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ABSTRACT
This paper studies the problem of indoor zone tempera-

ture control in shared work-spaces equipped with heterogeneous
heating and cooling sources with the goal of increased energy
savings and environment personalization. We consider two sce-
narios to assess the performance of our control strategies. The
first scenario requires time-bound pre-cooling/pre-heating of a
shared space in preparation for a scheduled activity (Scenario
A). The second scenario considers a cohabited work-space where
occupants have different temperature preferences (Scenario B).
Utilizing an on-campus smart conference room (SCR) as a test-
bed, we use data-driven model learning to establish a relationship
between the room’s heating, ventilation and cooling (HVAC) op-
erations and the zone temperatures. Next, we use a model predic-
tive control (MPC)-based approach to achieve a desired average
temperature while minimizing power consumption (for Scenario
A) and minimize the thermal discomfort experienced by individ-
uals based on their temperature preferences (for Scenario B). The
experimental results show that for Scenario A, the proposed con-
trol policy can save a significant amount of energy and achieve
the desired mean temperature in the space fairly accurately. We
further note that for Scenario B, the control scheme can achieve
a significant spatial differentiation in temperature towards satis-
fying the occupants’ thermal preferences.

1 Introduction
Since HVAC systems account for approximately one-third

of the total energy consumption in buildings in the United States
[1], there is a need for making such systems more energy effi-
cient. At the same time, the increasing desire for personal com-
fort and wellness among building occupants means that HVAC
systems must strive to attain disparate temperatures within the
same indoor environment. In the presence of the occupants’
temperature preferences, as posited in [2], [3], mapping these
demands to the operation of the HVAC system in the building

involves several challenges. Firstly, the different zones in the
shared space where the occupants are located may be thermally
correlated, and it may not be possible to satisfy the preferences
of all occupants simultaneously. Furthermore, the building may
be equipped with multiple sources of heating and cooling and
modeling their combined effect on the temperature evolution at
various points within the indoor environment is challenging. In
addition, identifying dynamically changing thermal zones within
a large, open space is non-trivial.

A significant body of past research work has studied the
use of MPC in building energy management systems. For in-
stance, [4] used semi-parametric regression to map temperature
changes in discrete time to HVAC inputs by estimating the heat-
ing load due to occupancy and solar heat in an indoor space. The
authors employed a learning-based MPC to estimate the occu-
pancy heating load and to adjust the control action accordingly.
The authors in [5] used a physics-based thermal model of an
indoor space. Using a standard MPC formulation, the authors
then proceeded to minimize the total energy and peak power con-
sumption while keeping the space temperature within prescribed
bounds. In [6], a probabilistic framework derived from historical
data was used to model the uncertain load forecast in the ther-
mal zones of an on-campus building. Subsequently, a stochastic
MPC approach was presented to minimize the expected energy
costs for temperature regulation within certain bounds. In [7],
the authors used data-driven learning and predictive control to
efficiently achieve desired temperatures in an occupied indoor
space. Although related literature has extensively studied indoor
thermal management, there is a need to design control frame-
works to achieve efficient time-bound pre-cooling/pre-heating of
a work-space, in addition to satisfying individual thermal pref-
erences. Therefore, this paper develops control strategies that
combine data-driven learning with predictive control to improve
efficiency as well as to achieve personalization in indoor spaces.

We propose a learning-based approach to estimate the model

1



parameters by determining the dependence between the hetero-
geneous HVAC controls (the inputs) and the temperature at spe-
cific sensor locations (the outputs) within a shared space using
a simple dynamical model. Additionally, we also show how the
model can be further simplified by ignoring some dependencies
as well as by temporal averaging. We utilize an on-campus SCR
as a test-bed to train the model. Next, we use our dynamical
model in conjunction with a MPC-based approach to achieve de-
sired temperatures in the test-bed. We employ our control policy
to pre-cool/pre-heat the space to a specified temperature prior to
the work-space being occupied, while minimizing the total power
consumed in the process. Furthermore, by exploiting spatial dif-
ferences in the impact of the different thermal inputs, our control
algorithm is also shown to satisfy disparate thermal preferences
(within known bounds) during periods of occupancy.

It is noteworthy that [4] – [6] considered only a single type of
input, the air handling unit (AHU), for heating and cooling, while
formulating the indoor thermal model. In contrast, our control
strategy simultaneously utilizes the operation of multiple hetero-
geneous HVAC elements (i.e. AHUs and radiators) to achieve
the desired objectives. Additionally, in view of the time-bound
nature of the efficient pre-cooling/pre-heating problem, we use a
shrinking horizon MPC approach [8], unlike [4] – [6]. In contrast
to the work in [5], [6], we evaluate the performance of our control
policies experimentally. Moreover, unlike [7], this paper poses
a fixed end-point problem to achieve efficient pre-cooling/pre-
heating of a shared space. Also in contrast to [4] – [7], our work
aims to satisfy the thermal preferences of individual occupants.

2 Problem Formulation
We consider a typical work-space occupied by multiple oc-

cupants and equipped with heterogeneous heating and cooling
sources. This indoor space is instrumented with temperature
sensors at various locations, which may be used to estimate the
temperatures at the occupants’ locations. This work uses a data-
driven learning model to determine the effect of HVAC opera-
tions on the temperature at these locations.

2.1 Data-driven learning model
We use a black box model to establish a relationship be-

tween the temperature measurements at multiple sensors and the
heterogeneous heating and cooling sources in the indoor space.
We discretize our time horizon into K time instances. Each time
instance k has duration µ minutes. The model used here aims
to predict the temperature measured by each sensor at the begin-
ning of each time instance, using the temperature readings and
heating or cooling input from past instances. Furthermore, the
formulation assumes that the heating or cooling input remains
constant for µ minutes. Taking the R-C model in [9] as a motiva-
tion, we can use the following discrete, linear model to estimate
the temperature evolution in the test-bed:

Y[k+1] = AY[k]+BU[k]+Dy∞[k]+W[k], (1)

where Y[k] ∈ RI×1 is the vector of temperature measurements
at I sensors at time k, U[k] ∈ RJ×1 is a vector of input signals
to the J heating and cooling elements of the HVAC system and
function f (U[k]) is the instantaneous energy consumption of the
system. Finally, y∞[k] is the ambient temperature at time instance
k. A,B,D and W are matrices that are to be estimated through
learning. Here, W captures unmodeled dynamics such as heat
from human bodies, the server and workstations, solar gains etc.

It is worth noting, however, that in (1), y∞ only changes very
slowly. Therefore, the training data collected for this quantity
lacks the required richness to adequately estimate D. Since we
aim to achieve specific temperatures over a much smaller time
scale (tens of minutes), we drop the term for the ambient temper-
ature in our final model to obtain,

Y[k+1] = AY[k]+BU[k]+Ŵ[k], (2)
where the bias Ŵ captures the effect of the noise term W, as
well as that of the ambient temperature on Y[k+ 1]. Details of
the derivation of this data-driven model may be found in [7].

Given this thermal model of the shared space, we now pro-
ceed to formulating the control strategy to determine the series
of HVAC operations required to achieve a desired temperature
within a fixed time window in an efficient manner.

2.2 Time-bound pre-cooling/pre-heating of the test-
bed

A previously unoccupied indoor space might need to be pre-
cooled or pre-heated to a nominal temperature, Ỹ , in preparation
for some scheduled activity e.g. a work-related meeting. In this
case, prematurely heating or cooling the space to Ỹ would be en-
ergy inefficient. Therefore, in order to save energy, it is vital that
HVAC operations are controlled such that the average temper-
ature in the space reaches approximately Ỹ immediately before
the scheduled activity. This condition may be expressed as,

∑
I
i=1 Yi[K]

I
= Ỹ , (3)

where K represents the time at which the scheduled activity be-
gins and Yi[K] is the temperature measurement at sensor i at that
time. In order to achieve time-bound pre-cooling/pre-heating, we
solve the following fixed end-point problem:

min.
U

K

∑
k=1

J

∑
j=1

U j[k], s.t. (2),(3), (P1)

where U j[k] represents the energy used by HVAC input j. The
decision variables for the optimization problem are the elements
in matrix U, where U∈RJ×K . The constraint (3) ensures that the
mean sensor readings at the end of time K must ideally equal Ỹ .

Given a deadline K, a shrinking horizon MPC approach [8]
is used to determine the desired trajectory of the heating and
cooling inputs. After every µ minutes, our control strategy uses
the temperature readings at all sensors as well as the heating and
cooling inputs at that time to solve P1. However, at each instance
k, the problem is solved over (K−k) time instances. Solving the

2



pre-heating/pre-cooling problem using MPC for a progressively

diminishing optimization window was seen to produce the de-

sired results, as will be seen in Section 3.

Next, we develop a protocol for the indoor environment’s

HVAC operations for the case when it is already occupied and

the workers are seated at known locations. Individuals at each of

these positions may have different temperature preferences. We

present a control mechanism that aims to enhance wellness for

all occupants by minimizing their thermal discomfort.

2.3 Satisfying individual temperature requirements
We can minimize the individuals’ thermal discomfort by op-

timizing the following objective function:

min.
U

K′

∑
k=1

I

∑
i=1

(Yi[k]−Δi)
2, ∀i ∈ {1 . . . I}, s.t. (2), (P2)

where K′ represents the size of the optimization window. Δi is

the desired temperature at sensor i’s location, which is computed

based on the occupants’ preferences and their locations relative

to the sensor. Unlike the policy for pre-cooling/pre-heating, we

aim to minimize the occupants’ thermal discomfort as quickly

as possible. Ideally, our control policy for meeting individual

thermal requirements should also prevent significant overshoots

or undershoots about Δi. Therefore, at each time instance k, P2 is

solved by updating the starting temperature and heating/cooling

input values every μ̄ minutes where μ̄ < μ .

3 Experimental Evaluation
3.1 Test-bed layout

Fig. 1 shows the layout of the SCR test-bed used for our ex-

periments. The room is equipped with three controllable heating

sources and one cooling source. The heating sources include two

radiators, that are attached to the test-bed’s walls, and an AHU in

the ceiling. The cooling operation takes place through a separate

AHU in the ceiling. Furthermore, the SCR is instrumented with

five wall-mounted temperature sensors located at various posi-

tions, as shown in Fig. 1a. Temperature readings, taken once

every minute, are wirelessly transmitted to a server in the room.

3.2 Results
The experimental evaluation of the dynamical model and

the control strategy considers two scenarios. The first (Scenario

A) requires time-bound pre-cooling or pre-heating of the shared

space in anticipation of a scheduled work activity. The second

scenario (Scenario B) considers a cohabited work-space where

occupants at two locations in the shared space have two differ-

ent temperature preferences. In view of the facts that the control

policies for the aforementioned scenarios operate at a relatively

shorter time scale and that the space has significant thermal iner-

tia, μ was chosen to be five minutes for training the model in (2).

The time till the scheduled activity in Scenario A was taken to be

sixty minutes. The experiments were conducted in Feb. 2020.

3.2.1 Scenario A For Scenario A, we use an MPC-

based approach to achieve a desired average temperature while

(a)

(b)

FIGURE 1: (1a) Test-bed layout; (1b) Photograph of the SCR.

minimizing power consumption. Figs. 2a–2c show the evolution

of the mean temperature (averaged across all five sensors in the

test-bed) when the space needs to be pre-heated or pre-cooled

over a period of an hour. All three tests were conducted at night.

It can be observed that the desired temperatures can be achieved

to within approximately 0.25◦C by the end of the hour, which

represents the beginning of the scheduled activity. These results

also demonstrate that the discrete, linear model in (2) is able to

satisfactorily capture the relationship between the HVAC opera-

tions and the change in temperature. Figs. 2d–2f show how the

optimization in P1 ensures that the heating and cooling sources

are only utilized a short period before the start of the planned

work activity, thereby reducing the energy costs incurred by the

building operator. It may also be seen that the data-driven ap-

proach adequately models the test-bed’s rate of heat loss to the

external environment. Therefore, as can be observed in Fig. 2d,

the time-bound pre-cooling strategy exploits not only the test-

bed’s HVAC operations but also the colder ambient conditions.

Once the heat loss to the ambient alone results in a fall of 0.32◦C

by the forty minutes mark, the AHU cooling input ‘turns on’ for

ten minutes to accelerate the cooling operation. Furthermore, the

HVAC system relies on the AHU to achieve pre-heating in Figs.

2e, 2f, as it can heat up the space quicker than the radiators. Also,

turning on the radiators would have had a greater impact on the

readings at sensors 1 and 5 (see Fig. 1a), whereas our aim is to

drive the average temperature readings of all five sensors to Ỹ .

Table 1 records the performance of control strategy P1 for

various values of Ỹ in terms of the mean final temperature devi-

ation and the duration for which the test-bed’s HVAC elements

are on (non-zero % valve opening). It may be seen that all ex-

periments resulted in mean final temperature deviations of less
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FIGURE 2: (2a): Pre-cooling the test-bed to Ỹ = 20◦C; (2b): Pre-heating the test-bed to Ỹ = 21◦C; (2c): Pre-heating the test-bed to 23◦C;
(2d): The HVAC operation required to pre-cool the test-bed to Ỹ = 20◦C; (2e): The HVAC operation required to pre-heat the test-bed to
Ỹ = 21◦C; (2f): The HVAC operation required to pre-heat the test-bed to Ỹ = 23◦C.

XXXXXXXXXXPerformance
Ỹ 19◦C 21◦C (II) 26◦C

Starting temperature (◦C) 20.75 22.51 21.86

Temperature deviation (◦C) 0.22 0.09 0.38

Operation Cooling N/A Heating
Duration HVAC elements are on

60 min. 0.42 0 0.67

TABLE 1: Performance of P1 for various values of Ỹ .
````````````HVAC element

Strategy P1 B1 B2 B3

North Radiator (%) 0 8.25 0.61 21.82

East Radiator (%) 0 6.20 1.95 21.78

AHU heating (%) 2.66 8.04 1.09 21.76

AHU cooling (%) 0 3.08 4.55 1.13

TABLE 2: Comparison of the average valve openings for the pro-
posed and the benchmark approaches for pre-heating to 21◦C.

than 0.4◦C, despite the HVAC elements not being on for the en-

tire hour. The test labeled ‘21◦C(II)’ was conducted during the
day to contrast with the experiment in Figs. 2b, 2e, which was
run at night. The results show that our thermal model correctly
estimated the rate of heat loss to the surroundings and thus did
not activate any of the HVAC elements. The heat loss to the am-
bient alone resulted in the mean final temperature deviation to be
less than 0.1◦C.

We now compare the performance of our proposed pre-
cooling/pre-heating control policy with three benchmark strate-
gies, B1, B2 and B3. B1 uses an optimization framework similar
to that in [7] to minimize the deviation of the space’s tempera-
ture from Ỹ for the entire hour prior to the scheduled activity. B2
solves the same objective as B1, however, in view of the results
in Fig. 2c, it comes into effect at the 50 minutes mark for a fairer
comparison with P1. Similarly, B3 represents the ten-minute
operation of the set-point-based building management system
(BMS), manufactured by Johnson Controls, which is currently
installed in the SCR. Table 2 records the valve positions for each
HVAC element (averaged over sixty minutes) for pre-heating the
test-bed to 21◦C. Since, the average % valve openings for each
HVAC element (other than AHU heating for B2) is higher for
the benchmark approaches than P1, it can be concluded that our
proposed time-bound pre-cooling/pre-heating policy is more ef-
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FIGURE 3: Temperature differentiation in the shared space when
the desired temperatures are 20◦C and 19◦C.
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FIGURE 4: Temperature differentiation in the shared space when
the desired temperatures are 25◦C and 24◦C.

ficient than all of the considered benchmarks. The results also
show that thermal management can be improved by employing
spatially distributed sensors, rather than basing policies on the
readings of a single sensor as done in B3.

3.2.2 Scenario B Next, we consider Scenario B where
we aim to minimize the thermal discomfort experienced by two
individuals already present in the shared space, based on their
temperature preferences. The occupants are located close to sen-
sors 1 and 5, respectively. Thus, we assume that the temper-
atures recorded by each of these sensors are the temperatures
experienced by the occupants. Figs. 3 and 4 depict how the
HVAC operations determined using P2 can successfully achieve
a spatial temperature differentiation of upto 1◦C for heating and
cooling operations, independent of the starting temperatures. It
may be observed in Fig. 3 that it takes longer to cool the test-
bed to the desired temperatures. This may be attributed to the
fact that the test-bed is equipped with three heating elements and
only one cooling element. Our results indicate that through data-
driven learning, our control policy can achieve, within reasonable
bounds, disparate temperatures in the same indoor space, thereby

‘personalizing’ the work-space.
4 Conclusion

In this paper we used a linear, discrete formulation to model
the temperature evolution in an indoor space as a function of the
heating and cooling inputs and past zone temperatures. Aided by
this data-driven learning model, we developed control policies
for heterogeneous HVAC elements that operate in tandem to:
(i) achieve time-bound pre-cooling/pre-heating of work-spaces
and (ii) create spatial differentiation in the thermal environment
based on the occupants’ individual preferences. Our results show
that data-driven modeling, coupled with MPC-based formula-
tions, can not only make building operations more efficient, but
also result in increased personalization of the work-space.
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