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Abstract— This paper explores the gait learning and co-
ordination through physical human-human interaction. The
interaction and coordination are modeled as a two-step process:
1) encoding the human gait as a periodic process and 2)
adjustment of the periodic gait cycle based on the external
forces due to physical interactions. Three-legged walking ex-
periments are conducted with two human dyads. Magnitude
and direction of the interaction force, as well as the knee
joint angles and ground reaction forces of the tied legs are
collected. The knee joint trajectory of the two participants is
modeled using dynamic movement primitives (DMP) coupled
with force feedback though iterative learning. Gait coordination
is modeled as a learning process based on kinematics from
the last gait cycle and real-time interaction force feedback.
The proposed method is compared with a popular baseline
DMP model, which performs batch regression based on data
from the previous gait cycle. The proposed model performed
better in modeling one pair in the cooperative experiment
compared to the baseline algorithm. The results and approaches
for improving the algorithm are further discussed.

I. INTRODUCTION

Humans use physical interaction to learn about the en-
vironment and to successfully complete tasks that require
sophisticated coordination [?]. Principles that guide human-
human sensorimotor interactions have led to the development
of robots that physically interact with humans in a natural and
efficient manner [?], [?]. Recently, there has been a growing
interests of such robots in physical human-robot interaction
(pHRI) for medical applications, including lower-extremity
exoskeletons which have been developed for effective human
augmentation, and rehabilitation [?]. To provide efficient and
natural assistance, the robot needs to understand and adapt
to the human sensori-motor learning [?].

In recent years, control strategies based on advanced
sensing and adaptive controllers have been utilized to model
human learning for rehabilitation that modifies the level of
robotic support by changing torque required by the user
in lower limb [?]. Furthermore, such systems often need
to have an accurate real-time assessment of human motor
functions for modeling and learning. It has been suggested
that differential game theory can be used as a framework to
describe the learning between a robot and the human user
[?]. However, both adaptive controller and differential game
theory framework require an accurate dynamic model of each
user, which is challenging to acquire in practise [?].
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As an alternative to such model-based approaches, dy-
namical movement primitives (DMPs) have been applied
in modeling human motor control, particularly for rhyth-
mic movements such as locomotion [?]. DMPs encode a
trajectory as a second-order differential equation with an
added nonlinear forcing term. The forcing term in a DMP
allows for online learning and adaptation of trajectories
to external forces and perturbations [?], [?]. The forcing
term can be further used for adapting parts of a trajectory
as new sensor data becomes available, using incremental
regression [?]. Furthermore, the structure of the DMPs
enables incorporation of the sensorimotor feedback. Gams
et. al. proposed cooperative DMPs (Co-DMPs) for bimanual
tasks where a coupling term based on the interaction force
measurements was learned online using iterative learning
control (ILC) [?]. Huang et. al. further implemented Co-
DMPs with reinforcement learning to reduce interaction
force between a powered knee exoskeleton and its user [?].

Our goal of this paper is to develop a robust model for
human walking which incorporates human learning. The pro-
posed algorithm can be used for robot-aided rehabilitation.
We model human gait as a DMP with adaptive learning based
on interaction force. The force based learning is modeled
within individual gait cycles and between successive gait
cycles using incremental regression and iterative learning,
respectively. We propose a three-legged walking experiment,
in which two participants are asked to walk side-by-side as
one of their legs is tied to each other. This experiment would
provide valuable data on how two humans use the lower-
limb interaction force to achieve a synchronized walking
pattern. To the best of authors’ knowledge, such a study has
not been performed before. We have developed a custom
sensing framework to measure interaction forces and knee
joint angles of the participants. The Co-DMPs with learning
framework is employed to model the participants’ knee
angles in which modulation of the DMPs take place through
a coupled force term. Iterative learning is chosen as the
learning procedure of the coupling term because it shares
similarities with the human natural learning process through
trial and error, and it is widely used in physical training [?].
The main contributions of this work are as follows:

• A custom sensing framework is developed to collect the
interaction forces and knee kinematics during the three-
legged walking experiments

• A Co-DMP with learning framework is developed and
compared with the standard baseline DMP framework
to model human-human lower-limb interaction

The rest of the paper is organized as follows: Section II



TABLE I: Anthropometric information of the participants

Pair ID Gender Age Height (cm) Weight (kg) Dominant leg Tied leg
1 11 Female 27 158 55 R R
1 12 Female 25 165 58 R L
2 21 Female 28 159 56 R R
2 22 Female 27 158 58 R L

discusses the experimental setup of the three-legged walking
experiments. Section III elaborates on the proposed formu-
lation of Co-DMP with iterative learning. The results and
discussions are presented in section IV. Section V concludes
the paper and presents some future work.

II. HARDWARE AND EXPERIMENT DESIGN

A. Experimental Setup

A custom fabric brace was designed to collect force
and kinematic data during the three-legged walking with
two participants, as shown in Fig. 1(a). Two ankle braces
were used as the basis for connecting the legs of the
two participants. The two ankle braces were attached with
retractable cable mechanisms to adjust the distance between
the attached legs. A load cell (Futek LCM200, Irvine, CA)
was attached to the cable mechanism to measure the tensile
interaction forces between the two participants. An absolute
orientation IMU sensor (Adafruite BNO055, New York, NY)
was implemented at the top of the load cell to determine
the direction of the interaction force. The participants were
required to wear a fabric knee brace with an embedded rotary
encoder (US Digital S4T, 400CPR, Los Alamitos, CA) to
measure their knee angles when walking. The encoder acted
as the hinge of two rigid bars on the brace, and was made
sure to be aligned with the knee joint. Smart shoes were
used to capture the ground reaction forces at heel, the first
and fourth metatarsophalangeal joints, and toe [?]. A single-
board computer (Raspberry Pi 3, Rpi, Caldecote, Cambs,
UK) was used to collect and synchronize data from all the
sensors. An Intel UP-board (Santa Clara, CA) was added to
transmit some of the sensor data to the Rpi. Fig. 1(b) shows
the data collection schematic, including the data transmission
protocol for each sensor and board.

To study gait collaboration, two participants were asked
to walk in a straight path for 10m with the left leg of
one participant (P2) attached to the right leg of the other
participant (P1), using the aforementioned system setup
(shown in Fig. 1(a)). Anthropometric information of the
participants is given in Table I. The participants were not
allowed to verbally cue each other during the experiment.
They were asked to only rely on the interaction forces to
reach gait synchronization, and avoid any visual feedback
by only looking straight ahead. This would help eliminate
the undesired forms of communication and signalling. The
walking experiment was repeated for two pairs of partici-
pants, with three trials for each pair.

B. Data Post-Processing

The data collected from the sensors were processed offline.
The force data from the load cell was filtered using a second-
order Butterworth low-pass filter with a cut-off frequency of

(a) Hardware components for the human experiments. The sagittal plane be-
tween the two participant is also shown, where FN is the projected component
of the total interaction force (F) measured by the load cell.
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(b) Data collection diagram for the human experiments

Fig. 1: Experimental setup for collecting the knee joint angles,
interaction forces and its orientation, and the ground reaction forces
while performing the three-legged walking. P1 and P2 refer to the
two participants.

10 Hz. The smart shoes were used to detect heel strikes for
segmentation. The IMU sensor was oriented such that the
yaw axis was aligned with the sagittal plane in which the
knee flexion/extension occured. The interaction forces in the
sagittal plane were obtained by:

FN = F · sin(α−α0), (1)

where F refers to the total interaction forces in the three-
dimensional space, α is the measured yaw angle (the angle
between F and FN in Fig. 1(a)), and α0 is the initial yaw
angle where the tied legs are parallel to each other with no
interaction forces in the sagittal plane. FN is the projection
of F into the sagittal plane which is considered the effective
interaction force for participants to adjust their gaits.

The resultant knee extension/flexion angles and the in-
teraction forces for one pair of participants in three trials
are shown in Fig. 2. We observe 1) a significant difference
between the total force (F) and the effective force (FN), 2)
an instantaneous change in the force affecting the gait cycle,
3) a significant reduction of force for the successive gait



Fig. 2: The collected knee joint angles and interaction forces for
three trials for pair 2. The order of performing the experiments
is from 1 to 2. F is the total interaction forces, FN is the
projected interaction forces in the sagittal plane. P1 and P2 refers to
each participant. Instantaneous change in gait pattern is observed
(marked by black lines). Reduction in forces for successive gait
cycle is observed (marked by green dashed line). Synchronized knee
angle pattern is observed (marked by pink dashed line).

cycle which indicates learning, and 4) a highly synchronized
knee angle pattern between the participants in trial 3. The
pattern further justifies the use of DMP with incremental
regression for adaptation to instantaneous force change and
iterative learning to model the learning between gait cycles
in the three legged walking. The processed data is fed into
the proposed algorithm, Co-DMP with learning framework,
which is further explained in the Section III.

III. METHODOLOGY

In this section, details of the proposed framework are
presented, with a brief review of the periodic DMP. We also
highlight the learning elements of the DMP. At the end, the
overall algorithm to model the two participants’ knee angles
using Co-DMP and iterative learning is presented.

A. Dynamic Movement Primitive

Dynamic movement primitive (DMP) is an adaptive repre-
sentation for modeling autonomous nonlinear goal-directed
behaviour [?], [?], [?]. The general idea is to encode a
recorded trajectory as a dynamical system, which can be
used to generate different variations of the original move-
ment. A DMP uses limit-cycle oscillators to model periodic
trajectories. A DMP is described as

τ ż = α(β (g− y)− z)+ f (x) (2)

τ ẏ = z (3)

where τ is a time scaling factor, and α and β are positive
constants. For our experiments we selected α = 8 and β = 2
as used in [?]. The state variable y is the joint angle, g is
the anchor point for the oscillatory trajectory, which can
be changed to accommodate any baseline oscillation. For
modeling a rhythmic motion, g is the average value of

the trajectory. The last term, f (x), is the nonlinear forcing
function defined as

f (x) =
∑

m
i=1 ψi(x)wi

∑
m
i=1 ψi(x)

· r (4)

where ψ(x) is the exponential basis function and w is
the corresponding weight vector. The basis functions only
depend on the phase variable x, the state of a canonical
system. The m exponential basis functions ψi(x) is defined
as

ψi(x) = exp(hi(cos(φ − ci)−1)) (5)

where hi is variance that determines the width, and ci is the
constant that determines center of the basis functions. We
set center ci of the Gaussian basis function to be spaced
evenly throughout 0 to 2π run time. The variance hi is set
equal to the number of basis functions m = 25 for modeling
human knee angles as used in [?]. A higher number of basis
functions results in over-fitting and longer computation time.
The phase variable φ is a simple choice of a canonical system
for learning a limit cycle and represented as

τφ̇i(x) = 1 (6)

B. Incremental Regression

Given a set of f (x), the equation can be manipulated to
get a set of wi in one shot. This formulation is called batch
regression, which is also the baseline for our evaluation.
Although the linear part of (2) defines the convergence to the
goal, the weights of the kernel functions in (4) actually define
the correct shape of the trajectory. The shape of the trajectory
can be learned online by applying incremental weighted
regression. The target trajectory is generated by rearranging
equation (2) and inserting the demonstrated trajectory, ydemo.

fgoal = τ
2ÿdemo−α(β (g− ydemo)− τ ẏdemo) (7)

The fgoal is the target f (x) for a demonstrated trajectory. For
a fgoal , the wi can be updated incrementally for each basis
function i ∈ {1, · · · ,N} at each time step j to better model
highly dynamic motion cycles using

wi, j+1 = wi, j +ΨiPi, j+1re j (8)

Pi, j+1 =
1
λ

(
Pi, j−

P2
i, jr

2

λ

Ψi
+Pi, jr2

)
(9)

e j = fgoal, j−wi, jr (10)

where Pi is the inverse covariance of wi, which we initialize
with wi,0 = 0 and Pi,0 = 1 for all basis functions. r and λ

are the amplitude gain and forgetting factor, respectively. If
λ < 1, the incremental regression provides more weight to
the recent data.

C. Cooperative DMPs

DMPs can be modulated online to take into account
the dynamic events occurring in the environment such as
obstacle avoidance and external force [?], [?]. In three-legged
walking, the two participants approach a motion synchroniza-
tion after a few gait cycles. This can be achieved through the



interaction force (Fi) between the participants. The desired
interaction force between the participants is minimum, thus
the force feedback term is a function of a measured force
between two participants, given as C2,1 =−C1,2. This term is
introduced in the DMP formulation from equation 2-3 into
the Co-DMP as

τ ż1 = αz(βz(g1− y1)− z1)+ f1(x)+ c2Ċ1,2, (11)
τ ẏ1 = z1 + c1 C1,2, (12)

τ ż2 = αz(βz(g2− y2)− z2)+ f2(x)+ c2Ċ2,1, (13)
τ ẏ2 = z2 + c1 C2,1 (14)

where c1 and c2 are positive coefficients for the velocity and
the acceleration term of individual DMPs.

D. Iterative Learning

To ensure the system converges, the measured force must
be reduced after each cycle. As humans learn based on previ-
ous experiences, we propose an iterative learning algorithm
to adjust the term C1,2 and C2,1 in Co-DMP. After the first
gait cycle, the interaction forces between the participants are
collected which are then fed in a feedforward manner. Fk
is a set of force recorded in each gait cycle from time step
j ∈ {1, · · · ,2π}. For the coupled term Ck at the kth trial,
C1,2 =−C2,1, is inspired by the idea of ILC

Ck = cek +Fc,k, (15)
Fc,k = Q(Fc,k−1 +Lek−1), (16)

ek =−Fk (17)

where c is the force gain, ek is the coupling force error. Q and
L are positive scalars which define the Q-filter and learning
function, respectively [?].

E. Co-DMP with Learning Framework

Based on the demonstrated first gait cycle, the DMPs of
each participant are modeled. The interaction forces are fed
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Fig. 3: The proposed Co-DMP for modeling knee trajectories in
three-legged walking. yh refers to the knee angle measurement.
yDMP refers to the encoded trajectory by the DMP without consid-
ering the environmental interaction, C is the coupled term learned
through iterative learning based on interaction forces, and yCDMP
refers to the output of the coupled DMP.

into the iterative learning algorithm. Based on the previous
gait cycles and coupling term, both DMPs are updated to
track the observed knee angles. At each gait cycle, the
iterative learning algorithm will provide the learned coupled
term based on the interaction forces, while the f (x) term will
provide the internal gait learning for the DMP in the system
as described in Fig. 3.

Algorithm 1: Co-DMP with learning framework for
three-legged walking

for Both Participants do
Obtain the motion trajectory for both participants
if first gait cycle then

Update wi based on batch regression, Eq. (4)
else

Get coupling term for DMP using Eq. (15-
17)

end
Calculate fgoal based on Eq. (7)
for all i ∈ [1,m] do

Update wi based on Eq. (8-10)
end
Calculate reshaped Coupled DMPs from Eq.
(11-14)

Compare DMP trajectory and observed trajectory
end

IV. TESTING AND EVALUATION

The force feedforward term could improve the accuracy
of DMP since the memory-based feed-forward controller
helps learn from previous iterations [?]. We hypothesize that
humans learn and adjust to the other’s gait pattern based on
the interaction force from the previous gait cycle.

We performed parameter search and empirically found that
setting Q, L and c values to 0.9, 0.1 and 0.1, respectively,
would give us the smallest modeling error. The root mean
square error (RMSE) between the measured data and model
output is provided in Table II. The proposed approach is
compared with the baseline batch regression-based DMP as
described in Eq. (4).

The modelling error for the first five gait cycles for each
trial was calculated. For the first and the second trial for
both pairs, we observed that Co-DMP modeled a better
trajectory for one of the two participants, as the results show
a reduction in modelling error for P2 of pair 2 with a lower
RMSE of 0.980◦ and 1.680◦ as seen in Table II. Similarly, for
pair 1, the error of P1 with an RMSE of 1.163◦ and 1.894◦

is significantly lower compared to the baseline. However,
there is a larger error for pair 1 in trial 3 compared to
the baseline algorithm. As seen in Fig. 4, this is due to
an abrupt and large force at the third time-step. The Co-
DMP models the gait cycle considering the abrupt force,
however the measured gait cycle is not affected by it. We
are also able to observe a consistent gait pattern by the third
trial for both pairs. Larger modeling error is also observed
for Co-DMP in trial 3 with pair 2, and this is due to the



TABLE II: The comparison of RMSE using the proposed approach
and DMP with batch regression

Pair Trial RMSE P1 (◦) RMSE P2 (◦)
Co-DMP Baseline Co-DMP Baseline

1 1 1.163 2.167 3.829 2.355
1 2 1.894 3.095 3.261 2.128
1 3 2.823 1.834 5.232 2.944
2 1 2.329 1.012 0.980 1.709
2 2 3.806 3.519 1.680 3.077
2 3 1.973 2.073 2.364 1.975

Fig. 4: The force, knee joint angles of pair 1 for the Co-DMP and
baseline algorithms in trial 3, where Co-DMP models high error due
to high instantaneous force (marked by green vertical dashed line).
Consistent gait pattern observed for P1 (marked by black horizontal
dashed line).

reduced forces which are used in the Co-DMP model but
does not seem to alter the gait cycle as observed in Fig. 6(b).
Figure 5 compares the average interaction forces at each

gait cycle for all the trials. It can be clearly observed that the
interaction forces are generally higher at the first trial for both
pairs, and they reduce in the next trials (except trial 3 where
participants tripped momentarily and recovered). This shows
the learning by participants between trials where they adapt
to each other’s gait pattern. However, this learning process
is not very obvious or consistent across gait cycles in a trial.

The Co-DMP models one participant better than the other.
For pair 2, the change in phase causes both algorithms to
perform poorly as seen in Fig. 6(a) where a change in the
frequency of the oscillator was not identified by either model
for P1. We observe that P2 has a consistent frequency from
one gait cycle to another as seen in pair 2 for trials 2 and 3
in Fig. 6(b).

V. DISCUSSION AND LIMITATION

As shown in Figure 5, the gait adaptation based on
interaction forces is not instantaneous, rather it takes time
and depends on the individual motor skills. Humans might

(a) Pair 1

(b) Pair 2

Fig. 5: The RMS of interaction forces (sagittal plane) during each
gait cycle for pair 1 (a) and pair 2 (b) during the three consecutive
trials

be using the interaction forces for lower-limb movement co-
ordination but the mechanism on how they interpret that force
remains unclear. It was shown that humans used interaction
forces for lower-body movement synchronization [?], [?].
However, there has been no observed correlation between
the magnitude of the force and the learning process in those
studies. In our work, the synchronization of the knee move-
ment is directly coupled to the interaction forces through
the springs and we claim that the magnitude of the force
is directly correlated to gait synchronization. Therefore we
proposed the Co-DMP with iterative learning to model the
knee joint trajectory. The results showed improvement over
the baseline approach only in some cases which could be
due to the following reasons:
• Limitation of iterative learning: as discussed above, the

gait adaptation happens over trials rather than across
gait cycles, but the iterative learning taking place at
each time step. Although iterative learning has been
shown to be an effective mechanism for humans to learn
and improve motor skills, it remains unknown how the
learning actually takes place.

• Force measurement noise/inaccuracy: noise and error
are highly likely in our measurement especially in
the effective interaction force (force in sagittal plane).
The IMU sensor might provide inaccurate measurement
under the impacts and oscillation during walking.

• Learning mechanism: in our proposed framework the
gait adaptation happens through the coupled term which
is based on interaction forces. However, visual and
auditory feedback also play an important role in human
learning, which is not considered in this paper.

VI. CONCLUSION AND FUTURE WORK

In this paper, a three-legged walking experiment was
conducted to infer human-human lower-limb physical inter-
action. A Co-DMP with learning algorithm was implemented



(a) (b)

Fig. 6: Knee joint angles of pair 2 for the Co-DMP and baseline algorithms, (a) for trial 2 where change is phase is observed, and (b)
for trial 3 where both baseline and Co-DMP show a similar trajectory.

to model the knee angle in the three-legged walking scenario.
The proposed algorithm was evaluated in six trials for two
pairs of participants, three trials each. The algorithm was
compared with baseline DMP. The developed framework was
able to provide lower RMSE of the knee angle for one of
the two participants in some trials.

A phase and time based framework can be explored as
future work for the system. Future work will also include
implementation of the proposed Co-DMP model in a ex-
oskeleton. Co-DMP can be further be explored by including
different cooperative learning methods such as reinforcement
learning or differential game theory. More trials will be con-
ducted with other participant pairs for identifying different
learning strategies.
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