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A B S T R A C T

Over the last twenty years advances in systems biology have changed our views on microbial communities
and promise to revolutionize treatment of human diseases. In almost all scientific breakthroughs since time
of Newton, mathematical modeling has played a prominent role. Regulatory networks emerged as preferred
descriptors of how abundances of molecular species depend on each other. However, the central question on
how cellular phenotypes emerge from dynamics of these network remains elusive. The principal reason is
that differential equation models in the field of biology (while so successful in areas of physics and physical
chemistry), do not arise from first principles, and these models suffer from lack of proper parameterization.
In response to these challenges, discrete time models based on Boolean networks have been developed.

In this review, we discuss an emerging modeling paradigm that combines ideas from differential equations
and Boolean models, and has been developed independently within dynamical systems and computer science
communities. The result is an approach that can associate a range of potential dynamical behaviors to a
network, arrange the descriptors of the dynamics in a searchable database, and allows for multi-parameter
exploration of the dynamics akin to bifurcation theory. Since this approach is computationally accessible
for moderately sized networks, it allows, perhaps for the first time, to rationally compare different network
topologies based on their dynamics.

1. Introduction

‘‘Nowadays, many computational biologists avoid modeling-as-data-
fitting, opting instead to create models in which networks are specified
in terms of elements and interactions (the network ‘‘topology’’), but
the numerical values that quantify those interactions (the parameters)
are deliberately varied over wide ranges. As a result, the study of
such networks focuses not on the exact values of outputs, but rather
on qualitative behavior, e.g., whether the network acts as a ‘‘switch’’,
‘‘filter’’, ‘‘oscillator’’, ‘‘dynamic range adjuster’’, ‘‘producer of stripes’’,
etc. By investigating how such behaviors change for different parameter
sets – an exercise referred to as ‘‘exploring the parameter space’’– one
starts to assemble a comprehensive picture of all the kinds of behaviors
a network can produce’’ (Lander, 2014).

Differential equations are inseparably linked to the birth of modern
science. Among Newton’s fundamental contributions to science was the
introduction of a phase space where only those descriptors of a physical
system that have effect on its dynamics are represented. Second, the
development of a concept of a differential equation that algebraically
links infinitesimal changes and other quantities allowed a quantitative
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prediction of a future state in the phase space. Most important was
his realization that, in the abstract world of the phase space, one can
postulate the existence of non-measurable quantities (i.e gravitational
forces), solve a differential equation for measurable quantities (i.e dis-
tances) and based on their comparison with experimental observations
one is able to reject a particular form of non-measurable quantity. This
laid the foundation to the fruitful cycle of theory and experiments that
has driven science forward over the last 300 years.

Differential equations underwent a paradigm shift starting with the
work of Poincare at the start of 20th century. The emphasis shifted
from solving differential equations to qualitative theory, from a finite
time horizon to the long term behavior. The resulting tools from
the qualitative theory of differential equations were instrumental to
understanding the wide range of phenomena from the singularities in
n-body dynamics (Xia, 1992; Saari, 1977) to the description of neural
spike propagation modeled by Hodgkin–Huxley equations (Hodgkin
and Huxley, 1952).

Naturally, when the world of molecular and cellular biology opened
up to experimental measurements, the toolbox of differential equations
had been readily available to try to model the dynamics of the intricate
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systems that underlie cellular life. The problems that were encountered
were both severe and fundamental; there seemed to be no easy fix that
could simultaneously address all of them.

In this paper we describe these difficulties and how a combination
of Boolean networks and continuous time dynamics begin to converge
to a modeling framework that is well suited for modeling regulatory
networks that arise in molecular and cell biology.

There are at least three fundamental challenges when using differ-
ential equations to model the dynamics of regulatory networks: non-
linearity, parameterization and continuity of phase space, parameter
space and time.

1.1. Nonlinearity

Because of the multi-scale character of the biological networks,
there is a lack of ‘‘first principles’’ description of the nonlinear right
hand side of the differential equations models. In order to analyze
a differential equation, either numerically or analytically, an explicit
nonlinearity is necessary. Nonlinearities arise in physics from funda-
mental laws like Newton’s law. There are no such well established
laws in molecular biology that would govern the interaction between
genes, or between a protein and its receptor. What is being used
instead is a parameterized nonlinearity in a form of a Hill function,
or nonlinearities that arise from mass action chemical kinetics.

1.2. Parameterization

Parameters pose another big problem. In Newtonian physics, the
parameters are masses of objects that interact; these are directly mea-
surable. In contrast, in molecular biology the constants such as the
‘‘half-saturation rate’’, or a ‘‘reaction rate", can only be measured by
fitting a solution of a differential equation with an assumed nonlinear-
ity to the experimental data. If we assume a different nonlinearity, the
value of the fitted parameter will be different. Such a parameter can
only be interpreted within the framework of its model.

This makes it difficult to permanently associate a parameter value
to a given system. Therefore it is challenging to build on the work of
others since their parameters may have been used in a context of a
slightly different model. At best, one has to re-fit the data in the context
of the new model; but more often than not, one must measure the
parameters again. Since measuring parameters in biology is expensive,
parameter estimates are often poor. This leads to parameterization
of models by fitting the models solutions to the data. This results in
identifiability problems, where there are many different parameters and
models that can fit the same data.

However, the exploration of the parameter space is often how the
model is expected to inform biology: the interest is to know what
perturbation can bring the system from one state to another, what
medical interventions, modeled as a change of the parameters, have
medically desirable effects, and how does underlying genetic diversity
determine the medical outcome. These are all questions about how the
dynamics of the system changes with parameters.

1.3. Continuous time, phase space and parameter space

Continuous time, phase space and parameter space are arguably
more realistic in modeling the natural world than discrete time models.
However, a continuous description is not directly representable in
computers which always brings up the issue of a proper approximation
of a continuous system.

On the other hand, discrete models’ future behavior depends on the
present state via a map, phase space is often discrete (i.e. when we
represent a state of a gene by being On or Off, as in the Boolean network
models), or there is only a discrete set of parameters. In a discrete
description enumeration of all possibilities is, at least in principle,
feasible, and thus no approximation is necessary.

2. Models of gene regulatory networks

Even though without nonlinearities and parameters, the differential
equation models cannot be expected to be very useful, the demand
for informative models in systems biology is growing. The potential
medical applications demand an analysis of large systems with dozens
of interacting genes and proteins. These systems are often characterized
in terms of a network of interactions, which represent a direct up- or
down-regulation of one gene, or protein, by another. As a result, there
is a great interest in understanding the dynamics of networks. However,
the term itself provides an insight to the conflict between expectations
placed on mathematical models and its potential to deliver on them.
Biologists would like to understand the range of potential dynamics
that this network exhibits under different cellular conditions and dif-
ferent initial data; mathematicians can address these questions using
differential equations only if they are given parameters, nonlinearities
and initial conditions. As discussed above, none of these are readily
available.

Definition 1. A regulatory network 𝐑𝐍 = (𝑉 ,𝐸) is a graph with network
nodes 𝑉 = {1, 2,… , 𝑛} and signed, directed edges 𝐸 ⊂ 𝑉 × 𝑉 × {→, ⊣}.
For 𝑖, 𝑗 ∈ 𝑉 , we will use the notation (𝑖, 𝑗) ∈ 𝐸 to denote a directed
edge from 𝑖 to 𝑗 of either sign; 𝑖 → 𝑗 will denote an activation or positive
interaction, and 𝑖 ⊣ 𝑗 will denote a repression or negative interaction.

We define the targets of a node 𝑖 as

𝐓(𝑖) ∶= {𝑗 ∣ (𝑖, 𝑗) ∈ 𝐸}

and the sources of a node 𝑖 as

𝐒(𝑖) ∶= {𝑗 ∣ (𝑗, 𝑖) ∈ 𝐸}

The goal of this paper is to describe two approaches that find a way
to move beyond traditional ODE models for network dynamics. Several
ideas converge together to combine the best features of the continuous
and discrete dynamics into a powerful new tool.

3. Boolean networks

A Boolean model of network’s dynamics starts with set 𝐵 ∶= {0, 1}.
A state of a network is an element 𝑥 ∈ 𝐵𝑛. A Boolean network is a map
𝑓 = (𝑓1, 𝑓2,… , 𝑓𝑛) with 𝑓 𝑖 ∶ 𝐵𝑛 → 𝐵 and

𝑓 ∶ 𝐵𝑛 → 𝐵𝑛.

The dynamical system generated by iterates of 𝑓 is called synchronous
Boolean network. Let 𝐻 be the n-dimensional hypercube graph with
vertices 𝑣 ∈ 𝐵𝑛 and edges between 𝑥, 𝑦 ∈ 𝐵𝑛 if, and only if, these
states differ in exactly one component. Each synchronous Boolean map
𝑓 induces asynchronous dynamics on 𝐻 , given by a multi-valued map
F ∶ 𝐻 ⇉ 𝐻 , encoded by a state transition graph (STG), defined as
follows: connect 𝑥 ∈ 𝐻 to all its neighbors 𝑦 in 𝐻 with |𝑥𝑖 − 𝑦𝑖| = 1
for all indices 𝑖 with the property that 𝑓𝑖(𝑥) ≠ 𝑥𝑖.

Boolean networks have been used to model gene regulatory net-
works (circuits) for many years (Thomas and D’Ari, 1990; Thieffry
and Romero, 1999; Thomas et al., 1995; Saadatpour and Reka, 2013;
Albert et al., 2013; Chaves et al., 2006; Pauleve and Richard, 2012).
Boolean network is determined by specification of a collection Boolean
functions (𝑓1, 𝑓2,… , 𝑓𝑛), which, in turn, are each given by a truth
table with number of inputs equal to number of incoming edges to
the corresponding node in 𝑉 . Any parameterization that encodes all
collections of truth tables that are compatible with the network 𝐑𝐍
will give parameterization of all Boolean models compatible with 𝐑𝐍.
However, since a change in a Boolean network involves changing a
value of some function 𝑓𝑖 by a discrete unit (from 0 to 1, or vice versa)
there is no natural bifurcation theory that can delineate the region of
validity of certain dynamics under changing cellular conditions.

In addition, synchronous dynamics also assume, unrealistically, that
multiple genes change their states simultaneously. This problem is
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largely addressed by considering an asynchronous update rule for
Boolean models. Lastly, Boolean networks lack the means to ask ques-
tions about the time duration of other dynamic phenomena, like length
of the period of a cell cycle oscillation, since time is not a part of the
modeling framework.

4. Continuous time models

In attempt to address some of these short-comings Glass and Kauff-
man (1972, 1973) introduced continuous time models with discontin-
uous right hand side, that are motivated by Boolean networks. They
consider a system of differential equations (see Edwards (2001))

𝑥̇𝑖 = −𝛾𝑥𝑖 + 𝐹𝑖(𝑥̃1,… , 𝑥̃𝑛) (1)

where

𝑥̃𝑖 = 1 if 𝑥𝑖 > 𝜃𝑖; 𝑥̃𝑖 = 0 if 𝑥𝑖 < 𝜃𝑖. (2)

The system (1) is sometimes referred to as a Glass system. The Glass
models have been used extensively (Tournier and Chaves, 2009;
de Jong, 2002; de Jong et al., 2004; Batt et al., 2007a,b; Mestl
et al., 1995; Bernard and Gouze, 2002; Bornholt, 2008) in models of
molecular network dynamics.

The connection to Boolean networks is straightforward; The func-
tion 𝐹 = (𝑓1,… , 𝑓𝑛) reduces to a Boolean function 𝑓 above, if we
restrict the range of 𝐹 to 𝐵𝑛. Note that the values of 𝐹 ∈ 𝑅𝑛 do not
depend on values of 𝑥 but only on the values of 𝑥̃; therefore the range
of 𝐹 is finite — it can have at most 2𝑛 values. More formally, 𝑅𝑛 is
decomposed into 2𝑛 disjoint open sets, parameterized by 𝛼 ∈ 𝐵𝑛,

𝐷(𝛼) ∶= {𝑥 ∈ 𝑅𝑛 ∣ 𝑥𝑖 < 𝜃𝑖 when 𝛼1 = 0, and 𝑥𝑖 > 𝜃𝑖 when 𝛼1 = 1}.

The solutions of (1) in 𝐷(𝛼) converge toward 𝐹 (𝛼)
𝛾 , but only until they

leave the domain 𝐷(𝛼). Connecting trajectories in neighboring domains
that share a threshold, whenever possible, results in a piece-wise linear
flow. There are many subtleties as to when such merging of solutions
in neighboring domains is possible, as well as how to extend these
solutions if it is not possible. We address these issues briefly below.

In Glass networks the function 𝑓𝑖, viewed as a function 𝐵𝑛 → 𝐵
could be an arbitrary Boolean function. A more appropriate class of
Boolean functions for modeling biological networks is the class of
monotone (unate) Boolean functions (A., 2003; Crama et al., 2011)

Definition 2. A function 𝑓 ∶ 𝐵𝑛 → 𝐵 is increasing (decreasing) in 𝑥̃𝑖,
𝑖 ∈ {1,… , 𝑛}, 𝑓

|𝑥̃𝑖=0 ≤ 𝑓
|𝑥̃𝑖=1 ( 𝑓|𝑥𝑖=1 ≤ 𝑓

|𝑥̃𝑖=0 ). In either case, 𝑓 is said to
be monotone (or unate )in 𝑥̃𝑖. It is said to be monotone, if it is monotone
in all 𝑥̃𝑖. In particular, if it is increasing in all 𝑥̃𝑖 then it is positive.

For example, both logical functions AND and OR are monotone
(increasing). However, the function XOR is not monotone. The classes
of monotone and positive Boolean functions attracted the interests of
different research communities. For review of their properties, we refer
reader to Crama et al. (2011) and A. (2003).

The concept of a monotone function captures the information embed-
ded in the gene regulatory network where each edge is either marked as
activating or repressing (Cury et al., 2019; Tournier et al., 2017). The
number of monotone Boolean functions on 𝑛 variables is much smaller
than that of the general Boolean functions, but it is still very large. In
fact, the precise number of monotone Boolean functions is the Dedekind
number which is not known for 𝑛 ≥ 9.

A different formalism that incorporates monotonicity implied by
signed interactions in a regulatory network RN was used by R. Thomas
and coworkers (Thomas, 1973, 1991; Thomas et al., 1995; Thomas and
D’Ari, 1990; Snoussi, 1989; Snoussi and Thomas, 1993; Thieffry and
Thomas, 1995). They proposed that if a node 𝑖 affects 𝑘 downstream
nodes, then generically there should be 𝑘 different thresholds 𝜃𝑗𝑖 at
which the effect of 𝑖 on a downstream node 𝑗 is activated.

The form of the differential equation (1) remains the same, but
the definition of function 𝐹𝑖 changes. In Snoussi (1989), 𝐹𝑖 consists
of positive combinations of products and sums of contributions 𝜎±(𝑥𝑗 )
(see definition below) from nodes 𝑗 ∈ 𝑆(𝑖). In a more general frame-
work (Snoussi and Thomas, 1993; Thieffry and Thomas, 1995; Richard
et al., 2005) the contributions are summed

𝐹𝑖 =
∑

𝜔⊂𝑆(𝑖)
𝜎±(𝑖, 𝜔), (3)

but the sum ranges, in general, over all subsets of the input set of nodes
𝑆(𝑖) of 𝑖 (Thieffry and Romero, 1999; Richard et al., 2005). The form
of functions 𝜎±(𝑥𝑗 ) is

𝜎+𝑖𝑗 (𝑖, 𝜔) =
{

𝑘𝑖,𝜔 if 𝑥𝑗 > 𝜃𝑖𝑗 ,
0 if 𝑥𝑗 < 𝜃𝑖𝑗 ,

𝜎−𝑖𝑗 (𝑖, 𝜔) =
{

𝑘𝑖,𝜔 if 𝑥𝑗 < 𝜃𝑖𝑗 ,
0 if 𝑥𝑗 > 𝜃𝑖𝑗 ,

.

For every node 𝑖 ∈ 𝑉 the set of source nodes of 𝑖 decomposes 𝑆(𝑖) ∶=
𝑆+(𝑖) ∪ 𝑆−(𝑖) into the set of positive and negative regulators of 𝑖
respectively, by requiring that 𝑗 ∈ 𝑆+(𝑗) (𝑗 ∈ 𝑆−(𝑗)) if and only if 𝑗 → 𝑖
(𝑗 ⊣ 𝑖). The collection of numbers 𝐾 ∶= {𝑘𝑖,𝜔} satisfies the monotonicity
assumption

𝑘𝑖,𝜔 ≤ 𝑘𝑖,𝜔′ for 𝜔 ⊂ 𝜔′

for subsets 𝜔 ⊂ 𝜔′ ⊂ 𝑆+(𝑖) of positive inputs. The monotonicity
condition reverses

𝑘𝑖,𝜔 ≥ 𝑘𝑖,𝜔′ for 𝜔 ⊂ 𝜔′

for subsets 𝜔 ⊂ 𝜔′ ⊂ 𝑆−(𝑖), see Bernot et al. (2004a).
The motivating assumption is that the basic expression level of 𝑗th

input is 𝑘𝑖,𝑗 for 𝜔 = {𝑗}; the simultaneous expression of inputs 𝑗 and
𝑠, that corresponds to 𝜔 = {𝑗, 𝑠}, will be at the level 𝑘𝑖,𝑗𝑠 that is larger
than both 𝑘𝑖,𝑗 and 𝑘𝑖,𝑠. We call the system (1) with nonlinearities (3) a
monotone system.

There are other slightly different formulations of this system. For
instance Ironi and Panzeri (2009), Ironi et al. (2011) replaces 𝑥̃𝑗
in general formulation (1) by a Boolean function with values in 𝐵,
i.e. 𝑍𝑖𝑗 (𝑥𝑗 , 𝜃𝑖𝑗 ) ∈ 𝐵, and assumes that for any 𝑗 the thresholds 𝜃𝑖𝑗 of
variable 𝑥𝑗 are distinct and that 𝐹𝑖 are multilinear polynomials in the
𝑍𝑖𝑗 .

Chronologically the most recent formulation of the ODE system
with discontinuous right hand side, which generalizes Glass system (1),
was considered in Cummins et al. (2016). We will call this a switching
system. This formulation was used in a comprehensive description of the
dynamics across parameter space, called DSGRN (Dynamic Signatures
Generated by Regulatory Networks), which is presented in next section.

Consider

𝑥̇𝑖 = −𝛾𝑖𝑥𝑖 + 𝛬𝑖(𝜎
±
𝑖1(𝑥1),… , 𝜎±𝑖𝑛(𝑥𝑛)) (4)

where each entry is either function 𝜎+ or a function 𝜎−, defined by

𝜎+𝑖𝑗 (𝑥𝑗 ) =
{

𝑈𝑖𝑗 if 𝑥𝑗 > 𝜃𝑖𝑗 ,
𝐿𝑖𝑗 if 𝑥𝑗 < 𝜃𝑖𝑗 ,

𝜎−𝑖𝑗 (𝑥𝑗 ) =
{

𝑈𝑖𝑗 if 𝑥𝑗 < 𝜃𝑖𝑗 ,
𝐿𝑖𝑗 if 𝑥𝑗 > 𝜃𝑖𝑗 ,

.

Assume that the functions 𝛬𝑖(𝑦1,… , 𝑦𝑛), 𝑖 = 1,… , 𝑛 are of the form
∏

𝑗

∑

(𝑦𝑗𝑖1 + 𝑦𝑗𝑖2 +⋯ + 𝑦𝑗𝑖𝑘(𝑗)),

where each 𝑦𝑠 occurs exactly once. Such a function is automatically
multi-linear i.e. linear with respect to each 𝑦𝑖, and all coefficients are 1.
The values 𝐿𝑖𝑗 < 𝑈𝑖𝑗 represent lower and upper activation (repression)
level of gene 𝑖 by gene 𝑗. Note that 𝜎+𝑖𝑗 mediates an up-regulation of 𝑖
by 𝑗, while 𝜎−𝑖𝑗 mediates a down-regulation.

We describe the difference between monotone system (3) and
switching system (4). The first difference is that the nonlinearity 𝐹𝑖 is a
sum in (3) but function 𝛬𝑖 in (4) is arbitrary multi-linear function. This
provides more freedom to the switching system to match the choice of
nonlinearity to biology represented by the network RN. On the other
hand, the collection of constants 𝐾 for (3) is only required to meet
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Fig. 1. Continuation of solutions in a switching system across the threshold that forms the common boundary.

monotonicity assumption, but is otherwise arbitrary. The collection 𝐾
can be computed for any choice of multilinear function 𝛬𝑖, but the type
of multilinear function that has to be selected for each 𝑖 in switching
system (4) will restrict in subtle way what collections 𝐾 are attainable
as parameters 𝐿𝑖𝑗 < 𝑈𝑖𝑗 are allowed to vary.

We now describe the differences between Glass system (1) and
switching system (4). First, (4) allows decay constants 𝛼𝑖 to vary be-
tween nodes 𝑖. More importantly, there is a difference between how the
parameters enter function 𝐹𝑖 vs. 𝛬𝑖. In (1) the coefficients of function
𝐹𝑖 parameterize expression level of gene 𝑥𝑖, while in (4) the expression
level of 𝑥𝑖 is determined directly by the values of 𝑈𝑖𝑗 , 𝐿𝑖𝑗 along the input
edges to 𝑖, together with 𝛬𝑖 that determines how they are combined to
the final value of 𝛬𝑖. Restricting the range of each function 𝜎± to 𝑈 = 1
and 𝐿 = 0, the function 𝜎+ ( or 𝜎−) becomes an increasing (decreasing)
Boolean function of the Boolean variable 𝑥̃𝑗 (see (2)). Combining such
functions in 𝛬𝑖 results in a monotone Boolean function. Using general
values 𝐿,𝑈 instead of Boolean values 0,1 represents one way in which
the switching system generalizes the Glass model.

The second difference comes from the number of different thresh-
olds that (4) considers. In Glass system (1) when 𝑥𝑖 > 𝜃𝑖 then the state
𝑥̃𝑖 of gene 𝑖 is 𝑥̃𝑖 = 1 and this value enters the function 𝐹 (𝑥̃). In other
words, all the downstream nodes are activated. On the other hand, in
a switching system (4) a node 𝑖 activates downstream nodes 𝑥𝑗 at their
own thresholds 𝜃𝑗𝑖 and it may activate some, but not others of the
downstream nodes. This depends on. the relative size of the value of
the activated gene 𝛬𝑖 and the thresholds associated to each downstream
edge under a generic condition

𝜃𝑗𝑖 ≠ 𝜃𝑘𝑖 for all 𝑖 and all 𝑘 ≠ 𝑗. (5)

While the continuous time systems (1), (3), (4) were developed to
address some deficiencies of Boolean networks related to the lack of
continuity of time, space and parameters, these systems generate their
own sets of technical problems.

The main technical difficulty in the traditional view of (1), (3), (4)
when viewed as systems of ordinary differential equations, is in merg-
ing solutions that exist in each domain (Fig. 1(a)) to global solutions
that are defined for all 𝑡 > 0. One problem is posed by the solutions
in domain 𝐷 that enter co-dimension k-manifolds with 𝑘 ≥ 2 that are
formed as intersections of more than two neighboring domains. The
more serious problem that affects an open set of solutions is when
the solutions from neighboring domains both enter their common co-
dimension one intersection which is a subset of {𝑥 ∈ R𝑛 ∣ 𝑥𝑖 = 𝜃𝑗𝑖}
Fig. 1(b). It is easy to see that this happens if, and only if, the node
𝑖 ∈ 𝐑𝐍 has a negative self-loop.

There has been a substantial body of work devoted to the proper
definition of solutions of (1), (3), (4) for all 𝑡 > 0. They either invoke
Filippov’s idea of differential inclusions and replacing (1), (3), (4) by
corresponding differential inclusions (Filippov, 1988), or consider only
those solutions that are limits of solutions of nearby steep sigmoidal
functions (Ironi and Panzeri, 2009; Ironi et al., 2011; Veflingstad and
Plahte, 2007). However, these issues distract from the fundamental
problem of developing a modeling toolbox for biology and often form

a un-surmountable block for biologists who may otherwise be tempted
to use it.

It is our view that the system (4) should be viewed as a computa-
tional model for computing lattices of attracting blocks, which are sets
in the phase space that are positively invariant and form neighborhoods
of the attractors. In can be shown, that the lattice of attracting blocks of
(4) is part of the lattice of attracting blocks for all neighboring smooth
ODE systems (Gedeon et al., 2017). This shifts focus from the individual
trajectories to the attracting sets, which are robust under the change of
nonlinearity from piecewise constant to smooth.

In order to avoid this technical difficulty, the following assumption
is often made

Assumption: The network RN has no negative self-regulation.

In the context of the applications, a network is usually a simplifi-
cation of a more complex network and inclusion of an intermediary
like an mRNA, or another protein into a negative self-loop allows this
assumption to be satisfied.

4.1. State transition graph

Both Boolean maps and ordinary differential equation (ODE) sys-
tems (1), (3), (4) admit a discrete description of the phase space. For
Boolean map 𝑓 , we will always represent dynamics by iterates of its
multivalued asynchronous update function F ∶ 𝐻 ⇉ 𝐻 , which can be
viewed as a graph on 𝑛-dimensional hypercube 𝐻 .

For the Glass ODE system (1) the underlying phase space for differ-
ential equations is R𝑛. However, the phase space 𝑅𝑛 decomposes to 2𝑛

domains 𝐷(𝛼) where 𝛼 ∈ 𝐵𝑛 and there are bijections between the set of
domains 𝐷(𝛼), the set 𝛼 ∈ 𝐵𝑛, and the set of vertices of 𝐻 .

The state transition graph (STG) for ODE models (1) on 𝐻 is defined
analogously to the Boolean model. We connect 𝛼 ∈ 𝐻 to all its
neighbors 𝛼′ in 𝐻 with |𝛼𝑖 − 𝛼′𝑖 | = 1 for all indices 𝑖 with the property
that

[
𝐹 (𝛼)
𝛾

]𝑖(𝛼) ≠ 𝛼𝑖.

The STG can be viewed as a multi-valued map F𝐺 ∶ 𝐻 ⇉ 𝐻 , analogous
to an asynchronous update of the Boolean function F ∶ 𝐻 ⇉ 𝐻 .

The connection between the dynamics of iterates of F𝐺 ∶ 𝐻 ⇉
𝐻 and the solutions of ODE (1) is the at the heart of the approach
described in this paper. Its origin is the observation that all ODE
solutions in 𝐷(𝛼) converge toward 𝐹 (𝛼)

𝛾 , while in the domain 𝐷. The
discrete description of the continuous dynamics has a natural appeal,
but the details of how exactly the long term behavior of the solutions
of ODE correspond to the long term behavior of iterates of F𝐺 is
subtle (Ironi and Panzeri, 2009; Ironi et al., 2011; Mestl et al., 1995;
Veflingstad and Plahte, 2007; Edwards, 2001). Any attempt to make
this comparison on the level of an individual solution must address the
technical issues outlined above.

For more general ODE systems (3), (4) the key assumption (5)
implies that each variable 𝑥𝑖 has |𝑇 (𝑖)| thresholds (recall that 𝑇 (𝑖)
is a set of out edges from a node 𝑖 in the network RN). Therefore,
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by analogy to system (1) where each variable has one threshold, the
continuous phase space 𝑅𝑛 consists of 𝛱𝑛

𝑖=1(|𝑇 (𝑖)| + 1) domains 𝐷(𝛼)
where 𝛼 is now a multi-index with 𝛼𝑖 ∈ {0, 1, 2,… , |𝑇 (𝑖)|}. Let

𝐻̄ = {𝛼 ∣ 𝛼 = (𝛼1,… , 𝛼𝑛), 𝛼𝑖 ∈ {0, 1, 2,… , |𝑇 (𝑖)|}}

be a generalized hypercube consisting of nodes with labels 𝛼. Each node
represents a corresponding domain 𝐷(𝛼) ⊂ 𝑅𝑛.

We construct a state transition graph (STG) on 𝐻̄ using the fact that
solutions in each domain 𝐷(𝛼) converge toward its associated target
point 𝑇 (𝛼) = (𝛬1(𝛼)∕𝛾1,… , 𝛬𝑛(𝛼)∕𝛾𝑛). STG is a graph representation of
asynchronous update of the discrete-valued function

𝛬 ∶ 𝐷(𝛼) → 𝑇 (𝛼).

This means that STG is a graph on 𝐻̄ with edges between nodes 𝛼, 𝛽
with |𝛼 − 𝛽| ≤ 1 assigned in the following way

• if 𝑇 (𝛼) ∈ 𝐷(𝛼) then there is a self-edge 𝛼 → 𝛼;
• if |𝛼 − 𝛽| = 1, 𝛼𝑖 = 𝛽𝑖 − 1 and the threshold between 𝐷(𝛼), 𝐷(𝛽) is
𝜃, then

1. 𝛼 → 𝛽 if 𝑇𝑖(𝛼) > 𝜃;
2. 𝛽 → 𝛼 if 𝑇𝑖(𝛽) < 𝜃.

Note that the latter assignment is well defined unless both conditions
are satisfied at the same time. Then it must be that the threshold 𝜃 is
a threshold of variable 𝑥𝑖 that affects the function 𝛬𝑖, which implies
that node 𝑖 regulates itself n the network RN. Furthermore, this self
regulation must be negative, since the 𝛬𝑖 value decreases when variable
𝑥𝑖 increases from domain 𝐷(𝛽) to domain 𝐷(𝛼). Since we assume that
there are no negative self-loops in RN, the STG is well defined and there
is at most one edge between neighboring nodes in 𝐻̄ . STG can be also
viewed as multi-valued map  ∶ 𝐻̄ → 𝐻̄ .

The state transition graph is a finite object that can be interrogated
in different ways. The Boolean community has implemented a variety
of algorithms that use a correspondence between the states of the STG
and their description by logical expressions. This resulted in very fast
algorithms that decide reachability of certain states from other states;
we only mention the selected work on software implementation (Fages
and Soliman, 2008; Gonzalez et al., 2006) and applications (Bernot
et al., 2004b; Barnat et al., 2009).

The DSGRN approach (Cummins et al., 2016; Cummins et al.,
2018, 2017; Gedeon et al., 2018) focuses on the compression of the
information about the dynamics of  by computing strongly connected
path components of STG and the reachability properties between them.
The strongly connected path components are nodes of a Morse graph
which is a Haase diagram of a partial order imposed by the reachability
on the nodes of Morse graph, that is inherited from reachability in STG.
Morse graph is an analogous concept to that of a Morse decomposi-
tion (Conley, 1978), restricted to a finite dynamical system  ∶ 𝐻̄ →
𝐻̄ .

Each attractor 𝐴 of  i.e. a positively invariant collection of nodes in
𝐻̄ under  , corresponds to a set of domains 𝐷(𝛼) ⊂ 𝑅𝑛 that is positively
invariant under the flow of the switching system. This set of domains
may consist of several disjoint non-contiguous collections of domains.
The union of these domains is called an attracting block corresponding
to 𝐴. The boundary of such an attracting block is transverse to the
solutions of (4) and are therefore robust under and 𝐶1 perturbations
of the flow, and therefore 𝐶0 perturbation to the nonlinearities. This
class of perturbations includes smooth systems in the neighborhood
of the piece-wise constant nonlinearities. These ideas have been used
in Gedeon et al. (2017) to show that in a two dimensional system under
mild conditions, there is an injective map respecting the partial order
that maps the Morse graph of the switching system (4) to a Morse
decomposition of any differential smooth equation with nonlinearities
𝐶0-close to switching system (4). This shows that the switching system
provides a rigorous lower bound on complexity of dynamics of nearby
smooth systems. Since switching systems cannot directly capture the
existence of singular solutions (Thomas et al., 1995; Thieffry and
Romero, 1999; Richard et al., 2005), the fact that switching system only
provides a lower bound is not surprising.

5. Dynamics in context of changing parameters

We now come to the main part of the paper where we discuss
how to study either Boolean maps or ODE systems (1)–(4) as the
Boolean functions or nonlinearities change. In the ODE systems, this
is called bifurcation theory where one seeks to find parameter values
where qualitative features of the dynamics abruptly change. Bifurcation
values of the parameter bound areas of the parameter space where the
dynamics is qualitatively the same.

It has been recognized at least as early as Thieffry and Romero
(1999) that by systematic change in parameters 𝑘𝑖,𝜔 in system (3) one
obtains different qualitative dynamics in STG. This has been formalized
in Richard et al. (2005), Bernot et al. (2004a) by introducing the con-
cept of qualitative parameters, which parameterize potentially different
dynamics of the state transition graphs. The recent work (Abou-Jaoude
and Monteiro, 2019), inspired by Thieffry and Romero (1999), uses the
correspondence between Boolean maps and Glass systems (1) to define
bifurcation theory for Boolean maps. Recall that for a Boolean function
𝑓 ∶ 𝐵𝑛 → 𝐵 one can define the set of truth values T(𝑓 ) and false values
F(𝑓 ) by

T(𝑓 ) ∶= {𝛼 ∈ 𝐵𝑛 ∣ 𝑓 (𝛼) = 1}, F(𝑓 ) ∶= {𝛼 ∈ 𝐵𝑛 ∣ 𝑓 (𝛼) = 0}.

Using this concept, a very recent work (Cury et al., 2019) organizes the
structure of the set of monotone Boolean functions 𝑓𝑖 by ordering the
sets T(𝑓𝑖) by inclusion.

A natural parameterization for systems (4) has 3𝐸 +𝑁 continuous
parameters (𝐿𝑖𝑗 , 𝑈𝑖𝑗 , and 𝜃𝑖𝑗 for each edge (𝑗, 𝑖) and 𝛾𝑖 for each node 𝑖).
We will describe the relationship between this continuous parameter
space and the finite number of admissible state transition graphs. We
then compare this description to the other approaches.

5.1. Parameter graph

The parameter space of system (4) consists of a collection

𝑄 ∶= {(𝐿𝑖𝑗 , 𝑈𝑖𝑗 , 𝜃𝑖𝑗 , 𝛾𝑖) | for all (𝑖, 𝑗) ∈ 𝐸, 𝑖 ∈ 𝑉 , such that 𝐿𝑖𝑗 ≤ 𝑈𝑖𝑗 .}

(6)

We will consider an open subset 𝑃 ⊂ 𝑄 where

𝛬𝑖 ≠ 𝛾𝑖𝜃𝑖𝑗 for all 𝑖, 𝑗.

We make a following definition that leads to a concise description
of all dynamics that can be generated by a given network across all
parameters.

Definition 3. For node 𝑖 let 𝑍𝑖 be the set of input strings 𝜁𝑖 = (𝑎1,… , 𝑎𝑝𝑖 )
of the length 𝑝𝑖 ∶= |𝐒(𝑖)|, the number of sources of 𝑖, where each
𝑎𝑗 ∈ {𝐿𝑖𝑗 , 𝑈𝑖𝑗}. A state of a node 𝑖 at a parameter 𝑝 ∈ 𝑃 is a collection
of inequalities

𝛴𝑖(𝑝) ∶= {𝛬𝑖(𝜁𝑖) < 𝛾𝑖𝜃𝑗𝑖 or 𝛬𝑖(𝜁𝑖) > 𝛾𝑖𝜃𝑗𝑖 ∣ 𝑗 ∈ 𝐓(𝑖), 𝜁𝑖 ∈ 𝑍𝑖}

where for each pair (𝜁𝑖, 𝑗) there is exactly one inequality (< or >) in the
collection 𝛴𝑖. Importantly, since 𝛬𝑖 is assumed to be a product of sums
where each dependent variable occurs at most once, 𝛬𝑖 is monotone
in each of its arguments. The choice of inequalities has to respect this
monotonicity.

A state of the system is a collection 𝛴(𝑝) = (𝛴1(𝑝), 𝛴2(𝑝),… , 𝛴𝑛(𝑝)).

We make three key observations (Gedeon et al., 2017)

1. The parameter 𝑝 ∈ 𝑃 , and the identity of domain 𝐷(𝛼) deter-
mines uniquely the values of strings 𝜁 ∶= (𝜁1(𝛼),… , 𝜁𝑛(𝛼)).

2. Given 𝜁 , the state of the system 𝛴(𝑝) determines position of
target points of all domains 𝐷(𝛼) and thus determines unique
state transition graph.

3. The number of states is finite, and so there are open sets of
parameters 𝑝 ∈ 𝑃 that generate the same state 𝛴(𝑝).
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Fig. 2. (a) Parameter graph for two input edges from nodes 𝑥 and 𝑦 with inputs 𝐿𝑋 < 𝑈𝑋 and 𝐿𝑌 < 𝑈𝑌 respectively, and one output edge. Each node is marked by the set of
inequalities; we only include minimal set of inequalities sufficient to reconstruct all of them. Nodes marked red (thicker boxes) are essential parameter nodes. (b) Description of
the corresponding monotone Boolean function; (c) Parameter graph for one input and two output edges. Symmetry between left and right corresponds to change of order of output
thresholds.

A parameter graph 𝐏𝐆 for a network RN has a node for each state of
the system 𝛴; an undirected edge between two states 𝛴1 and 𝛴2 exists,
if 𝛴1 and 𝛴2 differ by exactly one inequality.

Because the states of the system depend on the algebraic form of 𝛬𝑖,
the parameter graph will be different for a different collection of alge-
braic forms (𝛬1,… , 𝛬𝑛). Each assumed algebraic form of the function
𝛬𝑖 imposes constraints on which the monotone Boolean functions are
realizable by that algebraic form (Cummins et al., 2016).

It is worth noting that the set of parameter nodes is equivalent
to the set of qualitative parameters discussed in Richard et al. (2005)
and Bernot et al. (2004a). The parameter graph PG organizes this set
into a graph that captures geometrical structure of the corresponding
parameter regions in the parameter space.

Note that since each state 𝛴 can be written as 𝛴 = (𝛴1,… , 𝛴𝑛), the
parameter graph PG is a product of parameter graphs for each node
𝑖 ∈ 𝐑𝐍

𝐏𝐆 = 𝛱𝑛
𝑖=1𝐏𝐆(𝑖).

The product structure significantly simplifies construction of PG, since
PG(i) only depends on the type of the node 𝑖; i.e the number of input
edges, the number of output edges and the algebraic form of function 𝛬𝑖
that combines the inputs. These graphs can be precomputed and then
combined together to construct PG for any network RN.

In Fig. 2(a) we show PG for a network node 𝑧 with two inputs
from nodes 𝑥, 𝑦 and one output. Here we assume that 𝛬(𝜎+(𝑥), 𝜎+(𝑦))
where 𝑥, 𝑦 are the continuous variables representing the concentration
of chemical species and 𝛬(𝑢, 𝑣) = 𝑢𝑣 is a product. In order to show
connection between DSGRN parameter graph and qualitative parame-
ters of (Richard et al., 2005; Bernot et al., 2004a), we associate logical
variables 𝑋 to 𝑥 and 𝑌 to 𝑦

𝑋 ∶=
{

1 𝑥 > 𝜃𝑧𝑥
0 𝑥 < 𝜃𝑧𝑥

𝑌 ∶=
{

1 𝑥 > 𝜃𝑧𝑦
0 𝑥 < 𝜃𝑧𝑦

which represent Booleanization of 𝜎+(𝑥), 𝜎+(𝑦), respectively. In Fig. 2(a)
we use subscripts 𝑋 and 𝑌 in 𝐿𝑋 , 𝑈𝑋 , 𝐿𝑌 , 𝑈𝑌 instead of 𝐿𝑧𝑥, 𝑈𝑧𝑥, 𝐿𝑦𝑥, 𝑈𝑦𝑥
to enable comparison to Boolean description below.

In order to present a succinct representation of parameter nodes,
we only include in Fig. 2(a) the minimal set of inequalities from which
the other inequalities characterizing the parameter node that can be
deduced by using standard inequalities 𝐿𝑋 < 𝑈𝑋 , 𝐿𝑌 < 𝑈𝑌 . For
instance, the top node in Fig. 2(a) also includes implicit inequalities
𝐿𝑋𝐿𝑌 < 𝑈𝑋𝐿𝑌 , 𝐿𝑋𝐿𝑌 < 𝐿𝑋𝑈𝑌 , 𝑈𝑋𝐿𝑌 < 𝑈𝑋𝑈𝑌 , 𝐿𝑋𝑈𝑌 < 𝑈𝑋𝑈𝑌 .
Observe that each node differs from neighboring nodes by exactly one
inequality. We also note that the structure of this parameter graph

would be the same if we chose 𝛬(𝑢, 𝑣) = 𝑢+𝑣. For functions 𝛬 with more
that two inputs, the parameter graphs may be different for different
algebraic forms of 𝛬.

We now connect the parameter graph to the language of Boolean
maps. Consider a parameter node 𝛴 = (𝛴1,… , 𝛴𝑛) and assume that the
𝑗 node of RN has 𝑘-inputs and one output node |𝐒(𝑗)| = 𝑘, |𝐓(𝑗)| =
1. We demonstrate that the value 𝛴𝑗 corresponds to unique Boolean
function 𝑔 ∶ 𝐵𝑘 → 𝐵. As a first step, we map every input sequence
𝜁𝑗 = (𝑎1,… , 𝑎𝑘), 𝑎𝑖 ∈ {𝐿𝑗𝑖, 𝑈𝑗𝑖} to a sequence 𝜂𝑗 ∈ 𝐵𝑘 by mapping each
𝑈 to 1 and 𝐿 to 0. If an input sequence 𝜁𝑗 ∈ {𝐿,𝑈}𝑘 is such that the
inequality 𝛬𝑗 (𝜁𝑗 ) < 𝛾𝜃 belongs to 𝛴𝑗 , then we assign the corresponding
sequence 𝜂𝑗 ∈ 𝐵𝑘 to the false set 𝜂𝑗 ∈ F(𝑔). Similarly, if an input
sequence 𝜁𝑗 is such that the inequality 𝛬𝑗 (𝜁𝑗 ) > 𝛾𝜃 belongs to 𝛴𝑗 , then
we assign the corresponding sequence 𝜂𝑗 ∈ 𝐵𝑘 to the true set 𝜂𝑗 ∈ T(𝑔).
This uniquely associates to 𝛴𝑗 a Boolean function 𝑔 for which F = F(𝑔)
and T = T(𝑔) with 𝐵𝑘 = T(𝑔) ∪ F(𝑔). The collection {T(𝑔)}𝑔 over all
Boolean functions 𝑔 ∈ 𝐵𝑘 → 𝐵, ordered by inclusion, produces a partial
order that recovers the lattice structure of Fig. 2(a). Each set of true
values T(𝑔) gives rise to a description of the function 𝑔 in terms of
logical formulas depicted in Fig. 2(b). Therefore, there is one-to-one
correspondence between parameter graph in Fig. 2(a) and the graph of
Boolean functions Fig. 2(b).

Consider now a parameter node 𝛴 = (𝛴1,… , 𝛴𝑛) where the 𝑗 node
of RN has 𝑘-inputs and 𝓁 output nodes |𝐒(𝑗)| = 𝑘, |𝐓(𝑗)| = 𝓁 with
corresponding thresholds 𝜃1 < 𝜃2 < ⋯ < 𝜃𝓁 . The value 𝛴𝑗 corresponds
to a collection of 𝓁 monotone Boolean functions 𝑔 ∶= (𝑔1, 𝑔2,… , 𝑔𝓁)
where the set of true values T(𝑔𝑖) of a function 𝑔𝑖 is a collection of
𝜂𝑗 ∈ 𝐵𝑘 for which the corresponding 𝜁𝑗 satisfy 𝛬𝑗 (𝜁𝑗 ) > 𝛾𝑗𝜃𝑖. The
ordering of the thresholds implies that the true values of the collection
𝑔 satisfy

T(𝑔𝓁) ⊆ T(𝑔𝓁−1) ⊆ …T(𝑔1).

In Fig. 2(c) is the PG(i) for a network node 𝑖 with one input and
two output edges. Since each output edge corresponds to a threshold,
there are two thresholds 𝜃1 and 𝜃2. To explain the shape of this graph,
assume first that 𝜃1 < 𝜃2. If 𝐿 < 𝑈 denote two possible values of the
input, then we have the following collection of parameter nodes

(𝑎1) 𝑈 < 𝜃1, (𝑏1) 𝐿 < 𝜃1 < 𝑈 < 𝜃2, (𝑐1) 𝜃1 < 𝐿 < 𝑈 > 𝜃2;
(𝑑1) 𝐿 < 𝜃1 < 𝜃2 < 𝑈 ; (𝑒1) 𝜃1 < 𝐿 < 𝜃2 < 𝑈 ; (𝑓1) 𝜃2 < 𝐿

The nodes 𝑎2,… , 𝑓2 in Fig. 2(c) with the subscript 2 are obtained by
exchanging 𝜃1 and 𝜃2 in the above formulas, which is the equivalent to
changing their mutual order to 𝜃2 < 𝜃1. Nodes that differ by a single
inequality are connected by an edge.
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Computations of parameter graph PG are limited by memory
storage, rather than the computational complexity. DSGRN databases
with billion (109) nodes has been computed. These typically correspond
to networks with 6–10 nodes. The precise number depends more sensi-
tively on the complexity of regulation at each node, rather than on the
number of nodes themselves. If a node has only up to two inputs and
outputs, the parameter graphs is rather small 𝑂(101); number of inputs
increases this number extremely rapidly.

One of the way to reduce the size of the parameter graph is to
employ the concept of an essential parameter node (Cummins et al.,
2016; Cummins et al., 2017; Crawford-Kahrl et al., 2019), related to
the concept of an essential monotone Boolean function (Cury et al., 2019;
Tournier et al., 2017). A parameter node 𝛴 = (𝛴1,… , 𝛴𝑛) is essential if
for every 𝛴𝑗 , 𝑗 = 1,… , 𝑛 the following holds:

a For each threshold 𝜃𝑖𝑗 associated to 𝑖 ∈ 𝐓(𝑗), there is a input string
𝜁 such that 𝛬𝑗 (𝜁 ) < 𝛾𝑗𝜃𝑖𝑗 and an input string 𝜁 such that 𝛬𝑗 (𝜁 ) >
𝛾𝑗𝜃𝑖𝑗 ;

b For every 𝑘 ∈ 𝐒(𝑗) there exist states 𝜁1, 𝜁2 that differ only in 𝑘−th
component, and a threshold 𝜃𝑖𝑗 such that

𝛬(𝜁1) < 𝛾𝑗𝜃𝑖𝑗 < 𝛬(𝜁2) or 𝛬(𝜁2) < 𝛾𝑗𝜃𝑖𝑗 < 𝛬(𝜁1).

In other words, each input edge and output edge plays a role in
determining an output of the network node 𝑗.

The concept of the essential monotone function (Cury et al., 2019;
Tournier et al., 2017) coincides with the concept of the essential
parameter node for network nodes with a single output. In Fig. 2(b) the
essential Boolean functions are in red and correspond to those functions
where both inputs 𝑋 and 𝑌 play a role in determining the outcome.

A parameter node is non-essential if it is not essential. Non-essential
parameter nodes can be viewed as parameter nodes of a reduced
network where at least one of the input, or output edges, can be
removed from the network (Fig. 2(b)). DSGRN database restricted to
essential parameter nodes is smaller and thus potentially computable
for larger networks.

Definition 4. A DSGRN (Database of Signatures Generated by Regula-
tory Networks) for a network RN
⋃

𝑝∈𝐏𝐆
𝑀𝐺(𝑝),

is a collection of Morse graphs parameterized by the nodes of the
parameter graph PG.

The idea of considering a class of nonlinearities 𝛬𝑖 in (4) (or 𝐹𝑖
in (1)), rather than analyzing a single Boolean or switching network
was considered by several authors. It has been recognized by Edwards
and Glass (2006) that precise parameter values can be replaced by
inequalities between parameters to get an identical qualitative de-
scription of the dynamics in terms of state transitions. This has been
used in Ironi and Panzeri (2009), Batt et al. (2010) to iteratively
generate inequalities between the parameters at which the system (4)
qualitatively matches the time series of the experimental data by state
transitions in STG. In the language of DSGRN, as more of the time
series is known, a smaller number of parameter nodes can reproduce
the experimental time series. This iterative process zooms in on the
parameter regions of interest. These papers use greedy methods which
may not find all regions of interest. Compared to DSGRN, the advantage
of these methods is, that since it does not compute the entire parameter
space, it may be able to handle larger networks; the disadvantage is that
for every new time series, the computation needs to be repeated from
the start.

More recently Abou-Jaoude and Monteiro (2019) introduced logical
bifurcation diagrams . This is a way to track changes in the state
transition graph as a function of a particular parameter. In the language

of this paper, this corresponds to a restriction of DSGRN to a particular
subgraph PG(i) for some network node 𝑖 and considering changes in
Morse graph as a function of paths through parameter nodes. The paths
of interest are either increasing or decreasing paths in the graphs PG(i)
like those in Fig. 2(a) (c). Since the entry point of (Abou-Jaoude and
Monteiro, 2019) is the Boolean network formalism, which is discrete,
they introduce the ODE system (1) to embed Boolean functions into
a setting with varying parameters in the way that is described above.
The emphasis is on the generation of one-dimensional paths through
parameter graphs starting at a particular parameter node in PG(i) Since
PG(i) is a partially ordered set there can be multiple choices for these
paths.

The work (Cury et al., 2019) shows how to traverse a graph that
only includes essential monotone Boolean functions with 𝑘 inputs. This
can generate potential bifurcation paths within essential monotone
Boolean functions and can be used to define a neighborhood of an
essential monotone Boolean function within this class.

6. Applications

The advantage of the description of the dynamics by DSGRN
database is the ability to ask questions that cannot be asked by consid-
ering a single Boolean function or an ODE at a single parameter value.
Global information about the dynamics of the system is represented in
DSGRN in different ways. For instance, the nodes of the Morse graph
that have no outgoing edges represent invariant sets that are stable
in the sense that there are no other Morse nodes that can be reached
from this node. We will call such nodes stable. If a Morse graph has
two such minimal nodes, the system exhibits bistability; more nodes
indicate multi-stability.

Furthermore, we use annotation of the Morse nodes of Morse graph
at 𝑝 ∈ PG as a way to represent a dynamical signature of the dynamics
of all parameters that belong to the parameter region represented by 𝑝.
Currently we use three types of annotation. A Morse node is designated
FP if it corresponds to a single node 𝛼 ∈ 𝐻̄ and there is a self-loop 𝛼 → 𝛼
in STG. The name FP (for ‘‘fixed point’’) signifies that the corresponding
domain 𝐷(𝛼) ⊂ 𝑅𝑛 will contain a fixed point of the dynamics of (1),
(3) or (4). Annotation XC (for Partial Cycle) designates a Morse node
that represents a set of domains 𝐷(𝛼𝑖) where there is at least one
component 𝑗 that is constant across the collection 𝛼𝑖, i.e. [𝛼𝑖]𝑗 = 𝑐𝑜𝑛𝑠𝑡
for all 𝑖. In other words, such a component does not change its state
in the set of domains 𝐷(𝛼𝑖). Annotation FC (for Full Cycle) describes
a Morse node that represents a set of domains 𝐷(𝛼𝑖) where none of
the components are constant across all 𝑖. We hasten to add that the
existence of a stable Morse node FC does not guarantee that for every
parameter corresponding to this parameter node, the ODE (4) has a
stable periodic orbit, as has been shown by Glass (Glass and Pasternack,
1978). However, we view such a set of periodic domains as an adequate
proxy for the periodicity observed in the experimental data, which is
both finite and subject to experimental noise.

One way to use annotated Morse graphs in DSGRN database is
to rank networks based on their ability to robustly exhibit an os-
cillatory dynamics, based on prevalence of stable FC in the DSGRN
database. This may be used to rank potential networks that may explain
oscillatory phenomena like a cell cycle, a circadian rhythm, or the
emergence of a malaria parasite from red blood cells. A network that
does not show any FC in the entire parameter graph is clearly not an
appropriate model for a system that exhibits periodic behavior. This
trivial conclusion may lead to the rejection of many potential networks,
and thus may lead to a substantial reduction of hypothesis space. This
rejection can be enhanced by assuming that the network must robustly
exhibit periodicity represented by FC; this allows a ranking of the
networks based on the FC prevalence and a rejection of lower ranked
networks.

An additional restriction comes from considering extrema (i.e min-
ima and maxima) of an experimental time series. A path in a state
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transition graph of a switching system (4) also corresponds to an
ordered set of minima and maxima of the coordinate functions in (4).
Therefore we can evaluate not only how prevalent is the periodic
behavior encoded in Morse set FC, but by comparing the sequence
of maxima and minima along an arbitrary path through such an FC
with the ordered set of minima and maxima of the same genes in
experimental data, we can reject those networks that do not match the
experimental ordering or extrema (Cummins et al., 2018),

We describe a broad set of questions that can be addressed by the
approaches described in this article.

6.1. Delineation of network dynamics

E2F-Rb network (Leone et al., 1997; Adams et al., 2000; Perez-
Roger et al., 1999; Bouchard et al., 1999) plays a key role in one of
the most important decisions in the human cell life cycle: whether to
start DNA replication and initiate proliferation. This decision is based
on several factors, but once the process has started DNA replication,
it must finish. Therefore, the influence of the factors that led to the
decision must be uncoupled at the moment of the decision, called the
restriction point of the cell cycle (Pardee, 1974; Blagosklonny and
Pardee, 2002; Sears and Nevins, 2002). Not surprisingly, mutations in
E2F-Rb network are linked to many cancers (Burkhart and Sage, 2008;
Chinnam and Goodrich, 2011; Manning and Dyson, 2012). The require-
ment of irreversibility and decoupling suggests that phenotypically a
bistable switch may underlie the restriction point.

In Gedeon et al. (2018) the authors analyzed a series of networks
inspired by the work of Yao and his collaborators (Yao et al., 2008,
2011). In Yao et al. (2011) the authors simplified a large E2F-Rb
network by clustering nodes into three groups, with a number of
potential edges between them that were consistent with the edges of
the larger network. Then they numerically simulated many potential
3-node networks consistent with this information at a large, but fixed,
set of parameter values, and evaluated which of these networks most
robustly exhibit different types of hysteresis. In Gedeon et al. (2018)
this analysis was first repeated by computing DSGRN for all 3-node
compatible networks. Then the authors went a step further and looked
at eight 6-node networks that were expanded from the 3-node networks
and asked which of them most robustly showed the hysteresis behav-
ior. Interestingly, the network that exhibits hysteresis most robustly
according to the DSGRN database, matched the topology of the network
that performed the same function in yeast. Since the genes involved
in the restriction point in yeast share no homology with the genes in
humans (Cross et al., 2011), this result suggested that the evolution
may have selected the same network topology independently multiple
times to perform the same function.

In order to search for hysteresis in the E2F-Rb, Gedeon et al. (2018)
searched paths in the parameter graph 𝑃𝐺(𝑆) where 𝑆 was a node in
the graph affected by the growth rate of the cell. Along every path they
asked if the set of Morse graphs exhibited the following sequence of
events: first, a single FP that represents non-proliferative state, followed
by a Morse graph exhibiting bistability, and finally, at the end of the
path, a Morse set with single FP representing a proliferative state. This
annotated Morse graph representation of hysteresis allowed Gedeon
et al. (2018) to enumerate prevalence of hysteresis in parameter graphs
of different networks.

6.2. Control and manipulation of dynamics

There have been several attempts to use predictions of Boolean
networks to control and manipulate their dynamics. The program kali
developed by Poret (2018) considered a single Boolean network and
assumed that the attractors, and in particular the fixed point attractors,
corresponded to network phenotypes. The goal of the program was to
reduce the size of the basins of attraction of the so called patholog-
ical attractors that correspond to un-desired outcome of the network

dynamics. This program allows a choice between the synchronous and
asynchronous updates and allows for multi-valued logic.

Still within a single Boolean network, the series of papers (Yousefi
et al., 2012; Yousefi and Dougherty, 2013; Yousefi et al., 2013; Yousefi
and Dougherty, 2014) assumed that there was a set of control nodes
that can be externally manipulated. They used optimal control tech-
niques to derive a control policy that minimized the likelihood of
transitioning into an undesirable state in a stochastic context.

A slightly different approach was taken by Biane and Delaplace
(2018) who extended the Boolean formalism to Boolean control network,
where additional control Boolean nodes were added to the system. These
nodes are not dynamically updated, but they serve as preset control
variables. Including them in a logical expression with dynamically
updated variables of the Boolean network allows encoding of the node
control into extended Boolean framework. One can view this approach
as a discrete parameterization of a family of Boolean maps by all
possible Boolean values of the control nodes. It is possible to translate
the Boolean control framework into the framework of DSGRN.

A mathematically different approach was taken by Murrugarra et al.
(2016). They translated the problem of finding control point candidates
to a problem of solving a set of polynomial equations. These were
then solved by a powerful techniques of computational algebra. The
output was a set of actions that are capable to steer the network toward
desirable states.

6.3. Learning parameters that fit the data

An important problem is to match a Boolean or an ODE model to
the experimental data, which is often presented in the form of a time
series of several (or all) network variables.

As mentioned above, the work of Batt et al. (2010) and Ironi and
Panzeri (2009) consider ODE systems (1)–(4) with the goal of selecting
a set of parameter nodes which produce solutions that match exper-
imental data. The key observation is that the information that needs
to be matched is qualitative, since (1)–(4) produce piecewise linear
solutions. Both papers (Batt et al., 2010; Ironi and Panzeri, 2009) start
with the assumption that the experimental trajectory has been mapped
into a sequence of domains 𝐷(𝛼). Then, given an initial domain, Ironi
and Panzeri (2009) construct a tree where each branch connects to all
neighboring domains and each edge is annotated by a list of parameter
inequalities that are consistent with that transition. This results in a
very large graph and is not practical for networks with more than a
few nodes, even for a relatively short time series.

The paper (Batt et al., 2010) encodes qualitative observations about
data into a temporal logic formula and uses model checkers (Bar-
nat et al., 2009; Batt et al., 2005; Bernot et al., 2004b; Fisher and
Henzinger, 2007) to check if a state transition graph generated at a
particular parameter node satisfies this formula. To avoid the explicit
construction of the parameter graph PG they use an alternative ap-
proach. They effectively use the branching graph structure of Ironi
and Panzeri (2009) without explicitly constructing it. It this way, for
a given path through the state transition graph that is generated by
the experimental data, the work (Batt et al., 2010) computes parameter
constraints that are consistent with the path. These constraints become
more restrictive as the length of the path increases.

Another approach to the matching of an experimental time series
to the dynamics of network has been done in the context of DS-
GRN (Cummins et al., 2018). Given an experimental time series and
a proposed network, the goal is to find all parameter nodes of the
parameter graph where the dynamics is consistent with the time series.
To do this, a partial order of the maxima and the minima of individual
time series is extracted from the time series and compared to STG
dynamics generated by all parameter nodes of the DSGRN database.
The consideration of a partial order rather than a full order is motivated
by the fact that experimental time series are often sparsely sampled
and multiple genes can achieve maximum or minimum at the same
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time point. The result of the analysis is a collection of parameter nodes
where the discrete STG dynamics exhibits the same partial order of
maxima and minima as the experimental time series. Then networks
can be compared based on robustness of matching i.e. prevalence of
this behavior across all parameters.

There has been a lot of work devoted to learning Boolean networks
from data. In the context of a parameter graph PG, this is equivalent
to selecting which parameter nodes are consistent with the observed
dynamics. The paper (Guziolowski et al., 2013) introduces caspo, a free
open-source tool to learn the (Boolean) logic models of signal transduc-
tion. It uses CellNOpt pre- and post-processing routines (Terfve, 2012).
The output is a set of Boolean models that are capable of reproducing
data. In our language, the output is a collection of parameter nodes at
which the state transition graph STG has a path that is consistent with
the data. The follow-up paper (Videla et al., 2015) goes a step further.
Given a collection of potential Boolean models that are consistent with
the data, it proposes a minimal set of experiments that are capable
of distinguishing between them. In this case, however, the method is
restricted only to Boolean networks representing RN with no feedback
loops.

Finally, (Veliz-Cuba, 2012) used methods of computational algebra
to learn all Boolean maps that are consistent with the data. The
algorithm consists of encoding possible wiring diagrams using ideals
and algebraic sets and choosing those that are minimal using primary
decomposition and irreducible components.

7. Discussion

We describe how relatively independent ideas developed over the
last 50 years in dynamical systems (Glass systems, switching systems)
and computer science (Boolean networks, automatic model checking),
started to merge into a unified modeling platform for systems biology.
Facing the challenge of describing the dynamics of networks, where
the nonlinearities, parameters and initial data are known only qualita-
tively, a combination of continuous time dynamics and its discrete time
description allows enumeration of all potential dynamics compatible
with the network structure. This description, by necessity, matches a
qualitative input that systems biology is able to provide. However, this
approach allows

• the delineation and classification of all dynamics consistent with
network structure;

• the description of changes in dynamics induced by the changes in
parameters;

• the evaluation of network structures for their potential fit to the
experimental data;

• the rejection of proposed network structures that are incompati-
ble with the experimental data.

These techniques, including perhaps the most clearly formulated ap-
proach called DSGRN (Cummins et al., 2016; Cummins et al., 2018,
2017; Gedeon et al., 2017; Huttinga et al., 2018; Crawford-Kahrl
et al., 2019; Harker, 2017), have been successfully used in cell biol-
ogy (Gedeon et al., 2018; Xin et al., 2019).

We hope that this contribution will spur more applications, as well
as further the development of these techniques.
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