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Abstract
In this paper, we consider the problem of de-
signing Differentially Private (DP) algorithms for
Stochastic Convex Optimization (SCO) on heavy-
tailed data. The irregularity of such data violates
some key assumptions used in almost all exist-
ing DP-SCO and DP-ERM methods, resulting in
failure to provide the DP guarantees. To better
understand this type of challenges, we provide
in this paper a comprehensive study of DP-SCO
under various settings. First, we consider the case
where the loss function is strongly convex and
smooth. For this case, we propose a method based
on the sample-and-aggregate framework, which
has an excess population risk of Õ( d3

nϵ4 ) (after
omitting other factors), where n is the sample size
and d is the dimensionality of the data. Then,
we show that with some additional assumptions
on the loss functions, it is possible to reduce the
expected excess population risk to Õ( d2

nϵ2 ). To
lift these additional conditions, we also provide a
gradient smoothing and trimming based scheme
to achieve excess population risks of Õ( d2

nϵ2 ) and

Õ( d
2
3

(nϵ2)
1
3
) for strongly convex and general con-

vex loss functions, respectively, with high prob-
ability. Experiments suggest that our algorithms
can effectively deal with the challenges caused by
data irregularity.

1. Introduction
Stochastic Convex Optimization (SCO) (Vapnik, 2013) and
its empirical form, Empirical Risk Minimization (ERM), are
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the most fundamental problems in supervised learning and
statistics. They find numerous applications in many areas
such as medicine, finance, genomics and social science.
One often encountered challenge in such models is how to
handle sensitive data, such as those in biomedical datasets.
As a commonly-accepted approach for preserving privacy,
differential privacy (Dwork et al., 2006) provides provable
protection against identification and is resilient to arbitrary
auxiliary information that might be available to attackers.
Methods to guarantee differential privacy have been widely
studied, and recently adopted in industry (Tang et al., 2017;
Ding et al., 2017).

Differentially Private Stochastic Convex Optimization and
Empirical Risk Minimization (i.e., DP-SCO and DP-ERM)
have been extensively studied in the past decade, starting
from (Chaudhuri & Monteleoni, 2009; Chaudhuri et al.,
2011). Later on, a long list of works have attacked the
problems from different perspectives: (Bassily et al., 2014;
Wang et al., 2017; 2019a; Wu et al., 2017; Bassily et al.,
2019) studied the problems in the low dimensional case
and the central model, (Kasiviswanathan & Jin, 2016; Kifer
et al., 2012; Talwar et al., 2015) considered the problems
in the high dimensional sparse case and the central model,
(Smith et al., 2017; Wang et al., 2018; 2019b; Duchi et al.,
2013) focused on the problems in the local model.

It is worth noting that all previous results need to assume
that either the loss function is O(1)-Lipschitz or each data
sample has bounded ℓ2 or ℓ∞ norm. This is particularly
true for those output perturbation based (Chaudhuri et al.,
2011) and objective or gradient perturbation based (Bass-
ily et al., 2014) DP methods. However, such assumptions
may not always hold when dealing with real-world datasets,
especially those from biomedicine and finance, implying
that existing algorithms may fail. The main reason is that
in such applications, the datasets are often unbounded or
even heavy-tailed (Woolson & Clarke, 2011; Biswas et al.,
2007; Ibragimov et al., 2015). As pointed out by Mandelbrot
and Fama in their influential finance papers (Mandelbrot,
1997; Fama, 1963), asset prices in the early 1960s exhibit
some power-law behavior. The heavy-tailed data could
lead to unbounded gradient and thus violate the Lipschitz
condition. For example, consider the linear squared loss
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ℓ(w, x, y) = (wTx − y)2. When x is heavy-tailed, the
gradient of ℓ(w, x, y) becomes unbounded.

With the above understanding, our questions now are: What
is the behavior of DP-SCO on heavy-tailed data and is
there any effective method for the problem?

To answer these questions, we will conduct, in this paper, a
comprehensive study of the DP-SCO problem. Our contri-
butions can be summarized as follows.

1. We first consider the case where the loss function is
strongly convex and smooth. For this case, we pro-
pose an (ϵ, δ)-DP method based on the sample-and-
aggregate framework by (Nissim et al., 2007) and show
that under some assumptions, with high probability, the
excess population risk of the output is Õ( d3

nϵ4LD(w
∗)),

where n is the sample size, d is the dimensionality and
LD(w

∗) is the minimal value of the population risk.

2. Then, we study the case with the additional assump-
tions: each coordinate of the gradient of the loss func-
tion is sub-exponential and Lipschitz. For this case, we
introduce an (ϵ, δ)-DP algorithm based on the gradi-
ent descent method and a recent algorithm on private
1-dimensional mean estimation (Bun & Steinke, 2019)
(i.e., Algorithm 3). We show that the expected ex-
cess population risk for this case can be improved to
Õ(

d2 log 1
δ

nϵ2 ).

3. We also consider the general case, where the loss func-
tion does not need the above additional assumptions
and can be general convex, instead of strongly convex.
For this case, we present a gradient descent method
based on the strategy of trimming the unbounded gradi-
ent (Algorithm 4). We show that if each coordinate of
the gradient of the loss function has bounded second-
order moment, then with high probability, the output
of our algorithm achieves excess population risks of

Õ(
d2 log 1

δ

nϵ2 ) and Õ(
log 1

δ d
2
3

(nϵ2)
1
3
) for strongly convex and

general convex loss functions, respectively. It is no-
table that compared with Algorithm 4, Algorithm 3
uses stronger assumptions and yields weaker results.

4. Finally, we test our proposed aglorithms on both syn-
thetic and real-world datasets. Experimental results are
consistent with our theoretical claims and reveal the ef-
fectiveness of our algorithms in handling heavy-tailed
datasets.

Due to the space limit, some definitions, all the proofs are
relegated to the appendix in the Supplementary Material,
which also includes the codes of experiments.

2. Related Work
As mentioned earlier, there is a long list of works on DP-
SCO or DP-ERM. However, none of them considers the
case with heavy-tailed data. Recently, a number of works
have studied the SCO and ERM problems with heavy-tailed
data (Brownlees et al., 2015; Minsker et al., 2015; Hsu &
Sabato, 2016; Lecué et al., 2018). However, all of them
focus on the non-private version of the problem. It is not
clear whether they can be adapted to private versions. To
our best knowledge, the work presented in this paper is the
first one on general DP-SCO with heavy-tailed data.

The works that are most related to ours are perhaps those
dealing with unbounded sensitivity. (Dwork & Lei, 2009)
proposed a general framework called propose-test-release
and applied it to mean estimation. They obtained asymp-
totic results which are incomparable with ours. Also, it is
not clear whether such a framework can be applied to our
problem. In our second result, we adopt the private mean
estimation procedure in (Bun & Steinke, 2019). However,
their results are in expectation form, which is not preferred
in robust estimation (Brownlees et al., 2015). For this rea-
son, we propose a new algorithm which yields theoretically
guaranteed bounds with high probability. (Karwa & Vadhan,
2017) considered the confidence interval estimation prob-
lem for Gaussian distributions which was later extended to
general distributions (Feldman & Steinke, 2018). However,
it was unknown how to extend them to the DP-SCO problem.
(Abadi et al., 2016) proposed a DP-SGD method based on
truncating the gradient, which could deal with the infinity
sensitivity issue. However, there is no theoretical guarantees
on the excess population risk.

3. Preliminaries
Definition 1 (Differential Privacy (Dwork et al., 2006)).
Given a data universe X , we say that two datasets D,D′ ⊆
X are neighbors if they differ by only one entry, which is
denoted as D ∼ D′. A randomized algorithm A is (ϵ, δ)-
differentially private (DP) if for all neighboring datasets
D,D′ and for all events S in the output space of A, the
following holds

P(A(D) ∈ S) ≤ eϵP(A(D′) ∈ S) + δ.

Definition 2 (DP-SCO (Bassily et al., 2014)). Given a
dataset D = {x1, · · · , xn} from a data universe X where
xi are i.i.d. samples from some unknown distribution D,
a convex loss function ℓ(·, ·), and a convex constraint set
W ⊆ Rd, Differentially Private Stochastic Convex Opti-
mization (DP-SCO) is to find wpriv so as to minimize the
population risk, i.e., LD(w) = Ex∼D[ℓ(w, x)] with the
guarantee of being differentially private. The utility of the
algorithm is measured by the (expected) excess population
risk, that is EA[LD(w

priv)] − minw∈W LD(w), where the
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expectation of A is taken over all the randomness of the algo-
rithm. Besides the population risk, we can also measure the
empirical risk of dataset D: L̂(w,D) = 1

n

∑n
i=1 ℓ(w, xi).

Definition 3. A random variable X with mean µ
is called τ -sub-exponential if E[exp(λ(X − µ))] ≤
exp( 12τ

2λ2),∀|λ| ≤ 1
τ .

Definition 4. A function f is L-Lipschitz if for all w,w′ ∈
W , |f(w)− f(w′)| ≤ L∥w − w′∥2.

Definition 5. A function f is α-strongly convex on W if
for all w,w′ ∈ W , f(w′) ≥ f(w) + ⟨∇f(w), w′ − w⟩ +
α
2 ∥w

′ − w∥22.

Definition 6. A function f is β-smooth on W if for all
w,w′ ∈ W , f(w′) ≤ f(w) + ⟨∇f(w), w′ −w⟩+ β

2 ∥w
′ −

w∥22.

Assumption 1. For the loss function and the population
risk, we assume the following.

1. The loss function ℓ(w, x) is non-negative, differen-
tiable and convex for all w ∈ W and x ∈ X .

2. The population risk LD(w) is β-smooth.

3. The convex constraint set W is bounded with diameter
∆ = maxw,w′∈W ∥w − w′∥2 < ∞.

4. The optimal solution w∗ = argminw∈W LD(w) satis-
fies ∇LD(w

∗) = 0.

Assumption 2. There exists a number nα such that when
the sample size |D| ≥ nα, the empirical risk L̂(·, D) is α-
strongly convex with probability at least 5

6 over the choice
of i.i.d. samples in D.

We note that Assumptions 1 and 2 are commonly used in
the studies on the problem of Stochastic Strongly Convex
Optimization with heavy-tailed data, such as (Hsu & Sabato,
2016; Holland, 2019). Also the probability of 5

6 in Assump-
tion 2 is only for convenience.

Assumption 3. We assume the following for the loss func-
tions.

1. For any w ∈ W and each coordinate j ∈ [d], we
assume that the random variable ∇jℓ(w, x) is τ -sub-
exponential and βj-Lipschitz (that is ℓj(w, x) is βj-
smooth), where ∇j represents the j-th coordinate of
the gradient.

2. There are known constants a, b = O(1) such that a ≤
E[∇jℓ(w, x)] ≤ b for all w ∈ W .

Assumption 4. For any w ∈ W and each coordinate j ∈
[d], we have E[(∇jℓ(w, x))

2] ≤ v = O(1), where v is
some known constant.

We can see that, compared with Assumption 3, Assumption
4 needs fewer assumptions on the loss functions, because
we only need to assume the gradient of the loss function
has bounded second-order moment. We also note that As-
sumption 4 is more suitable to the problem of Stochastic
Convex Optimization with heavy-tailed data and has been
used in some previous works such as (Holland & Ikeda,
2017; Brownlees et al., 2015).

4. Sample-aggregation based method
In this section we first summarize the sample-aggregate
framework introduced in (Nissim et al., 2007).

Most of the existing privacy-preserving frameworks are
based on the notion of global sensitivity, which is defined as
the maximum output perturbation ∥f(D)−f(D′)∥ξ , where
the maximum is over all neighboring datasets D,D′ and
ξ = 1, 2. However, in some problems such as clustering
(Nissim et al., 2007; Wang et al., 2015) the sensitivity could
be very high and thus ruin the utility of the algorithm.

To circumvent this issue, (Nissim et al., 2007) introduced the
sample-aggregate framework based on a smooth version of
local sensitivity. Unlike the global sensitivity, local sensitiv-
ity measures the maximum perturbation ∥f(D)− f(D′)∥ξ
over all databases D′ neighboring the input database D.
The proposed sample-aggregate framework (Algorithm 1)
enjoys local sensitivity and comes with the following guar-
antee:

Theorem 1 (Theorem 4.2 in (Nissim et al., 2007)). Let
f : D ↦→ Rd be a function where D is the collection of all
databases and d is the dimensionality of the output space.
Let dM(·, ·) be a semi-metric on the output space of f . Set
ϵ > 2d√

m
and m = ω(log2 n). The sample-aggregate algo-

rithm A in Algorithm 1 is an efficient (ϵ, δ)-DP algorithm.1

Furthermore, if f and m are chosen such that the ℓ1 norm
of the output of f is bounded by Λ and

PrDS⊆D[dM(f(DS), c) ≤ r] ≥ 3

4
(1)

for some c ∈ Rd and r > 0, then the standard devia-
tion of Gaussian noise added is upper bounded by O( rϵ +
Λ
ϵ e

−Ω( ϵ
√

m
d )). In addition, when m = ω(d

2 log2(r/Λ)
ϵ2 ), with

high probability each coordinate of A(D) − c̄ is upper
bounded by O( rϵ ), where c̄ depending on A(D) satisfies
dM(c, c̄) = O(r).

We have the following Lemma 1, which shows that the
minimum of the empirical risk satisfies (1).

Lemma 1. Let wD = f(D) = argminw∈W L̂(w,D)
where |D| = n. Then, under Assumptions 1 and 2, if

1Here the efficiency means that the time complexity is polyno-
mial in all terms.
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Algorithm 1 Sample-aggregate Framework (Nissim et al.,
2007)
Input: D = {xi}ni=1 ⊂ Rd, number of subsets m, privacy
parameters ϵ, δ; f, dM.

1: Initialize: s =
√
m, γ = ϵ

5
√

2 log(2/δ)
and β =

ϵ
4(d+log(2/δ)) .

2: Subsampling: Select m random subsets of size n
m of

D independently and uniformly at random without re-
placement. Repeat this step until no single data point
appears in more than

√
m of the sets. Mark the subsam-

pled subsets DS1
, DS2

, · · · , DSm
.

3: Compute S = {si}mi=1, where si = f(DSi).
4: Compute g(S) = si∗ , where i∗ = argminmi=1 ri(t0)

with t0 = m+s
2 + 1. Here ri(t0) denotes the distance

dM(·, ·) between si and the t0-th nearest neighbor to si
in S.

5: Noise Calibration: Compute S(S) = 2maxk(ρ(t0 +
(k+1)s) ·e−βk), where ρ(t) is the mean of the top ⌈ s

β ⌉
values in {r1(t), · · · , rm(t)}.

6: Return A(D) = g(S) + S(S)
γ u, where u is a standard

Gaussian random vector.

n ≥ nα, the following holds

Pr[∥wD − w∗∥2 ≤ η] ≥ 3

4
, (2)

where η = O(

√
E∥∇ℓ(w∗,x)∥2

2

nα2 ).

Combining Lemma 1 and Theorem 1, we get the follow-
ing upper bound for DP-SCO with heavy-tailed data and
strongly convex loss functions.

Theorem 2. Under Assumptions 1 and 2, for any ϵ, δ > 0, if
n ≥ Ω̃(nαd2

ϵ2 ), m ≥ ω̃(d
2

ϵ2 ), f(D) = argminw∈W L̂(w,D)
and dM(x, y) = ∥x − y∥2, then Algorithm 1 is (ϵ, δ)-DP.
Moreover, with high probability the output of A(D) ensures
that

LD(A(D))− LD(w
∗) ≤ Õ((

β

α
)2

d3

nϵ4
LD(w

∗)), (3)

where the Big-Õ,Ω and small-ω notations omit the logarith-
mic terms.

Remark 1. For DP-SCO with Lipschitz and strongly-
convex loss function and bounded data, (Bassily et al., 2014;
Wang et al., 2017; Bassily et al., 2019) showed that the upper
bound of the excess population risk is O(

√
d

nϵ ), and the lower
bound is Ω( d

n2ϵ2 )
2. This suggests that the bound in Theo-

rem 2 has some additional factors related to d and 1
ϵ . We

2(Bassily et al., 2014) only shows the lower bound of the excess
empirical risk. We can obtain the lower bound of the excess
population risk by using the reduction from private ERM to private
SCO (Bassily et al., 2019).

note that the upper bound in Theorem 2 has a multiplicative
term of LD(w

∗). This means that when LD(w
∗) is small,

our bound is better. For example, when LD(w
∗) = 0, our

algorithm can recover w∗ exactly and results in an excess
risk of 0. Notice that there is no previous work on DP-ERM
or DP-SCO that has a multiplicative error with respect to
LD(w

∗).

5. Gradient descent based methods
There are several issues in the sample-aggregation based
method presented in last section. Firstly, function f(D) in
Theorem 2 needs to solve the optimization problem exactly,
which could be quite inefficient in practice. Second, pre-
vious empirical evidence suggests that sample-aggregation
based methods often suffer from poor utility in practice (Su
et al., 2016; Wang et al., 2015). Thirdly, Theorem 2 needs to
assume strong convexity for the empirical risk and it is un-
clear whether it can be extended to the general convex case.
Finally, from Eq.(3) we can see that when LD(w

∗) = Θ(1),
the excess population risk is quite large as compared to the
ones in (Bassily et al., 2014). Thus, an immediate question
is whether we can further lower the upper bound. To an-
swer this question and resolve the above issues, we propose
in this section two DP algorithms based on the Gradient
Descent method under different assumptions.

Recently, (Bun & Steinke, 2019) studied the problem of es-
timating the mean of a 1-dimensional heavy-tailed distribu-
tion and proposed algorithms based on the idea of truncating
the empirical mean and the local sensitivity. Motivated by
this DP algorithm that has the capability of handling heavy-
tailed data, we plan to develop a new method by borrowing
some ideas from the work (Bun & Steinke, 2019) and robust
gradient descent. Our method is inspired by their theorem
that follows and uses the Arsinh-Normal mechanism (see
Algorithm 2 and Prop. 5 in (Bun & Steinke, 2019)).

Theorem 3 (Theorem 7 in (Bun & Steinke, 2019)). Let
0 < ϵ, δ ≤ 1 be two constants and n be some integer
≥ O(log(n(b−a)/σ

ϵ ). Then, there exists a 1
2ϵ

2-zero concen-
trated Differentially Private (zCDP) (see Appendix for the
definition of zCDP) algorithm (Algorithm 2) M : Rn ↦→ R
such that the following holds: Let D be a distribution with
mean µ ∈ [a, b], where a, b are given constants and un-
known variance σ2. Then,

EX∼Dn,Z [(M(X)− µ)2] ≤ O(
σ2 log n

nϵ2
).

The key idea of our algorithm is that, in each iteration, after
getting wt−1, we use the mechanism in Theorem 3 on each
coordinate of ∇ℓ(w, xi). See Algorithm 3 for details.
By the composition theorem and the relationship between
zCDP and (ϵ, δ)-DP (Bun & Steinke, 2016), we have the
DP guarantee.
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Algorithm 2 Mechanism M in (Bun & Steinke, 2019)
Input: D = {xi}ni=1 ⊂ R, ϵ, a, b.

1: Let t = ϵ2

16 and s = ϵ
4 . Sort {xi}ni=1 in the ascending

order as x(1) ≤ x(2) ≤ · · · ≤ x(n). Calculate the upper
bound of the smooth sensitivity for the trimming and
truncating step:

St
[trimm(·)][a,b]

(D) = max{
x(n) − x(1)

n− 2m
, e−mt(b− a)},

where m = O(1) ≤ n
2 is a constant.

2: Do the average trimming and truncating step:

[Trimm(D)][a,b] = [
x(m+1) + · · ·+ x(n−m)

n− 2m
][a,b],

where [x][a,b] = x if a ≤ x ≤ b, equals to a if x < a
and otherwise equals to b.

3: Output [Trimm(D)][a,b]+
1
sS

t
[trimm(·)][a,b]

(D)·Z, where

Z = sinh(Y ) = eY −e−Y

2 and Y is the Standard Gaus-
sian.

Algorithm 3 Heavy-tailed DP-SCO with known mean
Input: D = {xi}ni=1 ⊂ Rd, privacy parameters ϵ, δ; loss
function ℓ(·, ·), initial parameter w0, a, b which satisfy As-
sumption 3, and the number of iterations T (to be specified
later).

1: Let ϵ̃ =
√
2 log 1

δ + 2ϵ−
√
2 log 1

δ .
2: for t = 1, 2, · · · , T do
3: For each j ∈ [d], calculate

Dt−1,j(w
t−1) = {∇jℓ(w

t−1, xi)}ni=1.
4: Run Algorithm 2 for each Dt−1,j and denote the

output
∇̃t−1,j(w

t−1) = (M(Dt−1,j(w
t−1)), ϵ̃√

dT
, a, b).

Denote

∇L̃(wt−1, D) = (∇̃t−1,1(w
t−1) · · · , ∇̃t−1,d(w

t−1)).

5: Updating wt = PW(wt−1 − ηt−1∇L̃(wt−1, D)),
where ηt−1 is some step size and PW is the projec-
tion operator.

6: end for

Theorem 4. For any 0 < ϵ, δ ≤ 1, Algorithm 3 is (ϵ, δ)-
differentially private.

To show the expected excess population risk of Algorithm
3, we cannot use the upper bound in Theorem 3 directly
for the following reasons. First, since the upper bound
is for the expectation w.r.t. X and Z while the expected
excess population risk depends only on the randomness of
the algorithm instead of the data. Thus, we need to obtain an
upper bound for EZ [(M(X)− µ)2] (with high probability

w.r.t. X). Secondly, to get an upper bound, it is sufficient
to analyze the term ∥∇L̃(wt−1, D) − ∇LD(w

t−1)∥2 in
each iteration. However, since the parameter wt−1 at any
step depends on the random draw of the dataset {xi}ni=1,
upper bounds on the estimation error need to be uniform
in w ∈ W in order to capture all contingencies. To resolve
these two issues, we use the same technique as in (Chen
et al., 2017; Vershynin, 2010) (under Assumption 3) to
obtain the following lemma.

Lemma 2. Under Assumption 3, with probability at least
1− 2dn

(1+nβ̂∆)d
the following holds for all w ∈ W ,

EZ∥∇L̃(w,D)−∇LD(w)∥2 ≤ O(
τd

√
T log n√
nϵ̃

), (4)

where β̂ =
√
β2
1 + · · ·+ β2

d , the expectation is w.r.t. the
random variables {Zi}di=1 and the Big-O notation omits
other factors.

Next, we show the expected excess population risk for
strongly convex loss functions.

Theorem 5 (Strongly-convex case). Under Assumptions
1 and 3, if the population risk is α-strongly convex and
T and η are set to be T = O(βα log n) and η = 1

β , re-
spectively, in Algorithm 3, then with probability at least
1−Ω(βα

2dn logn

(1+nβ̂∆)d
) the output satisfies the following for all

D ∼ Dn,

E[LD(w
T )]− LD(w

∗) ≤ O(
∆2β2τ2d2 log2 n log 1

δ

α3nϵ2
).

Compared with the bound in Theorem 2, we can see that
the bound in Theorem 5 improves a factor of Õ( d

ϵ2 ) (if we
omit other terms). However, there are more assumptions
on the distribution and the loss functions. Specifically, in
Assumption 3 we need to assume the sub-exponential prop-
erty, i.e., the moment of ∇jℓ(w, x) exists for every order.
Also, we need to assume that ∇jℓ(w, x) is Lipschitz and
the range of its mean is known. These assumptions are quite
strong, compared to those used in the literature of learning
with heavy-tailed data, such as (Holland & Ikeda, 2017;
Brownlees et al., 2015; Hsu & Sabato, 2016; Minsker et al.,
2015).

To improve the above result, we consider the following.
First, we would like to relax those assumptions in the the-
orem. Second, in the problem of ERM with heavy-tailed
data, it is expected to have an excess population risk bound
that is in the form of with high probability instead of its
expectation (Brownlees et al., 2015). However, it is unclear
whether Algorithm 3 can achieve a high probability bound.
This is due to the fact that the noise added in each iteration
is a combination of log-normal distributions, which is non-
sub-exponential and thus is hard to get tail bounds. Third,



DP-SCO with Heavy-tailed Data

Algorithm 3 depends on the local sensitivity and thus cannot
be extended to the distributed settings or local differential
privacy model. Finally, the practical performance of Al-
gorithm 3 has poor utility and is unstable due to the noise
added in each iteration (see Section 6 for details), which
means that Algorithm 3 is still impractical. To resolve all
these issues and still keeping (approximately) the same up-
per bound, we propose a new algorithm that is simply based
on the Gaussian mechanism.

In the following we will study the problem under Assump-
tions 1 and 4. Note that compared with Assumption 3,
we only need to assume that the second-order moment of
∇jℓ(w, x) exists for all w ∈ W and j ∈ [d] and its upper
bound is known.

Our method is motivated by the robust mean estimator given
in (Holland, 2019). To be self-contained, we first review
their estimator. Now, we consider 1-dimensional random
variable x and assume that x1, x2, · · · , xn are i.i.d. sampled
from x. The estimator consists of the following steps:

Scaling and Truncation For each sample xi, we first re-
scale it by dividing s (which will be specified later). Then,
we apply the re-scaled one to some soft truncation function
ϕ. Finally, we put the truncated mean back to the original
scale. That is,

s

n

n∑
i=1

ϕ(
xi

s
) ≈ EX. (5)

Here, we use the function given in (Catoni & Giulini, 2017),

ϕ(x) =

⎧⎪⎨⎪⎩
x− x3

6 , −
√
2 ≤ x ≤

√
2

2
√
2

3 , x >
√
2

− 2
√
2

3 , x < −
√
2.

(6)

Note that a key property for ϕ is that ϕ is bounded, that is,
|ϕ(x)| ≤ 2

√
2

3 .

Noise Multiplication Let η1, η2, · · · , ηn be random noise
generated from a common distribution η ∼ χ with Eη =
0. We multiply each data xi by a factor of 1 + ηi, and
then perform the scaling and truncation step on the term
xi(1 + ηi). That is,

x̃(η) =
s

n

n∑
i=1

ϕ(
xi + ηixi

s
). (7)

Noise Smoothing In this final step, we smooth the multi-
plicative noise by taking the expectation w.r.t. the distribu-
tions. That is,

x̂ = Ex̃(η) =
s

n

n∑
i=1

∫
ϕ(

xi + ηixi

s
)dχ(ηi). (8)

Computing the explicit form of each integral in (8) depends
on the function ϕ(·) and the distribution χ. Fortunately,
(Catoni & Giulini, 2017) showed that when ϕ is in (6) and
χ ∼ N (0, 1

β ) (where β will be specified later), we have for
any a, b

Eηϕ(a+ b
√
βη) = a(1− b2

2
)− a3

6
+ C(a, b), (9)

where C(a, b) is a correction form which is easy to imple-
ment and its explicit form will be given in the Appendix.

(Holland, 2019) showed the following estimation error for
the mean estimator x̂ after these three steps.

Lemma 3 (Lemma 5 in (Holland, 2019)). Let
x1, x2, · · · , xn be i.i.d. samples from distribution
x ∼ µ. Assume that there is some known upper bound
on the second-order moment, i.e., Eµx

2 ≤ v. For a given
failure probability δ′, if set β = 2 log 1

δ′ and s =
√

nv
2 log 1

δ′
,

then with probability at least 1− δ′ the following holds

|x̂− Ex| ≤ O(

√
v log 1

δ′

n
). (11)

To obtain an (ϵ, δ)-DP estimator, the key observation is that
the bounded function ϕ in (6) also makes the integral form
of (9) bounded by 2

√
2

3 . Thus, we know that the ℓ2-norm
sensitivity is s

n
4
√
2

3 . Hence, the query

A(D) = x̂+ Z,Z ∼ N (0, σ2), σ2 = O(
s2 log 1

δ

ϵ2n2
) (12)

will be (ϵ, δ)-DP, which leads to the following theorem.

Theorem 6. Under the assumptions in Lemma 3, with prob-
ability at least 1− δ′ the following holds

|A(D)− E(x)| ≤ O(

√
v log 1

δ log
1
δ′

nϵ2
). (13)

Comparing with Theorem 3, we can see that the upper bound
in Theorem 6 is in the form of ‘with high probability’ (af-
ter transferring zCDP to (ϵ, δ)-DP (Bun & Steinke, 2016)).
Moreover, we improve by a factor of O(log n) in the error
bound.

Inspired by Theorem 6 and Algorithm 3, we propose a
new method (Algorithm 4), which uses our private mean
estimator (12) on each coordinate of the gradient in each
iteration. The following theorem shows the error bound
when the loss function is strongly convex.

Theorem 7. For any 0 < ϵ, δ < 1, Algorithm 4 is (ϵ, δ)-
DP. Under Assumptions 1 and 4, if the population risk is
α-strongly convex and ηt and T in Algorithm 4 are set to
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Algorithm 4 Heavy-tailed DP-SCO with known variance
Input: D = {xi}ni=1 ⊂ Rd, privacy parameters ϵ, δ, loss function ℓ(·, ·), initial parameter w0, v which satisfies Assumption
4, the number of iterations T (to be specified later), and failure probability δ′.

1: Let ϵ̃ = (
√
log 1

δ + ϵ−
√
log 1

δ )
2, s =

√
nv

2 log 1
δ′

, β = log 1
δ′ .

2: for t = 1, 2, · · · , T do
3: For each j ∈ [d], calculate the robust gradient by (7)-(9), that is

gt−1
j (wt−1) =

1

n

n∑
i=1

(
∇jℓ(w

t−1, xi)
(
1−

∇2
jℓ(w

t−1, xi)

2s2β

)
−

∇3
jℓ(w

t−1, xi)

6s2

)

+
s

n

n∑
i=1

C

(
∇jℓ(w

t−1, xi)

s
,
|∇jℓ(w

t−1, xi)|
s
√
β

)
+ Zt−1

j , (10)

where Zt−1
j ∼ N (0, σ2) with σ2 = 8vdT

9 log 1
δ′ nϵ̃

.

4: Let vector gt−1(wt−1) ∈ Rd to denote gt−1(wt−1) = (gt−1
1 (wt−1), gt−1

2 (wt−1), · · · , gt−1
d (wt−1)).

5: Update wt = PW(wt−1 − ηt−1g
t−1).

6: end for

be ηt =
1
β and T = O(βα log n), respectively, then for any

δ′ > 0, with probability at least 1 − 2δ′T the output wT

satisfies

LD(w
T )− LD(w

∗) ≤ O(
v∆2β4d2 log2 n log 1

δ log
1
δ′

α3nϵ2
).

Comparing with Theorem 7 and 5, we can see that if we
omit other terms, the bounds are asymptotically the same
and Theorem 7 needs fewer assumptions.

With the high probability guarantee on the error in Theorem
6, we can actually get an upper bound for general convex
loss functions. For this general convex case, we need the
following mild technical assumption on the constraint set
W .

Assumption 5. The constraint set W contains the following
ℓ2-ball centered at w∗: {w : ∥w − w∗∥2 ≤ 2∥w0 − w∗∥2}.

Theorem 8 (Convex case). Under Assumptions 1, 4 and

5, if we take η = 1
β and T = Õ

(
∥w0−w∗∥2

√
n
√
ϵ̃

d

) 2
3

in
Algorithm 4, then for any given failure probability δ′, with
probability at least 1− Tδ′ the following holds

LD(w
T )− LD(w

∗) ≤ Õ(
log

1
3 1

δ

√
log 1

δ′ d
2
3

(nϵ2)
1
3

) (14)

when n ≥ Ω̃(d
2

ϵ2 ), where the Big-Õ notation omits other
logarithmic factors and the term of v, β.

6. Experiments
Baseline Methods As mentioned earlier, sample-
aggregation based methods often have poor practical

performance. Thus, we will not conduct experiments on
Algorithm 1. Moreover, as this is the first paper studying
DP-SCO with heavy-tailed data and almost all previous
methods on DP-SCO that have theoretical guarantees fail to
provide DP guarantees, we do not compare our methods
with them, and instead focus on comparing the performance
of Algorithm 3 and Algorithm 4. To show the effectiveness
of our methods, we use the non-private heavy-tailed SCO
method in (Holland, 2019), denoted by (stochastic) RGD in
the following, as our baseline method.

Experimental Settings For synthetic data, we consider
the linear and binary logistic models. Specifically, we gen-
erate the synthetic datasets in the following way. Each
dataset has a size of 1 × 105 and each data point (xi, yi)
is generated by the model of yi = ⟨ω∗, xi⟩ + ei and
yi = sign[ 1

1+e⟨ω
∗,xi⟩+ei

− 1
2 ], respectively, where xi ∈ R10

and yi ∈ R. In the first model, the zero mean noise ei is
generated as follows. We first generate a noise ∆i from
the (µ, σ) log-normal distribution, i.e., P(∆i = x) =

1
xσ

√
2π

e−
(ln x−µ)2

2σ2 , and then let ei = ∆i − E[∆i]. For the
second model, we first generate a noise ∆i from the (µ, σ)
log-logistic distribution, i.e., P(∆i = x) = ez

σx(1+ez)2 ,

where x > 0 and z = log(x)−µ
σ . Then, we let ei =

∆i − E[∆i]. Accordingly, we implement Algorithm 3 and
Algorithm 4, together with RGD, on the ridge and logistic
regressions.

For real-world data, we use the Adult dataset from the UCI
Repository (Dua & Graff, 2017). We aim to predict whether
the annual income of an individual is above 50,000. We
select 30,000 samples, 28,000 amongst which are used as
the training set and the rest are used for test.
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For the privacy parameters, we will choose ϵ = {0.1, 0.5, 1}
and δ = O( 1n ). See Appendix for the selections of other pa-
rameters. For Algorithm 3, the strength of prior knowledge
is modeled by κ = b− a.

Experimental Results Figure 1 and 2 show the results of
ridge and logistic regressions on synthetic and real datasets
w.r.t iteration, respectively. Since there is no ground truth
in the real dataset, we use the empirical risk on test data
as the measurement. To test scalability of Algorithm 4
dealing with large-scaling data, experiments on stochastic
versions of Algorithm 4 and RGD with minibatch size 1000
are also conducted. We can see that the performance of
Algorithm 3 bears a larger variation compared to Algorithm
4, since we have to apply a heavy-tailed noise to fit the
smooth sensitivity. Moreover, the performance of Algorithm
3 is sensitive to the parameter κ. Thus, these results show
that Algorithm 3 has poor performance and the results of
Algorithm 4 are comparable to the non-private ones. In
Figure 3 and 4 we test the estimation error w.r.t different
dimensionality d and sample size n, respectively. From
these results we can see that when n increases or d decreases,
the estimation error will decrease. Also, with fixed n and
d, we can see that the estimation error will decrease as ϵ
becomes larger. Thus, all these results confirm our previous
theoretical analysis.

7. Discussion
In this paper, we provide the first comprehensive study on
DP-SCO with heavy-tailed data. To the best of our knowl-
edge, this is the first work on this problem. Specifically, we
give a systematic analysis on the problem and design the
first efficient algorithms to solve it. In various settings, we
bound the (expected) excess generalization risk in both ad-
dictive and multiplicative manners. However, the problem is
far from being closed. First, it is unclear whether the upper
bounds of the excess population risk for strongly convex and
general convex loss functions can be further improved. The
second open problem is that we do not know what the lower
bound for the excess population risk for these two cases is.
Finally, it is an open problem to determine whether we can
further relax the assumptions in our previous theorems. We
leave these open problems for future research.
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Figure 1: Experiments on synthetic datasets. Figures 1a and 1b are for ridge regressions over synthetic data with Lognormal
noises. Figures 1c and 1d are for logistic regressions over synthetic data with Loglogistic noises.
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Figure 2: Experiments on UCI Adult dataset. Figures 2a and 2b are for ridge regressions. Figures 2c and 2d are for logistic
regressions.
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Figure 3: Experiments for the impact of dimensionality. Figure 3a and 3b are for ridge regressions. Figure 3c and 3d are for
logistic regressions.
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Figure 4: Experiments for the impact of the size of the dataset. Figure 4a and 4b are for ridge regressions. Figure 4c and 4d
are for logistic regressions.
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