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Low to High Dimensional Modality Hallucination
using Aggregated Fields of View

Kausic Gunasekar, Qiang Qiu, Member, IEEE, and Yezhou Yang, Member, IEEE

Abstract—Real-world robotics systems deal with data from
a multitude of modalities, especially for tasks such as nav-
igation and recognition. The performance of those systems
can drastically degrade when one or more modalities become
inaccessible, due to factors such as sensors’ malfunctions or
adverse environments. Here, we argue modality hallucination as
one effective way to ensure consistent modality availability and
thereby reduce unfavorable consequences. While hallucinating
data from a modality with richer information, e.g., RGB to
depth, has been researched extensively, we investigate the more
challenging low-to-high modality hallucination with interesting
use cases in robotics and autonomous systems. We present a
novel hallucination architecture that aggregates information from
multiple fields of view of the local neighborhood to recover
the lost information from the extant modality. The process is
implemented by capturing a non-linear mapping between the
data modalities and the learned mapping is used to aid the extant
modality to mitigate the risk posed to the system in the adverse
scenarios which involve modality loss. We also conduct extensive
classification and segmentation experiments on UWRGBD and
NYUD datasets and demonstrate that hallucination allays the
negative effects of the modality loss. Implementation and models:
https://github.com/kausic94/Hallucination.

Index Terms—Deep Learning in Robotics and Automation;
Robot Safety; Modality Hallucination; Computer Vision for
Other Robotic Applications.

I. INTRODUCTION

ONTEMPORARY robotic systems and intelligent agents

such as autonomous ground or aerial vehicles, smart-
phones and nimble security systems heavily rely on pro-
cessing information from multiple sensory data streams to
yield accurate and reliable decision-making results. Usually,
the systems are subjected to correlated data from numerous
streams. One best way to ensure the efficacy and efficiency
of these systems in terms of performance is to add redun-
dancy into the system by incorporating data from all possible
streams. Recent advances in multimodal information fusion
mechanisms have made it possible to widely adopt these
techniques and incorporate them within the systems to ensure
the best performance. Thus, it would be ideal for a system
to access as many modalities as possible. When the decision
system makes use of all these different streams of data, it
is a necessary precaution to have more than one sensor for
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Fig. 1: Tllustration of a system that mitigates risk by adopting
a hallucination during the adverse scenario of modality loss.
Best viewed in color.

each modality just in case one of them fails. In practice,
however, various constraints like the system budget, physical
form factor, power budget, etc make it problematic to integrate
the required redundancy. One effective alternative that will
help in beating the constraints and difficulties mentioned above
is hallucinating the data of the desired modality from another
modality. For example, predicting the depth map of an image
given its RGB image, with a trustworthy predicting method,
we can replace the need of the redundant sensor with the
predictor. An illustration of it is portrayed in Fig. 1

For our study, we consider a particularly prevalent scenario
in autonomous systems in which one or multiple sensors
fail. Although sensors can generally function reliably for a
long period of time, the lingering risk still exists that certain
channels of the sensor array may fail at a critical time. The
notorious case, where an autonomous car hit a pedestrian
recently happened in Arizona US [1], there is speculation that
the LIDAR sensor on the vehicle failed to function before the
tragedy actually happened, and it is believed to be one of the
crucial factors that caused the accident. So, as the hardware-
level sensor malfunctioning is inevitable, are there any backup
approaches an intelligent system can take to mitigate the risks
or lower the likelihood of failure? More importantly, how to
utilize the sensor channel with less information to hallucinate
the information-rich sensor channel? Here, we put forward the
first approach, to the best of our knowledge, that increases the
reliability of a decision system involving multi-modal data.
Especially, we consider a system that takes in two channels of
sensory inputs: an RGB image channel and a depth channel. In
our scenario, both channels are generating sensory data to the
intelligent system while they are both functioning normally.
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We consider this data as the training data. In an adverse
scenario wherein either of the channels fails to function, we
want our system to be able to still function with a hallucinated
backup channel. While RGB to Depth has been widely studied
under the topic of “single camera/monocular depth estimation”

[2], [3], we put our main focus of this paper onto the less

explored scenario that the information-rich RGB channel stops

working, and needs to be recovered.

Hallucinating from a lower information space to a higher
information space has many challenges associated with cap-
turing the right information. The capturing of this information
should enhance the performance of the system which takes
in this data. This is further constrained by the fact that we
are aiming at a task-agnostic approach as well as an online
trainable method, making the problem harder.

We summarize our contributions as follows:

1) We introduce a novel AggConv and AggTrConv block
and designed a encoder-decoder based neural network
architecture that incorporates multiple fields of view into its
base encoder and decoder blocks to learn the low-to-high
dimensional modality mapping. We compare the results of
our architecture with that of the baseline results.

2) We design and conduct experiments on the well-known
UWRGBD and the NYUD datasets, and empirically show
the advantage in hallucinating with our architecture over
the baseline architectures. We further validate the useful-
ness of the hallucinated data by subjecting the hallucinated
data to two fundamental vision task, namely, image classi-
fication and semantic segmentation.

3) We also experimentally show an added advantage that we
observed with the hallucinated data. By incorporating the
hallucinated data into the original system it can further
improve the performance of the original system.

II. RELATED WORK

Modality hallucination related: Learning combined space
representations and hallucinating data from different modal-
ities is an active field of research [4], [5], [6], [7] as it
provides many advantages to the system that incorporates it.
The work done in [4] is a very good example where the
authors hallucinate RGB versions of the image from infra-
red images and that is used in the face verification task. This,
however, is targeted at a domain adaptation setting where the
face verification model trained for RGB images is adapted to
near infra-red images. The work by Hoffman et al. in [5] also
deals with modality hallucination, although their method is
used to learn mid-level abstractions and that is further used
to enhance the performance of the detection network. The
learning of their hallucination network is embedded as part
of their object detection module and it learns by loss function
paired with the depth stream. They do not produce hallucinated
data and are also restricted to a specific task. Other works
have used a mapping between modalities to help better the
performance of a system [6] or use a generative model to learn
the distribution of modalities and sample from them when
needed [7]. In [6], the authors learned a mapping using the
unlabeled data with the help of Gaussian processes and that is

leveraged for the object recognition task of objects previously
not seen in the training data. Their scenario is quite different
as they propose to tackle missing data instances for their task
while our work is focused on tackling missing modality using
data hallucinated with the help of CNNs. The work done
in [7] uses generative models, specifically deep Boltzmann
machines to help with the missing data. Generative models
come with their disadvantages and an important one is that
they do not produce a one-to-one mapping as required in these
tasks, instead, it learns the distribution which may not well
describe our missing data modality. Our work is substantially
different as ours is not a generative model and we tackle the
case of an entire modality missing and not missing instances of
data. Other generative networks have also been used for similar
tasks like in [8] and [9] but differ in many ways from our
work. They are not concerned with risk mitigation in system
with a lost modality. [8] deals in producing a semantic map
from a depth input image using variational autoencoders. RGB
images (our case) belong to a higher dimensional modality and
is much more information rich compared to semantic maps.
[9] targets at data augmentation for imbalanced segmentation
data. Moreover, they use a 2-stage pipeline which means it
cannot be adapted as online trainable model unlike ours. They
use pix2pix [10] as well for generating RGB from semantic
labels and we empirically show that it doesn’t work well in
our case. Work done in [11] and [12] aims to solve different
problem statements but is related to our work with regards to
methodology and motivation. They are functionally different
from ours as the features obtained from different kernels
are fused only at the end. Our architecture enables complex
intermixing of features from different kernels including the
low level features thus utilizing contextual information at every
level.

Multi-modal information processing: Multi-modal systems
are becoming more common recently and consequently, there
has been increased interest in this field of research [13], [14],
[15], [16]. Work such as [15], [16] deal with the learning of
cross-modal data but differ in their learning process in the
sense that they do not hallucinate the data in any manner
similar to ours. While the former transfers images to the
semantic text space and uses it to help in classification the
latter uses a learned model to transfer its learning for the
same task on the other modality. [17] deals with RGB and
thermal data modalities for the case of pedestrian detection.
But in their work, they are using RGB images to reconstruct
thermal images (high to low dimensional mapping) and using
them on their detection network. Unlike [17] our hallucination
scheme is generic and not task-specific. A lot of work has
been done that deals with multi-modal information process-
ing. Work done in [13], [14] involves learning cross-modal
representations and associating the modality embeddings to
learn the relationship between the modalities. This learned
information is used to perform a specific task on a given data
modality as in [13].

III. NETWORK ARCHITECTURE:

We propose a network architecture that is specifically de-
signed to utilize more neighborhood information of the current
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feature in building the next layer of feature maps. Specifically,
we introduce the AggConv and AggTrConv blocks as the
base building blocks and we construct our architecture using
those blocks. Traditionally convolutional neural networks work
on a single sized kernel which restricts the field of view, to
that kernel.As prediction from a lower to higher dimensional
modality is fundamentally an under-constrained problem, it
becomes increasingly hard for neural networks to find the
right solution with the conventional small field of view from
a single kernel. To tackle this, additional information from the
local neighborhood of the pixel can be utilized to help the
network in hallucinating better. Thus, we believe, a halluci-
nation network that uses information obtained from different
fields of view will best suit this ill-posed problem. Different
fields of view encapsulate various degrees of information to
pass on to the next set of feature maps. In the case of just
a single field of view, in the lower dimensional modality,
the kernel cannot capture information that is sufficient for
reconstruction in the higher dimension. But by aggregating
the different fields of view and thus expanding the same, the
network can leverage the relationship that exists between the
pixels and their neighbors to predict correctly in the higher
dimensional space.

[ Network Architecture |

Name Layer Filters Skip Kernels
Enc_1 Encoder 48 - -
Enc_2 Encoder 60 - -
Enc_3 Encoder 192 - -
Enc_4 Encoder 288 - -
Dec_4 Decoder 96 - -
Dec_3 Decoder 30 Enc_3 -
Dec_2 Decoder 24 Enc_2 -
Dec_1 Decoder 3 Enc_1 -
logits Convolution 3 - 5x5
Hallucinated | Convolution 3 - 3x3

TABLE I: This table describes the complete architecture used
in our experiments.

The AggConv and AggTrConv blocks serve in expanding
the field of view by concatenating features from different
fields of view. The AggConv and AggTrConv blocks have
several advantages which make them ideal for this purpose.
The AggConv blocks utilize multiple kernels of different sizes
and accumulate the feature maps produced by each kernel.
Kernels with a bigger field of view are used with the help of
dilated convolutions. This ensures that AggConv blocks are not
memory intensive which would be the case if bigger un-dilated
kernels were used. For instance, using the 11x11 kernel with a
dilation size of 3 effectively covers a neighborhood of 31x31.
By using this instead of 31x31 kernel saves about 87% of
parameters in this case. The features used are sparser compared
to the un-dilated kernel but by using a combination of such
kernels the network obtains the information it needs. The
AggConv block has a convolution operation with just a 3x3
kernel to sub-sample the feature maps when it is needed. While
the AggConv blocks are used for downsampling the feature
maps into a feature-rich latent space a similar AggTrConv
block is used to up-sample and eventually reconstruct the
lost modality. The design of our AggConv and AggTrConv

blocks are further explained in table II. Another advantage of
these blocks that we introduced is that, they can be easily
parallelized as it involves multiple operations on a single
input which paves way for concurrency, thus ensuring faster
compute than what would be expected in an architecture that
is operation heavy. The architecture is built in an encoder-
decoder fashion as shown in table I. The encoder and decoder
blocks are built with AggConv and AggTrConv blocks as
shown in Table II. The architecture is defined with 4 encoder
and 4 decoder blocks. Skip connections are used to add the
activation output from each encoder layer to the corresponding
decoder layer. The network takes in depth images as input and
RGB images as the ground truth data.

[ Encoder - Decoder Blocks |

Layer | Filters | Stride [ Skip Connection
Encoder block : Filters : d
AggConv d 1 NO
ReLU - - -
AggConv d 1 YES
ReLU - - -
Convolution
kernel : 3x3 d 2 NO
dilation rate : 1
Decoder block : Filters : d
AggTrConv d 0.5 NO
ReLU - - -
AggTrConv d 1 YES
ReLU - - -

Architecture Building Blocks ]

Layer Kernels [ Filters [ dilation rate [ stride
AggConv Block : Filters : d , Stride : s

convolution 3x3 d/6 1 S

11 x 11 d/6 1 S

5x5 d/6 2 S

7x7 d/6 2 S

9x9 d/6 3 s

11 x 11 d/6 3 s

concatenation - - - -
batch Normalization - - - -

AggTrConv Block : Filters : d , Stride : s

convolution 3x3 d/3 1 S
7x7 d/3 1 s

11 x 11 d/3 1 s

concatenation - - - -
batch Normalization - - - -

TABLE II: Encoder - Decoder blocks constructed using the
AggConv and AggTrConv blocks. This table describes the
basic building blocks that is used in the architecture in table

IV. BASELINE AND VALIDATION NETWORKS

To best understand the superior ability of our network in
hallucination we compare it to baseline models obtained by
subjecting the hallucination procedure with networks that have
proven well in image to image prediction tasks. The process
of hallucination is formulated as an image translation problem
from the depth to the RGB domain and we use a conditional
GAN [10], popularly known as pix2pix which has been shown
to do well in the task of image translation. We also use an off-
the-shelf semantic segmentation network [18] called linkNet
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and re-purpose it for the task of hallucination. Linknet is
also an encoder-decoder architecture which has been shown to
outperform networks like deeplab[19] in a parameter efficient
way.

The effectiveness of the reconstructed modality cannot be
judged visually. We judge it by subjecting the reconstructed
modality in central vision tasks of object classification and
semantic segmentation. The hallucinated images produced by
our network and the baseline networks are compared in the
above tasks and we report the numbers for the same. We
use AlexNet [20] for the classification task and [21] for the
semantic segmentation task.

V. L0oSsSs FUNCTION

The hallucinator loss .2, is formulated with two com-
ponents. They are the root mean square loss term and the
smoothness constraint. Here, A is used to control the relative
importance of the different loss functions. Shown in Eq. 1 is
a pixel-wise loss formulation:

fhal = a%mse + Ae?ivmoarh- (1)

A root mean squared error between the hallucinated images
produced by the hallucination model and the ground truth
images obtained from RGB cameras helps to capture the
important abstraction between the two spaces. The main goal
of this hallucination network is to capture the non-linear
relationship between the spaces. The Eq. 2 works well to
capture the said abstraction.

Y (pi—pi)?

N )
where N represents the number of pixels in target image /, and
pi, pi the ground truth and reconstructed pixel respectively. To
obtain a consistent mapping and to lessen haphazard or chaotic
results we introduce an edge aware smoothness constraint.
Smoothness constraints are commonly used in depth prediction
like the work in [22], [23]. The smoothness constraint should
enforce local smoothness and at the same time should preserve
the edges, formulated in the Eq. 3:

o%mse = 2

1 _
Limooth = NZH(VIhal)e H(VI), 3)
N

where I, represents the hallucinated tensor, / the ground
truth, and H is the Huber function [24]:

1x? if x| <&
Hix) = 4 2% if x| <
) {6(|x| - %6) otherwise

where § = |x|, and N the total number of pixels within one
training batch.

“)

VI. EXPERIMENTS

The same set of input depth images are used in training of
all the models and they are all tested on the same test set which
is seperated from the training set to ensure fairness. A simi-
lar procedure is followed for classification and segmentation
experiments.

A. Dataset

Hallucination: We design our experiments on the following
two datasets: NYUD dataset [25] and the University of Wash-
ington’s RGBD dataset [26]. The datasets mentioned above
have RGB images and their corresponding depth images. The
UWRGBD dataset has over 200,000 images belonging to
51 classes. Although the UWRGBD dataset has over 200K
images the dataset is heavily skewed. For instance, some
classes have less than 2000 images while others have over
10,000 images. To make sure there is no untoward bias,
the dataset is split into 875 images per class for training
and 100 images per class for testing. Hence, in total 44,625
training images and 5100 testing images are obtained for
the hallucination experiment. The NYUD -v1 dataset, on the
other hand, has only 2284 labeled images. So we used the
raw dataset available in the NYUD-V1 [25]. The raw dataset,
unlike the labeled dataset, contains depth images that are not
in-painted along with their corresponding RGB images and
there are over 100000 such pairs. The NYUD V1 dataset has
in total of 135,314 RGB - depth image pairs. The raw depth
images are in-painted to remove artifacts using a cross bilateral
filter[27] and then projected onto the RGB plane and linearly
scaled to get the depth image representation. The images were
split into train and test set with an 80:20 ratio.

Classification: For classification, we used 500 images
for training and 175 images for testing per class from the
UWRGBD dataset. Thus in total 25,500 training images and
8925 testing images are used for classification. None of these
training and testing images overlap with the hallucination
dataset. The dataset was subjected to a 51-way classification
task. The images are cropped to only include the object to
ensure there is no untoward data leakage.

Segmentation: The segmentation experiment was carried
out with NYUD-v1 dataset that has 2284 labels from 64
different indoor scenes. The depth images are in-painted to
fill holes just like it was done for the Hallucination dataset.
The dataset was split into 70:30 training-testing split. The
segmentation task was 40 class segmentation procedure. The
hallucinated network trained on NYUD-vl raw images was
used to obtain the hallucinated images here.

B. Implementation Details

The hallucination experiments are done with the images
maintained in their standard size of 640x480. The hallucination
experiments were carried out in the YUV colorspace. The hal-
lucinations using Aggregated convolution block architecture is
implemented as a multi-GPU training pipeline. For both the
NYUD dataset hallucination as well UWRGBD hallucination
the experiments were carried out with ADAM optimizer with
learning rate = 0.0005 , B; = 0.9, B, = 0.999, e=1e-08. The
Huber delta in the loss function 3 (§) was set to 0.001 and
the smoothing weight A is set to 50 The architecture was
implemented using data parallelism on 3 GPUs. A total batch
size of 21 is used in training with each GPU taking in 7 images
per batch. The training for classification was carried out with
a batch size of 200 and a learning rate of le-05 for 5 epochs.
The semantic segmentation was completed with a learning
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rate of le-05 and a batch size of 25 for 100,000 steps. Both
classification and segmentation are subjected to cross-entropy
loss.

C. Results

1) GAN results: The generative model based hallucination
procedure explained in the above sections with the pix2pix
architecture does a relatively average job. Although it produces
a few prominent structures with very little variance in the
dataset like the turn-table in the UWRGBD dataset. The
same pattern can be observed in the NYUD dataset as well.
Moreover, the texture of the image compared to other those
hallucinated by the Aggregated and linkNet architectures is
less accurate. Some examples from the test set of the GAN
based hallucination are shown in Fig. 3. However, when it

(a) Depth (b) Hallucinated (c) RGB

Fig. 2: UWRGBD dataset hallucination results using the GANs
(pix2pix architecture). (a) depth input image, (b) hallucination
results ,(c) is groundtruth.

comes to reconstructing the pixels of the object of interest,
it doesn’t work as well. The pix2pix network retains a little
bit of the structure of the object of interest but it doesn’t
produce a qualitatively well-defined structure. In many cases,
it completely misses the color and structure of the object even
in a relatively easy dataset like the UWRGBD dataset. Some
results from the UWRGBD dataset hallucinated using GAN’s
can be seen in 2.

[ =
(a) Depth (b) Hallucinated
Fig. 3: NYUD dataset hallucination results with GANSs. (a)
depth input image, (b) hallucination results,(c) groundtruth.

2) LinkNet Results: The linkNet architecture has an

encoder-decoder architecture that compresses the image to a
smaller dimension representation and reconstructs from that
smaller dimension space. The linkNet architecture does a much
better job of learning the correct family of functions for the
mapping to take place and does so in a parameter efficient
manner. Fig.4 depicts results on the UWRGBD dataset.

(a) Depth (b) Hal (c) Hal* (d) RGB

Fig. 4: UWRGBD dataset hallucination results using the
linkNet architecture. (a) depth input image, (b) hallucination
result after first stage, (c) hallucination result after regularizing
stage, (d) is groundtruth.

As the UWRGBD is an easy dataset the hallucination does
a pretty good job in the first stage itself but we still can find
minor improvements after the regularization stage. The NYUD
dataset, on the other hand, provides a lot of evidence for the
effectiveness of the regularization stage. The results from the
NYUD dataset can be seen in Fig.5.

(b) Hal (c) Hal* "(d) RGB

Fig. 5: NYUD hallucination results using the linkNet architec-
ture. (a) depth input image, (b) hallucination result after the
first stage, (c) hallucination result after regularizing stage, (d)
is groundtruth.

(a) Depth

Regularizer Network Significance: Although the halluci-
nator network produces convincing RGB renditions from the
depth images, the results still seem to display some visible
discrepancies between the original RGB and hallucinated
data. The hallucinator network seems to be concerned with
reproducing the overall structure of the image and doesn’t
give much importance to color information. Moreover, as the
hallucinator network is trained with a weighted smoothness
constraint to ensure local smoothness the hallucinator network
ignores smaller objects in the RGB image. The regularizing
autoencoder helps to overcome these shortcomings as seen in
Fig. 6. The regularizer helps to maintain the color information,
texture, finer components of the images missed by hallucinator,
de-blurs the image and also removes irregularities. As seen
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in the Fig 6 and the color is better reconstructed by the
regularizer. We can see the regularizer can reproduce smaller
details such as an electrical socket on the wall or the Apple
symbol on the computer. This ability of the regularizer makes
it a non-trivial part of our experiment. Although the proposed
two-stage method does comparably well, it violates one of
the fundamental constraints we place on our method: online
training.

<

(c) RGB

Fig. 6: Regularizer significance examples. The first row depicts
(from left to right) (a) Hallucination without regularization, (b)
Hallucination with regularization, and (c) Ground truth. The
second row are zoomed version of the highlighted areas in (a)
and the third row are zoomed versions of the annotations in
(b) output.

3) AggConv Results: The advantage of using our archi-
tecture based on aggregated fields of view is evident from
Fig. 7 and 8. The network works effectively in reproducing
the color and structural information of the image in a single-
stage pipeline without requiring the need for regularizer. It
produces better results from a visual perspective compared
to the GAN and linkNet architecture without violating any
constraints unlike off-the-shelf models like linkNet. Thus, in
an adverse scenario, an online trained network using our
architecture would significantly mitigate the risk the system
would be subjected to compared to a hallucination scheme
using GAN or linkNet.

Although visual inspection gives a general idea of the
superior hallucination of our network, it is better judged with a
quantitative metric that indicates how the test set hallucinations
deviated from the ground truth. The table III shows how mean
absolute pixel difference of the test set and it provides more
proof to the effectiveness of our architecture.

Mean Absolute Pixel Difference

GAN LinkNet | AggConv(ours)
137.57 10.76 5.96
134.155 3.39 2.36

Dataset
NYUD
UWRGBD
TABLE III: Mean absolute pixel difference indicates the

average deviation of a pixel from it’s true value.

Substituting the lost modality with hallucination helps:
The Table IV provides evidence to the fact that the hallucinated

(a) Depth (c) RGB

Fig. 7: UWRGBD hallucination results using our proposed
architecture with Aggregated convolutional blocks. (a) depth
input image, (b) hallucination results, (c) is groundtruth.

(b) Hallucinated

(a) Depth

(b) Hallucinated (c) RGB

Fig. 8: NYUD dataset hallucination results using AggConv
blocks (our proposed architecture). (a) depth input image, (b)
hallucination results, (c) is groundtruth.

images indeed captures some of the necessary RGB space
information. We train a 51-way object classification network
using [20] architecture on the UWRGBD dataset and a 40-
way Semantic segmentation task using [21] architecture on
the NYUD dataset. We train the networks with RGB data and
during the test phase, we replace it with the other modality
images. Since we are trying to capture RGB space information
a network trained on RGB data should be able to extract and
use features from the hallucinated data and should perform
better than the depth images. This can indeed be seen in
Table IV. (In Tables V and IV the RGB + Depth and RGB
columns respectively have been given for reference. It is the
original system performance. Since we are considering lost
RGB modality the performance comparison is between Depth
and hallucinated modality).

Combining the working modality with the hallucinated
modality maintains the overall system’s performance: The
loss of the primary modality could be anticipated and as
a countermeasure, the same task could be trained on other
modalities, but that does not ensure good performance. For
instance, a pipeline in a self-driving car could be trained for
lane detection using the RGB camera data and as a back-up,
a network for depth-based detection could be trained in the
same way as well. The depth-based system would not perform
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\ Hallucinated Modality’s Effectiveness |

[ Hallucinated Modality Enhances. |

Task Object Semantic Segmentation
Classification
Metric Total Pixel Mean Mean Freq.
Accuracy Accuracy | Accuracy IoU IoU

RGB 96.67% 53.64% 40.10% 30.13% | 44.82%

Depth 2.12% 18.25% 12.95% 4.58% 10.23%

GAN 27.48% 25.84% 18.20% 9.69% 18.04%
LinkNet 29.19% 31.87% 19.87% 11.17% | 22.07%
AggConv 51.14% 35.78% 22.22% 13.42% | 25.33%

TABLE IV: The table provides evidence for the effectiveness
of using the hallucinated modality. AggConv is our method.

as well, as that modality is not information-rich like the RGB
modality for this task. We believe, in this case, the hallucinated
data in combination with the depth data could be better than
just having a depth data based back up. This can be seen
well depicted in Table V. We use two-stream classification and
segmentation networks to show the benefits of incorporating
the hallucinated modality with the depth modality. The original
system is trained with RGB and depth data. Both classification
and segmentation tasks perform much better with hallucinated
and depth modalities together than just having depth. There
is an increase of approximately 50% classification accuracy
and 2.5% mean IoU score for segmentation task which is
a significant increase for semantic segmentation. This result
validates our claim that data can be hallucinated and be used
along with the lower dimensional data to reduce the risk. The
performance is comparable to the performance of the original
system. Thus in the case of a lost modality, hallucinated data
can be helpful.

‘ Hallucinated Modality Reduces Risk |

Task Object Semantic Segmentation
Classification

Metric Total Pixel Mean Mean Freq.

Accuracy Accuracy | Accuracy ToU TIoU
RGB+Depth 97.78% 55.52% 42.30% 32.08% | 46.60%
Depth 53.15% 50.53% 35.73% 26.05% | 40.67%
GAN+Depth 86.15% 52.45% 37.19% 27.46% | 42.57%
LinkNet+Depth 88.01% 52.03% 38.15% 28.02% | 42.33%
AggConv+Depth 92.37% 52.95% 38.51% 28.61% | 43.32%

TABLE V: This table shows the benefits of incorporating the
data from the hallucinated modality with the depth modality
when the RGB modality is lost.

Incorporating the hallucinated modality while all others
are working enhances the overall system’s performance:
An added advantage that we observed from the hallucinated
data is that it can be incorporated into the original system
to improve the system performance. The hallucinated data
captures the space between the depth modality and the RGB
modality and combining it with the original system results
in gains in performance. Table VI provides evidence for the
same thus proving hallucinated data aides in enhancing the
performance existing system. Both classification and segmen-
tation task benefit from the added modality with segmentation
gaining as much as 2.5% on mean IoU score.

D. Discussion

The proposed method is intended for systems that are as-
sumed to be working well and for a reasonable time before the

Task Object Semantic Segmentation
Classification
Metric Total Pixel Mean Mean Freq.
Accuracy Accuracy | Accuracy ToU ToU

RGB+Depth 97.78% 55.52% 42.30% 32.08% | 46.60%
RGB+Depth+GAN 98.83% 57.45% 44.41% 34.35% | 48.83%
RGB+Depth+LinkNet 97.44% 57.12% 44.06% 33.92% | 48.54%
RGB+Depth+AggConv 98.12% 57.53% 44.75% 34.41% | 48.85%

TABLE VI: The hallucinated modality can be incorporated
with the fully functioning system to enhance performance.
RGB + Depth + AggConv is our method.

adverse event happening. This is an essential assumption as the
training data for the hallucination scheme is generated during
the normal working condition on the robot or autonomous
system.

An object’s information such as color that cannot be ob-
tained from the lower-dimensional modality, in the depth
modality is obtained using the correlation between that in-
formation and the neighborhood of the object of interest. This
correlation is learned from the explicit relationship that exists
in the training data. When this relationship no longer holds,
during inference the model still predicts from the relationship
that is in memory.

To better explain this consider the hallucination of a wall
from a depth image. Now, the best answer for assigning the
color to this wall would be to assign it the average of all
the colors seen in the training set. With our architecture, the
model can use the neighbors of the wall to predict it’s color and
texture. If the neighborhood is associated with lamps, books
and writing desks, the model could make an interpretation
that it’ is a study room and assign the color based on training
observations it has seen. Suppose, the wall color is changed
all of a sudden a robot running the trained hallucination
model will fail in predicting the new color and texture. Thus
successful hallucination is limited by the constancy of these
relationships between the pixel and its neighbors. However,
given enough time and training data, the model should be able
to learn new relationships.

To further demonstrate the trained hallucination model is
able to generalize well, we finetuned the NYUD trained one
with data from the TUM dataset[28]. In particular, we use the
dataset under robot slam” category to do this. The sequences
“fr2/pioneer360”, "fr2/pioneer_slam” and “fr2/pioneer_slam3”
were used as training dataset while “fr2/pioneer_slam2” is
used as the testing dataset. The results shown in Fig. 9 are
from test set. There are in all 6000 and odd images in the
training set and 2000 and odd images in the test set, hence we
decided to fine-tune the NYUD dataset trained model instead
of training it from scratch. It was trained for 8 epochs with a
batch size of 7. The hallucination model does a pretty good job
in preserving the overall information of the scene even with a
small data sequence, thus indicating the ability of our model
to quickly learn and adapt to new and changing environments
(see the video demonstration attached).

VII. CONCLUSION

We bring to light the importance of hallucination in multi-
modal systems and the challenges in hallucinating from low
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Fig. 9: The NYUD trained model fine-tuned with TUM. (a)
depth input, (b) hallucination output, (c) groundtruth.

(c) RGB

to high dimension modality. We describe a common adverse
scenario in autonomous systems, which is the loss of a data
modality and present a method to hallucinate data from the
existing modality by capturing a non-linear mapping between
the data spaces. We introduce a field of view aggregating
convolutional block (AggConv and AggTrConv) compare our
proposed hallucination architecture with state of the art net-
works re-purposed for this task of hallucination. We provide
qualitative and quantitative results as evidence and further
validate our claim on two vision tasks (classification, semantic
segmentation) and show that the hallucinated modality does
reduce the risk to the system that arises due to modality
loss. We have made our implementation and data samples for
experimentation publicly available for future research.
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