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ABSTRACT
In this paper, we present the first results on the sparse inverse
covariance estimation problem under the differential privacy
model. We first gave an ϵ-differentially private algorithm using
output perturbation strategy, which is based on the sensitiv-
ity of the optimization problem and the Wishart mechanism.
To further improve this result, we then introduce a general
covariance perturbation method to achieve both ϵ-differential
privacy and (ϵ, δ)-differential privacy. For ϵ-differential pri-
vacy, we analyze the performance of Laplacian and Wishart
mechanisms, and for (ϵ, δ)-differential privacy, we examine
the performance of Gaussian and Wishart mechanisms. Exper-
iments on both synthetic and benchmark datasets confirm our
theoretical analysis.

Index Terms— differential privacy, sparse inverse covari-
ance estimation

1. INTRODUCTION

Nowadays, machine learning and signal processing algorithms
are often required to deal with sensitive data or information.
This means that the algorithm needs to not only learn effec-
tively from the data or information but also provide a certain
level of guarantee on privacy preserving. Differential pri-
vacy [5] is a rigorous notion for defining data privacy and has
received a great deal of attentions in recent years.

Estimating the inverse covariance matrix (also called pre-
cision matrix) in high dimensional space is a fundamental
problem in statistics and finds applications in many fields such
as machine leaning, signal processing, computational biology,
etc [14] [6]. It provides a good way for discovering the interac-
tions among variables in high dimensional datasets, especially
those from genetics, medicine, and healthcare. The inverse
covariance matrix is also a natural way for parameterizing
the Gaussian graphical model. One problem that often oc-
curs in applying such a model is how to deal with sensitive
data. For example, datasets related to gene expression may
contain private information of individuals. Thus, it becomes
a challenge for estimating the inverse covariance while pre-
serving privacy. In this paper, we study the problem under the
differential privacy model, and provide some results on this
problem.

Definition 1. Let {x1, · · · , xn} be n instances sampled
from a Gaussian distribution N (0,Σ), where each instance
xi ∈ Rd for i ∈ [n] and Σ ∈ Rd×d is the covariance
matrix. The inverse covariance problem is to recover
Σ−1 in a high dimensional setting, where n ≪ d. Note
that if n ≥ d, we can solve the problem by optimizing
Θ∗ = S−1 = argminΘ∈Sd

++
− log detΘ + ⟨S,Θ⟩, where

S = 1
n

∑n
i=1 xix

T
i is the empirical covariance. But in a high

dimensional setting, the above optimization problem is ill-
posed, since S is rank-deficient. To make it well-defined, we
borrow an idea in LASSO and use an ℓ1 norm regularization
in the objective function, which assumes that Θ∗ is sparse.
Thus, the objective function becomes the following:

Θ∗
ρ = arg min

Θ∈Sd
++

{− log detΘ + ⟨S,Θ⟩+ ρ∥Θ∥1}, (1)

where ρ > 0 is the penalty parameter, ⟨S,Θ⟩ = tr(SΘT ), and
∥Θ∥1 =

∑
i,j |Θi,j |.

Under the differential privacy model, our problem is to
obtain Θpriv under differential privacy so that ∥Θpriv −Θ∗

ρ∥F
is as small as possible.

We first present an output-perturbation algorithm (See Al-
gorithm 1) based on the sensitivity of (1). Unlike the com-
monly used Laplacian or Gaussian mechanisms in differential
privacy [?], we adopt the Wishart distribution to preserve the
positive definite property for the resulting matrix. To reduce
the error bound of the above algorithm, we then introduce a
general method by perturbing the covariance matrix, and an-
alyze the error upper bound for different perturbing matrices.
Finally, we evaluate the performance of our algorithms using
both synthetic and real world datasets.

2. RELATED WORKS

The most closely related work to ours is differentially pri-
vate PCA, since it also relies on random matrices to preserve
privacy. For example, [?, 8] used the Wishart mechanism to
achieve ϵ-differentially private PCA, and [?, ?] adopted the
Gaussian mechanism to analyze the optimal bound of PCA
under the (ϵ, δ)-differential privacy model. Note that although



our paper uses the same mechanisms (as the aforementioned re-
sults), the way for analyzing the error bound is quite different.
While the above results mainly relied on techniques in linear
algebra, ours is based on some optimization techniques (due to
the ℓ1 regularization and the positive definite requirement for
the resulting matrix). Thus, existing approaches/techniques
cannot be used to analyze our problem.

3. PRELIMINARIES

Definition 2 ( [5]). A randomized algorithm A is (ϵ, δ)-
differentially private if for all neighboring datasets D,D′ ∈
Xn and for all events S in the output space of A, the following
holds Pr(A(D) ∈ S) ≤ eϵPr(A(D′) ∈ S) + δ. When δ = 0,
A is ϵ-differentially private.

Definition 3. A d× d random symmetric positive definite ma-
trix W is said to have a Wishart distribution W ∼ Wd(m,C)
if its probability density function is

p(W ) =
(detW )

m−d−1
2

2
md
2 (detC)

m
2 Γd(

m
2 )

exp(−1

2
tr(C−1W )), (2)

where m > d− 1 and C is a d× d positive definite matrix.

Next we show how to select the parameters m and C to
ensure differential privacy and their tail bounds.

Lemma 1 ((ϵ, δ)-differential privacy [12]). Fix ϵ ∈ (0, 1) and
δ ∈ (0, 1

e ). For a fixed constant B > 0, let A be an n × d
matrix, where each row of A has bounded ℓ2-norm B. Let N
be a matrix sampled from W(m,B2Id) for m ≥ d+ 14

ϵ2 ln( 4δ ).
Then, outputting X = ATA+N is (ϵ, δ)-differentially private.

Lemma 2 (ϵ-differential privacy [8]). Fix ϵ > 0 and let A be
an n× d matrix, where each row of A has bounded ℓ2-norm
of B. Let N ∼ Wd(d + 1, C), where C = 3

2nϵB
2Id. Then,

outputting X = ATA+N is ϵ-differentially private.

Lemma 3 ( [12]). Fix δ′ ∈ (0, 1
e ), and a random matrix

X ∼ Wd(m,V ), where m > (
√
d +

√
2 log 2

δ′ )
2. Then,

with probability at least 1− δ′, the following holds for every

j = 1, · · · , d, σj(X) ∈ (
√
m± (

√
d+

√
2 log 2

δ′ ))
2σj(V ).

Lemma 4 ( [15]). If X ∼ Wd(m,V ), then with probability
at least 1− 2d exp(−θ) for any θ ≥ 0, we have for each l =

1, · · · , d, |σl(
1
mX)−σl(V )| ≤ (

√
2θk2

l (r+1)

m + 2θklr
m )σl(V ),

where r = tr(V )
σ1(V ) and kl =

σ1(V )
σl(V ) .

If taking V = B2Id,m = d+ 1, and θ = log 2d
δ′ , Lemma

4 tells us that with probability at least 1−δ′, we have σl(X) ≤
O(d log d

δ′B
2) for each l = 1 · · · , d.

For ρ > 0, the problem is strongly convex and thus has a
unique optimal solution Θ∗

ρ, which satisfies the following.

Lemma 5 ( [4, 10]). The solution of (1), Θ∗
ρ, satisfies that

αId ⪯ Θ∗
ρ ⪯ βId, for α = 1

∥S∥2+ρd , β = d−α tr(S)
ρ .

4. OUTPUT PERTURBATION METHOD

In this section, we present an ϵ-differentially private algorithm
based on the output perturbation strategy (see Algorithm 1 for
details), and analyze the sensitivity and stability of the problem
(1). Although the method has some undesirable features, the
error bound analysis and the guarantee of differential privacy
are useful for our later methods.

Algorithm 1 Output Perturbation
Input: D = {xi}ni=1, S = 1

n

∑n
i=1 xix

T
i , where

the ℓ2-norm of each row xi is bounded by 1, ρ >
0.

1: Compute Θ∗
ρ = argminΘ∈Sd

++
{− log detΘ + ⟨S,Θ⟩ +

ρ∥Θ∥1},
2: return Θ̃∗

ρ = Θ∗
ρ +N , where N ∼ Wd(d+ 1, C), C =

d
5
2

nϵρ2 Id.

Theorem 1 (Privacy guarantee). For any ϵ > 0, Algorithm 1
is ϵ-differentially private.

Proof. For convenience, we denote Step 1 of Algorithm 1 as A.
That is, Θ∗

ρ = A(D). Also, we let D′ be a neighboring dataset,
and S′ = S − 1

nvv
T + 1

nv
′v′T , Θ′∗

ρ = A(D′). Then by the
optimality of Θ′∗

ρ ,Θ
∗
ρ of the optimization problem, we have,

for any η > 0, ∥Θ∗
ρ−Θ′∗

ρ ∥F = ∥proxηg(Θ
∗
ρ−η(S−Θ∗−1

ρ ))−
proxηg(Θ

′∗
ρ − η(S′ − Θ

′∗−1
ρ ))∥F , here prox is the proximal

operator with respect to ∥ · ∥1 [3]. Then, by the non-expansive
property of the proximal operator, we have ∥Θ∗

ρ −Θ′∗
ρ ∥F ≤

∥(Θ∗
ρ − η(S − Θ∗−1

ρ )) − (Θ′∗
ρ − η(S′ − Θ

′∗−1
ρ ))∥F . If let

f(Θ∗
ρ) = Θ∗

ρ + ηΘ∗−1
ρ , we have ∥Θ∗

ρ −Θ′∗
ρ ∥F ≤ ∥f(Θ∗

ρ)−
f(Θ′∗

ρ )∥F + η∥S − S′∥F .
For the last term, we have ∥S − S′∥F = ∥ 1

n (vv
T −

v′v′T )∥F ≤ 2
n . In order to bound the first term, we need

the following lemma, which has been proved in [11].

Lemma 6. [11] For Θ1,Θ2 ∈ Sd
++, η > 0, we have

∥f(Θ1) − f(Θ2)∥F ≤ max{|1 − η
a2 |, |1 − η

b2 |}∥Θ1 −
Θ2∥F , where a = max{σmax(Θ1), σmax(Θ2)} , b =
min{σmin(Θ1), σmin(Θ2)}.

Take Θ∗
ρ,Θ

′∗
ρ into Lemma 6 and set 0 < η < b2, we now

have ∥Θ∗
ρ −Θ′∗

ρ ∥F ≤ 2β2

n , where β = max{∥Θ∗
ρ∥2, ∥Θ′∗

ρ ∥2}.
Now we will show the ϵ-differential privacy. Since for every
W ,

Pr[Θ∗
ρ +N = W ]

Pr[Θ′∗
ρ +N = W ]

=
Pr[N = W −Θ∗

ρ]

Pr[N = W −Θ′∗
ρ ]

=

exp (− 1
2 tr(C

−1(W −Θ∗
ρ))

exp (− 1
2 tr(C

−1(W −Θ′∗
ρ ))

= exp(−1

2
tr(C−1(Θ∗

ρ −Θ′∗
ρ ))

≤ exp(
1

2
∥C−1∥F ∥Θ∗

ρ −Θ′∗
ρ ∥F ) ≤ exp(

1

2

√
d
nϵρ2

d
5
2

2β2

n
)

≤ exp(ϵ).



Where the last inequality comes from Lemma 5.

By Lemma 4, we have the following error upper bound.

Theorem 2. For Algorithm 1, with probability at least 1− δ

for any 0 < δ < 1, we have ∥Θ̃∗
ρ − Θ∗

ρ∥F ≤ O(
log d

δ d
4

nϵρ2 ),
where Θ∗

ρ is the optimal solution of the original problem (1).

Remark 1. Note that in Algorithm 1, a Wishart matrix needs
to be added to the output to ensure that the resulting matrix
is positive definite (as required by problem (1)). Since other
random matrices, such as symmetric Laplacian matrices, may
not be positive definite [7], adding them to the output may not
yield the desired solution.

Although Algorithm 1 provides an ϵ-differentially private
algorithm for the inverse covariance estimation problem. It
also leaves quite a few unresolved issues. Firstly, from The-
orem 2, we know that the error bound heavily depends on
the dimensionality (i.e., d4 log d), which could be too large
for high dimensional datasets. Thus, a natural question is
whether the error bound can be further reduced. Secondly,
for many problems, the error bound of an (ϵ, δ)-differentially
private algorithm is often lower than that of an ϵ-differentially
private algorithm (e.g., Differentially Private Empirical Risk
Minimization [?, ?]). Thus, an interesting question is whether
the problem considered in this paper also follows the same
pattern. Below we will address the two issues by proposing a
covariance perturbation method.

5. COVARIANCE PERTURBATION METHODS

As shown in Theorem 1, the sensitivity of problem (1) is high
(since β is often large). This means that we need to add a large
amount of noise in Algorithm 1 to ensure the ϵ-differential
privacy. To deal with this problem, along with the aforemen-
tioned issues, we propose in this section a general method
which perturbs the empirical covariance S (see Algorithm 2),
instead of the output. This allows us to significantly reduce
the amount of noise that needs to be added. Also, it can be
implemented by using different kinds of random matrices N .
To compare the performance for different mechanisms, we
analyze the error bound for each of them.

Algorithm 2 Covariance Perturbation
Input: D = {xi}ni=1, where the ℓ2-norm of each row xi

is bounded by 1, ρ > 0. ϵ, δ ≥ 0 are the privacy parame-
ters.

1: Let S = 1
n

∑n
i=1 xix

T
i ; sample a symmetric matrix N ∈

Rd×d ∼ P , which makes S +N ϵ- or (ϵ, δ)-differentially
private. Let S̃ = S +N .

2: Return Θ̂∗
ρ = argminΘ∈Sd

++
{− log detΘ + ⟨S̃,Θ⟩ +

ρ∥Θ∥1}.

Below, we consider those random matrices that ensure
ϵ-differential privacy. The first one is due to Lemmas 2 and 4.

Theorem 3. In Algorithm 2, for any ϵ > 0, if choose
P = Wd(m,C) with C = 3

2ϵnId and m = d + 1, it is ϵ-
differentially private for any ϵ > 0. Moreover, with probability
at least 1− δ′, the following holds

∥Θ̂∗
ρ −Θ∗

ρ∥F ≤ O(
log d

δ′ d
3
2 max{∥Θ∗

ρ∥22, ∥Θ̂∗
ρ∥22}

nϵ
).

Next, we consider the case that N is sampled from a Lapla-
cian distribution. Since the covariance matrix is symmetric,
the added noise also needs to be symmetric, the following
lemma is due to [13].

Theorem 4. In Algorithm 2, for any ϵ > 0, if N is a sym-
metric Laplacian matrix N whose entries are i.i.d drawn from
Lap(0, 2d

nϵ ), then it is ϵ-differentially private. Moreover, with
high probability, the following holds

∥Θ̂∗
ρ −Θ∗

ρ∥F ≤ O(
d2 max{∥Θ∗

ρ∥22, ∥Θ̂∗
ρ∥22}

nϵ
).

Remark 2. Comparing Theorems 3 and 4, we can see that
the error in Theorem 3 is less than that in Theorem 4 (if we
omit the term max{∥Θ∗

ρ∥22, ∥Θ̂∗
ρ∥22}). Another advantage is

that adding Wishart matrix not only preserves the symmetry
property, but also guarantees the positive semi-definite prop-
erty of the covariance matrix. Thus, for ϵ-differential privacy,
it is better to use Wishart mechanism theoretically.

Next, we consider (ϵ, δ)-differential privacy and also start
with adding Wishart matrices. The following theorem is due
to Lemmas 1 and 3.

Theorem 5. For any ϵ ∈ (0, 1) and δ ∈ (0, 1
e ), if choose

P = Wd(m,C) with C = 1
nId and m = d + 14

ϵ2 ln( 4δ ) in
Algorithm 2, it is (ϵ, δ)-differentially private. Moreover, if

m > (
√
d+

√
2 log 2

δ′ )
2 for 0 < δ′ < 1, then with probability

at least 1− δ′, we have

∥Θ̂∗
ρ−Θ∗

ρ∥F ≤ O(
max{∥Θ∗

ρ∥22, ∥Θ̂∗
ρ∥22} ln(1/δ) ln(1/δ′)d

3
2

nϵ2
).

Now, we consider adding symmetric Gaussian matrices.

Theorem 6. In Algorithm 2, for any ϵ > 0 and 0 < δ < 1,
if N is a symmetric Gaussian matrix N whose entries are

i.i.d drawn from N (0, β2), where β =

√
2 ln( 1.25

δ )

nϵ , then it is
(ϵ, δ)-differentially private. Moreover, with high probability,
we have

∥Θ̂∗
ρ −Θ∗

ρ∥F ≤ O(
d
√

ln( 1δ )max{∥Θ∗
ρ∥22, ∥Θ̂∗

ρ∥22}
ϵn

).



Remark 3. From the above two theorems, we can see that
although the Wishart mechanism preserves the positive def-
inite property of S̃, which is not the case for the Gaussian
mechanism [7], it has an additional factor of

√
d in its error

bound compared with the Gaussian mechanism (if we omit
the term max{∥Θ∗

ρ∥22, ∥Θ̂∗
ρ∥22}). Thus, if we need a more ac-

curate solution, Gaussian mechanism is a better choice from
the theoretical view.

Now, we address the three issues raised in previous
part. Firstly, for the large error bound in Theorem 2,
we know from Theorem 3 that the covariance perturba-
tion based ϵ-differentially private algorithm always has a
lower error bound than that of an output perturbation based
algorithm (since max{∥Θ∗

ρ∥22, ∥Θ̂∗
ρ∥22} ≤ d2

ρ2 by Lemma
5). Secondly, if we view ϵ as a constant and omit the
term of max{∥Θ∗

ρ∥22, ∥Θ̂∗
ρ∥22}, the error bound of the (ϵ, δ)-

differentially private algorithm with covariance perturbation
strategy is lower than it under ϵ-differential privacy, and
Gaussian mechanism achieves the lowest error bound.

6. EXPERIMENTS

In this section, we present some numerical results on both real-
world and synthetic datasets to evaluate the performance of our
proposed differentially private algorithms. More experiments
are left to the full paper.

We first introduce the algorithms that we are going to com-
pare. For ϵ-differentially private algorithm, we will compare
with output perturbation, Laplace and Wishart covariance per-
turbation methods. For (ϵ, δ)-differentially private algorithm,
we will compare with SULQ Framework [2], Wishart and
Gaussian covariance perturbation methods.

We let Θ̂∗
ρ denote the output of the differentially private

algorithm and Θ∗
ρ denote the optimal solution of the origi-

nal problem. To evaluate the performance of the proposed
methods, we choose Relative Error, which is defined as
∥Θ̂∗

ρ−Θ∗
ρ∥F

∥Θ∗
ρ∥F

. If the relative error is greater than 200, we use NA
to indicate.

For synthetic datasets, we first fix the dimensionality d and
create a sparse matrix U with nonzero entries equal to -1 or 1
with equal probability. Then, we compute S = (U ∗ UT )−1

as the true covariance matrix. The inverse covariance ma-
trix S−1 = UUT is, thus, sparse. Given the inverse co-
variance matrix S−1 = UUT , we then draw n = r × d
samples from the Gaussian distribution N (0, S) to simulate
the high-dimensional settings, where r denotes the ratio of n
(i.e., the sample size) over d (i.e., the dimensionality of the
samples). We test our proposed methods for d = 400 and
r = 0.5, 1.0, 1.5.

For real-world datasets, we use the colon cancer dataset [1]
and the Parkinson’s disease dataset [9] to evaluate our proposed
methods. The colon cancer dataset contains information of
69 individuals with 2000 attributes. We choose 300 variables

for the experiment. The size of Parkinson’s disease dataset is
(192, 22). The datasets are normalized before processing.

For each experiment, we choose ϵ = 0.5, 1, 1.5, respec-
tively. For (ϵ, δ)-DP, we let δ = 0.0001. Note that these
privacy parameters are often chosen in other works. To solve
the optimization problem (1), we set ρ = 0.001 and use the
method in [?]. All experiments run in MATLAB.

Table 1: Performance comparisons of the ϵ-differentially private
algorithms on both synthetic and real-world datasets.

Synthetic Datasets Real-world Datasets

ϵ Methods r = 0.5 r = 1.0 r = 1.5 Colon Parkinson’s

Wishart 0.993 0.9918 0.9914 0.995 0.9140
0.5 Output NA NA NA NA NA

Laplace 101.4 52.85 35.42 190.57 9.950

Wishart 0.986 0.9863 0.9856 0.993 0.8899
1.0 Output NA NA NA NA NA

Laplace 49.44 25.41 16.83 95.01 4.690

Wishart 0.9817 0.9815 0.9806 0.9907 0.8796
1.5 Output NA NA NA NA NA

Laplace 32.30 16.41 10.76 63.67 3.913

Table 2: Performance comparisons of the (ϵ, δ)-differentially private
algorithms on both synthetic and real-world datasets.

Synthetic Datasets Real-world Datasets

ϵ Methods r = 0.5 r = 1.0 r = 1.5 Colon Parkinson’s

Wishart 0.9999 0.9997 0.9993 1.636 1.00
0.5 SQLU NA NA NA NA 0.7419

Gaussian 0.1285 0.1607 0.1759 0.3039 0.1527

Wishart 0.9982 0.9947 0.9906 1.1155 0.990
1.0 SQLU NA NA NA NA 0.7318

Gaussian 0.1254 0.1605 0.1737 0.1081 0.1514

Wishart 0.9954 0.9895 0.9837 1.0474 0.9992
1.5 SQLU NA NA NA NA 0.7065

Gaussian 0.1242 0.1585 0.1701 0.0833 0.1474

The experimental results of the ϵ-differentially private al-
gorithms on both synthetic and real-world datasets are shown
in Table 1. From the table, we can see that in all the cases,
Wishart and Laplacian mechanisms achieve better performance
than the output perturbation method. Furthermore, Wishart
mechanism is the best among the three types of methods. From
Table 2, we can see that the Gaussian method has the lowest
relative error among all (ϵ, δ)-differentially private algorithms.
Also, Gaussian mechanism has the lowest relative error among
all the compared methods. In general, the relative error be-
comes smaller for larger ϵ. But in some cases, the relative
error are almost same for different ϵ values. This could be due
to the fact the difference of these ϵ values is small.

Thus, we can see all the experimental results support our
theoretical analysis.
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