
Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Electrochemistry
Review Article
Wearable self-powered biosensors
Russell C. Reid1 and Ifana Mahbub2
Abstract

Wearable self-powered biosensors are devices that operate
without an external electronic power source or onboard battery
and that use a biorecognition detection element to relay
sensing information. Such devices are becoming more
widespread following the larger trend of more ubiquitous
wearable devices in general. Self-powering can be a particu-
larly important characteristic in situations where replacing/
recharging a battery is either impossible or impractical. Most
wearable self-powered biosensors rely primarily on enzymatic
reactions to supply the energy required for operation, but there
are also other innovative approaches that combine multiple
signal transduction techniques to simultaneously provide
power and produce a detection signal. Areas of needed
research include developing higher power energy harvesting
techniques and more wearable self-powered biosensor de-
vices that have integrated low-power wireless electronics.
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Introduction
Twenty years ago, wristwatches were nearly the only
wearable devices on the market. Today, an array of
commercial wearable devices exists that are capable of
performing electrocardiography while at the same time
measuring acceleration and global positioning [1].

There are currently roughly 73 million wearable devices
in the United States alone and the outlook is quite
healthy with 18.3% growth projected from 2018 to 2021
[2]. Wearables are here to stay and their impact will
influence the medical field by advancing the trend
www.sciencedirect.com
toward more personalized, patient-controlled health
care.

Now that wearable devices are commonplace, users
desire them to have advanced capabilities. In this
regard, there are two important current thrusts that
provide the backdrop for this mini-review. One current
research push is to remove the need for external elec-
tronic power or rechargeable batteries. Another very
active research area is to augment wearable devices so
they are capable of extracting information from body
fluids, which would provide real-time biological infor-

mation potentially useful for medical diagnostics.
Wearable devices with these two capabilities would
continuously collect biological data for diagnostic and
predictive purposes and be able to perform
maintenance-free month after month. This would have
major impacts on health care, for both high-risk in-
dividuals and the general population. For example, self-
powered maintenance-free remote patient-monitoring
devices could reduce the length of hospital stays and
significantly decrease health care costs across the board.

While the broader wearables landscape includes many
health trackers and other devices that monitor various
biological systems, this review focuses solely on those
that fulfill multiple specific criteria: they are wearable,
self-powered, and are biosensors (see Figure 1). This
subset of wearable electronic devices is an important
class of wearables, but they currently only exist as aca-
demic prototypes with limited functionality and there
are few examples in the academic research literature.
Definitions
For the sake of clarity, it is important to define the three
terms that together describe the devices in this brief
review because scientific and engineering literature is
often inconsistent in how these terms are used when
labeling devices. The three key terms that must be

defined are wearable, self-powered, and biosensor.

Wearable
Wearable refers to a device that is worn on the body as
opposed to one that is implanted. Garments, skin
patches, contact lenses, and mouthguards are wearable
because they are noninvasive or minimally invasive and
can be applied and removed without the need of med-
ical assistance or specialized equipment/tools. Even skin
patches with microneedle arrays can be considered
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Figure 1

Examples of wearable self-powered biosensors. (a) A textile glucose/lactate biosensor powered by a hybrid Lox/Ag2O BFC, adapted from Ref. [20] with
permission from the Royal Society of Chemistry. (b) Ca2+ biosensor powered by a TENG/enzymatic reaction coupling, adapted with permission from
Ref. [30], copyright 2019 American Chemical Society. (c) Lactate, glucose, uric acid, urea biosensor patch powered by ZnO piezoelectricity, adapted with
permission from Ref. [27], copyright 2017 American Chemical Society. (d) A Na+, K+, urea, uric acid, lactate, glucose biosensor patch, adapted from
Ref. [28] with permission from The Royal Society of Chemistry. (e) Lactate biosensor powered by an enzymatic anode and photovoltaic cathode, adapted
from Ref. [22], with permission from the Royal Society of Chemistry. (f) Sweat loss/rate, pH, temperature, chloride, glucose, lactate biosensor that used
colorimetric detection, adapted with permission from Ref. [29], copyright 2019 American Chemical Society. (g) On-ankle lactate biosensor powered by a
TENG (on the heel), adapted from Ref. [18], copyright 2017, with permission from Elsevier.
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wearable devices because the microneedles are small
enough to be pain-free [3] and the user can quickly and
easily apply and remove the patch without a doctor or

special tools. There are excellent reviews that highlight
recent progress in wearable devices, some of which are
cited here [2,4,5].

Self-powered
Self-powered is a term that is used differently
throughout the literature. The original self-powered
biosensor published by Katz et al. [6] was self-
powered in the sense that the detection signal was an
electrical power output that was directly related to an-
alyte (in their case, glucose or lactate) concentration.
Self-powered has also been used to refer to a micro-
needle array that uses capillary action instead of active

pumping to transport biological fluids to the sensor [7].
Still, other devices are labeled self-powered if the
energy required for operation is harvested from ambient
Current Opinion in Electrochemistry 2020, 19:55–62
heat, vibration, light, radio frequency emissions, chem-
icals, etc. The reader is pointed to recent reviews for an
excellent overview of self-powering methods for sensors

[8e10].

Regardless of how the term “self-powered” is used, re-
searchers generally consider their device self-powered as
long as at least one principal device function (i.e. bio-
signal transduction, power/signal conditioning, or data
transmission) occurs without relying on a battery or
wireless power transmission. A truly self-powered
device, under ideal conditions, is capable of full func-
tionality for an unlimited amount of time without any
energy source beyond what is already available in/on the

device or naturally occurs in its surroundings.

Biosensors
Biosensors are analytical devices that use a biological
detection element [10,11], which could be an enzyme,
www.sciencedirect.com
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nucleic acid, tissue, bacteria, organelle, or similar bio-
mimetic component. The biorecognition element in-
teracts with the analyte and transduces the interaction
into a detectable signal (e.g. electrical, optical, etc.).
The bio-prefix, therefore, refers to the recognition
element and not necessarily to the substance that is
being detected or to the living subject being monitored.
Wearable self-powered biosensors
There are many excellent examples of wearable sensors
and wearable biosensors, such as those described in
recent comprehensive reviews [4,5,11]. However, there

are fewer examples of wearable sensors that are self-
powered and even fewer of those are biosensors. Most
of the existing wearable biosensors are powered by
wireless induction, radio frequency transmission, and
lithium batteries.

Available and required energy
There is theoretically more than enough energy in body
heat, motion, bodily fluid chemical bonds, sunlight, etc.,
to power wearable biosensors. For example, a theoretical
analysis by Riemer and Shapiro [12] found that up to 2W
of electrical power could be harvested using a thermo-

electric transducer covering a person as they walk. The
authors’ analysis also concluded that approximately 34W
and 20 Wof harvestable power is available from knee and
ankle movement, respectively (without preventing
normal motion). The theoretical power that can be
harvested from lactate in tears using a lactate/oxygen
biofuel cell during exercise (assuming 10 mM lactate) is
nearly 0.1 mW [13] and, using a similar calculation with
60mM lactate [14], 0.6mW can be extracted from sweat.
Direct normal solar irradiance is approximately
0.02 W cm�2 [15], so a 100-cm2 solar cell with 10% effi-

ciency could produce 200 mW. Of course, these rough
estimates are for illustration only and do not include
many factors that would affect power output in reality.

The amount of power needed to operate a wearable
biosensor varies depending on various factors, such as
the type of biosensor (e.g. electrochemical, colorimetric,
etc.), measurement frequency, and data transmission.
Intermittent sensing and wireless data transmission
commonly require hundreds of mW during peak con-
sumption [16,17]. To supply this power, a wearable self-

powered biosensor may harvest chemical or kinetic
energy and use it to charge a capacitor. Once the
capacitor charges to a certain voltage, it discharges the
energy that is used to take the sensor measurement and/
or wirelessly transmit data [18,19]. Biosensor operation
requires a steady power source but most ambient energy
sources vary in time. For example, light intensity
changes depending on the time of day, cloud cover, and
if the person is inside or outside. Diet and physical ac-
tivity affect the concentration of lactate and glucose in
body fluids and also affects the amount of harvestable
www.sciencedirect.com
biomechanical and biothermal energy. Therefore, an
energy storage component such as a rechargeable bat-
tery [20], capacitor [18,19], or supercapacitor [21] is
essential for practical wearable self-powered biosensors.

Examples of wearable self-powered biosensors
Table 1 contains a summary of recent examples of
wearable self-powered biosensors. Biofuel cells (BFCs)
are commonly used for self-powered wearable biosensors
[20,22e24] because they combine detection and power
supply, simplifying the design. Lactate oxidase and
glucose oxidase (both generally mediated) are common

biorecognition elements. Self-powered BFC sensors
have been screen-printed on socks [20] and integrated
onto a Band-Aid [23] and even on a diaper [25]. ACeDC
signal rectification is not needed for a BFC power supply
because it does not produce an AC signal; however,
power conditioning is still necessary because the voltage
from a single BFC is generally not sufficiently high [26]
and the signal is not constant due to variations in analyte
concentration. Other recent wearable self-powered
biosensors use enzymatic reactions coupled with either
the piezoelectric effect [27], the triboelectric effect

[28] or streaming potential [19]. In these instances,
enzymatic reactions contributed to charge carrier den-
sity, which modified the piezoelectric or triboelectric
voltage or the streaming potential. The voltage change
was correlated to the analyte concentration.

Wearable biosensors powered by triboelectric nano-
generators (TENGs) are becoming increasingly popular
because of their inexpensive, flexible materials, and
simple construction. Chen, Lee, et al. powered their
lactate biosensor using a contact-separation TENG

consisting of polydimethylsiloxane and gelatin [18]. The
TENG charged a capacitor at 1 Hz for 30 s to 0.1 V and
then a single lactate measurement could be taken. In
addition, the TENG provided the energy needed to
supply power to electrochemically deposit metal nano-
particles on carbon fibers during sensor fabrication.

Another very promising approach for wearable bio-
sensors is to altogether remove the need for a power
source by using colorimetric detection zones that
respond to the analyte concentration. Existing smart-
phone imaging tools can be calibrated to determine

analyte concentration based on sensor color. Eliminating
power source dependence has obvious advantages and
could make colorimetric wearable biosensor devices very
widespread, similar to home pregnancy tests. An excel-
lent example of a colorimetric wearable biosensor is an
adhesive sweat patch created by Choi, Bandodkar, et al.
[29], which had various colorimetric microfluidic reser-
voirs that could separately detect sweat loss/rate, pH,
temperature, as well as chloride, glucose, and lactate
concentrations. An ongoing challenge for this device is
making it reusable because the glucose and lactate

sensors were irreversible.
Current Opinion in Electrochemistry 2020, 19:55–62
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Table 1

Recent examples of wearable self-powered biosensors.

What was detected Biorecognition element(s) Where worn Power source Comments Ref.

Glucose or lactate in sweat GOx or LOx In a sock on foot Glucose or lactate BFC The first textile BFC biosensor.
Wireless data transmission was
battery powered.

[20]

Lactate in sweat LOx Forehead LOx anode/photovoltaic cathode The photoelectric BFC could
operate on lactate or light
exposure.

[22]

Lactate in artificial sweat LOx Sensor on ankle and TENG on heel TENG The TENG charged a capacitor
sufficiently for a lactate
measurement every 30 s.

[18]

Lactate, glucose, uric acid, urea in
sweat

LOx, GOx, uricase, urease Forehead ZnO piezoelectric effect The enzymatic reaction contributed
charge carriers to the ZnO, which
shielded the piezo effect when
strained.

[27]

Glucose in sweat GOx Arm Glucose/O2 BFC Paper-based sensor defined with a
wax printer, integrated onto a
Band-Aid

[23]

Na+, K+, urea, uric acid, lactate,
glucose in sweat

Urease, LOx, GOx, uricase, b-
galactosidase, pyruvate kinase

Elbow Polyaniline-PDMS TENG coupled
to enzymatic reactions

Elbow bending action provided the
pumping force to cycle sweat
through the device.

[28]

Sweat loss/rate, pH, temperature;
chloride, glucose, lactate in sweat

GOx, LOx Forearm, forehead, torso, armpit None (colorimetric) Temperature, chloride and pH
sensors were reversible but the
glucose and lactate sensors
were not.

[29]

Lactate in sweat LOx Forehead Anodic enzymatic reaction Power came from the combination
of the enzymatic reaction and the
streaming potential due to
evaporation. Measurements
could be transmitted once an
hour.

[19]

Glucose in artificial urine GOx On a diaper Glucose/O2 BFC The device hasn’t been field tested
and didn’t have wireless
capability.

[25]

Ca2+ in sweat Nicotinamide adenine dinucleotide
phosphate oxidase 5 (NOX5) and
NADPH

Knee Polyaniline-PDMS TENG coupled
to enzymatic reactions

The device was connected to a
breadboard wireless transmitter
for demonstrating future wireless
capability.

[30]

PDMS, polydimethylsiloxane.

58
B
io
electro

ch
em

istry

C
u
rren

t
O
p
in
io
n
in

E
lectro

ch
em

istry
2020,

19:55
–
62

w
w
w
.sciencedirect.com

www.sciencedirect.com/science/journal/24519103


Self-powered biosensors Reid and Mahbub 59
Key areas for device development
While the number of biosensor examples that are both

wearable and self-powered is still small, there are many
exciting recent examples of research that advance the
supporting technology needed for future wearable self-
powered biosensors.

Compliant materials
Wearable devices must bedto one degree or another,
depending on their functiondflexible enough to
conform to the body to obtain accurate biological in-
formation. This is especially true for wearable biosensors
because their usefulness requires a continuous supply of
uncontaminated, unmodified biological fluid samples,
which makes the deviceebody interface a critical

aspect. For skin-worn patch biosensors, a continuous
supply of fresh sweat samples has been accomplished
using microfluidic channels that transport fluid through
in a thin substrate by capillary action [29] or using
iontophoretic delivery of a chemical sweat stimulator
[31]. However, for oral [32] or ocular [33] wearable
biosensors, which are somewhat continuously bathed in
body fluid, the interface may not be as crucial as it is for
sweat sensors.

Wearable biosensors must also have high mechanical

stability and maintain electrical conductivity after many
deformation cycles. A recent wirelessly powered contact
lens glucose biosensor was reported that contained all its
sensor and wireless components within the lens [33].
Transparent thin-film islands and silver nanofibers pro-
vided support and electrical wiring. A recent self-
powered glucose sensor printed electronic circuits on
nanocellulose membranes that proved to be very flexible
and easily adhered to other substrates [34]. Another
example is a textile BFC-supercapacitor that could
harvest energy from sweat using a lactate/Ag2O hybrid

BFC to charge a MnO2-CNT supercapacitor [35].
37 min of exercise was sufficient to charge the super-
capacitor to 0.4 V. The device maintained 86% of its
power output after 100 cycles of 20% strain. These ex-
amples illustrate the two most commonly used sub-
strates for wearable biosensors: thin polymer films and
textiles. Each of these has its advantages [36]; e.g.,
polymers can adhere and conform more closely with the
skin, eye, mouth, etc., and allow easier electrode
patterning, but textiles are more breathable, can cover
larger areas, and have more mature production
techniques.

Energy harvesting and storage
Portable power sources have for many years struggled to
keep up with device requirements. New and improved
energy transduction mechanisms are being pursued so
that the power supply does not dominate device volume.
This is especially important for wearables. One inter-
esting example of a novel energy harvestingmethodwas a
www.sciencedirect.com
self-powered polyvinylidene fluorideebased wearable
respiration monitoring sensor that harnessed the
required energy from exhaled air [37]. In this system, the
polyvinylidene fluorideebased piezoelectric transducer
converted nasal airflow pressure into an electrical signal,
which was utilized to power up read-out electronics. The
generated charge/current integrated over a capacitance
created the AC voltage signal with a frequency ranging

from 0.1 Hz to 1Hz, depending on the respiration rate. A
custom full-wave rectifier was able to achieve 52.2%
power conversion efficiency and a voltage conversion
efficiency of 98.7%, which was comparable with the prior
published works with a much lower input power [38].

The form factor and volumetric power density of power
sources can be improved through multifunctional de-
signs that integrate power sources and structure such as
textile-based solar cells [39], thermoelectric generators
[40], TENGs [41], piezoelectric generators [42], and

biofuel cells [20] or that combine multiple energy
harvesting techniques. For example, a recent composite
textile consisting of photovoltaic and TENG fibers was
capable of simultaneously harvesting solar and me-
chanical energy [43]. Another example of multi-
functionality are biosupercapacitors, which combine
energy-harvesting BFCs and pseudocapacitor energy
storage into one material [21,44,45].

Energy-harvesting circuit design and low-power
design schemes
The energy-harvesting circuitry of ambient sources
typically includes AC to DC rectification, a voltage
regulation circuit, and a charge storing elements, such as

a battery or supercapacitor, to store the generated power
while dissipating the minimum possible current. The
objectives of the power management circuit are to
maximize harvested power and minimize energy dissi-
pation. Moreover, the power management circuitry
needs to adapt to a varying input excitation when no
stored energy is available, thus requiring some initial
startup mechanisms [46]. Tabesh et al. in Ref. [47]
presented some of the requirements of these circuit
designs in terms of efficiency, stand-alone operation,
circuit complexity, and adaptivity. Performance metrics

such as the minimum input power level or the ability of
the circuit to achieve the maximum output power need
to be considered. Another challenge is developing an
efficient rectifier and DCeDC converter topologies that
can start up with input voltages of hundreds of millivolts
[48]. In addition, the challenges associated with
harvesting energy from complex, nonsinusoidal vibra-
tions or kinetic movements with varying magnitude and
frequency need to be addressed to utilize kinetic/vi-
bration energy as an alternative power source.

Low-power design schemes are very important for
future wearable biosensors that use ambient energy
Current Opinion in Electrochemistry 2020, 19:55–62
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sources or natural movement. Wireless radio communi-
cation poses the most significant energy consumption
problem necessitating a design trade-off/optimization
between the communication and computation capa-
bility of the sensor. Because the transmitter usually
consumes most of the power in a sensor system, any
reduction in the power consumption of the transmitter
block is expected to decrease the overall power con-

sumption by tenfold [49]. One of the approaches for
reducing the average power consumption is to duty-
cycle the radio so that the transmitter is active only
for a short period dissipating only the leakage power. An
example is impulse-radio ultrawideband architecture
that converts the baseband data into an impulse signal
to be transmitted wirelessly to a remote receiver [49e
53]. In these radios, it is necessary to make sure the
leakage power or the “off-state” power is significantly
lower than the active power to reduce the overall power
consumption.

As the power generated by an energy-harvesting system
(e.g. electromagnetic, thermoelectric, piezoelectric or
electrostatic) is very low, to generate a useable DC
voltage from the harvested energy, the design of a
voltage-boosting rectifier is important. One of the
downsides of the existing diode-based rectifier circuits
is that they require at least 500e700 mV of input
voltage. Zero-turn on voltage transistors could be used
instead but they require expensive fabrication processes
[54]. Recent work in this area includes multistage

voltage-boosting rectifiers, voltage doublers, voltage
multipliers, and DCeDC converters that used standard
CMOS processes [55e60]. To rectify the current
generated by the transducer, typically full-bridge
rectifiers are used because of their simplistic design.
However, the low conversion efficiency of full-bridge
rectifiers limits the output power, especially when the
input signal is low in amplitude [61,62].
Conclusions
Although there are relatively few examples of wearable
self-powered biosensors, the pace of progress indicates
that we will soon see many more examples that are so-
phisticated and fully functional, including those that are
capable of wireless data transfer. However, market
acceptance of these devices completely hinges on
demonstrating that they provide reliable sensing over

extended periods (consecutive days or possibly even
many months). There are a number of challenges
impeding accurate long-term self-powered operation,
such as low power conversion efficiency, electrode
biofouling, biorecognition element stability, and body
fluid transport through the device [11]. Once these
challenges are addressed, motivation for creating self-
powered biosensors will increase dramatically. Until
then, it will be difficult for wearable self-powered bio-
sensors to compete against wearable biosensors that use
Current Opinion in Electrochemistry 2020, 19:55–62
well-established power sources, such as rechargeable
batteries and wireless power transfer.
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