting that they might be partially due to the Doppler
and aberration leftovers in the map. See equation (16) in the text for the
definition of the statistics used in the plots.

in the Southern hemisphere (β�cos θ < 0). The amplitude of the
effect also oscillates according to dC�/d�, out of phase with the
corresponding rest-frame power spectra. The bottom panels of each
plot show the relative difference between the Northern and Southern
hemispheres:

NS�C̃XX
�′

NSC̃
XX
�′

≡ 2 NC̃XX
�′ − SC̃

XX
�′

NC̃XX
�′ + SC̃

XX
�′

. (16)

Here, NC̃XX
�′ and SC̃

XX
�′ represent the boosted power spectra in the

Northern and Southern hemispheres. The advantage of using this
statistic to gauge the amount of motion-induced power asymmetry
is that it relies only on the boosted-frame (observed) power spectra.
Therefore, it can be directly applied to observations where the
rest-frame data are inevitably unavailable. As shown in the bottom
panel of both subfigures, the Doppler and aberration effects induce
an average of ∼ 1 per cent (with a maximum of ∼ 2.5 per cent)
increase in TT and EE power spectra. These results are consistent
with the one from Notari et al. (2014), who calculated this effect
for temperature (see their fig. 1).

Now, let us evaluate this statistic on the Planck temperature and
polarization data. Fig. 6 shows the relative difference in power
between the Northern and Southern hemispheres of the Planck
SMICA map in comparison with simulations. As evident from the
plot, although the hemispherical asymmetry of the SMICA power
spectra has the expected sign as the ones induced by the local
motion, it is unlikely that the entire deviation is explained by the
Doppler and aberration effects. Nevertheless, the oscillations in
the north–south power asymmetry of Planck SMICA over various
angular scales – especially in the case of TT up to �

′ � 1500
– marginally follow the same frequency as the motion-induced
oscillations in the simulations, which suggests that these patterns

are at least in part induced by the boost. A key point here is that
since the Planck maps have not been corrected for the Doppler and
aberration effects, we know that their footprints inevitably exist
in the observational data. However, an accurate determination of
exactly how much of the effects shown here is due to Doppler
and aberration and how much due to foregrounds, mask, and other
systematic contaminations requires a more rigorous examination.
Here we merely point out the similarity between the motion-
induced pattern in observation and simulations, but we avoid
overinterpretation of this partial correspondence between the two,
and postpone a detailed analysis to future work. A similar plot for
the TE power spectrum is presented in Fig. B4.

5 PARI TY ASYMMETRY

Another anomaly observed in Planck maps that breaks the expected
statistical isotropy is an apparent parity asymmetry: There is more
power in the odd multipoles than in the even multipoles (Akrami
et al. 2019). It has been suggested by Naselsky et al. (2012)
and Zhao (2014) that the odd-multipole preference of the CMB
power spectrum could be induced by the kinematic dipole. In this
section, using simulations we examine whether the motion of the
observer can cause a parity asymmetry in the CMB temperature and
polarization maps. Following section 6.3 of Akrami et al. (2019), we
use the following statistic to gauge the amount of parity asymmetry
in 100 whole-sky temperature and polarization maps:

RXX(�max) ≡ evenC
XX(�max)

oddCXX(�max)
, (17)

where

evenC
XX(�max) ≡ 1

�even
tot

�max∑
�∈even

�(� + 1)

4π
CXX

� . (18)

Here �even
tot is the total number of modes included in the sum. An

equivalent definition with even → odd holds for the odd multipoles.
As before, X ∈ {T, E}. We apply this statistic to full-sky simulations
in rest-frame and their corresponding boosted equivalents to see
if the boost can induce any parity asymmetry in temperature or
polarization.

Fig. 7 shows the average of the parity statistic RXX for 100
simulations in the rest frame and boosted frame, with the shaded
areas indicating the 1σ regions (standard deviation of the rest-frame
simulations). The top and bottom plots, respectively, present RTT

and REE. The top panel shows the RTT of the Planck SMICA map
(dotted red), which is about 2σ away from the simulation average.
The average amount of parity asymmetry induced in the simulations
up to �max = 500 (range shown in the plot) is only about 0.05σ for TT
and 0.03σ for EE. Therefore, it can be safely concluded that since
our local motion does not generate any significant parity asymmetry,
it is not the relevant source of this observed anomaly in the CMB.
Repeating this exercise only for the Northern hemisphere (Southern
hemisphere masked) results in RTT = 0.04σ and REE = 0.06σ , so it
is unlikely that the results will be significantly different in masked
skies.

6 PARAMETER ESTI MATI ON W I TH PLANCK
POWER SPECTRU M

In this section, we investigate how much the motion of the Solar sys-
tem changes the cosmological parameters inferred from the CMB
power spectrum, as measured by Planck. As shown in Section 4,
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Footprints of Doppler and aberration effects in CMB experiments 1717

Figure 7. Motion-induced parity asymmetry for a Planck-like experiment
in (a) temperature (top panel) and (b) E-mode polarization (bottom panel).
The parity asymmetries in the rest frame (thick solid) and boosted frame
(dashed) are almost identical. The shaded regions show the 1σ standard
deviation of 100 simulations. The 1σ region for the boosted frame is almost
identical to that of the rest frame as well and is not shown in the plot.
The parity asymmetry in the Planck SMICA map (dotted) is shown for
comparison. See equation (17) in the text for the definition of the statistics
presented in the plot.

our local motion changes the power spectrum up to ∼2 per cent
in each hemisphere. However, since Planck’s observation patch is
relatively symmetric w.r.t. β̂, the effects we observe in the Northern
hemisphere (contracted angular scales of anisotropies and enhanced
amplitudes) get cancelled out by the opposite effects in the Southern
hemisphere (expanded angular scales and diminished amplitudes)
when calculating the power spectrum on the whole sky.

Fig. 8 shows the effect of the boost on the whole-sky temperature
and polarization power spectra. A comparison with Fig. 5 reveals
how the effects in the Northern and Southern hemispheres have
cancelled each other, reducing the effect to onlyO(β2) (Challinor &
van Leeuwen 2002; Burles & Rappaport 2013). The average change
in power spectra reduces to 0.05 per cent for both TT and EE.7 Note
that similar to the half-sky case, despite the small shift in the average
(or Gaussian smoothed) effect, the changes in individual modes of

7The fact that the O(β2) effect drops only by a factor of 5 w.r.t. the O(β)
effect – not 1/β ≈ 800 as naively expected – results from the high degree of
non-linearity of the Doppler and aberration kernel.

Figure 8. Relative change in the power spectrum of a whole-sky map for
(a) temperature (top panel) and (b) E-mode polarization (bottom panel). The
average of 100 simulations is Gaussian smoothed with δ�

′ = 10 (solid line).
A random simulation is chosen as representative of the sample, then binned
with δ�

′ = 10 (circles) in both plots. The overall change in the ensemble
average is only about 0.05 per cent in both plots, but the binned residuals
around the average can be as large as 1 per cent.

C� are still much larger and can reach a few per cent. In order to
emphasize this fact, we have kept an individual simulation in the
plot binned by δ�

′ = 10 (the fluctuations on individual �
′

modes
exceed 1 per cent and are not shown in the plot). The main question
here is how much of the change in an individual C� realization
propagates to the inferred cosmological parameters in a Planck-like
experiment.

In order to assess the relevance of the motion-induced bias for
cosmological parameter estimation, we run maximum-likelihood
analysis on simulated CMB temperature and polarization maps
corresponding to the {100, 143, 217} (GHz) channels of Planck
with the noise configuration {77.4, 33.0, 46.8} (μK-arcmin) for
temperature and {117.6, 70.2, 105.0} (μK-arcmin) for polarization
and {10.0, 7.3, 5.0} (arcmin) beam (Akrami et al. 2018). We take
the following steps to prepare the data set for the analysis:

(i) Calculate the TT, EE, and TE theoretical CMB power spectra
using the five fiducial parameters (ωb, ωc, θ , As, ns) (see Section 1)
with CAMB 8 (Lewis, Challinor & Lasenby 2000).

(ii) Simulate temperature and polarization CMB maps from the
theoretical C� using healpy.synfast up to lmax = 3000
and NSIDE = 1024.

(iii) Boost a copy of the simulated map using the COSMOBOOST
code. This map represents what would be observed in a frame
moving with the velocity β = 0.001 23 in the ẑ-direction.

(iv) Apply the Planck foreground mask to both maps. Since the
Doppler and aberration kernel formalism boosts the map in the
β̂ = ẑ direction, we rotate the mask to the same coordinate system.
The output of this step is a CMB map observed in a frame moving
with β = 0.001 23 in the β̂ = (268◦, 48◦) direction.

(v) Calculate the power spectrum of both rest-frame and boosted
maps using pymaster9 (Alonso, Sanchez & Slosar 2019) to

8 cmbant/CAMB
9 LSSTDESC/NaMaster
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1718 S. Yasini and E. Pierpaoli

Figure 9. Parameter constraints from rest-frame and boosted-frame TT, EE,
and TE spectra in the range 2 < � < 2500 for a Planck-like experiment. The
contour lines are 68 per cent and 95 per cent confidence intervals. The shift
in parameters is only of the order of 0.02σ , which is why the rest-frame (r)
and boosted-frame (b) contour lines overlap. Here the reionization optical
depth τ is fixed to avoid complications in the low-� parameter estimation.
See Table 1 for the average shift in parameters due to the boost.

correct for the coupling among nearby multipoles induced by the
mask.

Binning the power spectrum in general reduces the effect of the
boost on the change in the power spectrum. Here we do not consider
a binning scheme so that we can gauge the maximum possible effect;
we use the power spectra with δ�′

bin = 1.
Using the two power spectra obtained from the preparation steps –

one in the rest frame and the other in the boosted frame – we perform
a maximum-likelihood parameter estimation with the Markov chain
Monte Carlo code monte-python 3 (Brinckmann & Lesgour-
gues 2018). For simplicity, instrumental noise is directly added to
the power spectra, not at the map level. We employ the likelihood
of Hamimeche & Lewis (2008) for two different configurations in
TTTEEE : (i) whole range of angular scales probed by Planck
(2 ≤ � ≤ 2500), and (ii) high � (2 ≤ � ≤ 800) versus low �

(801 ≤ � ≤ 2500).
Fig. 9 shows the results of parameter estimation using TTTEEE

spectra in the range 2 ≤ � ≤ 2500 from one random simulation,
both in the rest frame (red) and in the boosted frame (dotted black).
The contour lines of both frames almost overlap, demonstrating the
almost perfect cancellation of the boost effect in the Northern and
Southern hemispheres. To ensure this cancellation is not merely due
to a chance in the particular simulation we analysed, we repeat the
exercise with nine more realizations of the power spectra and look
at the average shift in the parameters due to boost and compare this
with the error bars on each parameter.

Table 1 shows the result of this analysis for all 10 simulations.
The average shift in the parameters is on average about 0.02σ , with
sound horizon θ being the most affected (∼0.06σ ) and curvature
perturbation amplitude As being the least affected (∼0.01σ ). The
errors on the numbers reported in the last column of the table are

Table 1. The average mean and standard deviation of 10 parameter
estimations from boosted- and rest-frame simulations. μr and μb are the
average of the inferred parameters in the rest and boosted frames. σ r is the
average variance of each corresponding parameter in the rest frame. The
last column reports the shift in the mean of parameters due to Doppler and
aberration effects, normalized by the intrinsic error in each parameter.

Parameter μr σ r μb 2 < � < 2500
|μb − μr|/σ r

100 × ωb 2.199 840 0.010 810 2.199 801 0.033
ωc 0.118 559 0.001 181 0.118 573 0.021
100 × θ 1.042 673 0.000 156 1.042 689 0.059
109 × As 2.298 937 0.006 144 2.298 919 0.012
ns 0.966 851 0.002 069 0.966 827 0.023

H0 68.345 63 0.527 770 68.345 44 0.021
σ 8 0.860 056 0.005 154 0.860 113 0.021

Figure 10. Parameter constraints from rest-frame and boosted-frame TT,
EE, and TE spectra in the ranges 2 < � < 800 (blue) and 801 < � <

2500 (orange). The contour lines are 68 per cent and 95 per cent confidence
intervals. The shift in parameters is slightly larger than the ones in Fig. 9,
but still negligible (see Table 2).

less than 20 per cent, so we decided that 10 simulations suffice for
this analysis.

The results that we find on the shift of parameters are typically
smaller than the ones reported by Catena & Notari (2013), which
considers only temperature. This is likely due to the fact that their
boosting formalism slightly overestimates the effect (see fig. 2 in
Dai & Chluba 2014). Inclusion of polarization information (EE,
TE) does not affect the average shift in parameters significantly
compared to chains that run only with the TT power spectrum. The
EE-only runs also yield similarly negligible shifts in parameters.

Fig. 10 shows similar results for the TTTEEE parameter estima-
tion but with 2 ≤ � ≤ 800 and 801 ≤ � ≤ 2500 plotted separately.
In the 2 ≤ � ≤ 800 regime, θ is still the most affected parameter –
understandably so, because it is primarily determined by the position
of the first peak. However, in the range 801 ≤ � ≤ 2500, the two
parameters As and ns are also affected comparably. Overall, the
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Footprints of Doppler and aberration effects in CMB experiments 1719

shift in parameters is still negligible and remains smaller than 0.1σ

for all of them. In this analysis, we did not consider the frequency
dependence of the boost effect, which is negligible for experiments
with symmetric (w.r.t. the direction of motion) masks such as Planck
(Yasini & Pierpaoli 2016). This effect could be potentially important
for partial-sky experiments, but we postpone a detailed analysis of
its implications for cosmology to future studies.

7 BO O S T D E T E C T I O N U S I N G H A R M O N I C
M O D E C O U P L I N G

The amount of motion-induced leakage of the nearby multipoles
into each other depends on the amplitude and direction of the
local peculiar velocity vector with respect to the CMB rest frame.
Therefore, measurements of this induced-mode coupling in CMB
temperature and polarization – which have well-known statistics –
can be exploited to measure the local peculiar velocity vector. This
idea has been investigated in detail in Kosowsky & Kahniashvili
(2011), Amendola et al. (2011), and Notari & Quartin (2012), and
the signal has been detected by Planck using 500 < � < 2000 of
143- and 217-GHz channel maps (Aghanim et al. 2014) reporting
a value of β = 0.00128 ± 0.00026 (stat.) ± 0.00038 (syst.). Here
we present estimates for the achievable signal-to-noise ratio (S/N)
with future surveys such as SO and CMB-S4, and compare their
performance with Planck.

The amplitude of the motion-induced coupling between mode
�

′
and and its first neighbour �

′ + 1 in the moving frame can be
calculated using equation (6) as follows (Amendola et al. 2011;
Chluba 2011; Dai & Chluba 2014):

〈F�′m〉 ≡ 〈
ãX∗

�′mãY
(�′+1)m

〉
=

∑
�

XKm
�′�(β) YKm

(�′+1)�(β)CXY
�

×
1/β
�′
1

↓� βBY
(�′+1)mCXY

�′ − βBX
(�′+1)mCXY

�′+1, (19)

with

BX
�m ≡

√
(�2 − m2)

(
�2 − s2

X

)
(4�2 − 1)

and X → Y , (20)

where X, Y ∈ {T, E} in thermodynamic temperature units (Doppler
weight 1), and sX and sY are the spin weights of the observable (0 for
temperature and 2 for polarization). The approximation in the last
line of equation (19), presented in Amendola et al. (2011), is not
valid for �

′ � 1/β ≈ 800 and overestimates the amount of coupling
between first neighbours (��

′ = 1). Nevertheless, as pointed out
in Chluba (2011), this formula approximates the total signal due
to the relevant coupling between all the nearby neighbours very
well.10 Therefore, to avoid numerical complications, we use this
approximation as a proxy to assess the attainable S/N for boost
detection with Planck, SO, and CMB-S4. We also use the estimate
for the covariance11 from Amendola et al. (2011):

σ 2
�′m ≈ C�′C�′+1. (21)

Here C� ≡ (C� + N�)/
√

fsky is the effective power spectrum and
N� ≡ w−1 exp[�(� + 1)θ2

fwhm/(8 log 2)] is the instrumental noise,

10We checked with simulations and found that up to �max = 3000,
the formula captures the contribution of the first four neighbours with
0.1 per cent accuracy.
11The accuracy of this estimation was not checked with simulations.

Table 3. Sensitivity and beam configuration used for Planck, SO,
and CMB-S4.

Temperature Polarization Beam
(μK-arcmin) (μK-arcmin) (arcmin)

Planck (143 GHz) 33 70 7.3
Planck (217 GHz) 47 105 5.0
SO (145 GHz) 10 14 1.4
SO (225 GHz) 22 31 1.0
CMB-S4 nominal 1 1.4 1.4

where w−1 is the sensitivity (μK-arcmin) and θ fwhm is the full width
at half-maximum of the beam (arcmin). Using equations (19) and
(21), we can easily calculate the total S/N for different experiments
using their {w−1, θ fwhm, fsky} configurations as

S

N
=

√√√√√∑
�′,m

(
βBY

(�′+1)mCXY
�′ − βBX

(�′+1)mCXY
�′+1

)2

C�′C�′+1
. (22)

Using this equation, we now estimate the S/N for measuring β

(assuming β̂ is known) with Planck, SO, and CMB-S4. For Planck
(fsky = 0.85), we use the combined 143- and 217-GHz noise power
spectra to emulate the results of Aghanim et al. (2014), which uses
the data from these two frequency channels. The sensitivity and
beam size for these channels are shown in Table 3. For SO (fsky =
0.4), we use the closest matching frequencies 145 and 225 GHz
(see Table 3), and for CMB-S (fsky = 0.4), we use the nominal
w−1

T = 1 μK-arcmin and θ fwhm = 1.4 arcmin.
Fig. 11 shows the estimated S/N from Planck (left-hand panel),

SO (middle pnael), and CMB-S4 (right-hand paanel). Each plot
shows the S/N in TT (dashed), EE (dotted), and TE (dot–dashed)
separately, and all combined (solid). Planck clearly becomes noise
dominated at � > 2000, and it can obtain only an S/N of about
4.5 with a minimal contribution from EE and TE. SO, despite its
smaller sky fraction and, hence, coverage of a lower number of m
modes for a given �, has a much lower instrumental noise and can
supersede Planck in the detection of this signal. Using only EE, SO
can achieve a similar S/N to Planck (compare the dotted line in the
middle panel to the solid line in the left-hand panel). Combining
TT, EE, and TE for SO results in a total S/N of 8.5, roughly twice
as large as Planck’s. Notice that below � ∼ 2000, where the SO EE
is not noise limited, it gains a large S/N compared to TT (compare
dotted and dashed lines in the middle panel). As pointed out before,
since the EE power spectrum fluctuates more abruptly than TT,
it yields a larger mode coupling in the boosted frame. Finally, for
comparison, we also show the results for CMB-S4, which can attain
a total S/N of around 20.

This detection leverages on mode-coupling to measure β and is
highly sensitive to the number of available modes in the observed
patch and, hence, fsky. Since Planck covers a larger sky fraction
compared to SO and CMB-S4, it is interesting to see whether
there are any synergies between these experiments. To assess this,
we combine the signal from the additional sky fraction covered
by Planck, and add it to the signal obtained from SO, and then
separately to CMB-S4. In order to find the effective noise in the
common sky areas covered by different experiments, we find the
harmonic mean of their individual noise power spectra squared.
Fig. 12 shows the combination of Planck+SO. As we can see, the
contribution to the total S/N by SO improves from 8.5 to only 9.
For CMB-S4, the improvement is virtually zero and the result is
identical to the right-hand plot in Fig. 11.
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1720 S. Yasini and E. Pierpaoli

Figure 11. Boost detection (via mode coupling) S/N estimates for (a) Planck (left-hand panel), (b) SO (middle panel), and (c) CMB-S4 (right-hand panel).
The maximum achievable S/Ns for these experiments up to �max = 4000 are, respectively, ∼4, ∼8.5, and ∼20.

Figure 12. Combining Planck and SO can increase the total attainable S/N
for boost detection to ∼9.

8 SUMMARY AND DISCUSSION

In this paper, we reviewed how the motion of the observer affects
the statistics of the CMB radiation, expanding previous studies in
various ways. We adopted a more careful boosting methodology,
which is also applied to polarization maps and spectra. We clarified
how deboosting can and should be performed, and we assessed how
boosting effects could be exploited in future experiments to measure
our peculiar motion with respect to the CMB. This paper also intro-
duces COSMOBOOST : software aimed at accurately simulating
the Doppler and aberration effects, or correcting/removing their
footprints from observations.

We investigated the significance of the Doppler and aberration
effects – induced by a dimensionless velocity β = 0.001 23 towards
β̂ = (264◦, 48◦) – on CMB statistics. The summary of the main
results is as follows.

8.1 Boost variance

The motion of the observer changes the variance of the CMB
anisotropies around the theoretical mean. Using simulations, in
Section 3.3, we showed that the boost variance in an area towards
the direction of motion (fsky = 10 per cent) becomes larger than
10 per cent of the rest-frame cosmic variance in temperature, and
20 per cent in polarization beyond �

′ � 1500. However, if the effect

of the boost is being corrected in the theoretical mean, the boost
variance reduces by an order of magnitude. We showed that the
correction to the mean does not convey all the information on C�

modes in an individual (boosted) observation. We suggested the
use of COSMOBOOST to correct boosting effects on the spherical
harmonics, and we provided practical advice on how to perform the
correction to the CMB power spectrum without using this software.

8.2 Hemispherical power asymmetry

In small patches of the sky towards (opposite to) the direction
of motion, the induced coupling between harmonic multipoles
increases (decreases) the power in both temperature and polarization
up to a few per cent. In Section 4, we showed that this difference
in power results in a hemispherical asymmetry in Planck-like
simulations with an average (maximum) of roughly 1.0 per cent
(1.7 per cent) in TT and 0.9 per cent (2.1 per cent) in EE (see Fig. 5).
The motion-induced distortions in the power spectra (∝ dC�/C�)
are out of phase with the primary CMB fluctuations; therefore,
any hemispherical asymmetry of this origin is expected to show
a similar fluctuating pattern. We made a comparison between
the scale-dependent fluctuations in the power asymmetry of the
Planck SMICA spectra and the ones from boosted simulations.
The marginal resemblance between the oscillating patterns in the
observation and simulations suggests that part of the hemispherical
asymmetry observed in Planck SMICA maps could be due to the
Doppler and aberration effects. However, we do not draw final
conclusions and postpone a more rigorous analysis of this effect to
future work.

8.3 Parity asymmetry

An analysis of the whole-sky boosted and rest-frame simulations
revealed that the motion of the observer does not induce any parity
asymmetry in neither temperature nor polarization of the CMB. In
Section 5, using the R statistic, which calculates the ratio of even
(� = 2n) to odd multipoles (� = 2n + 1), we found only a motion-
induced parity asymmetry of the order of a few per cent of the
standard deviation in rest-frame simulations in both TT and EE, for
�max = 500. Therefore, we safely reject Lorentz boost as a source
of the anomalous parity asymmetry observed in Planck maps.
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8.4 Planck cosmological parameter estimation

In Section 6, we revisited the impact of the boost on the Planck
cosmological parameter estimation in light of a more precise
boosting scheme, accurate mask consideration, and inclusion of
polarization spectra. The bias implied by a neglected boost cor-
rection is only about 0.02σ on most parameters, with the most
(least) affected being the sound horizon θ at 0.06σ (the amplitude
of curvature perturbation As at 0.01σ ). Therefore, the inclusion of
these sophistications in the analysis shows even smaller biases on
parameters than the ones reported in Catena & Notari (2013).

8.5 Boost detection

The motion-induced coupling between nearby harmonic multipoles
can be exploited to measure our peculiar velocity with respect
to the CMB rest frame in a different way from observing the
CMB dipole. While Planck has measured our peculiar velocity
using only TT spectra up to l � 2000 (Aghanim et al. 2014),
future experiments like SO and CMB-S4 could also leverage on
polarization information (albeit on a smaller area of the sky).
The signal, which is proportional to the slope of the underlying
power spectrum, is intrinsically larger in EE polarization than TT.
In Section 7, we showed that exploiting the high-temperature and
polarization sensitivity of SO will allow us to obtain S/N ∼ 8.5, and
S/N ∼ 9 in combination with Planck. CMB-S4 can enhance this
measurement to S/N ∼ 20. These measurements combined with
other probes of the the local motion of the Solar system such as
galaxy number counts (Pant et al. 2019) and Sunyaev–Zeldovich
(SZ) clusters (Chluba et al. 2012) will ultimately yield a Dipole-
independent measure of our motion w.r.t. the CMB.
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(2000), Chluba (2011), Dai & Chluba (2014), and Yasini & Pierpaoli
(2017b).

We start with the boost equation in real space

T̃ (n̂′) = T (n̂)

γ (1 − ββ̂ · n̂′)
, (A1)

and expand the temperature on both sides in terms of spherical
harmonics:∑
�′m′

ãT
�′m′Y�′m′ (n̂′) = 1

γ (1 − βμ′)

∑
�m

aT
�mY�m(n̂). (A2)

Now in order to isolate ãT
�′m′ on the left-hand side, we use the

orthogonality condition of spherical harmonics and multiply by
Y ∗

�′m′ (n̂′), then integrate over all angles to get

ãT
�′m′ =

∑
�m

∫
d2n̂′ Y

∗
�′m′ (n̂′)Y�m(n̂)

γ (1 − ββ̂ · n̂′)
aT

�m, (A3)

which can be simplified as

ãT
�′m =

∑
�m

T Km′m
�′� (β) aT

�m. (A4)

In the β̂ = ẑ coordinate system, the integral yields a δm′m, implying
that there is no mixing in m. Therefore, the m

′
index of the kernel is

redundant and can be dropped. This simplifies the definition of the
Doppler and aberration kernel for temperature to

T Km
�′�(β) =

∫
d2n̂′ Y

∗
�′m(n̂′)Y�m(n̂)

γ (1 − β ẑ · n̂′)
. (A5)

We can easily derive the equivalent expressions for polarization E
and B modes as (Dai & Chluba 2014; Yasini & Pierpaoli 2017b)

EKm
�′�(β) =

∫
d2n̂′ 2Y

∗
�′m(n̂′) 2Y�m(n̂) +−2 Y ∗

�′m(n̂′) −2Y�m(n̂)

2γ (1 − β ẑ · n̂′)
(A6)

and

BKm
�′�(β) =

∫
d2n̂′ 2Y

∗
�′m(n̂′) 2Y�m(n̂) −−2 Y ∗

�′m(n̂′) −2Y�m(n̂)

−2iγ (1 − β ẑ · n̂′)
,

(A7)

where sY�m(n̂) is the spin weighted spherical harmonics. We should
emphasize that these equations are valid only for thermodynamic
temperature and do not hold for frequency-dependent observables
such as brightness temperature Tν or specific intensity Iν . Yasini &
Pierpaoli (2017b) introduced a generalized formalism to deal with
the complications arising from the frequency dependence of the
motion-induced effects.

APPEN D IX B: TE C RO SS-CORRELATION

Throughout the main text, we focused on the TT and EE power
spectra. In this appendix, we discuss how the motion-induced
effects change the TE power spectrum as well. Since the TE power
spectrum goes to zero at certain � modes, calculating its relative
change �CTE

� /CTE
� yields infinities over those modes. In order to

alleviate this problem in the following plots, instead of dividing
the change in the power spectrum �CTE

� by CTE
� , we divide by the

following :

GTE
� ≡

√(
CTE

�

)2 + CTT
� CEE

� , (B1)

which is inspired by the expression for the TE cosmic variance.

B1 Equal-area strip cuts

In order to gauge the significance of the motion-induced effects in
the TE power spectrum, we repeat the exercise of Section 3 on the
five equal-area strip cuts in the Northern hemisphere. Fig. B1 shows
the relative change in the TE cross-correlation of 100 simulations
for each of these strips, as well as the Jeong approximation and the
1σ region of the residuals it leaves in the power spectrum. Unlike
TT and EE (see Fig. 2), there is no significant increase in the overall
power as we go to smaller angular scales. However, similar to TT
and EE, the amount of fluctuation increases as we go to higher
latitudes (closer to the direction of motion). The Jeong et al. (2014)
formula is still performing well for the change in the TE power
spectrum, but it still leaves residuals for individual simulations.

B2 Hemispherical asymmetry

Let us look at the amount of hemispherical asymmetry induced in
TE due to the motion of the observer. Fig. B2 shows the amount of
induced asymmetry in the Northern and Southern hemispheres, as
well as the difference between the two. Similar to TT and EE, there
is about ∼ 1–2 per cent motion-induced hemispherical asymmetry
in the TE power spectrum in the average of 100 simulations.

Similar to what happens in the case of TT and EE, the effects
on the Northern hemisphere cancel out the ones in the Southern
hemisphere upon the calculation of the power over the whole sky
(see Fig. B3). The average change in TE drops to about 0.02 per cent
in the whole-sky power spectrum.

Figure B1. The relative change in the TE power spectrum due to the
observer’s motion. The amplitudes of fluctuations are comparable to TT and
EE cases, but unlike them there is no overall increase in power at smaller
scales for TE. Similar to TT and EE, the Jeong et al. (2014) formula (dashed
cyan) emulates the average effect extremely well, but leaves residuals in
individual power spectrum realizations (green band). The residuals can be
as large as 20 per cent of cosmic variance (purple band).
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Figure B2. The observer’s motion induces an increase in power in the
Northern hemisphere (top) and a decrease in the Southern hemisphere (bot-
tom), which results in an overall ∼ 1–2 per cent hemispherical asymmetry
in the TE power spectrum. The faint green lines in the background are
individual simulations, the jagged black line is the ensemble average, and
the smooth green line is the average Gaussian smoothed over δ�

′ = 10. The
statistic in the bottom panel is the same as the one in equation (16) with G�′
replacing C�′ in the denominator.

Figure B3. The motion-induced effects on each hemisphere cancel each
other out when calculating the power spectrum on the whole sky.

Figure B4. Comparison of Planck SMICA TE hemispherical asymmetry
with simulations. The grey lines are the average of 100 simulations, the green
circles and lines are a randomly chosen simulation binned and Gaussian
smoothed over δ�

′ = 50, and the black circles and lines are the corresponding
variables for Planck SMICA. The similarity between the fluctuation patterns
of the two lines is certainly suggestive of the Doppler and aberration leftovers
in the SMICA TE spectrum.

B3 Planck SMICA

Finally, in Fig. B4 we look at the difference between the TE
power spectra in the Northern and Southern hemispheres of the
Planck SMICA maps and compare them to the boosted simulations.
Similar to the case of TT and EE (Fig. 6), the fluctuations in the
hemispherical asymmetry of SMICA TE resemble those of the
simulations, which suggests that this difference could be at least
due in part to the Doppler and aberration effects. We will look at
this possibility closely in future work.

A P P E N D I X C : BO O S T VA R I A N C E
C A L C U L AT I O N S

C1 Cosmic variance

We start with a quick derivation of the expression for cosmic
variance for review. The variance of the spherical harmonic coeffi-
cients of an observable such as CMB temperature or polarization is
denoted with the theoretical power spectrum C� as〈
a∗

LMa�m

〉 = δL�δMmC�. (C1)

An unbiased quadratic estimator for the power spectrum can be
constructed as

C� = 1

2� + 1

∑
m

a∗
�ma�m, (C2)

which satisfies

〈C�〉 = C�, (C3)

as is expected from an unbiased estimator. Using equation (C2), we
can easily calculate the variance of the estimator as

�C2
� = 〈

(C� − C�)2
〉 = 〈

C2
�

〉 − C2
� (C4)

=
〈

1

(2� + 1)2

∑
Mm

a∗
�ma�ma∗

�Ma�M

〉
− C2

� (C5)

= 1

(2� + 1)2

∑
Mm

[〈
a∗

�ma�m

〉 〈
a∗

�Ma�M

〉
(C6)

+ 〈
a∗

�ma∗
�M

〉 〈a�ma�M〉 (C7)

+ 〈
a∗

�ma�M

〉 〈
a∗

�Ma�m

〉] − C2
�, (C8)

where in the second equality we have used Isserlis’ theorem (a.k.a.
Wick’s theorem). Using the symmetry properties of spherical har-
monic coefficients a∗

�,m = (−1)ma�,−m, we can simplify the above
equation as

�C2
� = 1

(2� + 1)2

[
(2� + 1)2C2

� + 2(2� + 1)C2
�

] − C2
� (C9)

= 2

(2� + 1)
C2

�, (C10)

and hence the well-known formula for cosmic variance

�C�

C�

=
√

2

2� + 1
. (C11)

C2 Boost variance

In order to simplify the calculation of cosmic variance in the boosted
frame 〈(C̃� − C�)2〉, we exploit the fact that the labels ‘rest’ and
‘boosted’ frames can be switched under the transformation β →
−β. In other words,12

C̃�(β) − C� = C� − C̃�(−β), (C12)

and, hence ,

〈(C̃� − C�)2〉 = 〈(C� − C̃�)2〉. (C13)

12For simplicity, in this subsection, we do not use the prime accent for
variables in the boosted frame.
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Now we employ the analytical formula of Jeong et al. (2014)
to estimate the motion-induced change in the theoretical power
spectrum as

C̃� � C� − β�
dC�

d�
cos θ + 1

2
β2�2cos2 θ

d2C�

d�2
. (C14)

Here C̃� and C� represent the power spectra in the boosted and rest
frames, respectively, and the overline indicates an angular average
over the observation patch. After plugging this into equation (C13),
it is straightforward to calculate the variance of the boosted power
spectrum around the theoretical background :

〈(C̃� − C�)2〉 � 2

2� + 1
C2

� +
(

β�cos θ
dC�

d�

)2

+β3�3cos θcos2 θ
dC�

d�

d2C�

d2�
+ O(β4). (C15)

The first term is the well-known cosmic variance, and the rest are
induced by the motion of the observer. The second term, which
we called boost variance in the main text, is dominant over the
third term and higher order terms, which do not appear in the above
expression.

C3 Moments of the power spectrum and its derivatives

For the sake of completeness, we provide another derivation of the
expression for cosmic variance using the probability distribution
of C�. We start by considering the distribution function of C�/C�.
Assuming that the a�m coefficients are Gaussian distributed, the
quantity

χk ≡ (2� + 1)
C�

C�

=
∑

m

|a�m|2
C�

(C16)

has the following chi-squared distribution :

Pk(χk) = χ
k/2−1
k e−χk/2

2k/2�(k/2)
, k ≡ 2� + 1. (C17)

By evaluating the first moments of χ k, we obtain

〈χk〉 =
∫

Pk(χk)χkdχk = k, (C18)

which is equivalent to

〈C�〉 = C� . (C19)

From the second moment

〈χk
2〉 =

∫
Pk(χk)χk

2dχk = k2 + 2k, (C20)

we find

〈
C2

�

〉 = 2� + 3

2� + 1
C2

� , (C21)

which is equivalent to equation (C11).
As for the derivatives of C�, we can calculate them by taking the

derivative of equation (C18) with respect to k:

〈∂kχk〉 =
∫

Pk(χk)
dχk

dk
dχk = 1, (C22)

where ∂k ≡ d
dk

= d
2d�

. The caveat here is that the ensemble average
and the derivative do not necessarily commute for low values of
k, but when k 
 1 we have

∫
∂kPkχ kdχ � 0 so equation (C22) is

valid. Rewriting this equation in terms of C�, we obtain〈
C�

C�

+ k
∂kC�C� − C�∂kC�

C2
�

〉
= 1, (C23)

which simplifies to the following expression for the ensemble
average of the derivative of the power spectrum:〈

dC�

d�

〉
= dC�

d�
. (C24)

The average of the second derivative of C� can be similarly derived
as〈

d2C�

d�2

〉
= d2C�

d�2
. (C25)

One can take this a step further and calculate the cross-correlation
between the power spectrum and its derivative. Taking the derivative
of equation (C20) yields

〈χk∂kχk〉 = k + 1. (C26)

After rewriting this in terms of C�, we find〈
C�

dC�

d�

〉
= 2� + 3

2� + 1
C�

dC�

d�
− 2

(2� + 1)2
C2

� . (C27)

Note that since the derivative and the ensemble average commute,
the same exact expression could have been obtained by taking the
derivative of equation (C21) with respect to �. From equation (C27),
we can also find the first moment of the derivative of C2

� as〈
dC2

�

d�

〉
= 2

〈
C�

dC�

d�

〉
. (C28)

Higher order statistics for the power spectrum and its derivative can
be derived in a similar fashion.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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