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Assessment of Human Dynamic Gait Stability
with a Lower Extremity Assistive Device
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Abstract— This paper focuses on assessing gait stabil-
ity by metrics derived from dynamical systems theory to
understand the influence of unilateral robot assistance on
the human walking pattern. A motorized assistive robot is
applied to the right knee joint to provide stance support.
The metrics related to global stability (the maximum Flo-
quet multiplier, max FM), local stability ( short-term and
long-term divergence exponents, \s and ), and variability
(median absolute deviation, MAD) are considered. These
metrics are derived for bilateral hip, knee, and ankle joint
angles. Additionally, a biomechanical metric, the minimum
margin of stability is assessed. Experiments are conducted
on 11 healthy participants with different robot controllers.
The max FM and ) yield statistically significant results,
showing that the unassisted (left) leg is more stable in
right knee assistance conditions when compared to the
normal walking condition due to inter-limb coordination.
Moreover, MAD and )\, show that the variability and chaotic
order of walking pattern during assistance are lower than
those of normal walking. The proposed control strategy
(automatic impedance tuning, AIT) improves local and or-
bital gait stability compared to existing controllers such
as finite-state machine (FSM). The assessment of dynamic
gait stability presented in this paper provides insights for
further improving control strategies of assistive robots to
help a user reach improved gait stability while maintaining
appropriate variability.

Index Terms—Dynamic stability, Nonlinear dynamics,
Assistive devices, Rehabilitation, Biomechanics

[. INTRODUCTION

A survey from the United Nations shows that people older
than 60 are 11.5% of the global population in 2012, and this
number will be nearly doubled by 2050 [1]. Aging is reflected
by reduced physical capabilities due to physiological changes.
The reduced physical performance due to muscle deterioration,
loss of motor units, and reduced neuromuscular activation may
lead to gait disorders in senior adults [2]. Similar problems are
prevalent in patients with neurological diseases such as stroke
and spinal cord injury. Current research mainly focuses on de-
veloping wearable lower-extremity assistive devices (LEADs)
that help the users improve their walking performance and
restore impaired motor control [3]-[5].

One major concern for senior citizens is falling during
walking [6]. In the aforementioned examples for LEADs, the
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main focus is put on providing assistance to improve walking
performance. Muscle activity and metabolic cost are measured
to evaluate the level of assistance provided by LEAD to the
human [4]. However, there has not been enough assessment
of dynamic gait stability for the combined human-LEAD
system [4], [5], [7]. The LEAD as an external device may
induce perturbations to the human body and may influence
the inherent stability of the human. Therefore, it is important
to introduce stability metrics and assess the overall dynamic
gait stability of the human-LEAD system.

A. Chaos and Optimal Variability

Human gait is not strictly periodic. Any variations from
the periodic pattern were traditionally considered as noise in
the neuromuscular system [8]. However, later investigations
showed that these variations follow a chaotic structure [9]. To
understand gait variability, a theoretical model (predictability
versus complexity) was proposed to explain movement vari-
ability as it was related to motor learning and health [10].
The model is based on the idea that mature motor skills are
associated with optimal movement variability that reflects the
adaptability of the underlying control system. Practically at the
optimal state of movement variability (chaotic block shown
in Fig. 1), the biological system is in a healthy state and is
characterized by exhibiting chaotic temporal variations. This
state lies in the intermediate region between excessive order
(i.e., maximum predictability) and excessive disorder (i.e., no
predictability). Thus this variability has a deterministic struc-
ture and reflects the adaptability of the system. This model
provides an explanation for the neuromuscular control of the
human gait, which implies that the stride to stride variability
follows the chaotic structure, i.e., optimal variability. This
system has an ergodic property, meaning that the trajectories
come close to a fixed point’s neighborhood but never converge
to the specific point. Therefore, the stability metrics related to
chaos and nonlinear dynamics will be useful for assessing the
human gait stability.

B. Related Work on Stability Metrics

Although many gait stability criteria have been proposed,
there is still no commonly accepted method to assess locomo-
tion stability. Most of these metrics reflect the ability of the
system to respond to large perturbations (such that the system
states stay in a safe range), and how quickly the system can
respond to perturbations [11]. Nevertheless, these measures
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Fig. 1. Theoretical model for optimal variability illustrated using random,
chaotic, and periodic signals. Behavior in terms of variability should be
viewed in a continuum as being more or less predictable (on the x-axis)
and as being more or less complex (on the y-axis).

can still correlate to the likelihood of falls as they quantify
how a system responds to perturbations [11].

There are metrics derived from dynamical systems theory
for gait stability assessment. The computation of these metrics
is based on the time series data of kinematics and/or gait
parameters. Dingwell et al. used the maximum Lyapunov
exponent (max LE, )\) to quantify gait stability [12], by
calculating the average logarithmic rate of divergence of the
system after a small perturbation. For chaotic systems, A is
always positive, with less indicating less instability. In many
gait studies, the max LE is defined over two regions, 0 to
1 stride (labeled as A\g) and 4 to 10 strides (labeled as A;).
Lockhart and Liu reported a larger A4 in fall-prone elderly
subjects than healthy elderly subjects [13]. McAndrew et al.
reported that gait destabilization, by means of support surface
perturbations or visual scene perturbations, was reflected in
As but probably not in A\; [14]. In summary, these findings
obtained in previous experimental studies suggest s as a valid
indicator to estimate the probability of falling.

Another measure derived from the dynamic systems theory
is orbital stability [15], which is defined by computing the
maximum Floquet multiplier (max FM) to quantify the rate of
convergence or divergence of continuous gait variables (e.g.,
segmental motions and joint angles) towards a limit cycle
(e.g., the nominal gait cycle). The system with a max FM
value less than 1 is considered stable. Granata and Lockhart
reported that the max FM was larger in a group of four
fall-prone elderly subjects who had a self-reported history
of falling than four healthy elderly subjects [16]. In [14],
the max FM showed higher values (less orbital stability)
in visual perturbation experiments which were designed for
gait destabilization. However, in [17], the max FM did not
correspond to the probability of falling. The concept of orbital
stability showed mixed results in concerning the probability of
falling. Some used the variability of certain parameters over
strides as a measure to assess stability during walking. The
median absolute deviation (MAD) was proposed as a measure
for gait variability [18].

In addition to the measures from the dynamical systems
theory, biomechanical measures were commonly used to assess

stability during gait. The extrapolated center of mass (margin
of stability) was derived for subjects walking on destabilized
environments using platform oscillations and visual pertur-
bations [19]. Others used the concept of stabilizing and
destabilizing forces to assess gait stability [20].

C. Motivation and Contribution

There is limited literature that focuses on assessing the
impact of exoskeleton design and control on gait variability
and gait stability. In [21], FM and \; metrics were used
to evaluate the influence of an ankle exoskeleton on gait
variability. In another study, an increased max FM of ankle
joint kinematics with exoskeleton assistance was reported,
compared to walking without exoskeleton [22]. In this paper,
the focus is put on the influence of a knee assistive device
(KAD) on the inherent dynamic gait stability of the user, with
different stability metrics (including biomechanical measures)
and control approaches for the KAD.

The goal of this study is to bring insights by using stability
metrics for further improving the dynamic stability of walk-
ing with LEADs. Five walking conditions are considered to
demonstrate the impacts of design and different control strate-
gies of KAD. The walking conditions include three that are
non-assistive (normal, passive, and zero impedance, ZI) and
two that are assistive (finite state machine, FSM, and automatic
impedance tuning, AIT). The passive and ZI modes reveal
the impacts of friction and inertia of KAD. FSM is a widely
adopted strategy to modulate the impedance parameters in
the robot controller based on gait phases [23], [24]. The AIT
approach was developed in our previous work [25]. It adopts
the same virtual impedance for each gait phase as the FSM,
but the impedance values are smoothed during the transition
between two gait phases. In this study, 11 participants (8 male,
3 female) are recruited and their walking stability is analyzed
under the five conditions. The contributions of the paper are
as follows:

1) Different stability metrics are assessed to describe the in-
fluence of robot assistance on the dynamic gait stability of
the user. Local and orbital stability, kinematic variability,
and margin of stability are used as the metrics.

2) The effects of unilateral assistance (applied to the right
knee) on intra, and inter lower-limb joints are demon-
strated using max FM and A;. We observe that the
unassisted (left) leg is more stable when the right knee is
assisted, compared to the normal walking condition due
to inter-limb coordination.

3) Performance of our proposed control strategy (AIT) is
compared with FSM using stability metrics. AIT results
in improved orbital and local stability than FSM, which
can be attributed to the smooth transition of robot assis-
tance between gait phases.

The aforementioned contributions will shed light on how
wearable robots alter the gait stability of the user. Firstly,
this study compares different stability metrics and provides
quantitative tools to evaluate the influence of wearable robots
on the gait stability and variability of the users. This will help
physical therapists design personalized training strategies for a
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given patient and reduce falls during robot-aided gait training.
Secondly, this study shows that it is possible to assess the con-
trol strategies of wearable robots using gait stability metrics.
Thus, gait stability assessment will lead to improved control
strategies of the wearable robot and more stable human-robot
systems. Finally, the inter-limb coordination demonstrated in
this paper will encourage more studies to understand the
mechanism and design more effective training protocols with
assistive robots.

The rest of the paper is organized as follows: Section
Il gives details about the hardware and protocol used in
the experiments. Section III introduces the stability metrics
derived from dynamical systems theory and biomechanics.
Section IV discusses the results of stability metrics for all
the experimental conditions. Section V discusses the results
and the effects of unilateral assistance on both legs, as well as
some limitations of the study. Section VI concludes this paper
and presents some future work.

[I. METHODS
A. Hardware Design

The KAD design targets users with a unilateral impairment
which affects their knee functions. The KAD is an exoskeleton
with a compact rotary series elastic actuator (c(RSEA) which
weights around 1.57 is designed to assist the right knee. Maxon
RE40, a 150W DC Motor is used to power the KAD. With a
combined gear set reduction ratio of 63.6:1, the end effector
can reach a maximum angular velocity of 120 rpm and the
KAD can provide a maximum continuous assistive torque of
11.26 N-m. More details on the hardware and control structure
of the KAD are given in [25].

The smart shoes are developed to measure ground contact
forces (GCFs) at four points: heel, first metatarsal joint (Meta
1), fourth metatarsal joint (Meta 4) and toe. Silicone tubes are
wound into air bladders and connected to barometric pressure
sensors. The sampling rate of the smart shoes is set to 100 Hz
and a model-based filter is implemented to compensate for
hysteresis and estimate GCFs from pressure sensor readings
in real time [26]. Gait phases are detected using a fuzzy logic
based algorithm developed in [27].

B. Control Strategies

As mentioned in Section I-C, the experiments consist of
five sessions with different control strategies: normal walking,
passive, ZI, FSM, and AIT. In the passive case, the KAD is
not powered and was driven by the user. In the ZI case, the
KAD is powered but the virtual impedance parameters are
set to zero, meaning that the motor just compensates for its
own inertia by actively tracking the knee angle of the user
without providing assistance. In FSM and AIT conditions, the
KAD provides assistive torque to the right knee. The virtual
impedance parameters for FSM and AIT conditions are chosen
according to the identified quasi-stiffness and damping for
each participant. A spring-damper model is considered for
modeling the human knee torque with respect to the knee angle
and angular velocity [28]:

TABLE |
THE DETAILS OF HEALTHY PARTICIPANTS VOLUNTEERED FOR THE
EXPERIMENTS. R - RIGHT AND L - LEFT.

ID Gender Age Height (cm) Weight (kg) Dominant Leg (R/L)

1 Male 23 180 60 R
2  Male 20 175 94 R
3 Male 25 178 69 R
4 Male 22 182 62 R
5 Male 24 173 62 R
6 Male 26 172 67 R
7 Male 29 165 70 R
8 Male 20 175 79 R
9 Female 27 154 54 R
10 Female 23 152 62 R
11 Female 28 160 65 R
Th(t) =k - (0n(t) — o) + b On(t), (1)

where Tj,(t), 05,(t), and 0),(t) are the human knee torque,
angle, and angular velocity, respectively. k, b, and 6, represent
the knee stiffness, damping, and setpoint, respectively. A
gait cycle can be divided into two main phases: stance (ST)
and swing (SW). The ST can be further divided into three
subphases: stance flexion (SF), mid stance (MST) and terminal
stance (TST). In this paper, k, b, and 6, are identified for
three phases SF, MST, and TST using a least squares method
with T}, (t) as the output and 6y, (t), 0 (t) as the inputs. For
the FSM case, the virtual impedance for each of the gait
phases is predefined as 10% of the quasi-stiffness and damping
calculated for each participant. The assistive torque is set
based on an impedance control law with the same structure
as (1), but the £ and b are the virtual impedance of the
robot in this case. In order to avoid sudden jumps in the
robot impedance during transitions between two phases, an
AIT controller was proposed [25]. In the AIT controller, the
same robot impedance value for each gait phase is used as the
FSM case, but the impedance is smoothed with a probabilistic
inference of gait phases using a Gaussian mixture model
(GMM).

C. Experimental Protocol

The experiments for this paper were set up in the mo-
tion capture laboratory equipped with 10 high-speed infrared
cameras (Vicon Motion Systems Ltd., Oxford, England) and
an instrumented treadmill (Bertec Corp., Ohio) at Arizona
State University (ASU). The ASU Institutional Review Board
(IRB) reviewed and approved this study (STUDY00007601).
Details of the eleven healthy participants (8 male and 3
female) volunteered in this experiment are given in Table I. All
the participants are right leg dominant because of our KAD
design. The slope and speed of the treadmill for the walking
experiments were set to O degrees and 0.8 m/s, respectively.
Each session lasted for three minutes. The participants relaxed
for 15 minutes before starting the next session. All the sessions
for one participant were completed on a single day, and the
order of these sessions was randomized. The experiment setup
for the participant walking on the treadmill is shown in Fig. 2.
Each participant wore 16 reflective markers, KAD, and smart
shoes. The Vicon cameras captured marker positions at a frame
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state space will exhibit same dynamical properties as the
original dynamical system. Thus, the results of local and
orbital stability analyses will be robust to moderate changes

10 Vicon in those parameters.
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Fig. 2. Experiment setup: participant walking on the instrumented
treadmill wearing reflective markers, smart shoes, and KAD. 0
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A. Measures from Dynamical Systems Theory

There are two types of stability: global or orbital stability,
and local stability. Global stability refers to the ability of a
system to accommodate finite perturbations. Whereas, local
stability refers to the sensitivity of the system to infinitesimally
small perturbations. In this section, three measures derived
from dynamical systems theory are described, namely the
max LE, max FM, and MAD. These measures are generally
computed from a steady-state walking pattern without external
perturbations. These metrics can be used to assess gait stability
when there are perturbations [14], [29].

1) State space reconstruction: To study the dynamics be-
hind the gait kinematics, we need to construct a corresponding
state space. For mechanical systems, the states are usually the
positions and velocities of the system components. However,
human gait is a complex dynamic system with strong non-
linearities and uncertainties. Therefore we need to reconstruct
the state space for each time series from the original data and
time-delayed copies using standard techniques given in [30]

s(t) = [x(t), z(t +7), 2t +27), ..., 2(t + (dg — 1)7)]T, (2)

where s(t) € R, and z(t) € R is the original one-
dimensional data. 7 and dg are the time delay and embedding
dimension, respectively. The time delays are calculated from
the first minimum of the average mutual information (AMI)
function and the embedding dimensions are determined from
global false nearest neighbors (GFNN) analysis [30]. An
example for the computation of dr and 7 is shown in Figs.
3 (b) and (c). In Fig. 3(b), the FNN (%) does not change for
dg > 5. This implies the optimal dg for time series signal ()
is 5. The first minimum in the plot between AMI and 7 occurs
at 35th sample, which implies the optimal time delay 7 should
be 35. It should be noted that as long as 7 is reasonably close to
the optimal value and d is sufficiently large, the reconstructed

Fig. 8. The representation of FM and X calculation from the kinematic
time series data: (a) sample knee joint time series data, (b-c), the
FNNs and AMI plots resulting from the time series, to calculate the
proper embedding dimension (dg) and time delay (7), (d) the three
dimensional view of the reconstructed state space from the time delayed
copies of the time series data (the original state space is 5 dimensional),
(e) representation of a Poincaré section, transecting the state space
perpendicular to the system trajectory. The Floquet multipliers quantify
how the distance between system states at consecutive strides, Sy and
Sk+1, evolves with regard to the fixed point, §*, (f) divergence of the
distance between neighbouring trajectories which will be reflected by A
values.

2) Local stability: The local stability measure provides a di-
rect way to analyze the chaotic order of the system using finite-
time divergence exponents. The local stability is quantified
by estimating the average exponential rates of divergence of
initially neighboring trajectories in state space as they evolve
over time. These local divergence exponents provide a measure
of the system’s sensitivity to local perturbations. Positive ex-
ponents indicate local instability and larger exponents indicate
greater sensitivity to local perturbations.

The nearest neighbor points in adjacent trajectories in
the reconstructed state space represent the effects of small
local perturbations of the system. The average exponential
divergence for each embedded time series is provided by
the algorithm given in [31]. The Euclidean distance between
neighboring trajectories is computed as a function of time and
averaged overall original pairs of initially nearest neighbors.
The local divergence exponents ()\) are estimated from the
slopes of linear fits to these exponential divergence curves.

o) = <, < nld; )] >, G

where d;(¢) is the Euclidean distance between jth pair of the
initially nearest neighbors after i time steps (i.e. At seconds)
as shown in Fig. 3(f), and < - > denotes average over all
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pairs of j. The short-term exponent (\s) is calculated from
the slopes of linear fits to the divergence curve between 0 to 1
stride and the long-term exponent (J)\;) is calculated between
4 and 10 strides [32].

3) Orbital stability: The orbital stability concept is based on
the assumption that the human gait has a fixed period. It is
defined using FMs that quantify, discretely from one gait cycle
to the next, the tendency of the system’s state to return to the
periodic limit cycle orbit after small perturbation [33]. FMs
are the eigenvalues of the Jacobian of the Poincaré map. The
first step for calculating the FMs is to normalize the state-
space data of each stride to 101 samples (0-100% gait cycle)
[34]. This will allow us to define 101 Poincaré maps for the
system as

Sk1 = F(Sh) €5

where £ is the index of the individual strides, [ is the index over
the Poincaré sections (% gait cycle), and .S ,lc represents the dg
dimensional system states for the /th point in the normalized
time within the kth gait cycle. Limit cycle trajectories that
correspond to single fixed points in each Poincaré map is

St =F(S) (5)

For walking data, fixed points at each Poincaré section (i.e.
each % of the gait cycle) are defined by the average trajectory
across all the strides within a trail. Orbital stability at each
Poincaré section estimates the effect of a small perturbation
away from these fixed points, using a linear approximation of
(5) given by

[Sky1 — St = J(SHISE — S (6)

where J(SL) € R9E*4E s the Jacobian matrix of the system at
each Poincaré section. The FMs are the eigenvalues of .J(S%).
Therefore, the condition for the limit cycle to be orbitally
stable is that the complex valued FMs must have magnitude
< 1. A limit cycle with any FM with magnitude > 1 is
considered orbitally unstable. For statistical analysis, first the
FMs with maximum magnitude are computed at each Poincaré
section (% of the gait) as F'M'. Next, we find the maximum
of FMs across the Poincaré sections:

max FM = max FM! @)

1=0,1,...,100

which represents the most unstable instant within a gait cycle.

4) Variability: The measured variability in the complex dy-
namical system may arise from the deterministic dynamics
of the system itself (such as a chaotic attractor, which is
the case for human gait). In such cases, variability is just
a reflection of multiple degrees of freedom available to the
system and does not imply destabilization of the system.
Although the variability in the biological system is likely to
obtain from either noise or deterministic sources, it is difficult
to separate them. However, on a pragmatic level, the variability
is critical to the stability of the walking because it gives
insights regarding state deviation which may lead to falling. In
general, MAD is more robust than the standard deviation (SD),
and is thus a good choice to use as an indicator of variability
[35]. For continuous variables such as joint angle time series,
they are first separated into individual strides. These individual

strides are then normalized (0-100%) over time and aligned.
For each of the aligned time intervals, the variability is then
calculated using the MAD metric [35],

MAD(X) = med(|X — med(X)1|), (8)

where X € R0 is the sample (i.e., aligned joint angles for
each stride, 101 points), med(X) € R is the median of the
sample, and 1 € R0 is the all-ones vector.

CoM = Anterior-Posterior (AP)
| ‘
1 s
z b
l—» x
CoM’"  XCoM
BoS

Fig. 4. Schematic representation of the inverted pendulum model to
calculate the minimum margin of stability (by,:r) in AP direction.

B. Measures from Biomechanical Principles

The extrapolated center of mass (X CoM) method extends
the condition of the static equilibrium of the inverted pendulum
model, in which the CoM must be positioned over the base
of support (BoS) by adding a linear function of the velocity
of the CoM to the CoM position [36]. BoS is defined as the
area to which the center of pressure (C'oP) is confined. In
theory, this method describes how close an inverted pendulum
is to falling, given the position and velocity of its CoM, and
the position of the boarder of its BoS (BoS), as shown in Fig.
4. The XCoM can be used to calculate the spatial margin
of stability “b”. The margin of stability refers to the distance
between X C'oM and BoS. The calculation is derived in [36]
for unperturbed walking. Given the position and velocity of
the CoM, the XCoM can be calculated as:

XCoM = Co’ + YoM 9)

wo

_ 19
UJO—\/;

where CoM’ is the vertical projection of the CoM on the
ground (shown in Fig. 4). Vo is the velocity of ColM’,
wp is the pendulum eigenfrequency, g is the acceleration of
gravity, and [ is the pendulum effective length. The margin of
stability can be defined as:

(10)

b= BoS — XCoM (11)

here BoS refers to the boarder of BoS. b is a representative
of the maximum perturbation to the CoM before the inverted
pendulum becomes unstable (CoM moving past the BoS).
The minimum of b (b,,;,) shows the most unstable point
within a step [36].
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For the calculation of margin of stability, the positions of
CoM'’ and BoS need to be determined. The CoP is estimated
using the force measurements from the instrumented treadmill.
During walking, only the lateral and anterior boundaries of
the BoS need to be known [19]. Here we defined BoS as the
extreme lateral and anterior values of C'oP for each leg within
each gait cycle. The CoM' can be estimated by filtering the
CoP as given in [37].

IV. RESULTS
A. Orbital and Local Stability

1) Orbital stability results: Six time series of joint angles,
i.e., bilateral hip, knee, and ankle were considered. Using
GFNN, the embedding dimension (dg) for the state space
reconstruction was found to be five for all the cases. The
embedded state space for each time series exhibited a strong
periodic structure with an expected stride to stride variability
during walking. For computing the FM values, time series
of joint angles from 100 continuous strides were used. These
strides were taken from the middle of the session by removing
the first and last 30 seconds of data.

Three-way analysis of variance (ANOVA) model is per-
formed with three factors: participants, conditions, and joint
segments. Statistical significance is evaluated at p < 0.05. The
interaction model computes the p values on three main effects
(participants, conditions, segments) and three two-factor inter-
action effects. Here, the null hypothesis for the main effect
states that all group max FMs are equal for each individual
factor. The alternate hypothesis states that at least one group
max FM is different. For example, consider segments as the
factor and six joint segments as distinct groups. The null
hypothesis were to be rejected if the max FM of at least
one segment is different from those of other segments. For
two-factor interaction effects, the null hypothesis were to be
rejected if at least one interaction term was not equal to zero.

For max FMs, it is found that all the three main effects and
three two-factor interaction effects are statistically significant.
This result states that participants, conditions, and segments
affect the max FM. However, this three-way ANOVA does not
specify how the max FM varies across different conditions. As
the focus of this work is to evaluate the impact of proposed
strategy (AIT) on stability, normal against AIT and FSM
against AIT were picked for one-way ANOVA. For each
joint segment, one-way ANOVA was performed on eleven
participants’ max FMs using normal and AIT conditions
as grouping variables, and same analysis was performed to
compare between FSM and AIT.

The mean and SD of max FMs of six segments for eleven
healthy participants in five conditions are displayed in Fig.
5(a). For one-way ANOVA, p < 0.05 suggested statistical
significance. In Fig. 5(a), a “x” is marked on left hip, left knee,
right hip, and right knee, showing the statistically significant
result in one-way ANOVA between normal and AIT conditions
for those joints. It demonstrates that the mean of max FMs
(across eleven participants) for normal and AIT conditions
are different. For the ANOVA across FSM and AIT, the
statistically significant result is observed only for the left hip

and right hip. Whereas, for the other segments, the max FMs
means are not significantly different between FSM and AIT.

From three-way ANOVA, it is found that the interaction
between participants and conditions is statistically significant
for max FMs. Therefore, participantxcondition interaction
plots are given for all the six joints in Figs. 5(b) and 5(c). Fig.
5(b) demonstrates that max FMs in AIT and FSM conditions
are lower than normal walking for all the left leg joints.
Whereas, passive and ZI cases exhibit higher max FM values
than normal walking. This similar trend is observed on the
right-side joint segments for passive and ZI cases in Fig. 5(c).
However, the max FMs for AIT and FSM are slightly higher
than normal walking for the right leg joints. We expect that
wearing KAD may increase the max FM compared to the
normal walking due to the weight of KAD. The passive and
Z1 conditions exhibit higher max FMs for both legs. In general,
AIT lead to lower max FM when compared to FSM for all
joint segments which can be observed in Figs. 5(b) and 5(c).
However, the ANOVA yielded statistical significant result only
for left and right hips.

2) Local stability results: The algorithm to compute diver-
gence exponents A; and \; was shown to be robust for small
data sets [31]. The extracted 100 continuous strides were first
divided into 33, 33, and 34 strides. Then, A\ (0 and 1 stride)
and \; (4 and 10 strides) were computed for all six joints
for these 3 stride blocks and then averaged to obtain the
final \g and );. The three-way and one-way ANOVA were
performed on A, and J\; in the similar fashion as on max FM in
section IV-A.1. For three-way ANOVA about A, the statistical
significance was observed for all the three main factors and
three two-way interactions. Whereas, for )\;, the statistical
significance was observed for the three main factors and only
one two-factor interaction effect (participant x segment).

Figure 6 shows that the local divergence exponents A; and
A; exhibit positive divergence values for all the five cases,
which indicates that the system is chaotic in nature. A higher
divergence value means a higher order of the chaotic system.
For one-way ANOVA, it can be seen in Fig. 6(a) that the A
estimates are statistically significant for left hip, left knee, right
hip, and right knee when comparing between normal and AIT
conditions. Similar to max FMs, the participantxcondition
interaction is statistically significant for A,. Also, they follow
a similar trend to that of the max FMs that A, values in FSM
and AIT conditions are lower than normal walking, and A\
values in passive and ZI are higher than normal walking for
left leg. Whereas, )\ values are slightly higher in FSM and
AIT compared to normal walking for the right leg, as displayed
in Figs. 6(b) and 6(c).

The statistical significance for \; can be seen in left hip, left
knee, left ankle, right hip, and right ankle when comparing
AIT and normal walking conditions, as shown in Fig. 6(d).
The participant x condition interaction is found to be not statis-
tically significant using three-way ANOVA. Nevertheless, this
two-way interaction plot for eleven participants is displayed
in Figs. 6(e) and 6(f). Although it can be visualized from
Figs. 6(e) and 6(f) that \; values are different for participants
for different conditions, however, it is found from ANOVA
analysis that the interaction is not statistically significant.
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Fig. 5. Orbital stability results of six segments for eleven participants during five conditions. (a) The mean and SD of max FMs of six joint segments

were displayed. A statistically significant difference in max FMs between normal and AIT conditions is indicated with
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for the specific joint. The

variation in max FMs of left and right leg joint segments for each participant during five conditions is displayed in (b) and (c), respectively.
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Fig. 6. Local stability results of six segments for eleven participants during five conditions. (a) and (d): the mean and SD of As and A; of six joint
segments were displayed. Statistically significant difference in As and \; between normal and AIT conditions is indicated with **’ for the special
joint. The variation in Ag and \; of left and right leg joint segments for each participant during five conditions is displayed in (b) and (e), (c) and (f),

respectively.

Comparing between Figs. 5(a), 6(a) and 6(d), the trend of )\,
is quite different from that of max FM and A4, as \; values are
lower for ZI, FSM, and AIT conditions compared to normal
walking for five joint segments except left hip. Whereas, max
FM and )\, values are lower for AIT and FSM when compared
to normal walking for left leg segments and slightly higher for
right leg segments.

For one-way ANOVA comparing FSM and AIT, the A,
values are statistically significant in left hip and left ankle.
Whereas, for )\; values, there is no statistical significance for
any of the joint segments. All participants exhibited positive
local divergence exponents which implies that they are locally
unstable. A larger positive value means more locally unstable.
From Fig. 6, it is clear that the participants were least locally
unstable in the AIT and normal walking conditions for the
left and right legs, respectively. Moreover, from A4 results it
is inferred that for most of the participants, both sides are
less locally unstable in the AIT condition compared to FSM,
as shown in Figs. 6(b) and 6(c). A; results show that the
participants are locally less unstable for all the joint segments
except left hip in AIT compared to the other four conditions.
The stability studies reported in [11] suggest that \¢ correlates

well with the probability of falling in comparison with A;.
Therefore, the inferences of the local stability in this study
are made from A\, estimates.

B. Variability Results

The stride to stride variability was evaluated for six joint
segments across all the conditions in 11 participants.The mean
and SD of six joint angles are displayed in Table II, and AIT
exhibits less MAD values for all the joints compared to the
other four conditions. For each segment, one-way ANOVA
analysis was performed on MAD values comparing normal
and AIT conditions. It is shown in Table II that MAD values
are significantly different for all joint segments except the
right knee when comparing normal and AIT conditions. It is
noticed that the MAD mean is considerably higher than that of
the left knee in AIT the condition. A possible explanation is
that the participants tried to adjust to the assistance provided
to the right knee, causing larger variance in the right knee
motion and making the MAD value similar to the normal
walking case. More studies are needed to understand the inter-
joint coordination and explain the MAD patterns. For the
ANOVA comparing between FSM and AIT, the MAD values
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TABLE Il
THE MEAN AND SD OF MAD (VARIABILITY) FOR 11 PARTICIPANTS
(SEGMENT X CONDITION). “*” INDICATES STATISTICALLY SIGNIFICANT
DIFFERENCE BETWEEN NORMAL AND AIT CONDITIONS (p < 0.05).

segment Normal Passive Z1 FSM AIT
Left hip°®*  0.8910.138 0.941+0.197 1.26+0.721 0.83+0.158 0.71+£0.130
Left knee®* 1.554-0.209 1.44+0.329 1.724+0.665 1.29+0.310 1.14+0.183
Left ankle®* 0.96+0.183 0.93+0.349 1.184+0.556 0.7840.131 0.68+-0.097
Right hip®* 1.3740.346 1.46+0.434 1.1640.205 1.3940.456 0.951+-0.236
Right knee® 1.74+0.3862.12+0.279 2.15+0.479 2.31£0.538 1.58+0.204
Right ankle®* 1.57+0.373 1.39+0.380 1.21£0.322 1.31£0.452 0.95+0.182

are statistically significant in the three joint segments on the
right side only. The MAD values are higher for the right knee
compared to the other five joints because the weight of the
KAD influences the right knee joint’s range of motion (ROM)
and increases variability. This increased variability also implies
changes in the knee joint torques and loads over a gait cycle.
Comparing MAD values between normal walking and AIT,
it is clear that the KAD reduces kinematic variability of the
participants in AIT.

It will be useful to quantify gait symmetry to understand
the variability. In this paper, stance time is used to derive
gait symmetry index (GSI), since the KAD provides assistance
during stance phase. The Robinson index is used [38]

GSI=—"""_ 100

max(x,, z;)

(12)

x, and z; are the average right leg stance time and average
left leg stance time for 11 participants, each with 100 strides,
given in seconds. The ideal GSI for perfectly symmetrical gait
should be equal to 0. However, it is difficult even for healthy
participants to achieve perfectly symmetrical gait. In a study
performed on 58 healthy participants during overground walk-
ing, a mean GSI value of 2.38 was reported using stance time
[39]. In this study, the GSI computed for normal, passive, ZI,
FSM and AIT are 1.96, 3.82, 3.63, 2.94, and 2.26, respectively.
The GSI value for normal walking is low when compared to
the mean GSI value reported in [39]. This may be due to
the controlled walking environment, i.e., treadmill, which was
shown to reduce GSI values compared to overground walking
[40]. It is clear from the GSI values that the participants’ gait
is more symmetric in the AIT condition compared to passive,
Z1 and FSM conditions.

C. Extrapolated XCoM (Margin of Stability) Results

The extrapolated center of mass (XCoM) concept was
used to study the stability in both mediolateral (ML) and
anteroposterior (AP) directions. In general, b,,;, values are
negative in the AP direction, implying that stability cannot
be recovered without moving the arms, trunk, or the use of
a stepping strategy [11], which are not considered in the
inverted pendulum model [36]. The mean and SD of b,
values for all participants in both ML and AP directions are
plotted in Fig. 7. The AP stability results are statistically
significant with respect to both participants and conditions,
respectively. Whereas, the ML stability results are statistically
significant with respect to only the participant, meaning the

AP stability ML Stability

-
o

i €T)
& o
min (cm)
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& FS
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&

Fig. 7. The mean and SD of margin of stability (b,,,:») values in both
ML and AP directions for 11 participants for five conditions.

condition was not a significant factor in ML direction. It can
be seen from Fig. 7 that b,,;, mean value is lower in the
AIT condition compared to other cases in AP direction which
means participants in AIT exhibit less instability compared to
other cases. The margin of stability result shows that normal
walking is the most unstable case in the AP direction, and
wearing KAD, especially in an active mode, will reduce the
AP instability. However, in the ML direction, the difference
of by, values in different conditions is not significant. This
is expected as the assistive torque is in AP direction, and the
only perturbation in ML direction comes from the weight of
KAD. The trends of stability in AP and ML directions are
represented by double-sided arrows in Fig. 7.

V. DISCUSSION
A. Assessment and Comparison of Stability Metrics

In literature, max FMs and A, correlated well with the
probability of falling in various studies [11]. Therefore, max
FMs and A, metrics are evaluated to assess the dynamic gait
stability of the human-KAD system. Whereas, the \; has been
used as a measure to study chaotic orders and variability in
the system in most studies [11]. MAD is a direct measure of
gait variability.

In this study, participants maintain similar local and orbital
stability behavior for all six joint segments, as shown by the
trend of mean max FM and mean )\, for five conditions in Figs.
5(a) and 6(a). The difference of max FM and A\, between AIT
and normal condition are significant for all the joint segments
except right and left ankle. Both max FM and A suggest that
left hip and left knee are more stable than right hip and right
knee during active KAD cases (AIT and FSM) when compared
to the normal walking as shown in Figs. 5(a) and 6(a). Except
for the left hip, both the mean \; and MAD are lower for AIT
when compared to normal walking. Also, the mean ); is lower
for the active cases compared to normal walking. However, for
As and max FM of the right leg, normal walking has the lowest
values compared to all other cases.

In order to see if there exist any correlation between
pairs of stability metrics, coefficients of determination (r?)
are calculated for the following pairs: FMx\;, FMxMAD,
As XMAD, MADXx \;. The correlation tests were conducted
separately once for each condition and once for each segment.
To evaluate the reliability of the linear model with a limited
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number of sample data, the statistical significance of the corre-
lation coefficient is also reported. The statistical significance is
judged based on Bonferroni correction p < 0.05/30 where 30
is the number of segments (6) x the number of conditions (5).
This hypothesis test will determine if there exists a correlation
coefficient different from zero, out of the sample data.

The correlations were not strong as > < 20% for all
pairs of stability metrics. Also no significant correlation were
observed (p > 0.05/30). This result highlight the fact that the
metrics are independent and each represents a certain feature
of the system. )¢ describes local stability within a step while
max FM describes orbital stability between steps. Whereas,
the A\; and MAD are used to study how the chaotic order
and variability of the joint segments change with respect to
the perturbations. This study shows that there is no direct
relationship between variability and stability of the human
gait. More variability in the human gait does not mean that
the gait is unstable or vice versa. All the reported metrics
have their individual significance and there exists no strong
correlation between the metrics. The results given in Section
IV display useful insights related to the variation of stability
metrics during various conditions with KAD.

B. The Effects of Unilateral Assistance

The unilateral assistance to a specific joint will help us
understand intra and inter joint behaviors. It can be seen
from Figs. 5(a) and 6(a) that max FM and )\, for assisted
conditions (FSM and AIT) are lower than normal walking
for the left (unassisted) leg. Whereas, for the right leg,
AIT and FSM exhibit slightly higher max FM and A, than
normal walking. The max FM and A\; show a similar trend
for all five conditions. This result can be analyzed from
the human locomotor adaption paradigm, and many studies
were conducted to examine bilateral responses subjected to
unilateral limb perturbations [41], [42]. It was shown that such
perturbation produced bilateral kinematic changes and evoked
contralateral leg responses. In [42], the unilateral stiffness per-
turbations using variable stiffness treadmill evoked repeatably
and scalably muscle activities and kinematic response of the
contralateral leg. Also, they provided strong evidence that
supra-spinal activity could be evoked by inducing unilateral
stiffness perturbations. These studies provide experimental
evidence that human neuromusculoskeletal system adapts to
unilateral perturbations in such a way that it compensates
for the perturbations by responses from the unperturbed leg.
In our case, it is possible that participants adopted a similar
strategy to compensate for the perturbations on the right leg
by altering left leg’s patterns. As an adaptation strategy, the
responses from the unassisted leg would acquire both feedback
and feedforward mechanisms to counteract perturbations to
the right leg. In passive and ZI cases, the KAD adds an
extra weight of 2.3 kg to the right leg but not providing
assistance, which could cause discomfort to the participants.
This is similar to the studies performed in the past by adding
weight to a limb to provide resistance while walking [43].
The bilateral adaptation is observed, which shows variability
in kinematics. Therefore, max FM and A, are generally higher

for both legs in passive and ZI conditions. Smooth transition
of robot impedance values between gait phases in the AIT
mode leads to lower values in A; and max FM for both legs,
compared to FSM.

C. Limitations of this Study

Based on the results obtained in our prior work [25], in this
study, each participant’s unique impedance parameters were
used for the KAD controller to evaluate the gait stability.
However, the robustness of the gait stability results with
variations of robot impedance parameters was not evaluated.
Moreover, the muscle activities of lower-limb muscles were
not recorded in this study. Those muscular responses may give
more insights and explanations of the dynamic gait stability
results. They may also help us understand how the participants
apply the compensatory actions in response to perturbations
with the unassisted leg at the muscular level. Lastly, the
overground experiments were not conducted in this study due
to space limits. It is expected that participants exhibit higher
variability during overground walking.

VI. CONCLUSION

In this paper, the dynamic gait stability of the human-LEAD
system subjected to unilateral knee assistance was studied in
five test conditions. The participants in the AIT condition
exhibited higher dynamic stability on the left side in terms
of max FM and A\ compared to the other four conditions.
Whereas, for the right (assisted) side, higher dynamic stability
is observed in normal walking. Moreover, participants showed
higher gait dynamic stability on both sides in AIT compared
to FSM, which could be attributed to the smooth impedance
transition between gait phases. The metrics \; and MAD
showed that participants exhibited less kinematic variability
in AIT compared to normal walking, for both sides.

For future work, a bipedal simulation framework will be
developed in which the bipedal model parameters will be
designed based on participant’s anthropometric data. We will
assess the dynamic gait stability and variability of bipedal
walking, and compare them with experimental results. Future
work will also study the muscular-level responses to unilateral
assistance. This will help us understand how humans adapt
to assistance and optimize their gait patterns. Patients will
be recruited to study their walking patterns with and with-
out assistance, to evaluate the gait stability performance of
different robot controllers. Similar analysis with a soft robotic
exosuit [44] will also be conducted to extend the results of
this study to other types of assistive devices.
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