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Vortex gradient stretching is believed to be the mechanism that generates large vorticity

gradients at small scales and consequently maintains the enstrophy cascade to small scales

in two-dimensional turbulence. In this work, using particle tracking measurements of

two-dimensional turbulence in a soap-film flow, we show experimental evidence that in

the direct enstrophy cascade range, the vorticity gradient is preferentially perpendicular to

the instantaneous stretching direction. We also show that in regions where the stretching

direction and the vorticity gradient are perpendicular to each other, the enstrophy flux is on

average from large to small scales, while it is from small to large scales in other regions.

Moreover, when observing the angle between stretching and the vorticity gradient in a

coordinate system following a fluid particle trajectory, i.e., in the Lagrangian view, we

observe that the vorticity gradient direction responds to but lags behind the stretching

direction. Therefore, we observe a stronger alignment between the vorticity gradient

direction with the stretching direction at an earlier time. At all scales in the direct cascade

range, the evolution of the angle between the vorticity gradient and the stretching direction

displays a time scale given by the mean enstrophy, independent of the scale, providing

direct experimental support for the theoretical argument that vorticity is nearly constant in

the direct cascade range.

DOI: 10.1103/PhysRevFluids.5.054602

I. INTRODUCTION

A primary feature of fluid turbulence is the net flux of kinetic energy from the scale where it is

injected into the flow to the scale where it is dissipated. This energy flux over a wide range of scales

is known as the energy cascade. In three-dimensional (3D) turbulent flows, vortex stretching, i.e., the

average amplification of vorticity under the action of strain [1], is thought to play an important role in

the cascade of energy from large scales to small scales [2–5]. In two-dimensional (2D) turbulence,

vortex stretching is absent due to geometric constraints, and energy dissipation is dominated by

large-scale friction. This difference leads to a transfer of energy from the forcing scale to larger

scales known as the inverse energy cascade [6,7].
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Another feature of 2D turbulence can be seen from the equation of motion for the enstrophy (that

is, one half of the mean squared vorticity, 〈 1
2
ω2〉) in a homogeneous field, given by [5]

1

2

D〈ω2〉

Dt
= 〈ω · ∇ × f〉 − ν〈(∇ω)2〉 − α〈ω2〉, (1)

where the angle brackets 〈·〉 denote an ensemble average; ω = ωez is the vorticity vector, which

is normal to the 2D plane of the flow; f is the external force in the plane of the flow; ν is the

kinematic viscosity of the fluid; and α is a friction coefficient that characterizes the large-scale drag.

The first term on the right-hand side of this expression is the rate of enstrophy injection by external

forces, which acts at the forcing scale LF . The second term is the rate of enstrophy dissipation

by viscosity, β ≡ ν〈(∇ω)2〉, which becomes significant at the dissipative scale η ≡ ν1/2/β1/6.

The third term is the rate of enstrophy dissipation due to large-scale friction, which primarily

contains contributions from scales in the range from LF up to Lα ≡ (ε/α3)1/2, where ε = α〈u2〉

is the energy dissipation rate and Lα is the scale at which friction arrests the inverse energy

cascade. Standard analysis [7] leads to LF /η ∼ Re1/2
ω and Lα/LF ∼ Re3/2

α , with Reω ≡ ω′L2
F /ν

and Reα ≡ (Lα/u′)/(ω′)−1 = ω′Lα/u′, where ω′ ≡ 〈ω2〉1/2 and u′ ≡ 〈u2〉1/2 are the vorticity and

velocity fluctuations. At large Reynolds numbers, Reω � 1 and Reα � 1, the length scales are well

separated and η 	 LF 	 Lα . Moreover, in that case, the contribution to the enstrophy dissipation

from large-scale friction is negligible compared to the viscous dissipation as α〈ω2〉/β ∼ Re−1
α .

Therefore, at steady state, there must be a flux of enstrophy from the forcing scale to the dissipative

scale, i.e., in the range η 	 l 	 LF . In this direct cascade of enstrophy, the value of the enstrophy

flux must be the same as the enstrophy dissipation rate β. This flux of enstrophy across scales is

very similar to the energy cascade in 3D turbulence and has been predicted theoretically [8] and

observed in experiments and numerical simulations [5,9–11].

For unforced 2D flows, the average enstrophy will decay as given by Eq. (1). When the viscosity

is small, the decay is very slow and the above analysis still approximately holds, and the scale LF ,

which now corresponds to the scale where the direct enstrophy cascade starts, is determined by the

initial flow condition before the decay. In this case, both the scale LF and η vary with time as the

flow decays, though a net enstrophy flux from scale LF to η is still present as long as there is still

scale separation between the two, i.e., when Reω � 1.

The physical mechanism that leads to this flux of enstrophy must be consistent with the

generation of vorticity gradients to maintain the viscous dissipation, as shown by Eq. (1). This

is also analogous to the energy cascade in 3D turbulence, where the stretching of velocity gradients

is believed to be the mechanism for the transfer of energy to small scales as it amplifies the energy

dissipation at small scales by viscosity. For 2D turbulence, this leads to vorticity gradient stretching,

since for unforced flows [5,8]

1

2

D〈(∇ω)2〉

Dt
= −〈si j (∇ω)i(∇ω) j〉 − ν〈(∇2ω)2〉. (2)

This expression is actually the balance equation for the mean palinstrophy, as palinstrophy,
1
2
(∇ × ω)2, reduces to 1

2
(∇ω)2 in 2D. In Eq. (2), the first term on the right-hand side represents

vorticity gradient stretching (VGS), which captures the contribution to the change of the magnitude

of vorticity gradient by the rate of strain tensor si j = 1
2
(∂ jui + ∂iu j ). The VGS term can generate

large vorticity gradients that help to maintain strong palinstrophy and consequently finite enstrophy

dissipation even in the limit of vanishingly small viscosity. This, together with the enstrophy

balance equation, Eq. (1), allows a flux of enstrophy from the scale LF to the dissipative scale

η. As a consequence of VGS, one would expect that the vorticity gradient would preferentially be

perpendicular to the stretching direction, which has indeed been observed in numerical simulations

[12]. On the other hand, as vorticity is not a passive scalar, it can affect the orientation of the

gradient of a scalar, including the vorticity gradient itself [13]. This effect may alter the expected

orthogonality between the stretching direction and the vorticity gradient [14,15]. This physics is

different from the alignment between vorticity and the stretching direction in 3D, where the vorticity
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does not rotate the direction of the vorticity vector itself, and hence this direct effect does not occur

(but, note that even in that case, there are important differences between vorticity, a dynamical

quantity, and a passive vector such as an infinitesimal material line [16]). Therefore, it is of interest

to examine whether, in 2D turbulence, the vorticity gradient stretching, which is based on simple

kinematic arguments, is still manifest in geometric statistics such as the angle between the stretching

direction and the vorticity gradient direction.

In this work, we examine the connection between VGS and enstrophy flux at different scales

in the direct enstrophy cascade range of a turbulent soap-film flow. By measuring the motion of

micron-sized tracer particles seeded in the flow, we obtain the instantaneous velocity fields, on

which we perform spatial filtering to extract the scale-dependent rate of strain fields and vorticity

fields. We observe that in the direct enstrophy cascade range, on average, the vorticity gradient

tends to be perpendicular to the stretching direction of the rate of strain field. In regions where the

vorticity gradient and the stretching direction are close to perpendicular, the conditional mean of

the enstrophy flux is from large to small scales, while this conditional mean is from small to large

scales in other regions. Furthermore, as we obtain fluid particle trajectories, we probe the filtered

vorticity field and the rate of strain field along these trajectories, i.e., in a Lagrangian view. In

that coordinate system, we can observe the process of the vorticity gradient direction turning away

from the stretching direction. The evolution time of this process shows interesting scale dependence

that is consistent with the dynamical time scale of the turbulence in the direct enstrophy cascade

range.

II. EXPERIMENTAL METHODS

The 2D turbulence data that we used came from laboratory experiments using a flowing soap film

driven by gravity and confined within a 2D tunnel created by two nylon wires under tension, a setup

that has been widely used in 2D turbulence studies [7,17–19]. As shown in Fig. 1, the soap solution

flows from the upper reservoir into a nozzle, speeds up due to gravity in an expanding section

whose length is X1 = 106 cm, and then reaches an almost fully developed state in the measurement

section of length X2 = 194 cm and width w = 5 cm. The solution then enters the lower reservoir,

where a peristaltic pump brings the solution back into the upper reservoir to complete the cycle. By

adjusting the flow rate of the pump, the mean velocity of the soap film in the measurement section

can be varied from 1 to 3 m/s and the film thickness from 4 to 9 μm. At a given pump speed, the

mean film velocity changes by only 2% within the measurement section over a distance of 45 cm

from the entrance of the straight section, and the mean velocity profile is nearly flat in the central

3 cm of the film at any cross section. Turbulence is created by inserting an array of equally spaced

round rods into the film. The diameter of the rods is 1.14 mm and the spacing between the rods is

M = 5 mm. Measurements were performed at distances of 20M–40M downstream of the rod array.

The soap solution consisted of 2% Dawn detergent, 10% glycerol, and 88% deionized water, all by

weight. The recipe has been tested many times before and the resulting soap films are stable and

easy to handle [18,19].

We performed particle tracking to obtain quantitative measurements of the flow field. For

that purpose, the soap solution was seeded with polystyrene spheres with a diameter of 1 μm

manufactured by Duke Scientific. Since the thickness of the soap film before inserting the rod array

was between 4 and 9 μm, as measured from interference fringes, the motion of the polystyrene

spheres was not affected by the surfaces and thus they can be regarded as fluid tracers. The motion

of these tracer particles was recorded by two high-speed cameras (Phantom VEO640L from Vision

Research, Inc.), which were arranged such that their fields of view overlap in the streamwise

direction and hence provided a large measurement area of 100 × 12 mm2 in the middle of the

flowing soap film. The frame format of the cameras was set to (2×)2560 × 472 pixels, which

gave a spatial resolution of approximately 10 μm/pixel. The effective viscosity of the soap film

was estimated to be ν = 6.5 × 10−6 m2/s by the empirical relationship between the Reynolds

number and the Strouhal number of the Kármán vortex street behind a cylinder inserted in the soap
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FIG. 1. The experimental setup. (a) The soap-film flow. The soap-film tunnel consists of two nylon wires

with diameters of 0.32 mm held by hooks and weights. (b) A high-power, high-repetition-rate pulsed laser

was used to illuminate tracer particles (1 μm in diameter) seeded into the soap solution, and two high-speed

cameras were used to perform particle tracking measurements at different downstream locations. (c) Top view

of the setup. The second camera was arranged at an angle to the soap film in order to ensure that the imaging

fields from the two cameras overlapped.

film [20]. The enstrophy dissipation scale η = ν1/2/β1/6 was about 0.33 mm in the measurement

region, much larger than the spatial resolution of the measurement. Thus, the velocity field was

well resolved. The camera frame rate was 5000 frames per second, which was also the repetition

rate of the pulsed Nd:YAG laser. The laser and the two cameras were synchronized by an external

signal.

After the images were taken, we used a particle tracking algorithm to find particle positions and

track them in time to obtain Lagrangian trajectories of individual tracer particles [21]. Special care

was taken in dealing with the overlap region between the two cameras, in which the consistency

of both the particle position and the velocity were considered when matching trajectories observed

in the overlap region, a technique that has been proposed and implemented successfully in solving

similar problems [22,23]. With these particle trajectories, velocities and accelerations (if needed) of

the tracers can be obtained by differentiation. As we observed many hundreds of tracer particles in

each camera at any instant, Eulerian statistics such as velocity structure functions and spectra can

also be obtained.

In the region where the measurements were performed, the average turbulent fluctuation velocity

is u′ ≈ 0.31 m/s, and the average energy dissipation rate, measured from the decay rate of
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FIG. 2. Energy spectra measured at different positions in the observation area 20 < x/M < 40 downstream

of the rod array. All spectra show a developed k−3 range, which indicates a direct enstrophy cascade, and a short

k−5/3-like range. The effective forcing length scale LF corresponds to the transition scale between these two

regimes and grows as the flow moves downstream due to the decay of the turbulence.

the turbulent kinetic energy, is ε ≈ 0.9 m2/s3, which gives the average friction factor as α =

ε/u′2 ≈ 9 s−1. The length scale at which friction dominates is thus Lα ≡ u′/α ≈ 34 mm. The

enstrophy dissipation rate β is determined from the scaling of the third-order Eulerian velocity

structure function in the enstrophy cascade range given by 〈[δLu(r)]3〉 = 1
8
βr3, where δLu(r) is

the longitudinal velocity increment [5], which gives β ≈ 1.7 × 105 s−3. This value of β gives

β1/3 ≈ 55 s−1, comparable to the average rms vorticity in the measurement region (ω′ ≈ 160 s−1)

as suggested by the dimensional argument ω′ ∼ β1/3. The enstrophy dissipation scale is thus

η ≡ ν1/2/β1/6 ≈ 0.33 mm. The effective forcing scale LF is on the order of the rod spacing M. (It

may also be on the order of the rod diameter, but that is itself on the order of M.) For a decaying flow

such as our soap film, we define LF as the scale at which the scaling of the second-order structure

function changes from 〈[δLu(r)]2〉 ∼ β2/3r2 to ∼εr2/3, which gives LF ≡ (ε/β )1/2 ≈ 2.3 mm in

the measurement region. With these parameters we can calculate the Reynolds numbers defined in

the introduction to be Reω ≈ 130 and Reα ≈ 18. Note that these two Reynolds numbers directly

characterize scale separations. Both Reω � 1 and Reα � 1, indicating that there are wide scale

separations between the friction scale Lα , the effective forcing scale LF , and the dissipation scale

η, as can be seen directly from Lα/LF ≈ 15 and LF /η ≈ 7. Therefore, we conclude that the effect

of the decay of the turbulent kinetic energy by large-scale friction on VGS, which occurs in the

enstrophy cascade range, is negligible.

As the turbulence decays with the downstream position from the rods, both ε and β decrease. We

observe the decrease of ε to be slower in our flow, likely due to the somewhat weaker frictional effect

as indicated by the small value of α. Therefore, the effective forcing scale LF = (ε/β )1/2 increases

as the flow moves downstream. Figure 2 shows measured energy spectra at different downstream

positions. All the spectra show a k−3 regime, and the scale LF , at which the k−3 regime changes to

a shallower, k−5/3-like, regime, shifts to larger scales as the flow moves downstream. This increase

of LF is moderate—less than a factor of 2 over the measurement regime. Moreover, there may be

a constant of order unity between the value of LF that we define as LF ≡ (ε/β )1/2 and the true

effective forcing length scale. We therefore take LF ∼ M in this work as a leading-order estimate of

that scale.
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III. EULERIAN OBSERVATIONS

To investigate the connection between vorticity gradient stretching and enstrophy flux at different

scales, we utilized a filter-space technique, which is implemented in real space by convolving a

kernel function that acts as a low-pass filter in Fourier space with a corresponding cutoff length

scale r in real space [24–28]. The filtering is performed at a single time instant and on any region

larger than or equal to the filter size r. Hence, it allows us to probe local scale-dependent quantities,

such as the enstrophy flux, at any instant. In the rest of the paper, we use symbols with a superscript

“(r)” to represent filtered quantities, where r is the length scale of the filter.

The scale-dependent vorticity gradient stretching term corresponding to that in Eq. (2) is obtained

from the filtered rate of strain and the filtered vorticity gradient as

G(r) = −s
(r)
i j (∇ω)

(r)
i (∇ω)

(r)
j = −2λ(r)

s λ
(r)
∇ω

cos 2�
(r)
s∇ω

= −λ(r)
s |(∇ω)(r)|2 cos 2�

(r)
s∇ω

, (3)

where λ(r)
s and λ

(r)
∇ω

are the positive eigenvalues of the filtered rate of strain tensor s
(r)
i j and the

traceless part of the dyad formed by the filtered vorticity gradient (∇ω)
(r)
i (∇ω)

(r)
j , respectively, and

�
(r)
s∇ω

is the angle between the eigenvectors e(r)
s and e

(r)
∇ω

that correspond to λ(r)
s and λ

(r)
∇ω

, respectively.

In the last equality of Eq. (3), we make explicit use of the relationship 2λ
(r)
∇ω

= |(∇ω)(r)|2. When

π/4 < �
(r)
s∇ω

� π/2, i.e., when the filtered vorticity gradient is close to perpendicular to the

stretching direction of the filtered strain (in other words, nearly aligned with the most compressive

direction of the strain), Eq. (3) shows that G(r) � 0, which means that locally there is palinstrophy

production by VGS and, consequently, that the vorticity gradient is amplified. This effect can also

be explained by invoking the conservation of vorticity along a material line when viscosity is

negligible; then, the packing of material lines under compression would result in an increase of the

local vorticity gradient [26]. When 0 � �
(r)
s∇ω

� π/4, the opposite is true: the vorticity gradient is

nearly aligned with the stretching direction of the strain, and the vorticity gradient will be weakened.

Therefore, cos 2�
(r)
s∇ω

may be regarded as an efficiency for the VGS: it quantifies the fraction of the

strain rate that acts to amplify the vorticity gradient and hence to produce palinstrophy [29,30].

From this analysis, one would expect that in the direct enstrophy cascade range, the vorticity

gradient should be preferentially perpendicular to the stretching direction of the rate of strain as

a consequence of VGS. Figure 3 shows the probability density function (PDF) of the angle �
(r)
s∇ω

at different scales r in the direct enstrophy cascade range (η � r � M). If the two vectors were

independent, the PDF would be a horizontal line. Data from our measurements instead show that

there is preferential misalignment at all scales investigated and that the degree of misalignment

is weaker as the scale increases. As discussed earlier, the effective forcing scale LF grows with

downstream distance [31,32], so that there is still appreciable alignment at scales above the initial

forcing scale M. Both the antialignment and the change with scale have been reported before in

direct numerical simulations (DNS) of forced 2D turbulence with periodic boundary conditions at

steady state [12]. The agreement with our experiment using decaying turbulence indicates that VGS

is ubiquitous in 2D turbulence.

Next, we investigate the connection between VGS and enstrophy flux. The enstrophy flux from

scales larger than r to scales smaller than r is given by [33]

Z (r) = −
[

(uiω)(r) − u
(r)
i ω(r)

]∂ω(r)

∂xi

. (4)

A positive value of Z (r) means that at the instant of time measured, enstrophy is locally being

transferred down to smaller scales (i.e., an instantaneously direct enstrophy flux). In Fig. 4(a), we

plot the mean enstrophy flux 〈Z (r)〉 at different scales. Note that the enstrophy flux obtained from

the filtering technique is smaller than that estimated from the third-order velocity structure function,

as observed in the literature [32]. It is indeed positive at all scales investigated. In the same plot, we

also show the mean enstrophy flux conditioned on being in a VGS region (where �
(r)
s∇ω

> π/4)

and in a non-VGS region (where �
(r)
s∇ω

< π/4). In VGS regions, the conditional mean of the
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FIG. 3. PDF of the angle between the filtered vorticity gradient and the stretching direction of the filtered

rate of strain at different scales in the direct enstrophy cascade range, which corresponds to η � r � M (as

seen in the energy spectrum).

enstrophy flux is positive and its value is considerably larger than the unconditional mean, while the

conditional mean is negative in non-VGS regions. This result shows that VGS is tightly related to

the enstrophy flux. For comparison, we also plotted the mean enstrophy flux conditioned on being in

a strain-dominated region (where the parameter Q ≡ ω2/2 − s2 < 0) and in a vorticity dominated

region (Q > 0). These conditional means are nearly the same as the unconditional mean, which

shows that the magnitude of the stretching alone does not determine the direction of the enstrophy
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10
5

(a)
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FIG. 4. (a) Mean filtered enstrophy fluxes 〈Z (r)〉 as a function of scale r. Red solid line, unconditional

mean; green circles, conditional mean in VGS regions (�
(r)
s∇ω > π/4); blue squares, conditional mean in non-

VGS regions (�
(r)
s∇ω < π/4); black dashed line, conditional mean in strain-dominated regions (Q < 0); and

cyan dot-dashed line, conditional mean in vorticity-dominated regions (Q > 0). (b) Mean enstrophy flux 〈Z (r)〉

conditioned on the angle between the vorticity gradient and the stretching direction at scale r = 0.8M. The

inset shows 〈Z (r)〉 conditioned on the value of the VGS G(r). Z (r) and G(r) are normalized by their standard

deviations Z (r)
σ and G(r)

σ , respectively.
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flux. A direct calculation of 〈Z (r)|Q〉 (not shown) gives the same conclusion. In Fig. 4(b), we plot

the mean enstrophy flux conditioned on �
(r)
s∇ω

, the angle between the vorticity gradient and the

stretching direction of the strain, at the scale r = 0.8M. The conditional mean grows monotonically

with the angle �
(r)
s∇ω

. In the inset, we show the mean enstrophy flux conditioned on the vorticity

gradient stretching G(r), which shows a remarkable straight line. Similar behavior was observed for

other scales r. This strong connection between VGS and enstrophy flux was also observed in direct

numerical simulations and the linear dependence between 〈Z (r)〉 and G(r) also motivated a closure

model for Z (r) [12].

IV. LAGRANGIAN ALIGNMENT

In Fig. 3, we see that there is a preferential misalignment between the vorticity gradient direction

and the stretching direction due to VGS. This misalignment, however, is rather weak, which leads to

significant cancellation of local positive and negative fluxes and therefore only a weakly positive net

value of the enstrophy flux [see Fig. 4(a)]. This weak alignment is reminiscent of the case of vortex

stretching in 3D turbulence. There, it is expected on physical grounds that vorticity itself should

be preferentially aligned with the most stretching direction of the rate of the strain due to vortex

stretching. Numerical simulations and experimental data show, however, that surprisingly vorticity

is preferentially aligned with the intermediate eigenvector of the strain, leading to rather weak net

stretching [34,35]. This poor alignment of instantaneous quantities can be partially understood by

considering dynamic effects. The strain field indeed can stretch the vorticity, which causes the

vorticity to grow in the direction of stretching; but the strain field itself changes with time, and

hence only a weak alignment between vorticity and strain is found when observing at any instant.

To demonstrate the vortex stretching effect, one must examine the vorticity evolution in a fixed

eigenframe of strain along a Lagrangian trajectory [36,37] or in a fully Lagrangian formulation

[38]. This work motivated us to investigate the change of the angle between the vorticity gradient

and the stretching direction in the eigenframe of the strain. However, we note that in 2D the direction

of the vorticity gradient can be changed by vorticity itself, as we will see later more explicitly. This

is different from the 3D case, where the direction of the vorticity vector is not rotated by the vorticity

directly.

Inspired by studies of vortex stretching in 3D, we computed the alignment between the vorticity

gradient and the strain rate in a frame following a Lagrangian trajectory. In particular, we calculated

the angle between the vorticity gradient and the stretching direction with a time lag: �
(r)
s∇ω

(t ) =

cos−1[e
(r)
∇ω

(t ) · e(r)
s (0)]. In Fig. 5(a), we plot the evolution of the average angle 〈�

(r)
s∇ω

(t )〉 with

time for different scales r, which quantifies the (anti)alignment of the vorticity gradient with the

stretching direction in the eigenframe of the earlier strain. A value of 〈�
(r)
s∇ω

(t )〉 = π/4 would mean

that on average the two vectors are almost independent, and a value larger than π/4 means that

they are preferentially perpendicular to each other. Figure 5(a) shows that the average angle, or the

degree of misalignment, between the vorticity gradient and the stretching direction of the strain at an

earlier time increases with the time lag and reaches a maximum at t > 0, similar to vortex stretching

in 3D and energy flux in 2D [29,36,37]. On the other hand, unlike vortex stretching in 3D, where

the time scales of the evolution for different length scales depend on r, Figure 5(a) shows that the

temporal evolutions of VGS at different length scales all have the same time scale, t ≈ 0.35τF ,

where τF ≡ β−1/3 [31]. This occurs because the characteristic time scales associated with all length

scales in the direct enstrophy cascade range are the same, τ (r) ∼ ω′−1
∼ β−1/3, a feature of 2D

turbulence [5]. Figure 5(a) thus represents direct experimental evidence demonstrating this single

time scale for all length scales in the direct enstrophy cascade range. The evolution of the PDF of

�r
s∇ω(t ) for the scale r = 0.8M, which is well into the direct enstrophy cascade range, is shown in

Fig. 5(b). We observe that indeed the vorticity gradient responds to the strain field and tends to be

perpendicular to the stretching direction at earlier times. In the eigenframe of the earlier strain, the
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FIG. 5. Statistics of the angle �
(r)
s∇ω(t ) between e(r)

s (0) and e
(r)
∇ω(t ) with the time lag t for different scales r in

the direct cascade range. (a) The average angle 〈�
(r)
s∇ω(t )〉 as a function of time for different length scales r. The

average angle is larger than π/4 after t ≈ 0, which indicates preferential misalignment between the vorticity

gradient and the stretching direction. (b) PDFs of the angle �
(r)
s∇ω(t ) at different time lags t for the length scale

r = 0.8M, which is well into the direct cascade range. The color of the curves indicates the time lag t , as shown

by the colorbar. At t/τF ≈ 0.35, the PDF peaks at nearly π/2, which indicates strong perpendicularity between

the vorticity gradient direction and the stretching direction of the strain (or equivalently strong alignment

between the vorticity gradient and the compression direction).

preferential misalignment increases significantly with time. For other scales r in the direct cascade

range, the evolution of the PDF is similar.

We also examined the rate of evolution of the alignment, following an analysis similar to that

done for vortex stretching in 3D [37]. We make an analogy between the evolution equation for the

filtered vorticity gradient in the direct cascade range and the true vorticity gradient in inviscid flows,

i.e.,

D(∇ω)
(r)
j

Dt
= −A

(r)
i j (∇ω)

(r)
i , (5)

where A(r) = ∇u(r) is the gradient of the filtered velocity field, which includes the symmetric part

s(r) = [A(r) + A(r)T ]/2 and the antisymmetric part �
(r) = [A(r) − A(r)T ]/2. This equation leads to

the evolution of the direction of the filtered vorticity gradient as

De
(r)
∇ω

Dt
= −A(r)T · e

(r)
∇ω

+
[

e
(r)
∇ω

· A(r)T · e
(r)
∇ω

]

e
(r)
∇ω

= −s(r) · e
(r)
∇ω

+ �
(r) · e

(r)
∇ω

+
[

e
(r)
∇ω

· s(r) · e
(r)
∇ω

]

e
(r)
∇ω

, (6)

in which we have used A(r)T = s(r) + �
(r)T = s(r) − �

(r) and e
(r)
∇ω

· �
(r) · e

(r)
∇ω

= 0 because the dyad

e
(r)
∇ω

e
(r)
∇ω

is symmetric but �
(r) is antisymmetric. We now study how e

(r)
∇ω

, the direction of the gradient

of the filtered vorticity, evolves in the eigenframe spanned by ei(0), the eigenvectors of the filtered

rate of strain tensor at some given time, s(r)(0). We note that this reference frame, ei(0), is fixed in

space, not the one embedded with the rate of strain s(r)(t ) and thus changing with time. Also note

that in this frame, Eq. (6) holds only at the time t = 0. We project e
(r)
∇ω

onto the eigenvectors as

e
(r)
∇ω

= c1e1(0) + c2e2(0), where e1(0) and e2(0) are the eigenvectors of s(r)(0) corresponding to the

eigenvalues λ1 = λ(r)
s (0) and λ2 = −λ(r)

s (0), respectively, and ci ≡ e
(r)
∇ω

· ei(0). Equation (6) then
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gives the evolution of ci as

Dci

Dt

∣

∣

∣

∣

t=0

= −ci

⎛

⎝λi −

2
∑

j=1

λ jc
2
j

⎞

⎠ + ei(0) ·
(

�
(r) · e

(r)
∇ω

)

. (7)

Because �
(r) · e

(r)
∇ω

= 1
2
ω

(r) × e
(r)
∇ω, the last term in the equation above can be written as

ei(0) · (�(r) · e
(r)
∇ω ) =

1

2
ei(0) · (ω(r) × e

(r)
∇ω ) =

1

2
ω(r) ei(0) · (e(r)

ω × e
(r)
∇ω ) =

1

2
ω(r) e

(r)
∇ω · (ei(0) × e(r)

ω ),

where e(r)
ω = e3(0) is the unit vector normal to the flow plane. Noting that e2(0) × e(r)

ω = −e1(0)

and e1(0) × e(r)
ω = −e2(0), Equation (7) for i = 1 and 2 becomes

Dc1

Dt

∣

∣

∣

∣

t=0

= −2λ(r)
s c1c2

2 −
1

2
ω(r)c2 (8)

and

Dc2

Dt

∣

∣

∣

∣

t=0

= 2λ(r)
s c2

1c2 +
1

2
ω(r)c1. (9)

The evolution of the angle �
(r)
s∇ω

between s(r) and (∇ω)(r) can be derived from Eqs. (8) and (9) by

noting that tan �
(r)
s∇ω

= c2/c1. The result is simply

D�
(r)
s∇ω

Dt

∣

∣

∣

∣

t=0

= λ(r)
s sin 2�

(r)
s∇ω

+
1

2
ω(r). (10)

This equation shows explicitly that the vorticity itself affects the evolution of the angle between

the stretching direction and the vorticity gradient, �
(r)
s∇ω

, which differs from the alignment between

vorticity and the stretching direction in 3D flows where the alignment process is determined by the

rate of strain [37] because vorticity by itself cannot change the direction of the vorticity vector.

On the other hand, we are interested in the change of the average angle, 〈�
(r)
s∇ω

〉, which evolves

as

D
〈

�
(r)
s∇ω

〉

Dt

∣

∣

∣

∣

t=0

=
〈

λ(r)
s sin 2�

(r)
s∇ω

〉

+
1

2
〈ω(r)〉. (11)

The last term in this equation should vanish due to symmetry considerations: there is no net rotation

of the flow, as in the case of the turbulence generated behind the grid in the soap film. Therefore,

the change of the ensemble-averaged angle is also determined by the rate of strain, which means

that although vorticity affects the evolution of the direction of each individual vorticity gradient, its

effect vanishes when we average over a large sample. This is confirmed by the experimental data:

the values of 〈ω(r)〉/〈λ(r)
s sin 2�

(r)
s∇ω

〉 are between 3–5% for the range of r that we investigated.

In Fig. 6, we compare the slope D〈�
(r)
s∇ω

〉/Dt at t = 0 that we extract from data shown in

Fig. 5(a) with the values of 〈λ(r)
s sin 2�

(r)
s∇ω

〉, the right-hand side of Eq. (11), for the length scales

we measured. The slope D〈�
(r)
s∇ω

〉/Dt at t = 0 for different scales is nearly the same, which is

another manifestation of the single time scale in the direct cascade range that we have seen before.

The values of 〈λ(r)
s sin 2�

(r)
s∇ω

〉 are, however, larger than the slopes at all scales, but the difference

decreases when the scale increases. For flows with larger direct cascade ranges, we expect that

Eq. (11) will give a better prediction of the evolution of the angle 〈�
(r)
s∇ω

〉. The discrepancy is likely

due to the neglect of viscous effects, which will on average resist the action of the strain in Eq. (5)

and hence slow down the alignment compared to that given by the strain field alone, as shown by

Eq. (11). As the scale increases, the effects of viscosity decrease and the right-hand side of Eq. (11)

agrees better with the measured slope. It would be interesting to compare our results with a 2D DNS

054602-10



VORTICITY GRADIENT STRETCHING IN THE DIRECT …

0.6 0.8 1 1.2

0

5

10

15

20

25

FIG. 6. The evolution of the average angle 〈�
(r)
s∇ω〉 at t = 0 for several scales r. Blue circles are slopes

extracted from the data shown in Fig. 5(a) by finite difference. Red squares are the effect due to stretching

〈λ(r)
s sin 2�

(r)
s∇ω〉.

with a robust forward cascade, from which the contribution from each term could be obtained with

high accuracy.

V. CONCLUSION

In summary, by performing particle tracking measurements in a soap-film flow, we investigated

the stretching of vorticity gradients in 2D turbulence. From instantaneous flow fields, we observed

that the vorticity gradient is preferentially perpendicular to the stretching direction of the strain, a

manifestation of VGS, and there is strong correlation between VGS and enstrophy flux. Moreover,

by investigating the alignment between the vorticity gradient and the eigendirection of the rate

of strain tensor along Lagrangian trajectories, we observed that the strain rate leads the vorticity

gradient in time, i.e., the vorticity gradient responds to the strain and tends to be antialigned with the

stretching direction of the strain at earlier times. For all scales in the direct enstrophy cascade range,

the angle between the vorticity and the strain evolves on the same time scale, which is clear exper-

imental evidence that there is only a single time scale in the direct enstrophy cascade range [5,8].

Finally, we note that it has been suggested that the inverse energy cascade in 2D turbulence

is realized through vortex thinning [26,27], and a correlation between instantaneous straining

regions and scale-to-scale energy flux has been indeed observed [33]. Vortex thinning refers to

the elongation and thinning of small-scale vortices by large-scale strain, which causes velocity

differences at larger scales to increase [26,27]. Therefore, we argue that vortex thinning and VGS are

in fact the same physical phenomenon. It is interesting that the same physical process is associated

with both the inverse energy cascade to larger scales and the direct enstrophy cascade to smaller

scales [5].
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