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Abstract

Recently, many machine learning and statistical models such as non-linear regressions, the Single Index, Multi-index, Varying
Coefficient Index Models and Two-layer Neural Networks can be reduced to or be seen as a special case of a new model which is
called the Stochastic Linear Combination of Non-linear Regressions model. However, due to the high non-convexity of the problem,
there is no previous work study how to estimate the model. In this paper, we provide the first study on how to estimate the model
efficiently and scalably. Specifically, we first show that with some mild assumptions, if the variate vector x is multivariate Gaussian,

then there is an algorithm whose output vectors have ℓ2-norm estimation errors of O(
√

p
n ) with high probability, where p is the

dimension of x and n is the number of samples. The key idea of the proof is based on an observation motived by the Stein’s lemma.
Then we extend our result to the case where x is bounded and sub-Gaussian using the zero-bias transformation, which could be seen
as a generalization of the classic Stein’s lemma. We also show that with some additional assumptions there is an algorithm whose

output vectors have ℓ∞-norm estimation errors of O( 1
√

p +

√
p
n ) with high probability. We also provide a concrete example to show

that there exists some link function which satisfies the previous assumptions. Finally, for both Gaussian and sub-Gaussian cases
we propose a faster sub-sampling based algorithm and show that when the sub-sample sizes are large enough then the estimation
errors will not be sacrificed by too much. Experiments for both cases support our theoretical results. To the best of our knowledge,
this is the first work that studies and provides theoretical guarantees for the stochastic linear combination of non-linear regressions
model.
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1. Introduction

Recently, many machine learning and statistical models can
be reduced to or be seen as a special case of a new model which
is called the Stochastic Linear Combination of Non-linear Re-
gressions model, which can be defined as the followings.

Definition 1 (Stochastic Linear Combination of Non-linear Re-
gressions). Given variates x ∈ Rp and z1, · · · , zk ∈ R such that
E[x] = 0 and zi’s for all i ∈ [k] are i.i.d random variables inde-
pendent of x with E[zi] = 0 and Var(zi) = 1, the response y is
given by

y =
k∑

i=1

zi fi(⟨β∗i , x⟩) + ϵ, (1)

where β∗1, β
∗
2, · · · , β

∗
k ∈ Rp are unknown parameters, fi’s for

all i ∈ [k] are known (but could be non-convex) link functions,
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and ϵ is some random noise (from an unknown distribution)
satisfying E[ϵ] = 0 and is independent of x and zi’s.

The goal is to estimate the parameters β∗j for
all j ∈ [k] from n observations (x1, y1, {z1,i}

k
i=1),

(x2, y2, {z2,i}
k
i=1), · · · , (xn, yn, {zn,i}

k
i=1).

This model has a close connection with many models in
Statistics, Machine Learning, Signal Processing and Informa-
tion Theory: (1) when k = 1, the model is reduced to the non-
linear regression estimation problem which has been studied
in [1; 2; 3; 4] and is related to compressed sensing and image
recovery as well; (2) when k = 1 but the link function f1 is
unknown, it becomes the Single Index Model, which is one
of the most fundamental models in statistics and has been stud-
ied for many years [5; 6; 7; 8; 9]; (3) when k ≥ 1, zi’s are
deterministic but fi’s are unknown, this model will be a spe-
cial case of the Multi-index Model which has been studied in
[10; 11; 12; 13]; (4) when k ≥ 1, zi’s are stochastic but fi’s
are unknown, it will be the Varying Coefficient Index Model
which was introduced by [14] and has wide applications in eco-
nomics and medical science [15]; (5) when all fi’s are the same,
the model can be viewed as a Two-layer Neural Network with
k hidden nodes and random hidden-output layer weights.
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To estimate the parameters in Model (1), the main challenge
is that without the assumption that fi’s are convex or similarities
between them, it is hard to establish an objective function that
can be efficiently optimized using optimization methods such as
(Stochastic) Gradient Descent. Thus, due to the high convexity
and randomness, there is no previous study how to solve the
model efficiently. Recently, some works including [8; 16; 13]
studied and proposed efficient algorithms for the Single Index,
Multi-index and Varying Coefficient Index models using Stein’s
Lemma. Their theoretical guarantees are measured in terms of
∥β j − cβ∗j∥2, j ∈ [k], where β j is the estimator for β∗j and c is a
constant depending on many parameters in the models (such as
fi’s, β∗j’s and the distribution for x). However there is a common
issue related to the constant c in these results: They did not
provide a method to compute or even estimate c. Moreover,
measuring the error by using the terms ∥β j − cβ∗j∥2, j ∈ [k] is
quite meaningless due to the constant c. Thus, we wish to use
other measurements and ideally, we hope to measure the error
in terms of β j − β

∗
j for all j ∈ [k]; that is, we do not introduce

the constant c. The key question the paper tries to answer is:
Is there an efficient method whose output vectors β1,

β2, · · · , βk have small errors compared to β∗1, β
∗
2, · · · , β

∗
k?

In this paper, we answer the question in the affirmative under
some mild assumptions on the model. Specifically, our contri-
butions can be summarized as follows.

1. We first consider the case where x multivariate Gaussian.
In this case, we show that there is a special structure
for each β∗j , j ∈ [k]: β∗j = c jβ

ols
j , where c j is a con-

stant depending on the link function f j and x, and βols
j is

the Ordinary Lest Square estimator w.r.t yz j and x, i.e.,
βols

j = (E[xxT ])−1E[z jyx]. Based on this key observation,
we propose an algorithm which estimates c j’s and βols

j ’s,

and outputs {β j}
k
j=1 satisfying ∥β j−β

∗
j∥2 ≤ O(

√
p
n ) for each

j ∈ [k] with high probability. Moreover, in order to make
our algorithm faster, instead of using linear regression es-
timator to approximate βols

j , we use the sub-sampling co-
variance linear regression estimator [17]. We show that
if the sub-sample size is large enough, the error bound is
almost the same as in the previous ones.

2. We then extend our result to the case when x is (bounded)
sub-Gaussian. The challenge is that the result for the
Gaussian case depends on some properties of Gaussian
distribution which are not satisfied in the sub-Gaussian
case. To overcome this, we use the zero-bias transforma-
tion [18], which could be seen as a generalization of the
Stein’s lemma [19]. Particularly, we show that instead of
the equality β∗j = c jβ

ols
j , we have the ℓ∞ norm estimation

error ∥β∗j−c jβ
ols
j ∥∞ ≤ O( 1

√
p ) with some additional mild as-

sumptions. Based on this and the same idea from the Gaus-
sian case, we show that there exists an algorithm whose

output vectors {β j}
k
j=1 satisfy ∥β j − β

∗
j∥∞ ≤ O( 1

√
p +

√
p
n )

with high probability. Similarly, we also propose a sub-
sampled version of our algorithm as in the Gaussian case.

3. While we provide some theoretical results in the previous
parts, it is still unknown whether there exists any link func-
tion which satisfies these assumptions. To solve this prob-
lem, we consider the case where the link functions are sig-
mod function. And we show that with some assumptions
on x, it indeed satisfies the previous assumptions.

4. At the end, we show the experimental results on both
Gaussian and sub-Gaussian cases with single/mixed type
of link functions, and these results support our theoretical
results above. Specially, they show both of the effective-
ness and scalability of our previous algorithms.

To the best of our knowledge, this is the first paper studying
and providing the estimation error bound for Model (1) in both
Gaussian and sub-Gaussian cases.

This paper is a substantially extended version of our previous
work appeared in AAAI’20 [20]. The following are the main
added contents. Firstly, we construct a concrete loss function
which satisfies the assumptions in our theorems which has been
studied in the conference version. Specifically, we show that
under some assumptions on x, when the link function is the
sigmoid function, then it satisfies the assumptions in Theorem
2 (see Theorem 7 for details). Secondly, we provide the proofs
for all theorems and lemmas, and we believe the techniques can
be used to other problems.

The rest of the paper is organized as follows. Section 2 intro-
duces some related work. Section 3 gives some preliminaries on
Sub-Gaussian random variable, necessary lemmas and assump-
tions throughout the paper. Section 4 describes our proposed
algorithms for Gaussian case. Section 5 extends our algorithm
to the Sub-Gaussian case. We provide all the proofs in Section
6. Finally, we experimentally study our methods in Section 7,
and conclude them in Section 8.

2. Related Work

As we mentioned above, there is no previous work on Model
(1) with guarantees on the ℓ2 or ℓ∞ norm of the errors β j − β

∗
j .

Hence, below we compare with the results which are close to
ours.

When the link functions f j’s are unknown, Model (1) is just
the Varying Coefficient Index Model. [16] provided the first
efficient algorithm for this model. Although they considered
the high dimensional sparse case, their method requires the un-
derlying distribution of x to be known, an unrealistic assump-
tion for most applications. Moreover, their estimation errors
are measured by the differences between β j’s and cβ∗j’s for an
unknown c, while in our results we have fixed c = 1.

When the link functions f j’s are all the same, then our model
can be reduced to the two-layer neural network with random
hidden-output layer weights. Previous work on the convergence
results all focused on the gradient descent type of methods such
as those in [21; 22; 23]. However, our method is based on
Stein’s lemma and its generalization. Compared with the gradi-
ent descent type methods, our algorithm is non-interactive (that
is, we do not need to update estimators in each iteration) and
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parameter-free (that is, we don not need to tune the step-size).
Moreover, our method can be extended to the case where the
link functions f j’s are different.

Our method is motivated by Stein’s lemma [19] and its gen-
eralization, the zero-bias transformation. Several previous stud-
ies have used Stein’s Lemma in various machine learning prob-
lems. For example, [24; 25] used it to accelerate some opti-
mization procedures, [26] applied it to Bayesian inference, [27]
appied it to estimate smooth Generalized Linear Model in dif-
ferential privacy model and [8; 3; 16; 28] used it and its gener-
alizations in the Single Index, Multi-index, Varying Coefficient
Index and Generative models, respectively. The zero-bias trans-
formation has also been used in [29] for estimating the Gener-
alized Linear Model. However, due to the difference between
the models, these algorithms cannot be applied to our problem.

3. Preliminaries

In this section, we review some necessary definitions and
lemmas.

Definition 2 (Sub-Gaussian). For a given constant κ, a ran-
dom variable x ∈ R is said to be sub-Gaussian if it satis-
fies supm≥1

1
√

mE[|x|m]
1
m ≤ κ. The smallest such κ is the sub-

Gaussian norm of x and it is denoted by ∥x∥ψ2 .
Similarly, a random vector x ∈ Rp is called a sub-Gaussian

vector if there exists a constant κ such that supv∈S p−1 ∥⟨x, v⟩∥ψ2 ≤

κ, where S p−1 is the set of all p-dimensional unit vector.

In order to extend our results to the sub-Gaussian case, we
will use the zero-bias transformation which is proposed by [18].
It is a generalization of the classic Stein’s lemma in [19].

Definition 3. Let z be a random variable with mean 0 and vari-
ance σ2. Then there exists a random variable z∗ such that for
all differentiable functions f we have E[z f (z)] = σ2E[ f ′(z∗)].
The distribution of z∗ is said to be the z-zero-bias distribution.

The standard Gaussian distribution is the unique distribution
whose zero-bias distribution is itself. This is just the basic
Stein’s lemma.

Lemma 1. [17] Assume that E[x] = 0,E[xixT
i ] = Σ ∈ Rp×p,

and Σ−
1
2 x and y are sub-Gaussian with norms κx and γ re-

spectively. If n ≥ Ω(γκx p), then with probability at least
1 − 3 exp(−p) we have

∥Σ
1
2 (β̃ols − βols)∥2 ≤ C1κxγ

√
p
n
, (2)

where βols = Σ−1E[yx] is the OLS estimator w.r.t y and x, β̃ols =

(XT X)−1XT Y is the empirical one, and C1 > 0 is some universal
constant.

Lemma 2. [29] Let Bδ(β̃) denote the ball centered around β̃
with radius δ. For i = 1, 2, · · · , n, let xi ∈ Rp be i.i.d random
vectors with a covariance matrix Σ. Given a function g that

is uniformly bounded by L and G-Lipschitz, with probability at
least 1 − exp(−p) we have

sup
β∈Bδ(β̃)

⏐⏐⏐⏐⏐⏐1n
n∑

i=1

g(⟨xi, β⟩)−E[g(⟨x, β⟩)]

⏐⏐⏐⏐⏐⏐ ≤ 2(G(∥β̃∥2+δ)∥Σ∥2+L)
√

p
n
.

Assumption 1. We assume that for each j ∈ [k], the ran-
dom variable yz j is sub-Gaussian with its sub-Gaussian norm
∥yz j∥ψ2 = γ.

Note that this assumption holds if y is bounded and z j is sub-
Gaussian or z j is bounded and y is sub-Gaussian.

Assumption 2. We assume that there exist constants G, L > 0
such that for each j ∈ [k], f ′j is G-Lipschitz and bounded by L.
Also for j ∈ [k], we let E[ f ′j (⟨x, β

∗
j⟩)] , 0.

Notations. For a positive semi-definite matrix M ∈ Rp×p, we
define the M-norm for a vector w as ∥w∥2M = wT Mw. Also we
will denote BδM(β̃) as the ball around β̃ with radius δ under M-
norm, i.e., BδM(β̃) = {β : ∥M

1
2 (β − β̃)∥2 ≤ δ}. λmin(M) is the

minimal singular value of the matrix M. For a semi positive
definite matrix M ∈ Rp×p, let its SVD be M = UTΣU, where
Σ = diag(λ1, · · · , λp), then M

1
2 is defined as M

1
2 = UTΣ

1
2 U

with Σ
1
2 = diag(

√
λ1, · · · ,

√
λp).

4. Gaussian Case

In this section we consider the case where x is sampled from
some multivariate Gaussian distribution, then we will extend
our idea to the sub-Gaussian distribution case in next section.

Our algorithm is based on the following key observation us-
ing some properties of the multivariate Gaussian distribution.

Theorem 1. Consider Model (1) in Definition 1 under Assump-
tions 1 and 2. Moreover, assume that the observations {xi}

n
i=1

are i.i.d sampled from N(0,Σ). Then each β∗j , j ∈ [k] can be
written as

β∗j = c j × β
ols
j , (3)

where βols
j = Σ

−1E[z jyx] and c j is the root of the function l j(c)−
1 where

l j(c) = cE[ f ′j (⟨x, β
ols
j ⟩c)]. (4)

From Theorem 1 we can see that, in order to estimate β∗j , it is
sufficient to estimate the terms βols

j = Σ
−1E[z jyx] and c j. If we

denote z jy as the response and x as the variate, then the term βols
j

is just the Ordinary Least Square (OLS) estimator. Thus we
can use its empirical form β̃ j

ols
= (
∑n

i=1 xT
i xi)−1∑n

i=1 zi, jyixi =

(XT X)−1XT Y j as an estimator, where X = [xT
1 ; xT

2 ; · · · ; xT
n ] ∈

Rn×d is the data matrix and Y j = [z1, jy1, · · · , zn, jyn]T is the cor-
responding response vector.

After getting the estimator of βols
j , denoted by β̃ols

j , we use it
to approximate c j. That is we find the root ĉ j of the empirical
version of l j(c) − 1, i.e., l̂ j(c) − 1, where

l̂ j(c) =
c
n

n∑
i=1

[ f ′j (⟨xi, β̃
ols
j ⟩c)].
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Note that there are numerous methods available to find a root
of a function, such as Newton’s root-finding method with
quadratic convergence and Halley’s method with cubic conver-
gence. We also note that this step only cost O(n) per-iteration.
After that, we could estimate each β∗j by β̂nlr

j = ĉ jβ̃
ols
j . In total,

we have Algorithm 1.

Algorithm 1 SLS: Scaled Least Squared Estimators
Input: Data {(xi, yi, {zi, j}

k
j=1)}ni=1, link functions { f j} j∈[k].

1: Option 1: Let X = [x1, x2, · · · , xn]T ∈ Rn×p and compute
the Σ̂−1 = (XT X)−1.

2: Option 2: Construct a sub-sampling based OLS estima-
tor, that is let S ⊂ [n] be a random subset and take
Σ̂−1

S =
|S |
n (XT

S XS )−1, where XS ∈ R|S |×p is the data matrix
constrained on indices of S .

3: for j = 1, 2 · · · , k do
4: Let Yi = [z1, jy1, · · · , zn, jyn]T ∈ Rn. For Option 1,

Compute the ordinary least squares estimator β̃ols
j =

(Σ)−1XT Y j. For Option 2, take β̃ols
j = (Σ̂S )−1XT Y j.

5: Denote ỹ j = Xβ̃ols
j . Then use the Newton’s root-finding

method to the function c
n
∑n

i=1[ f ′j (ỹ j,ic)] − 1, denote the
root as ĉ j:

6: for t = 1, 2, · · · until convergence do
7: c = c −

c 1
n
∑n

i=1 f ′j (cỹ j,i)−1
1
n
∑n

i=1{ f
′
j (cỹ j,i)+cỹ j,i f (2)

j (cỹ j,i)}
.

8: end for
9: β̂nlr

j = ĉ j · β̃
ols
j .

10: end for
11:
12: return

(
β̂nlr

j
)

j∈[k]

The following theorem shows that the converge rate of the

estimation error for each ∥β̂nlr
j − β

∗
j∥2 is O(

√
p
n ) under some ad-

ditional mild assumptions on link functions { f j}
k
j=1.

Theorem 2. Consider Option 1 in Algorithm 1. Under the As-
sumptions 1, 2 and the assumptions in Theorem 1, for each
j ∈ [k] we define the function ℓ j(c, β) = cE[ f ′j (⟨x, β⟩c)] and
its empirical counter part as

ℓ̂ j(c, β) =
c
n

n∑
i=1

f ′j (⟨xi, β⟩c).

Assume that there exist some constants η, c̄ j such that
ℓ j(c̄ j, β

ols
j ) > 1 + η. Then there exists c j > 0 satisfying the

equation 1 = ℓ j(c j, β
ols
j ) for each j ∈ [k].

Further, assume that n is sufficiently large:

n ≥ Ω(p∥Σ∥2∥β∗j∥
2
2)

Then, with probability at least 1 − k exp(−p) there exist con-
stants ĉ j ∈ (0, c̄ j) satisfying the equations

1 =
ĉ j

n

n∑
i=1

f ′j (⟨xi, β̃
ols
j ⟩ĉ j).

Moreover, if for all j ∈ [k] the derivative of z ↦→ ℓ j(z, βols
j )

is bounded below in absolute value (does not change sign) by
M > 0 in the interval z ∈ [0, c j]. Then with probability at least
1 − 4k exp(−p) the outputs {β̂nlr

j }
k
j=1 satisfy for each j ∈ [k]

∥β̂nlr
j − β

∗
j∥2 ≤ O(max{1, ∥β∗j∥2}λ

− 1
2

min(Σ)
√

p
n

), (5)

where G, L, γ,M, c j, η are assumed to be Θ(1) and thus omit-
ted in the Big-O and Ω notations (see Appendix for the explicit
forms).

Note that in Theorem 2 the link functions f j are not required
to be convex. Hence this is quite useful in non-convex learning
models.

Time Complexity Analysis. Under Option 1 of Algorithm 1, we
can see that the first step takes O(np2 + p3) time, calculating
β̃ols

j for all j ∈ [k] takes O(k(np + p2)) time and each itera-
tion of finding ĉ j takes O(n) time. Thus, if k ,the number of
link functions f j, is a constant, then the total time complexity
is O(np2 + p3 + nT ), where T is the number of iterations for
finding c j.

However, the term np2 is prohibitive in the large scale setting
where n, p are huge (see [30; 31] for details). To further reduce
the time complexity, we propose another estimator based on
sub-sampling.

Note that the term O(np2) comes from calculating the empir-
ical covariance matrix XT X. Thus, to reduce the time complex-
ity, instead of calculating the covariance via the whole dataset,
we here use the sub-sampled covariance matrix. More pre-
cisely, we first randomly sample a set of indices S ⊂ [n] whose
size |S | will be specified later. Then we calculate |S |n (XT

S XS )−1

to estimate (XT X)−1, where XS ∈ R|S |×p is the data matrix con-
strained on indices of S . We can see that the time complexity
in this case will only be O(|S |p2 + p3). The following lemma,
which is given by [17; 24] shows the convergence rate of the
OLS estimator based on the sub-sampled covariance matrix.
This is a generalization of Lemma 1.

Lemma 3. Under the same assumptions as in Lemma 1, if
|S | ≥ Ω(γκx p), then with probability at least 1 − 3 exp(−p) the
sub-sampled covariance OLS estimator β̃ols =

|S |
n (XT

S XS )−1XT Y
satisfies

∥β̃ols − βols∥2 ≤ C2κxγ

√
p
|S |
.

We have the following approximation error based the sub-
sampled covariance OLS estimator:

Theorem 3. Under the same assumptions as in Theorem 2, in
Algorithm 1 if we use Option 2 with |S | ≥ Ω(γκx p) , then with
probability at least 1 − 4k exp(−p) the outputs {β̂nlr

j }
k
j=1 satisfy

for each j ∈ [k]

∥β̂nlr
j − β

∗
j∥2 ≤ O(max{1, ∥β∗j∥2}λ

− 1
2

min(Σ)
√

p
|S |

).
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Moreover, it is also possible to accelerate the algorithm using
the sub-sampling method in the step 5 (finding the root) and we
can see the estimation error will be the same as in Theorem 3
(by the proof of Theorem 3). Due to the space limit, we omit it
here.

5. Extension to Sub-Gaussian Case

Note that Theorem 2 is only suitable for the case when x is
Gaussian. This is due to the requirements on some properties
of the Gaussian distribution in the proof of Theorem 1. In this
section we will first extend Theorem 1 to the sub-Gaussian case.

Remember that the proof of Theorem 1 is based on the classic
Stein’s lemma. Thus, in order to generalize to sub-Gaussian
case, we will use the zero-bias transformation in Definition 3
since it is a generalization of the Stein’s lemma. With some
additional assumptions, we can get the following theorem.

Theorem 4. Let x1, · · · , xn ∈ Rp be i.i.d realizations of a ran-
dom vector x which is sub-Gaussian with zero mean, whose
covariance matrix Σ has Σ

1
2 being diagonally dominant 1, and

whose distribution is supported on a ℓ2-norm ball of radius r.
Let v = Σ−

1
2 x be the whitened random vector of x with sub-

Gaussian norm ∥v∥ψ2 = κx. If for all j ∈ [k], each v has con-
stant first and second conditional moments (i.e., ∀s ∈ [p] and
β̃ j = Σ

1
2 β∗j , E[vs|

∑
t,s β̃ jvt] and E[v2

s |
∑

t,s β̃ jvt] are determin-
istic) and the link functions f ′j satisfy Assumption 2. Then for
c j =

1
E[ f ′j (⟨x,β∗j⟩)]

, the following holds for the model in (1) for all
j ∈ [k]

∥
1
c j
· β∗j − β

ols
j ∥∞ ≤ 16Grκ3

x
√
ρ2ρ∞

∥β∗j∥
2
∞

√
p
, (6)

where ρq for q = {2,∞} is the conditional number of Σ in ℓq

norm and βols
j = Σ

−1E[xyz j] is the OLS vector w.r.t yz j and x.

Remark 1. Note that compared with the equality relationship
between β∗j and c jβ

ols in Theorem 1, in Theorem 4 we only has
the ℓ∞ norm of their difference. Also, here we need more as-
sumptions on the distribution of x, and these assumptions en-
sure that the estimation error decays in the rate of O( 1

√
p ).

Theorem 4 indicates that we can use the same idea as in the
Gaussian case to estimate each β∗j . Note that the forms of c j in
Theorem 1 and 4 are different. In Theorem 1 each c j is based
on βols

j , while in Theorem 4 it is based on β∗j . However, due to
the closeness of β∗j and βols

j in (6), we can still use 1
E[ f ′j (⟨xi,β

ols
j ⟩c̃ j)]

to approximate c j, where c̃ j is the root of cE[ f ′j (⟨xi, β
ols
j ⟩c)]−1.

Because of this similarity, we can still use Algorithm 1 for the
sub-Gaussian case under the assumptions in Theorem 4, and we
can get the following estimation error:

1A square matrix is said to be diagonally dominant if, for every row of the
matrix, the magnitude of the diagonal entry in a row is larger than or equal to
the sum of the magnitudes of all the other (non-diagonal) entries in that row.

Theorem 5. Consider Option 1 in Algorithm 1. Under Assump-
tions 1, 2 and the assumptions in Theorem 4, for each j ∈ [k], if
we define the function ℓ j(c, β) = cE[ f ′j (⟨x, β⟩c)] and its empiri-
cal counter part as

ℓ̂ j(c, β) =
c
n

n∑
i=1

f ′j (⟨xi, β⟩c).

Assume that there exist some constants η, c̄ j such that
ℓ j(c̄ j, β

ols
j ) > 1 + η. Then there exists c̃ j > 0 satisfying the

equation 1 = ℓ j(c̃ j, β
ols
j ) for each j ∈ [k].

Further, assume that n is sufficiently large:

n ≥ Ω(∥Σ∥2 p2ρ2ρ
2
∞∥β

∗
j∥

2
∞max{1, ∥β∗j∥

2
∞}).

Then, with probability at least 1 − k exp(−p) there exist con-
stants ĉ j ∈ (0, c̄ j) satisfying the equations

1 =
ĉ j

n

n∑
i=1

f ′j (⟨xi, β̃
ols
j ⟩ĉ j).

Moreover, if for all j ∈ [k], the derivative of z ↦→ ℓ j(z, βols
j )

is bounded below in absolute value (does not change sign) by
M > 0 in the interval z ∈ [0,max{c̄ j, c j}]. Then with probability
at least 1 − 4k exp(−p) the outputs {β̂nlr

j }
k
j=1 satisfy for each j ∈

[k]

∥β̂nlr
j − β

∗
j∥∞ ≤ O

(√
ρ2ρ∞λ

− 1
2

min(Σ)
√

p
n
∥β∗j∥∞

×max{1, ∥β∗j∥∞} + ρ2ρ
2
∞

max{∥β∗j∥
2
∞, 1}∥β

∗
j∥

2
∞

√
p

)
,

where η,G, L, γ,M, c̄ j, r, κx, c j are assumed to be Θ(1) and thus
omitted in the Big-O and Ω notations (see Appendix for the ex-
plicit forms).

Remark 2. Compared with the converge rate in the ℓ2-norm

of O(
√

p
n ) in Theorem 2, Theorem 5 shows that for the sub-

Gaussian case, the converge rate of the estimation error is

O( 1
√

p +

√
p
n ) in the ℓ∞-norm (if we omit other terms). This is

due to the estimation error in Theorem 4. Moreover, compared
with the assumptions of link functions in Theorem 2, there are
additional assumptions in Theorem 5.

In order to reduce the time complexity and make the algo-
rithm faster, we can also use the sub-sampled covariance OLS
estimator. This is the same as that in the Gaussian case.

Theorem 6. Under the same assumptions as in Theorem 5,if
we use Option 2 in Algorithm 1, then with probability at least
1 − 4k exp(−p), the outputs {β̂nlr

j }
k
j=1 satisfy for each j ∈ [k]

∥β̂nlr
j − β

∗
j∥∞ ≤ O

(√
ρ2ρ∞λ

− 1
2

min(Σ)
√

p
|S |
∥β∗j∥∞

×max{1, ∥β∗j∥∞} + ρ2ρ
2
∞

max{∥β∗j∥
2
∞, 1}∥β

∗
j∥

2
∞

√
p

)
.
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An unsatisfactory issue of all above theorems is that they
need quite a few assumptions/conditions. Although almost all
of them commonly appear in some related works, the assump-
tions on functions ℓ j(·, βols

j ) seem to be a little strange. They
are introduced for ensuring that the functions ℓ j(·, βols

j ) − 1 and
ℓ̂ j(·, β̃ols

j ) − 1 have roots and ĉ j is close to c j for large enough
n. The following theorem shows that the sigmoid link function
indeed satisfies the assumptions in Theorem 2 when x is some
Gaussian and ∥βols

j ∥2 = O(
√

p).

Theorem 7. Consider the case where the link function f j(z) =
1

1+e−z and x ∼ N(0, 1
p Ip) and ∥βols

j ∥2 =
√

p
20 . Then when c̄ j =

6 and η = 0.22, ℓ j(c̄ j, β
ols
j ) > 1 + η. Moreover, ℓ′(z, βols) is

bounded by constant M = 0.19 on [0, c̄ j] from below.

As we will see later, our experimental results show that the
algorithm actually performs quite well even though some of the
assumptions are not satisfied, such as the model with logistic
and cubic link functions.

To deal with the privacy issue, recently, [27] studied the
problem of estimating smooth Generalized Linear Model and
non-linear regression problem in a model which is called Non-
interactive Local Differential Privacy with public unlabeled
data. And they proposed several methods based on the Stein’s
lemma and zero-bias transformation. As we mentioned above,
non-linear regression is one special case of our model, thus, we
can easily get an algorithm which could estimate our problem
in the the model of Non-interactive Local Differential Privacy
with public unlabeled data.

6. Omitted Proofs

Proof of Theorem 1. Fix j ∈ [k], we have

E[z jyx] = E[z j(
k∑

i=1

zi fi(⟨x, β∗i ⟩) + ϵ)x]

= E[z2
j f j(⟨x, β∗j⟩)x] = E[ f j(⟨x, β∗j⟩)x], (7)

where Eq. (7) is due to the assumption of {z j}
k
j=1 are i.i.d and

Var(z j) = 1.
Now, denote by ϕ(x|Σ) the multivariate normal density with

mean 0 and covariance matrix Σ. We recall the well-known
property of Gaussian density dϕ(x|Σ)

dx = −Σ−1xϕ(x|Σ) (this is just
the Stein’s lemma). Using this and the integration we have

E[ f j(⟨x, β∗j⟩)x] =
∫

x f j(⟨x, β∗j⟩)ϕ(x|Σ)dx

=

∫
− f j(⟨x, β∗j⟩)dϕ(x|Σ) = Σβ∗jE[ f ′j (⟨x, β

∗
j⟩)].

Thus we have

1
E[ f ′j (⟨x, β

∗
j⟩)]
Σ−1E[z jyx] = β∗j . (8)

Proof of Theorem 4. Now we fix j ∈ [k], by the assumptions
in the model we have

E[z jyx] = E[z j(
k∑

i=1

zi fi(⟨x, β∗i ⟩) + ϵ)x]

= E[z2
j f j(⟨x, β∗j⟩)x] = E[ f j(⟨x, β∗j⟩)x]

= Σ
1
2 E[v f j(⟨v, β̃ j⟩].

Thus we have

βols
j = Σ

− 1
2 E[v f ′j (⟨v, β̃ j⟩]. (9)

For convenience we will omit subscript j. Now we define the
partial sum V−i = ⟨v, β̃⟩ − viβ̃i for i ∈ [p]. We will focus on
the i-th entry of the above expectation given in (9). Denote
the zero-bias-transformation of vi conditioned on V−i by v∗i , we
have

E[vi f j(⟨v, β̃ j⟩] = E[E[vi f j(viβ̃i + V−i)|V−i]]
= β̃iE[ f ′j (v

∗
i β̃i + V−i)] = β̃iE[ f ′j ((v

∗
i − vi)β̃i + ⟨β̃, v⟩)].

Combining with the above equation, we have

βols = Σ−
1
2 Dβ̃ = Σ−

1
2 DΣ

1
2 β∗, (10)

where D is a diagonal matrix where the the entry Dii =

E[ f ′((v∗i − vi)β̃i + ⟨β̃, v⟩)].
By the Lipschitz property of f we have

|Dii −
1
c j
| ≤ |E[ f ′((v∗i − vi)β̃i + ⟨β̃, v⟩)] − E[ f ′(⟨β̃, v⟩)]|

≤ GE[|(v∗i − vi)β̃i|]. (11)

Now we will bound the term of E[|(v∗i − vi)|], by the same
method as in [24] we can get

E[|(v∗i − vi)|] ≤
3
2
E[|vi|

3] ≤ 8κ3
x (12)

where the second inequality comes from 1
√

3
E[|vi|

3]
1
3 ≤ ∥v∥ψ2 ≤

κx.
Thus, in total we have maxi∈[p] |Dii −

1
c j
| ≤ 8Gκ3

x∥Σ
1
2 β∗j∥∞ and

∥βols
j −

1
c j
β∗j∥∞ = ∥(Σ

− 1
2 (D −

1
c j

I)Σ
1
2 ∥∞)∥β∗j∥∞

≤ max
i∈[p]
|Dii −

1
c j
|∥Σ

1
2 ∥∞∥Σ

− 1
2 ∥∞∥β

∗
j∥∞

≤ 8Gκ3
xρ∞∥Σ

1
2 ∥∞∥β

∗
j∥

2
∞.

Due to the diagonal dominance property we have

∥Σ
1
2 ∥∞ = max

i

p∑
j=1

|Σ
1
2
i j| ≤ 2 maxΣ

1
2
ii ≤ 2∥Σ∥

1
2
2 .

Since we have ∥x∥2 ≤ r, we write

r2 ≥ E[∥x∥22] = Trace(Σ) ≥ p∥Σ ≥
p∥Σ∥2
ρ2

.

Thus we have ∥Σ
1
2 ∥∞ ≤ 2r

√
ρ2
p .
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Since Theorem 5 is more complex than Theorem 2, we will
proof Theorem 5 first. Before that, we need to show the follow-
ing lemma.

Lemma 4. Under Assumption 2, if we define the function
ℓ j(c, β) = cE[ f ′j (⟨x, β⟩c)] and its empirical counter part as

ℓ̂ j(c, β) =
c
n

n∑
i=1

f ′j (⟨xi, β⟩c).

Assume that each xi are i.i.d sub-Gaussian with ∥xi∥ψ2 ≤ κx and
there exist some constant η, c̄ j such that ℓ j(c̄ j, β

ols
j ) > 1 + η.

Then there exists c̃ j > 0 satisfying the equation 1 = ℓ j(c̃ j, β
ols
j ).

Further, assume that for sufficiently large n such that

n ≥ Ω(
p∥Σ∥2∥βols

j ∥
2
2G2L2c̄4

jκ
4
xγ

2

η2 ).

Then, with probability at least 1 − k exp(−p) there exist con-
stants ĉ j ∈ (0, c̄ j) satisfying the equations

1 =
ĉ j

n

n∑
i=1

f ′j (⟨xi, β̃
ols
j ⟩ĉ j).

Moreover, if for all j ∈ [k] the derivative of z ↦→ ℓ j(z, βols
j )

is bounded below in absolute value (does not change sign) by
M > 0 in the interval z ∈ [0, c̄ j]. Then with probability at least
1 − 4k exp(−p) for all j ∈ [k] we have

|ĉ j − c̃ j| ≤ O(M−1GLc̄2
jκ

2
xγ∥Σ∥

1/2
2 ∥β

ols
j ∥2

√
p
n

).

Proof of Lemma 4. We first proof the existence of c̃ j. By the
definition we know that ℓ j(0, βols

j ) = 0 and ℓ j(c̄ j, β
ols
j ) > 1,

since ℓ j is continuous, there must exists a c̃ j which satisfies
ℓ j(c̃ j, β

ols
j ) = 1.

Secondly, we will proof the existence of ĉ j ∈ (0, c̄ j). De-
note vi = Σ

− 1
2 xi as the whitened random variable. Note that

by Assumption 1 we know that z jy is sub-Gaussian with norm
∥z jy∥ψ2 ≤ γ, thus Lemma 1 holds with γ. We denote the upper

bound in Lemma 1 as δ, that is δ = C1κxγ
√

p
n and suppose the

event in Lemma 1 holds. Then we have

β̃ols
j ∈ BδΣ(β

ols
j ) = {β : ∥Σ

1
2 (β − βols

j )∥2 ≤ δ}.

Thus we have for all c ∈ (0, c̄ j]

|ℓ̂ j(c, β̃ols
j ) − ℓ j(c, β̃ols

j )| (13)

≤ sup
β∈Bδ

Σ
(βols

j )
|ℓ̂ j(c, β) − ℓ j(c, β)|

≤ sup
c∈(0,c̄ j]

sup
β∈Bδ

Σ
(βols

j )
|ℓ̂ j(c, β) − ℓ j(c, β)|

≤ c̄ j sup
c∈(0,c̄ j]

sup
β∈Bδ

Σ
(βols

j )
|
1
n

n∑
i=1

f ′j (⟨xi, β⟩c) − E[ f ′j (⟨x, β⟩c)]|

= c̄ j sup
c∈(0,c̄ j]

sup
β∈Bδ

Σ
(βols

j )
|
1
n

n∑
i=1

f ′j (⟨vi,Σ
1
2 β⟩c) − E[ f ′j (⟨v,Σ

1
2 β⟩c)]

= c̄ j sup
c∈(0,c̄ j]

sup
β∈Bδ(β̄ols

j )
|
1
n

n∑
i=1

f ′j (⟨vi, β⟩c) − E f ′j (⟨w, β⟩c)|

= c̄ j sup
β∈Bc̄ jδ(β̄ols

j )
|
1
n

n∑
i=1

f ′j (⟨vi, β⟩) − E[ f ′j (⟨w, β⟩)]|. (14)

Where the second equality is due to that β ∈ Bδ
Σ
(βols

j ) is equiva-

lent to Σ
1
2 β ∈ Bδ(β̄ols

j ).
Thus by Lemma 2 we have with probability at least 1 −

exp(−p) (we have n ≥ Ω(pκ2
xγ

2c̄2
j ))

sup
β∈Bc̄ jδ(β̄ols

j )
|
1
n

n∑
i=1

f ′j (⟨vi, β⟩) − E[ f ′j (⟨w, β⟩)]|

≤ 2(G(∥β̄ols
j ∥ + c̄ jδ)∥I∥2 + L)

√
p
n

= O(GLκxγ∥Σ∥
1/2
2 ∥β

ols
j ∥2

√
p
n

). (15)

Moreover by the G-Lipschitz property of f ′j we have for any
β1, β2 and c ∈ [0, c̄ j],

|ℓ j(c, β1) − ℓ j(c, β2)| ≤ Gc̄2
jE[⟨v,Σ

1
2 (β1 − β2)⟩]

≤ Gc̄2
jκx∥Σ

1
2 (β1 − β2)∥2E[∥v∥2]

≤ O(Gc̄2
jκx∥Σ

1
2 (β1 − β2)∥2). (16)

Where the last inequality is due the definition of κx.
Take β1 = β̃

ols
j and β2 = β

ols
j and by Lemma 1 we have

|ℓ j(c, β̃ols
j ) − ℓ j(c, βols

j )| ≤ O(Gc̄2
jκ

2
xγ

√
p
n

). (17)

Combining with (14), (15), (16) and (17), in total we have for
all c ∈ (0, c̄ j]

|ℓ̂ j(c, β̃ols
j ) − ℓ j(c, βols

j )| ≤ O(GLc̄2
jκ

2
xγ∥Σ∥

1/2
2 ∥β

ols
j ∥2

√
p
n

). (18)

Thus, when c = c̄ j we have

ℓ̂ j(c̄ j, β̃
ols
j ) ≥ 1 + η − O(GLc̄2

jκ
2
xγ∥Σ∥

1/2
2 ∥β

ols
j ∥2

√
p
n

). (19)
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Thus when n ≥ Ω(
p∥Σ∥2∥βols

j ∥
2
2G2L2 c̄4

jκ
4
xγ

2

η2 ). The left term of (19) is
greater than 1, also by the definition we have ℓ̂ j(0, β̃ols

j ) = 0.
Thus, there exists a ĉ j such that ℓ̂ j(ĉ j, β̃

ols
j ) = 1.

Thirdly, we will show the approximation error of ĉ j w.r.t c̃ j.
Using the Taylor’s series expansion of c ↦→ ℓ j(c, βols

j ) around c̃ j

and the assumption on the derivative of ℓ with respect to its first
argument, we obtain

M|ĉ j − c̃ j| ≤ |ℓ j(ĉ j, β
ols
j ) − ℓ j(c̃ j, β

ols
j )|

= |ℓ j(ĉ j, β
ols
j ) − ℓ j(ĉ j, β̃

ols
j )| + |ℓ j(ĉ j, β̃

ols
j ) − 1|

= |ℓ j(ĉ j, β
ols
j ) − ℓ j(ĉ j, β̃

ols
j )| + |ℓ j(ĉ j, β̃

ols
j ) − ℓ̂ j(ĉ j, β̃

ols
j )|

≤ O(GLc̄2
jκ

2
xγ∥Σ∥

1/2
2 ∥β

ols
j ∥2

√
p
n

).

Where the last inequality is due to (18) and (14).

Proof of Theorem 5 . We have for each β̂nlr
j

∥β̂nlr
j − β

∗
j∥∞ ≤ ∥ĉ jβ̃

ols
j − c̃ jβ

ols
j ∥∞ + ∥c̃ jβ

ols
j − β

∗
j∥∞

≤ ∥ĉ jβ̃
ols
j − c̃ jβ

ols
j ∥∞ + ∥c̃ jβ

ols
j − c jβ

ols
j ∥∞ + ∥c jβ

ols
j − β

∗
j∥∞.

(20)

We first bound the term of |c̃ j − c j|. By definition we have
c jE[ f ′j (⟨x, β

∗
j⟩)] = 1 and c̃ jE[ f ′j (⟨x, β

ols
j ⟩c̃ j)] = 1, we get

|ℓ j(c̃ j, β
ols
j ) − ℓ j(c j, β

ols
j )| = |1 − ℓ j(c j, β

ols
j )|

= |c jE[ f ′j (⟨x, β
∗
j⟩)] − c jE[ f ′j (⟨x, β

ols
j ⟩c j)]|

≤ G|c j|E[⟨x, β∗j − c jβ
ols
j ⟩]

≤ Gc j∥β
∗
j − c jβ

ols
j ∥∞E∥x∥1

≤ Gc jκx∥β
∗
j − c jβ

ols
j ∥∞.

Thus, by the assumption of the bounded deviation of ℓ(c, βols
j )

on max{c̄ j, c j} we have

M|c̃ j − c j| ≤ |ℓ j(c̃ j, β
ols
j ) − ℓ j(c j, β

ols
j )| ≤ Gc jκx∥β

∗
j − c jβ

ols
j ∥∞.

Thus by Theorem 4 we have

|c̃ j − c j| ≤ O(M−1rG2c2
jκ

4
x
√
ρ2ρ∞

∥β∗j∥
2
∞

√
p

). (21)

Thus for the second term of (20) we have

∥c̃ jβ
ols
j − c jβ

ols
j ∥∞ ≤ O(M−1rG2c2

jκ
4
x
√
ρ2ρ∞

∥βols
j ∥∞∥β

∗
j∥

2
∞

√
p

).

(22)
For the first term of (20) we have

∥ĉ jβ̃
ols
j − c̃ jβ

ols
j ∥∞ ≤ |ĉ j|∥β̃

ols
j − β

ols
j ∥∞ + |ĉ j − c̃ j|∥β

ols
j ∥∞.

≤ O
(
(c̃ j + M−1GLc̄2

jκ
3
xγ

2∥Σ∥
1/2
2 ∥λmin(Σ)−

1
2 βols

j ∥2
p
n

)

+ M−1GLc̄2
jκ

2
xγ∥Σ∥

1/2
2 ∥β

ols
j ∥2

√
p
n
∥βols

j ∥∞
)

≤ O
(
c̄ jκxγλ

− 1
2

min(Σ)
√

p
n

max{1, ∥βols
j ∥∞}

)
. (23)

By Theorem 4 we have the third term of (20) is bounded by

∥c jβ
ols
j − β

∗
j∥∞ ≤ O(c jGrκ3

x
√
ρ2ρ∞

∥β∗j∥
2
∞

√
p

). (24)

By (22), (23) and (24) we have

∥β̂nlr
j − β

∗
j∥∞ ≤ O

(
M−1rG2c2

jκ
4
x
√
ρ2ρ∞

∥βols
j ∥∞∥β

∗
j∥

2
∞

√
p

+

c̄ jκxγλ
− 1

2
min(Σ)

√
p
n

max{1, ∥βols
j ∥∞} + c jGrκ3

x
√
ρ2ρ∞

∥β∗j∥
2
∞

√
p
)
.

(25)

Take this into the previous equation and take
G, L,M, r, κx, γ,C, c j, c̄ j = Θ(1) we can get

∥β̂nlr
j − β

∗
j∥∞ ≤ O(

√
ρ2ρ∞

∥β∗j∥
2
∞max{1, ∥βols

j ∥∞}
√

p

+ λ
− 1

2
min(Σ)

√
p
n

max{1, ∥βols
j ∥∞}) (26)

By Theorem 4 we have

∥βols
j ∥∞ ≤ O(∥

1
c j
β∗j∥∞ +Grκ3

x
√
ρ2ρ∞

∥β∗j∥
2
∞

√
p

).

Thus we have

∥β̂nlr
j −β

∗
j∥∞ ≤ O(max{1,

√
ρ2ρ∞}λ

− 1
2

min(Σ)
√

p
n
∥β∗j∥∞max{1, ∥β∗j∥∞}

+ ρ2ρ
2
∞

max{∥β∗j∥
2
∞, 1}∥β

∗
j∥

2
∞

√
p

).

Note that the equality holds when

n ≥ Ω(
p∥Σ∥2∥βols

j ∥
2
2G2L2c̄4

jκ
4
xγ

2

η2 ).

Which will holds when

n ≥ Ω(
∥Σ∥2 p2G4L2c̄4

jκ
10
x max{ρ2ρ

2
∞, 1}r

2γ2∥β∗j∥
2
∞max{1, ∥β∗j∥

2
∞}

η2

max{1,
1
c2

j

}) ≥ Ω(
p2∥Σ∥2∥β

ols
j ∥

2
∞G2L2c̄4

jκ
4
xγ

2

η2 ) (27)

Proof of Theorem 2. Since x is Gaussian, Lemma 1 holds
with κx = O(1). The proof of Theorem 2 is almost the same
as in the proof of Theorem 4.

By Theorem 1 we have for each β̂nlr
j

∥β̂nlr
j − β

∗
j∥2 = ∥ĉ jβ̃

ols
j − c jβ

ols
j ∥2 (28)

≤ ĉ j∥β̃
ols
j − β

ols
j ∥2 + |ĉ j − c j|∥β

ols
j ∥2. (29)
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For the first term of (29) we have

ĉ j∥β̃
ols
j − β

ols
j ∥2 ≤ (c j + M−1GLc̄2

jγ
2∥Σ∥

1/2
2 ∥β

ols
j ∥2

p
n

)λ−
1
2

min(Σ)

≤ O(c jγλ
− 1

2
min(Σ)

√
p
n

). (30)

For the second term of (29) we have

|ĉ j − c j|∥β
ols
j ∥2 ≤ O(M−1GLc̄2

jγ∥Σ∥
1/2
2 ∥β

ols
j ∥2

√
p
n

1
c j
∥β∗j∥2).

(31)
In total we have

∥β̂nlr
j − β

∗
j∥2 ≤ O(c jγλ

− 1
2

min(Σ)
√

p
n

+ M−1GLc2
jγ∥Σ∥

1/2
2 ∥β

ols
j ∥2

√
p
n

1
c j
∥β∗j∥2) (32)

If we assume η, c j, γ,C,M,G, L = Θ(1) we can get

∥β̂nlr
j − β

∗
j∥2 ≤ O(max{1, ∥β∗j∥2}λ

− 1
2

min

√
p
n

). (33)

The sample show satisfies

n ≥ Ω(
p∥Σ∥2∥βols

j ∥
2
2G2L2c̄4

jγ
2

η2 ) = Ω(
p∥Σ∥2∥β∗j∥

2
2G2L2c̄4

jγ
2

η2

1
c2

j

)

Proofs of Theorem 3 and 6. The proofs of Theorem 3 and 6
are almost the same as them of Theorem 2 and 5, respectively.
Instead of using Lemma 1 here we will use Lemma 3. For con-
venience we omit them here.

Proof of Theorem 7 . The proof is motivated by [29]. For the
function f (z) = 1

1+e−z we have

f ′(z) =
ez

(1 + ez)2 , f (3)(z) =
ez(1 − 4ez + e2z)

(1 + ez)4 .

It is notable that both of f ′(z) and f (3) are even functions. We
will use the local convexity for z ≥ 0 around z = 2.5, thus we
can get

f ′(z) ≥ f ′(2.5) + f (2)(2.5)(z − 2.5) = a − bz, (34)

where a = f ′(2.5) − 2.5 f (2)(2.5) and b = − f (2)(2.5). Denote
W = N(0, 1) and ϕ as the density of the standard Gaussian
distribution, by the assumption we have

ℓ(z, βols) = zE[ f ′(⟨x, βols⟩)z] = zE[ f ′(
Wz
20

)]

= 2z
∫ ∞

0
f ′(

wz
20

)ϕ(w)dw

≥ 2z
∫ 20a

bz

0
(a −

bwz
20

)ϕ(w)dw

= 2z{aΦ(
20a
bz

) −
a
2
−

bz

20
√

2π
(1 − exp(−

200a2

b2z2 )}.

Take z = 6 and η = 0.22 we have ℓ(z, βols) > 1 + η. Next we
will prove that ℓ′(z, βols) is lower bounded by 0.19.

By the Stein’s lemma (the special case of Definition 3 with z
is Gaussian) we can get

ℓ′(z, βols) = E[ f ′(
Wz
20

)] + (
z

20
)2E[ f (3)(

Wz
20

)]

≥ 2{aΦ(
20a
bz

) −
a
2
−

bz

20
√

2π
(1 − exp(−

200a2

b2z2 )}

−
9

100
max | f (3)| ≥ 0.19.

7. Experiments

We conduct experiments on three types of link functions:
polynomial, sigmoid, and logistic function, as well as an ar-
bitrary mix of them. Formally, the polynomial link functions
include f (x) = x, x3, x5; the sigmoid link function is defined
as f (x) = (1 + e−x)−1; the logistic link function refers to
f (x) = log(1 + e−x). Due to the statistical setting we focused
on in the paper, we will perform our algorithm on the synthetic
data, and the same experimental setting has been used in the
previous work such as [16; 13; 24].
Experimental setting. We sample all coefficient zi, j and noise
ϵ i.i.d. from standard Gaussian distribution N(0, 1) across each
experiment. Each β∗j is generated by sampling from N(1, 16Id).
We consider two distributions for generating x: Gaussian and
Uniform distribution (corresponds to thr sub-Gaussian case).
To satisfy the requirement of Theorem 7, in both cases the stan-
dard variance is scaled by 1/p and this is also used in [24],
where p is the data dimension. Thus, in the Gaussian case,
x ∼ N(0, 1

p Ip), while in the sub-Gaussian case x is sampled
from a uniform distribution, i.e., x ∼ U([−1/p, 1/p])p. Finally,
given the list F = [ f1, . . . , fk] of link functions, the response
y is computed via (1). It is notable that the experimental re-
sults with different number of link functions k are incomparable
since when k is changed Model (1) will also be changed.

These experiments are divided into two parts, examining how
the sample size n and the size of the sub-sample set S affect the
algorithm performance. In the first part we vary n from 100 000
to 500 000 with fixed p = 20 and |S | = n, while in the sec-
ond part we vary |S | from 0.01n to n, with fixed n = 500 000
and p = 20. In each part we test the algorithm against various
data distribution/link function combinations. For each experi-
ment, in order to support our theoretical analysis, we will use
the (maximal) relative error as the measurement, that is when x
is Gaussian we use maxi∈[k]

∥βi−β
∗
i ∥2

∥β∗i ∥2
and when x is sub-Gaussian

we will use maxi∈[k]
∥βi−β

∗
i ∥∞

∥β∗i ∥∞
. For each experiment we repeat 20

times and take the average as the final output.
Experiment results. Each of Figure 1-3 illustrates the result

for a single type of link function. We can see that the relative
error decreases steadily as the sample size n grows which is due
to the O( 1

√
n ) converge rate as our theorem states. Also, we can

see that the size of S doesn’t affect the final relative error much

9



if |S | is large enough, i.e., in all cases, choosing large enough
|S | ≥ 0.2n is sufficient to achieve a relative error roughly the
same as when |S | = n, which also has been mentioned in our
theorems theoretically.

We further investigate the case when F contains different
types of link functions. In Figure 4a, we let F contain poly-
nomials with different degrees (x, x3, x5), and there are roughly
k
3 functions for each degree. Similarly, in Figure 4b we also mix
polynomial links with the other two types of links, i.e., logistic
link and log-exponential link, and there are roughly k

3 functions
for each type of link function. Our algorithm achieves similar
performance as in the previous settings.
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Figure 1: Single type of link function f (x) = x3

8. Conclusion

We studied a new model called stochastic linear combination
of non-linear regressions and provided the first estimation er-
ror bounds for both Gaussian and bounded sub-Gaussian cases.
Our algorithm is based on Stein’s lemma and its generaliza-
tion, the zero-bias transformation. Moreover, we used the sub-
sampling of the covariance matrix to accelerate our algorithm.
Finally, we conducted experiments whose results support our
theoretical analysis.

There are still many open problems: 1) In the paper, we only
focused on the low dimensional case (where n ≫ p). However,
it is unknown whether we can extend our methods to the high
dimensional sparse case. 2) In the paper we assume x is either
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Figure 2: Single type of link function f (x) = (1 + e−x)−1
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Figure 3: Single type of link function f (x) = log(1 + e−x)
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(a) f (x) = x, x3, x5, sub-Gaussian data
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Figure 4: Mixed different type of link functions

Gaussian or Sub-Gaussian, we do not know its behaviors in the
Sub-Exponential distribution case. 3) Where we can further
accelerate our methods is still unknown. We will leave these
problems as future work.
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