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Abstract
Minimizing a convex risk function is the main step in many basic learning algorithms. We study
protocols for convex optimization which provably leak very little about the individual data points
that constitute the loss function. Specifically, we consider differentially private algorithms that
operate in the local model, where each data record is stored on a separate user device and ran-
domization is performed locally by those devices. We give new protocols for noninteractive LDP
convex optimization—i.e., protocols that require only a single randomized report from each user to
an untrusted aggregator.

We study our algorithms’ performance with respect to expected loss—either over the data set
at hand (empirical risk) or a larger population from which our data set is assumed to be drawn. Our
error bounds depend on the form of individuals’ contribution to the expected loss. For the case
of generalized linear losses (such as hinge and logistic losses), we give an LDP algorithm whose
sample complexity is only linear in the dimensionality p and quasipolynomial in other terms (the
privacy parameters ϵ and δ, and the desired excess risk α). This is the first algorithm for nonsmooth
losses with sub-exponential dependence on p.

For the Euclidean median problem, where the loss is given by the Euclidean distance to a given
data point, we give a protocol whose sample complexity grows quasipolynomially in p. This is the
first protocol with sub-exponential dependence on p for a loss that is not a generalized linear loss .

Our result for the hinge loss is based on a technique, dubbed polynomial of inner product
approximation, which may be applicable to other problems. Our results for generalized linear
losses and the Euclidean median are based on new reductions to the case of hinge loss. 1
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1. Extended Abstract. Full version appears at https://arxiv.org/abs/1812.06825
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Introduction

In this paper, we study differentially private convex risk minimization via noninteractive, locally
differentially private (LDP) protocols.

Differential privacy in the local model (??). Consider n players with each holding a private data
record xi in a data universe D, and a server coordinating the protocol. An LDP protocol executes
for some number T of rounds. In each round, the server sends a message, which is also called a
query, to a subset of the players requesting them to run a particular algorithm. Based on the query,
each player i in the subset selects an algorithm Qi, runs it on her own data, and sends the output
back to the server. For simplicity, we only consider protocols where each player participates in only
one subset.

Definition 1 An algorithm Q is (ϵ, δ)-locally differentially private (LDP) if for all pairs x, x′ ∈ D,
and for all events E in the output space of Q, we have

Pr[Q(x) ∈ E] ≤ eϵPr[Q(x′) ∈ E] + δ.

A multi-player protocol is (ϵ, δ)-LDP if for all players i, for all possible inputs and behaviors of the
server (and the other players), the transcript of player i’s interaction with the server is (ϵ, δ)-LDP.
If T = 1, we say that the protocol is noninteractive.

? gave a separation between interactive and noninteractive protocols. Specifically, they showed that
there is a concept class, similarity to parity, which can be efficiently learned by interactive algo-
rithms but which requires sample size exponential in the dimension to be learned by noninteractive
local algorithms.

Convex risk minimization Given a convex, closed and bounded constraint set C ⊆ Rp, a data
universe D, and a loss function ℓ : C × D ↦→ R, a dataset D = {(x1, y1), (x2, y2), · · · , (xn, yn)} ∈
Dn with data records {xi}ni=1 ⊂ Rp and labels (responses) {yi}ni=1 ⊂ R defines an empirical risk
function: L(w;D) = 1

n

∑n
i=1 ℓ(w;xi, yi) (note that in some settings, such as mean estimation,

there may not be separate labels). When the inputs are drawn i.i.d from an unknown underlying
distribution P on D, we can also define the population risk function: LP(w) = ED∼Pn [ℓ(w;D)].

Thus, we have the following two types of excess risk measured at a particular output wpriv: The
empirical risk,

ErrD(wpriv) = L(wpriv;D)−min
w∈C

L(w;D) ,

and the population risk,
ErrP(wpriv) = LP(wpriv)−min

w∈C
LP(w).

The problem considered in this paper is to design noninteractive LDP protocols that minimize
the empirical and/or population excess risks. Alternatively, we can express our goal this problem
in terms of sample complexity: find the smallest n for which we can design protocols that achieve
error at most α (in the worst case over data sets, or over generating distributions, depending on how
we measure risk).

? first considered worst-case error bounds for LDP convex optimization. For 1-Lipchitz convex
losses over a bounded constraint set, they gave a highly interactive SGD-based protocol with sample
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complexity n = O(p/ϵ2α2); moreover, they showed that no LDP protocol which interacts with each
player only once can achieve asymptotically better sample complexity, even for linear losses.

? considered the round complexity of LDP protocols for convex optimization. They observed
that known methods perform poorly when constrained to be run noninteractively. They gave new
protocols that improved on the state of the art but nevertheless required sample complexity expo-
nential in p. Specifically, they showed:

Theorem 2 (?) Under the assumptions above, there is a noninteractive ϵ-LDP algorithm that for
all distribution P on D, with probability 1 − β, returns a solution with population error at most α
as long as n = Õ(cp log(1/β)/ϵ2αp+1), where c is an absolute constant. A similar result holds for
empirical risk ErrD.

Furthermore, lower bounds on the parallel query complexity of stochastic optimization (e.g., ??)
mean that, for natural classes of LDP optimization protocols (based on measuring noisy gradients),
the exponential dependence of the sample size on the dimension p (in the terms of α−(p+1) and cp)
is, in general, unavoidable (?).

This situation is challenging: when the dimensionality p is high, the sample complexity (at least
α−(p+1)) is enormous even for a very modest target error. However, several results have already
shown that for some specific loss functions, the exponential dependency on the dimensionality can
be avoided. For example, ? show that, in the case of linear regression, there is a noninteractive
(ϵ, δ)-LDP algorithm2 with expected empirical error α and sample complexity n = Õ(pϵ−2α−2).
This indicates that there is a gap between the general case and what is achievable for some specific,
commonly used loss functions.

Our Contributions The results above motivate the following basic question:

Are there natural conditions on the loss function which allow for noninteractive ϵ-LDP
algorithms with sample complexity growing sub-exponentially (ideally, polynomially or
even linearly) on the dimensionality p?

To answer this question, we first consider the case of hinge loss functions, which are “plus
functions” of an inner product: ℓ(w;x, y) = [y⟨w, x⟩]+ where [a]+ = max{0, a}. Hinge loss
arises, for example, when fitting support vector machines. We construct our noninteractive LDP
algorithm by using Chebyshev polynomials to approximate the loss’s derivative after smoothing.
Players randomize their inputs by randomizing the coefficients of a polynomial approximation. The
aggregator uses the noisy reports to provide biased gradient estimates when running Stochastic
Inexact Gradient Descent (?).

We show that a variant of the same algorithm can be applied to convex, 1-Lipschitz generalized
linear loss function, any loss function where each records’s contribution has the form ℓ(w;x, y) =
f(yi⟨w, xi⟩) for some 1-Lipschitz convex function f .

Our algorithm has sample complexity that depends only linearly, instead of exponentially, on
the dimensionality p and quasipolynomially on α, ϵ and log(1/δ). The protocol exploits the fact
that any 1-dimensional 1-Lipschitz convex function can be expressed as a convex combination of
linear functions and hinge loss functions. We state its properties succinctly:

2. Note that these two results are for noninteractive (ϵ, δ)-LDP, a variant of ϵ-LDP. We omit quasipolynomial terms
related to log(1/δ) in this paper.
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Theorem 3 For any ϵ, δ, α ∈ (0, 1/2), there is a noninteractive local (ϵ, δ)-differentially private
algorithm that, to achieve expected empirical (resp., population) error α in the worst case over
data sets (resp., distributions) and 1-Lipschitz, convex generalized linear loss functions, requires
sample size n = Õ(p · dd

ϵd
) (where the Õ notation hides factors quasipolynomial in log(1/δ)), where

d = c log(1/α) for some constant c > 0.

We also apply our method to other loss functions. In particular, we show that in the Euclidean
median problem, where the loss function is the ℓ2 norm L(w;D) = 1

2n

∑n
i=1 ∥w−xi∥2, the sample

complexity is only quasipolynomial in p, α, δ, ϵ. This is the first noninteractive LDP protocol with
sub-exponential dependence on p for a natural loss function that is not a generalized linear loss.
Our result is based on the observation that the ℓ2 norm function can be approximated by a convex
combination of appropriately-scaled hinge losses. We obtain:

Theorem 4 For any ϵ, δ, α ∈ (0, 1/2), there is a noninteractive local (ϵ, δ)-differentially private
algorithm that, to achieve expected empirical (resp., population) error α for the Euclidean median
problem in the worst case over data sets (resp., distributions), requires sample size n = Õ(d

d

ϵd
)

where d = c log(C/α) for some constant c > 0, C =
4
√
πpΓ( p−1

2
+1)

2Γ( p
2
+1)

= O(
√
p), and Õ(·) hides

factors quasipolynomial in log(1/δ).

Related Work

Differentially private convex optimization, first formulated by ? and ?, has been the focus of an
active line of work for the past decade. We discuss here only those results which are related to the
local model.

? initiated the study of learning under local differential privacy. Specifically, they showed a
general equivalence between learning in the local model and learning in the statistical query model.
? gave the first lower bounds for the accuracy of LDP protocols, for the special case of counting
queries (equivalently, binomial parameter estimation). The general problem of LDP convex risk
minimization was first studied by ?, which provided tight upper and lower bounds for a range of
settings. Subsequent work considered a range of statistical problems in the LDP setting, providing
upper and lower bounds—we omit a complete list here.

? initiated the study of the round complexity of LDP convex optimization, connecting it to the
parallel complexity of (nonprivate) stochastic optimization.

Convex risk minimization in the noninteractive LDP received considerable recent attention
(???) (see Table 1 for details). ? first studied the problem with general convex loss functions
and showed that the exponential dependence on the dimensionality is unavoidable for a class of
noninteractive algorithms. ? demonstrated that such an exponential dependence in the term of α
is avoidable if the loss function is smooth enough (i.e., (∞, T )-smooth). Their result even holds
for non-convex loss functions. However, there is still another term cp

2
in the sample complexity.

In this paper, we investigate the conditions which allow us to avoid this issue and obtain sample
complexity which is linear or quasipolynomial in p.

The work most related to ours is that of (?), which also considered some specific loss functions
in high dimensions, such as sparse linear regression and kernel ridge regression. They first propose
a method based on Chebyshev polynomial approximation to the gradient function. Their idea is a
key ingredient in our algorithms. There are still several differences. First, their analysis requires
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Methods Sample Complexity Assumption on the Loss Function
(?, Claim 4) Õ(4pα−(p+2)ϵ−2) 1-Lipschitz

(?, Theorem 10) Õ(2pα−(p+1)ϵ−2) 1-Lipschitz and Convex

? Θ(pϵ−2α−2) Linear Regression

? Õ
(
(cp

1
4 )pα−(2+ p

2
)ϵ−2

)
(8, T )-smooth

? Õ(4p(p+1)D2
pϵ

−2α−4) (∞, T )-smooth

? p ·
(
1
α

)O(log log(1/α)+log(1/ϵ)) Smooth Generalized Linear

This Paper p ·
(
1
α

)O(log log(1/α)+log(1/ϵ)) 1-Lipschitz Convex Generalized Linear

This Paper
(√

p
α

)O(log log(
√
p/α)+log(1/ϵ))

Euclidean Median

Table 1: Comparisons on the sample complexities for achieving error α in the empirical risk, where
c is a constant. We assume that ∥xi∥2, ∥yi∥ ≤ 1 for every i ∈ [n] and the constraint set
∥C∥2 ≤ 1. Asymptotic statements assume ϵ, δ, α ∈ (0, 1/2) and ignore quasipolynomial
dependencies on log(1/δ).

additional assumptions on the loss function, such as smoothness and boundedness of higher order
derivatives, which are not satisfied by the hinge loss. In contrast, our approach applies to any convex,
1-Lipschitz generalized linear loss. Second, we introduce a novel argument to ”lift” our hinge loss
algorithms to more general linear losses and the Euclidean median.

We defer proofs and more detailed descriptions to the online full version.
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