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Introducing surface corrugations to alter the boundary layer flow is a proven way to
reduce the fluid drag on a surface. In this study, we examine the effect of periodic,
infinitely long spanwise grooves on the laminar boundary layer over a plate for global
Reynolds numbers (Re;) between 1000 and 25 000. By employing numerical simulations
in two-dimensional domains, we investigate the flow and pressure evolution over surfaces
containing rectangular grooves that are perpendicular to the flow and infinitely long in the
spanwise direction, and compare them to a flat plate. We characterize the flow interactions
near the grooves based on their width-to-depth aspect ratio (AR). Below a certain aspect
ratio, a primary vortex fills the space inside each groove. These vortices allow the free
stream to “slip over” the grooved regions and result in less skin friction on the wall.
However, the interaction between the flow and the grooves’ vertical walls leads to a
pressure drag. We study the behavior of the individual drag components over a wide range
of aspect ratios (0.2 < AR < 200) and compare the total drag reduction in each case. Based
on the simulation results, the transverse grooves in the laminar regime can reduce the total
drag up to 10% in comparison to a flat plate, despite increasing the wetted surface area of
the plate. Conversely, at some aspect ratios the grooves cause a total drag increase of more
than 200%. We observe that by increasing the aspect ratio, the free stream bends more
toward the grooves; ultimately at a certain aspect ratio, denoted by AR*, the flow breaks
apart the underlying circulation and reaches the bottom of the grooves. When this happens,
the flow shear on the grooves’ bottom walls combined with the high-pressure drag exerted
on the vertical walls can lead to a net increase in the drag. Therefore, the aspect ratio of the
grooves is a critical parameter in optimizing drag reduction in transverse geometries.
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I. INTRODUCTION

The amount of drag force directly influences the energy required to flow fluids through channels
and pipes or move objects within fluids. Therefore, finding strategies to reduce drag has potential
industrial, environmental, and economic benefits. Several studies have repeatedly shown that adding
different drag-reducing agents at the solid-liquid interface, such as polymers, surfactants, or air
bubbles, reduces the drag by well above 50% in the turbulent regime [1,2]. While such active means
provide a great improvement in the drag performance, continuous supply of the additive may not
be practical for many applications. Moreover, additives can be a source of flow contamination and
mechanical degradation of surfaces, which may necessitate performing postprocessing steps and
consequently consuming additional energy and resources [2,3].
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Passive or geometrically mediated techniques have garnered a lot of interest in recent years. The
fundamental idea behind passive methods is to utilize surfaces with irregular texturing or engineered
micropatterns to reduce drag [4]. Observations of the natural surfaces of different animals and plants
first inspired the use of surface topology methods, as in the case of drag-reducing shark skins
or water-repellent lotus leaves [5,6]. Motivated by these observations, various forms of patterns,
such as grooves (parallel or transverse), pillars, and holes, have been studied in terms of their
drag-reducing ability and superhydrophobic action [7,8]. One way to lower the drag is to reduce
the contact area of the fluid and the solid surface. Although introducing any corrugation on a
simple flat plate will increase the overall surface area, one advantage of the textures is that they
might entrap air within their structure. The underlying air pockets replace the liquid-solid interfaces
with liquid-gas interfaces, which are believed to provide near shear-free regions and create an
effective slippage for the flow [9]. This condition, which is typically referred to as the Cassie-Baxter
state [10], is, however, easier said than done [11]. Creating and maintaining a stable gas-liquid
interface is challenging as it requires careful design of the grooves and control of the flow to sustain
the necessary capillary pressure across the interface [12—14]. This means that, on one hand, by
making the grooves larger, the fraction of gas-liquid interface, and consequently the overall slippage,
increases. On the other hand, enlarging the gas-liquid meniscus reduces the capillary pressure, which
will eventually cause the air pockets to collapse, and thus results in a transition to the fully wetted
Wenzel state. Furthermore, if the gas is soluble in the liquid (e.g., air in water), the gas pockets will
gradually vanish as they dissolve in the liquid flow [15-17]. Similarly, the notion of the shear-free
condition at the gas-liquid interface can be flawed as contamination may cause immobilization of
the interface leading to a possible solidlike behavior [18-20].

The other advantage of the textured surfaces is their ability to induce unique near-wall flow
fields that may ultimately reduce the overall drag on the surface even when the liquid is exposed
to a larger wetted area. Early experiments by Walsh and co-workers [21-23] on longitudinal
grooves demonstrated drag reduction in the turbulent regime (<4%) despite increased surface area
in comparison to a flat plate. Several studies since then have examined turbulent drag reduction
using different riblet geometries and, with some variations, they have reported drag reductions of
about 10% for open channel and 20% for closed channel experiments. Comprehensive reviews in
the literature highlight the advances in turbulent drag reduction using longitudinal riblets in both
external and internal flows [24,25]. Analysis of the flow field in streamwise riblets revealed that
rib structures constrain the cross-flow fluctuations and lift the vortices that naturally occur in the
turbulent regime so they have minimal contact with the surface [26-28]. Therefore, the ability of
a riblet geometry to effectively uplift and pin the turbulent vortices on the riblet tips determines
the amount of drag reduction. Fewer studies have considered the laminar boundary layer flow.
Djenidi and colleagues [29] employed laser Doppler velocimetry and numerical simulations to
study the laminar boundary layer over longitudinal rib surfaces with triangular geometry. They
showed that despite the increased wetted area of ribbed surfaces, the net frictional drag did not
change. Recent numerical analyses by Raayai-Ardakani and McKinley [30] examined the laminar
boundary layer over wrinkled textures that feature periodic sinusoidal riblets in the flow direction.
They demonstrated that in the valleys of the riblets the flow is retarded. Consequently, a stagnant
cushion of fluid forms, above which the main flow can slip and exert as much as 20% less friction
force on the wrinkled surface in comparison to a flat plate.

In contrast to the large amount of research associated with the flow dynamics of boundary
layers over streamwise riblets, less is known regarding the effect of periodic spanwise riblets
on the boundary layer flow and their drag characteristics. In the context of spanwise grooves,
several studies have focused on the Cassie-Baxter state to reduce the solid-liquid contact area and
create a superhydrophobic effect [31-37]. A few recent works on low-Reynolds number laminar
microchannel flows (Re < 1000) with wall-embedded grooves have reported that drag reduction
may be obtained even in the fully wetted Wenzel state [18,38]. In pressure-driven channel flows, the
drag is typically characterized by measuring the pressure drop along the channel, and the results are
compared in terms of the Poiseuille number (Po = fRe) [18,39]. However, a clear understanding
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of the local interaction of the grooves with the flow is still required, especially for medium- to
high-Reynolds number laminar regimes.

Interactions of a fluid with rectangular grooves have also been studies in the context of flow
inside and over cavities. Most of the research in this area either focused on solving the Stokes flow
within cavities or investigated the turbulent boundary layer over a single embedded cavity [40,41].
Aerodynamic studies on cavity flows have shown that flow past cavities is likely to oscillate. Such
oscillations can produce substantial aerodynamic drag and acoustic emissions, and their onset is
typically characterized by dimensionless parameters D/6y and L/6y,/Reg,, where D and L are
the cavity dimensions and 6 is the incoming momentum thickness [42-44]. Gatski and Grosch
[45] numerically solved the two-dimensional boundary layer flow over a single rectangular cavity
at lower cavity Reynolds numbers where no oscillations are present, and compared it to a flat
plate. They argued that although the presence of a cavity region would reduce the frictional drag,
the increase in the pressure forces acting on the vertical walls of the cavity almost cancels out
this reduction and therefore causes less than 2.5% total drag reduction. There is still a lack of
understanding regarding the evolution of the laminar flow over consecutive transverse grooves,
which resemble periodic cavities that are infinitely extended perpendicular to the flow.

In this paper we explore the two-dimensional development of laminar flow over plates with
embedded periodic transverse grooves assuming infinite span length in the third dimension. We
perform finite element simulations over an array of equally spaced rectangular grooves and explore
the velocity profile and boundary layer evolution for different groove dimensions in the laminar
regime, where 1000 < Rep < 25000 and the flow mainly remains steady. By examining the local
shear stresses and pressures, we then focus on understanding the role that the skin friction and
pressure play in the overall drag and ultimately determine the total drag reduction in comparison to
a simple flat plate. We show that the width-to-depth aspect ratio (AR) of the trenches is a crucial
parameter in determining the flow behavior in the grooves and their drag-reducing or -increasing
ability. Below a certain AR, formation of a circulating flow within the grooves creates a “fluid
bearing” [46] effect on the main flow resulting in less skin friction. However, unlike streamwise
riblets, in transverse grooves the pressure drag plays an equally important role in the total drag.
For the groove dimensions and Re;, considered in this study, certain configurations result in a drag
reduction as high as 10%, whereas in other cases, the combination of skin friction and pressure
causes a drag increase of more than 200%. We consider the laminar regime, focusing on the cases
where no turbulence or acoustic effects are present, to acquire a foundational understanding of
the flow interactions with the grooves for a wide range of groove dimensions, and to examine
the interplay of skin friction and pressure drags. This is of direct benefit to the study of laminar
boundary layer characteristics and optimization of the drag for airfoils, hydrofoils, and underwater
surfaces, with direct applications in unmanned underwater vehicles (UUVs) or underwater drones,
among others, where the laminar regime predominates [47-49]. The understandings gained here
can also be expanded to other laminar flow systems, namely, in designing microfluidic platforms
for microelectronic cooling and lab-on-a-chip applications. Furthermore, this work would also be
relevant under mixed boundary layer conditions, where the flow might stay laminar and locally
steady upstream and transition to unsteady and turbulent behavior downstream.

II. NUMERICAL METHODOLOGY

A. Computational setup and boundary conditions

The computational domain and the boundary conditions are shown schematically in Fig. 1. We
consider cases where the third dimension extends infinitely in the third dimension. Therefore, we
simulate the flow in two-dimensional domains. The flow enters the domain from the left with a
uniform velocity condition (U). The inlet velocity is changed to obtain different Reynolds numbers
in the simulations. The top and right boundaries are set as outlet with zero gauge pressure and
zero velocity gradient across the boundary. The bottom edge of the domain is divided between the
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FIG. 1. (Left) Schematic of the plate with embedded grooves. The grooves are oriented perpendicularly to
the flow direction which is shown by the arrow. (Right) Schematic of the simulation domain with the boundary
conditions. We consider transverse grooves that are embedded in the plate with no protrusion into the main
flow, and extend infinitely into the plane. As a result, a two-dimensional model is used to investigate the flow
dynamics and drag properties.

grooved plate, which is modeled as a no-slip boundary condition, and an intermediate region with
symmetry condition. The major role of the symmetry condition is to allow the numerical solver to
properly resolve the leading-edge effects of the plate. More details on the effect of the symmetry
region are provided in the following section. The domain height (H) is extended such that it covers at
least 5§, for all the flow conditions, where §; is the boundary layer thickness at the end of the plate.
In this study, we only consider grooves or trenches with rectangular profiles that are characterized
by three parameters: A, which represents the distance between each two consecutive grooves (the
width of each land segment of the plate at y = 0), and B and C, which show the grooves’ width
and depth (also referred to as valley segments of the plate), respectively. We refer to the depth of
the grooves instead of their height to emphasize the fact that the grooves are embedded in the plate
with zero protrusion into the main flow. The simulated plate in this study has a nominal length of
L, = 96 mm. The width of the land regions is constant (A = 1 mm) throughout the simulations, and
we only change B and C to obtain different texture configurations. The value of B is systematically
increased such that there is a valley for every land segment within the domain. Therefore, B takes
the values of 1, 2, 3, 5, 7, 11, 23, 47, and 95 mm. By considering four different depths (0.5, 1,
2, and 4 mm), 36 different combinations of groove depths and widths are simulated at each Re;.
Throughout this work, we use two nondimensional parameters to characterize the grooves and their
drag behavior at each Re;; AR, which is the grooves’ aspect ratio and is defined as B/C, and &,
which shows a “relative roughness” for the textured plates and is defined as C/L,,.

The numerical solution of the Navier-Stokes equations is used to obtain the fluid velocity
and pressure fields in the computational domain assuming a laminar flow. The simulations are
performed in a transient manner and the drag forces on the plate are monitored throughout the
run. For most of the groove dimensions and flow parameters considered in this work, the drag
force reached a plateau after a few seconds, indicating a steady flow situation. We realized that
at higher Re;, as grooves become larger, the flow shows an oscillating behavior that causes the
drag forces to fluctuate over time. In this situation, the time-averaged drag is used to compare
the grooves’ performance. We will discuss some of these phenomena and the consequences of
the unsteady effects on the drag magnitude. We use a finite element scheme for discretizing the
conservation equations and coupling the pressure and velocity. The working fluid in the simulations
is assumed to be liquid water at room temperature and atmospheric pressure with p = 998.2 kg/m?
and 1 = 1.003 x 10> kg/ms.

III. MODEL VALIDATION

A grid-independence study was performed by stepwise refinement of the elements, especially
close to the wall boundaries, inside the trench regions, and close to the leading edge of the plate.
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FIG. 2. The influence of the number of elements in the computational grid on the drag coefficient of
a flat plate (Cp) at Re; ~ 10*. The dashed line represents the value obtained from the Blasius solution
(1.328/+/Re;, =~ 0.0136).

The final mesh consists of elements as small as 0.0001L,(~10 um) near the plate boundary
and reaching up to 0.005L,(~500 um)along the top edge of the domain (y = H). Figure 2
shows the behavior of the drag coefficient of a flat plate at Re; ~ 10* based on the total
number of elements in the computational domain. We should note that since the simulations
are performed on a two-dimensional domain, the forces are calculated by integrating the local
stresses along a line and thus have a unit of N/m. The numerical values of Cp are compared
against the Blasius solution (1.328/+/Re;) to ensure less than 1% error. For the textured plates,
the elements are refined until the drag coefficient shows negligible difference upon further
refinement, resulting in computational domains that contain above 1000000 elements in some
cases.

The role of the entry region in the simulations is critical for properly resolving the evolution of
pressure and velocity over the plate. Figure 3 shows the pressure contours and velocity profiles for
two cases, one without a symmetry section and one with the intermediate symmetry section. The
leading-edge effects in the former case are forced to propagate in the plate direction. Consequently,
we can see a favorable pressure gradient over the initial portion of the plate without the entry
region, which deviates from the assumption of zero-pressure gradient in external flow over a
flat surface. Extending the simulation domain upstream of the plate allows the numerical solver
to better resolve the spatial pressure and velocity fields over the plate and, thus, confine the
leading-edge effects to a significantly smaller portion of the plate. Similarly, the nondimensional
velocity profiles along the plate are compared for the two cases. We plot the Blasius similarity
variable, n = y,/U/vx, against the nondimensional velocity in the x direction (1/U) at different
local Reynolds numbers (Re,). For a plate preceded by a symmetry region, the velocity profiles are
self-similar and precisely follow the Blasius solution, whereas excluding this region results in higher
velocities that are not similar and are higher than the free-stream velocity in some locations, which
can be recognized by an overshoot in the profile. Therefore, including this region before the plate
is essential for obtaining accurate pressure and velocity fields and ultimately calculating the drag
coefficients.

Figure 4 shows the drag coefficient for a flat plate as the length of the entry region increases. It
can be seen that at zero entry length, the drag coefficient of the flat plate is more than 40% higher
than the Blasius solution. This difference can be associated with the leading-edge effects on the
pressure and velocity fields that propagate in the plate direction. As the domain extends further
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FIG. 3. Isopressure contours at the leading edge of a flat plate and nondimensional velocity profiles at
different locations along the plate for (a) a domain without the symmetry region and (b) a domain with the
symmetry region. Without such region, the leading-edge effects are propagated in the plate direction, causing
a pressure gradient along the plate. By extending the domain prior to the plate, the pressure effects of the
leading edge are impeded in the plate direction and instead, they propagate backward. n = y/x+/Re, represents
the similarity variable in the Blasius solution. For a computational domain without the symmetry region the
profiles deviate from the Blasius solution, especially as they get closer to the leading edge of the plate. The
velocity profiles over a plate that is preceded by a symmetry region precisely follow the Blasius solution.

upstream, the value of Cp declines. For the computational parameters in this study, an entry region
with almost the same length as the plate is required to fully incorporate the leading-edge effects and
achieve accurate Cp within 1% of the Blasius solution.

We assume the transverse trenches in this study extend infinitely into the plane (i.e., very large
span dimension relative to the plate length and groove dimensions). The effects of shorter grooves,
whose span is of the same order as the plate length or the grooves’ dimensions, are not considered
in this paper. To ensure the absence of three-dimensional effects for the conditions of this work,
we have cross-checked the cases with the biggest AR and e that show drag reduction, against
three-dimensional domains of the same grooves’ layout, with the third dimension extending ten
times the groove’s depth (please refer to the Supplemental Material for a detailed discussion on
three-dimensional model verification [50]). The results show very similar velocity and pressure
fields, leading to close drag characteristics with less than 2.5% difference between two- and
three-dimensional cases (when calculated per unit length of the third dimension). Furthermore,
considering the low cavity Reynolds and Mach numbers in the current work (Rec < 1000 and
Ma « 0.1), the parameter window of the simulations falls in the two-dimensional (2D) stable regime
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FIG. 4. The effect of the extended symmetry region length over the plate length (L;/L,) on the drag
coefficient (Cp) at Re; ~ 10*. To get accurate drag coefficients that are within 1% of the Blasius solution,
an entry length of almost the same size as the plate is required for the simulations.

of the instability map for cavity flows [43,51]. Thus, we focus on two-dimensional domains to study
the interaction of pressure and velocity in the grooves, and to ultimately calculate the different drag
components.

IV. RESULTS AND DISCUSSIONS

A. Flow streamlines

We first explore the characteristics of the flow in the presence of the grooves by looking at the
streamlines inside the grooves for different aspect ratios (ARs). Figure 5 illustrates the steady flow
streamlines inside the first groove in the plate for selected ARs and two different orders of Re;.
We can identify circulating flow structures within the grooves, which are induced by the external
motion of the fluid over the plate. For grooves with relatively equal width and depth (AR =~ 1),
a primary recirculation zone encompasses most of the interior region of the groove. In addition
to this main circulation, there are much smaller eddies at the front and rear corner of the trench,
which have been theoretically shown to consist of an infinite sequence of counter-rotating vortices
[52]. When the groove’s depth is greater than its width, the corner vortices, both of which rotate
opposite to the main circulation, grow and merge to form a second vortex below the first one. For
instance, for grooves with AR = 0.5, we see a dual counter-rotating structure. As AR decreases
further, several additional circulation zones may grow and form in a similar fashion. In these
stacked vortical structures, each two adjacent vortices rotate in opposite directions to conserve mass
inside the groove, and the vorticity magnitude of the underlying vortices rapidly decreases with
depth.

If the width of the groove increases relative to its depth, the primary vortex first stretches with its
center shifting in the flow direction. At larger ARs, the free stream starts to deflect toward the trench
region, and the inertia of the flow pushes the underlying circulation to the sides. Eventually, the
streamlines bend enough that they reach the bottom of the trench. As a result, the main circulation
is split into two triangular vortices at the front and rear corners. We can identify similar flow patterns
inside the grooves with close values of AR despite having different widths and depths (see AR =
3-3.5 or AR = 5.5-5.75 in Fig. 5). Moreover, we observe that the collapse of the primary vortex

064102-7



POOYAN TIRANDAZI AND CARLOS H. HIDROVO

Re =10°
e===—=_—__—"— "= —— -
= &b —i—oa b——rxroa)
=1 3 7 1 23

FIG. 5. Steady streamline patterns in the first groove of the periodic textures for different aspect ratios (AR)
at Re; ~ 10% and Re; ~ 10*. The behavior of streamlines can be classified into two major types. At smaller
ARs, a primary circulation fills the groove and the free stream slips over the grooves. At larger ARs, the flow
starts penetrating the grooves and eventually reaches the bottom of the grooves. In this state, the underlying
vortex is split into two smaller vortices. We use AR* to show the critical aspect ratio beyond which the flow
fully penetrates the groove. As the Re; increases, this transition occurs at higher ARs.

happens at about the same AR for grooves with different depths and widths. This indicates the
significance of the AR as a crucial geometric parameter that should be used to characterize the flow
patterns inside the grooves. Throughout this paper, we refer to AR* as the aspect ratio where this
transition takes place. We should note that since the values of AR increase in finite, discrete steps,
AR* takes on an approximate value. The streamline contours show that AR* at Re; ~ 10° and 10*
happens at about 5 and 11, respectively.

Each groove can be considered as a rectangular cavity in the flow. As suggested by the previous
studies on flow over single cavities, it is therefore, crucial to investigate the possible oscillations that
may occur in the flow, and their effect on the resultant drag. Figure 6 shows the unsteady streamlines
for two different ARs. We can notice unsteady vortices that are confined to the grooves and show
a repeating behavior at smaller AR. At larger ARs, however, the interaction of the flow with the
trailing wall of the groove, which acts as a blunt body, causes a vortex shedding pattern. In this case,
the oscillatory behavior of the vortices smore unpredictable as they not only propagate forward,
but also travel out of the grooves in the main flow. The simulations maintained a steady behavior
for all the groove dimensions at Re; A 103, Starting at Re; ~ 10*, flow oscillations emerge in
the grooves with larger AR and ¢. The onset of the oscillations requires a minimum AR and &,
beyond which the flow transitions to the unsteady mode, also known as shear-layer or Rossiter
mode [53]. As the Re;, increases, the transition from steady to oscillatory flow happens at smaller
AR and ¢ and, thus, more cases fall in the unsteady regime. The onset of fluctuations over a single
cavity is typically characterized by C/6, and B/6y,/Rey, [42] (e.g., in our simulations the transition
happens when C/6y >~ 45 and B/@o\/I?@O >~ 1150). However, these parameters only consider
the approaching boundary layer to the first groove and as such, do not provide a comprehensive
view of the flow behavior over multiple grooves and their drag reduction mechanism, which is
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FIG. 6. Unsteady streamline patterns at Re; &~ 2.5 x 10*. (a) At smaller AR, the streamlines show a
periodic behavior where the patterns are repeated over time. (b) At larger AR, the streamline patterns become
more unpredictable as the interaction of the flow and the grooves’ trailing walls causes vortex shedding inside
and above the grooves.

the major goal in this work. Therefore, we use Re;, AR, and ¢ to better assess the drag reduction
over consecutive grooves (please refer to the Supplemental Material for a detailed map that shows
the steady and unsteady regions considering both sets of parameters [50]). Eventually, at higher
Re; conditions (= 5 x 10%), the unsteady behavior becomes more prevalent in the simulations,
which are generally associated with substantial increase in the drag in comparison to a flat plate.
Those cases are not the main focus of this work and, as such, we consider the grooved plates up to
Re; ~ 2.5 x 10*, where steady behavior still dominates, and the majority of the cases show drag
reduction.

The motion of the fluid over the plate creates vortices in the grooves which in turn give rise to
a lift force that is proportional to the magnitude of their circulation. The streamline patterns show
that these vortical structures act like a virtual wall under the main flow with a finite velocity at the
interface and are able to “hold” the free stream and prevent it from penetrating. In Fig. 7 we look at
the y direction force on a control volume that surrounds the flow within the grooves. The resultant
vertical force on the fluid comes from the reaction of the shear on the side walls of the groove and the
net fluid pressure in the vertical direction. To compare the lifting effects among different grooves,
we calculate the force per width of the grooves (which is effectively the average lifting pressure) and
normalize it against the dynamic pressure of the main flow (oU?/2). The positive values of the plot
indicate the upward reaction of the vortical flow. The conservation of momentum requires the net
momentum outflux of the control volume to also be positive. As AR increases, streamlines deflect
more, and their net momentum per trench width also increases until the flow reaches the bottom
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FIG. 7. Effect of the vortical flows in the grooves on their average lifting pressure for different aspect ratios
(AR) and global Reynolds numbers (Re; ). The location of the maximum for each curve corresponds to the AR*
at that Re; . After this point, the inertia of the main flow breaks apart the main vortex, causing a reduction in the
net force per width of the vortices. At higher Re,, the flow induces vortices with stronger circulations which
improves the ability of the grooves for holding the main flow up to larger AR.

of the grooves. The location of the maximum in each curve corresponds to the AR* for that Rey,
where the main flow breaks apart the primary vortex. After this point, as the trench gets wider, the
action of the vortices is restricted to the corners. Therefore, the average lifting pressure decreases.
At higher Re;, the maximum point of the plot shifts to larger values of AR, confirming the behavior
of streamlines in Fig. 5. Here the induced vortices have stronger circulations that can sustain the
flow up to larger ARs.

B. Velocity profiles

To better understand the velocity evolution within and over the grooves, it is important to look
at the velocity profiles in the presence of a groove and compare them with the profile of the
flat plate. Figure 8 shows the nondimensional velocity profiles for a single trench for relatively
narrow and wide grooves (AR = 3 and 23) over two different Re;. The horizontal axis shows
the nondimensional velocity in the x direction with respect to the free-stream velocity (u/U),
and the vertical axis shows the Blasius similarity variable n = y,/U/vx. n takes positive values
in the mainstream region above the grooves, whereas 1 < 0 corresponds to the portion of the
velocity profiles inside the groove. The profiles are plotted at different locations along the trench,
represented by a dimensionless length scale, 0 < x < 1, where x = 0 marks the start of the groove
and x = 1 corresponds to the end of the groove. The flow inside the grooves with AR < AR*
consists of a primary circulation zone. Therefore, the velocity profiles at the bottom of the trench
show a backward trend with negative values, which are at least an order of magnitude smaller
than the free-stream velocity. At lower Re,, the induced circulation and the backward motion
are weaker at the bottom, and the flow inside the groove acts almost like a cushion of stagnant
fluid with a resultant “slip velocity” at its interface with the free stream (see the plot for AR =3
at Re; = 10%). Increasing the Re; induces a stronger circulation with bigger backward motion
at the bottom of the trench. Accordingly, the bottom wall experiences a shear force opposite to
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FIG. 8. Nondimensional velocity profiles at different locations along a single groove. n = y/x+/Re, is the
similarity variable in the Blasius solution, which is extended for y < 0 to represent part of the profile inside the
groove. Each location along the groove is distinguished by a colored line. The dashed line shows the Blasius
profile of a flat plate and the solid black line corresponds to the velocity profile on the land region of a grooved
plate. The negative value of u/U shows the backward motion of the fluid within the grooves due to the flow
circulation.

the mainstream flow direction. For wider grooves where AR > AR*, the streamlines consist of
a bigger vortex near the leading corner and a smaller one near the trailing corner. Therefore, at
lower x we can still observe a negative velocity inside the groove, whereas farther down the
groove the circulation does not exist, and the main flow reaches the bottom of the trench. After
this location, the velocity profile behaves similarly to a flat plate profile that starts from the
bottom of the trench, and like the flat plate case, the flow exerts a positive shear on the bottom
wall.
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FIG. 9. Average effective slip length /; over textured plates as a function of the grooves’ aspect ratios (AR)
at different global Reynolds numbers (Re;). The slip lengths are calculated for the grooves where the free
stream shows minimal bending (AR <« AR¥).

C. Slippage

The performance of periodic grooves is often characterized in terms of an effective slip length.
We use the Navier’s slip condition and define the effective slip length over the plate as

__/" uxny=0, 0
(du/dy)y—o

where I is the average effective slip length over the plate length (L,). We calculate the local velocity
and its derivative at y = 0, where circulating flow inside the grooves can be distinguished from the
mainstream flow. Figure 9 shows the calculated slip lengths for different ARs. We only consider
the cases with AR <« AR* to ensure that the main flow travels along the y = 0 line with minimal
bending of the streamlines over the grooves. Close to AR*, the streamlines deflect downward, and
the interface between the main flow and the circulating flow within the grooves shifts below y = 0.
After AR*, as the flow reaches the bottom of the grooves, it experiences the no-slip condition at the
bottom wall.

Increasing the AR with a fixed plate length creates a higher groove-to-land ratio. This means
that a bigger portion of the flow is exposed to the partial slip that is provided by the grooves, which
explains the increase in ; as AR increases. Furthermore, although at higher Re; we see larger
velocities at the interface (see Fig. 8), the velocity profiles are steeper at y = 0. Therefore, despite
showing a larger slip velocity, the magnitude of the derivatives is also larger, which causes smaller
slip lengths overall. We should note that the slip length provides a measure of the skin friction
reduction in comparison to the flat plate with no-slip condition. As we will show in the next sections
there is a nontrivial pressure component in addition to the skin friction in transverse geometries that
affects the total drag.

D. Boundary layer thickness

By extracting the velocity data over the entire domain, we can investigate the boundary layer
evolution along the textures and compare it to a flat plate. For this purpose, we use the momentum
thickness (6). The momentum thickness (6) is a measure of the momentum loss in the boundary
layer relative to the inviscid flow, which can also be interpreted as a measure of the local drag force
exerted on the plate. Figure 10 shows the behavior of @ along plates with different ARs at Re; ~ 10*
(please refer to the Supplemental Material for the displacement thickness plot [50]). We use the
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FIG. 10. Momentum thickness (9) along the whole plate with different groove aspect ratios (AR) at global
Reynolds number of Re; ~ 10*. The grooves’ layout associated with each AR is shown at the bottom of
each plot.
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local Reynolds number (Re,) to represent the location along the plate. 6 is nondimensionalized by
the plate’s nominal length (L,,) to enable comparison of different grooved surfaces with the flat plate.
For grooves with AR < AR*, because of the finite velocity and the slip-over effect of the grooves,
the flow retains more of its initial momentum in the presence of the grooves in comparison to a flat
plate where flow comes to a full stop at the plate’s surface. Although the flow within the grooves also
dissipates momentum, the order of the velocities is much smaller in comparison to the free-stream
velocity. Therefore, 6 is lower along the grooved plates with small ARs. While momentum reduction
because of skin friction is more important for smaller ARs, at larger ARs the flow can lose part of
its momentum due to stagnation at the grooves’ trailing walls. This is clearly seen as an increase in
6 where the flow approaches the rear wall of each groove. For AR ~ AR*, the loss of momentum
from one groove’s trailing section is recovered by the next groove’s leading section, where the
pinned vortex structure lubricates and reenergizes the flow. The streamline contours at the bottom
of each plot qualitatively confirm that the flow penetration in one groove is followed by formation of
vortices in the next groove, which help the flow to slip over the groove despite having AR > AR*.
As AR further increases, the initial sharp rise at the backwall also increases, and eventually the
momentum loss from the grooves with AR >> AR* can surpass the flat plate.

The difference in 6 when calculated from the bottom of the grooves (y = —C) compared to
from the interface of the groove with the main flow (y = 0), provides a measure of the momentum
loss or gain that comes from the flow inside the grooves. We calculate this difference as A9 =
0(y:0— H)—60(y: —C — H), based on which a positive value indicates a gain of momentum
because of the presence of the grooves in the flow. Figure 11 shows the behavior of A6 along
the textured plates with different ARs at Re; = 10*. We see that for smaller ARs, A6 is always
positive, which demonstrates the role of the vortices in lubricating the movement of the free stream
in textured plates as compared to a flat plate. By increasing AR, we can recognize an alternating
change in the Af sign over the grooves. As AR gets closer to AR*, the flow starts to penetrate the
grooves, and thus more momentum is lost because of the skin friction combined with the pressure
effects of the trailing edges, which act similarly to a flap. The flow after this flap slips over the
subsequent groove again. Therefore, the reduction in one groove is followed by an increase in the
momentum in the following groove. However, when the plate consists of only a single groove, the
reenergizing effect of the back groove is lost. Therefore, with the trailing wall acting as a Gurney
flap (or wickerbill), the plate is expected to have a much larger drag as compared to a flat plate.

E. Shear and pressure evolution

Unlike streamwise textures where skin friction is the major contributor to drag, in spanwise
geometries, the contribution of the pressure drag is important and should also be taken into account.
Therefore, we consider individual coefficients based on the local shear and pressure within the
grooves that are defined respectively as

Ty (X)
= 1202 ()
& [ PG, y)edy
P = T YE , 3)

where C is the skin friction coefficient and is calculated for horizontal segments of the textured wall
by dividing the local shear stress over the free-stream dynamic pressure. C,, represents the pressure
coefficient, which is calculated by averaging the local gauge pressure [P(x, y),] along vertical lines
that are equal to the groove’s depth. Figure 12 shows the behavior of C; and C, along a textured
plate with AR = 2.5. The C; for a simple flat plate (0.664/+/Rey) is also shown in the same plot.
Transverse grooves in the plate introduce two notable changes in the trend of Cy. Firstly, the land
regions show a higher shear in comparison to their corresponding location on a flat plate. This is a
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FIG. 11. The momentum thickness different (A8) along textured plates with different ARs at a global
Reynolds number of Re; = 10*. The grooves’ layout associated with each AR is shown at the bottom of each
plot. A0 =6(y:0— H)—6(y: —C — H) shows the momentum gain or loss as a result of the flow in the
grooves. Based on this definition, a negative value indicates a loss of momentum because of the presence of
the grooves in the flow.

result of alternating between groove and land regions, where each land segment acts as a separate
plate showing higher shear stresses close to its leading edge. Secondly, the flow recirculation inside
each groove leads to a negative shear at the bottom of the grooves, which is favorable for drag
reduction. The behavior of C, shows a sudden reduction at the fore walls of each groove where
the flow reaches the groove. The aft walls cause flow stagnation, which increases C, and when
combined with the low-pressure zones at the fore wall, causes a net drag on the wall. As the flow
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FIG. 12. The evolution of local skin friction (Cy) and pressure coefficient (C,) along the first few trenches
with aspect ratio (AR) of 2.5 at Re; = 10*. The dashed line shows the local coefficients for a flat plate Cr =
0.664/+/Re, and C, = 0).

proceeds to the subsequent grooves, because of the momentum loss of the flow stream, both the
peaks and valleys of the Cy and C,, curves are diminished.

The behavior of Cy and C, inside a single groove for different ARs is shown in Fig. 13. Groove
widths are scaled within zero to 1 and represented by yx to better compare the plots among different
ARs. As long as AR < AR*, C; remains negative at the bottom of the groove. For AR > AR*,
the circulation zones are confined to the front and rear corners where the former is stronger and
the latter is weaker. These corner vortices still cause an opposite shear relative to the main flow
direction, which can be realized from the negative C; at the beginning and end of the groove with
AR = 23.5 and AR = 47.5. When the main flow reaches the bottom of the trench, a positive shear
is exerted on the groove’s wall (Cy > 0). Similarly, the behavior of C, confirms the formation of
an initial low-pressure zone inside the grooves shown by C,, < 0. C,, increases as the flow proceeds
along the groove, which denotes a pressure buildup. At larger ARs, the gradual increase of C,
transitions into a sharp steplike increase in the pressure. This transition occurs when the flow hits
the bottom of the grooves.
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FIG. 13. Comparison of local skin friction (Cy) and pressure coefficient (C,) in a single trench for different
aspect ratios (AR). x represents a normalized length scale for the grooves, projecting the different grooves’
widths between zero and 1.
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F. Skin, pressure, and total drag

We can calculate the global effect of both pressure and skin friction on drag by using the
local pressure and shear stress from the simulations. The skin friction drag is a result of the
flow shear that acts tangentially on the wall. In addition, we see that in transverse configurations,
low-pressure zones form at the leading edge followed by high-pressure stagnation zones at the
trailing edge of each trench, causing a net pressure force on the plate. Ultimately, we define a
total drag coefficient based on which we can compare the drag reduction effectiveness among
grooves with different ARs and flow conditions. For each component, we define the average drag
coefficients as

CTf = 1 Ff — fOLw [flf]wﬁdla (4)
3pUL, 1pUL,

=2 k" —l.pll, L 5
EpUsz Q/OUZLP

Each coefficient is determined by calculating the corresponding local stress, namely, shear (7) and
pressure (pl) at the wall, and integrating the projected stress in the drag direction (x direction) along
the wetted wall (L,,). L,, shows the total length of the wetted wall including the dimensions of the
grooves, whereas L, represents the nominal plate length (for a flat plate L, = L,,). For the cases that
show unsteady behavior, we perform a second integration over time to calculate the average drag
coefficients.

Before comparing the drag properties among all the cases, it is worth briefly discussing the effects
of unsteadiness on the drag components. Figure 14 shows the transient behavior of the flow over
the whole plate for two different cases and their corresponding drag coefficients. We can notice a
series of moving vortices traveling in the flow direction. As discussed earlier, at smaller ARs, these
vortices are confined to the grooved regions, displaying a repeating motion pattern within them that
results in a periodic oscillation in pressure and skin friction coefficients as seen in Fig. 14(a). In
this case, the vortices inside the grooves may still, on average, provide a lower drag as compared
to a flat plate. However, at larger ARs, the flow loses a substantial amount of its momentum during
the vortex interaction with the trailing wall of the groove which acts as a blunt body and leads to
vortex shedding, with the vortex leaving the groove region and traveling downstream in the main
flow. In this state, both drag coefficients become more erratic with time as shown in Fig. 14(b), and
the overall drag increases substantially.

Figure 15 compares the skin friction and pressure drag coefficients for different trench geome-
tries at Re; &~ 10*. Different groove configurations are characterized by AR and ¢ = C/L,. The
simulations are performed for a wide range of trench aspect ratios, from deep trenches (AR = 0.25)
to shallow trenches (AR = 192), and at four different roughness values. The presence of steady
vortices inside the grooves causes the main flow to partially slip over the trench region at low
ARs, which results in reduction of the skin friction. Increasing AR in the simulations corresponds
to decreasing the number of grooves and land regions, while increasing the groove-to-land ratio
(B/A). As B/A increases, a bigger portion of the flow is exposed to the slip condition provided
by the grooves. Furthermore, because the number of land regions is reduced, fewer spikes form
in the shear stress evolution, as seen in Fig. 12; this further reduces the skin friction. At larger
ARs, higher deflection of the streamlines eventually causes the primary circulation inside the
grooves to collapse. In this situation since the main vortex is not sustained, the shear-reducing
effect of the trenches is limited to the smaller vortices at the front and back corners, and the
flow exerts positive shear force on most of the groove’s bottom wall. Thus, skin friction starts
to increase. Very shallow trenches essentially represent multiple flat surfaces separated by a few
bumps. Ultimately, as AR — oo, the value of the friction coefficient asymptotically reaches
the flat plate coefficient (Cf = 1.328/+/Re; = 0.0136). On the other end, as AR — 0, the
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FIG. 14. Transient behavior of the streamlines over the whole grooved plate and their corresponding
fluctuation in the drag coefficients. (a) At smaller AR, the transient vortices are confined within the grooves and
both skin friction and pressure coefficients show a periodic trend. In this situation, the time-averaged total drag
coefficient is still lower than a flat plate. (b) At larger AR, interaction of the flow with the trailing wall of the
groove that act as a blunt body, causes oscillations in the flow similar to a vortex shedding phenomenon. During
this process the flow loses a significant portion of its momentum and as a consequence, the plate experiences a
much higher drag in comparison to a flat plate.

plate mostly consists of land segments and the overall skin drag will approach the flat plate
again.

The pressure drag coefficient behaves almost opposite to the skin friction drag. The permanent,
circulating flow inside the grooves at low ARs is able to lift the external flow on top of the grooves
such that the streamlines do not feel the vertical walls of the grooves as they travel over the textures.
In this state, the pressure effects are mainly concentrated near the top corners of the grooves. The
high-pressure regions forming at the trailing wall of one groove combined with the low-pressure
zone at the leading wall of the subsequent groove causes a net pressure drag force. Here, on the one
hand, increasing the AR enhances the flow penetration into the grooves, which causes the grooves’
vertical walls to act similarly to a flap in the flow. On the other hand, in a fixed plate length, a larger
AR corresponds to fewer grooves and thus fewer flaps. Therefore, there is a trade-off between the
number of grooves in the plate and their pressure effects, which results in a maximum for C,,. We
can make similar arguments for AR — 0 or AR — oo, where C,, approaches zero toward both ends
as in the case of a flat surface. We should note that, for grooves in which flow oscillations occur, the
presence of unsteady vortices typically causes substantial increase in the pressure drag, which can
be observed for ¢ = 0.04 in Fig. 15(b).
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FIG. 15. (a) Average skin friction coefficient (Cf) and (b) average pressure coefficient (C_',,) over the whole
textured plate with different groove aspect ratios (AR) and roughness values (¢ = C/L,) at Re;, ~ 10*.

The two drag components obtained in the previous section constitute the total drag coefficient,
which is simply defined as

B F+F
Cp = Lu2L. — lopcL
2PULp  ZPULp

(6)

To better appreciate the drag-reducing or -increasing effect of the grooves, we plot the total drag
coefficient change (ACp) in comparison to a flat plate (Cpo) in Fig. 16. Negative values of ACp/Cpo
denote a reduction, while positive values denote an increase in the total drag compared to a flat plate
of the same length. Groove geometries with smaller ARs reduce the total drag despite having a larger
wetted area, as the reduction in skin friction is higher than the increase caused by the pressure drag.
At smaller ¢ we see that drag reduction gradually decreases. Since the pressure drag acts on shorter
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FIG. 16. Percentage reduction of total drag coefficient for different aspect ratios (AR) and roughness values
(e) at Re; ~ 10*. ACp is the signed difference of the drag coefficient of a grooved plate and a flat surface, and
Cpy is the total drag coefficient of a flat plate (Cpy = C'f = 1.328/+/Re;). The negative values represent drag
reduction, while the positive values show drag increase in comparison to a flat plate of the same nominal length.
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FIG. 17. Comparison of (a) average skin friction coefficient (C +) and (b) average pressure coefficient (C_‘p)
for different aspect ratios (AR) and roughness values (¢) at three different global Reynolds numbers (Rep).
We can generally notice valley-shaped plots for C; and bell-shaped behavior for C,, indicating their opposite
effects in the total drag. Presence of the grooves allows for creation of vortices which help with drag reduction
by reducing skin friction. However, the vertical walls of each groove act like blunt bodies in the flow, causing
a net pressure force, thus increasing the drag.

vertical walls, their increasing action can still be compensated by the reduction in skin friction that
is achieved at the front and rear corners of each groove. For grooves with bigger ¢, we notice an
initial increase in drag reduction followed by a sharp decrease in the trend. Here as AR increases,
pressure forces act on larger surface areas at the front and rear walls, which eventually surpass the
reduction in the skin fiction by the corner vortices. Consequently, this leads to an overall drag force
much higher than the flat plate without any textures.

To get an overall view of the effect of transverse grooves at different Re;, we plot the drag
coefficients for each ¢ in a separate plot with respect to AR at different Re; in Fig. 17. The
overall valley-shaped behavior of skin friction and bell-shaped behavior of pressure drag can be
observed at different Re;. However, we see that the minimum and maximum of the C; and C,
graphs, respectively, shift toward larger AR, which indicates an increase in the value of AR*. By
increasing Re;, both drag coefficients decline, and their overall shape transitions to a flatter curve.
We should note that presence of the grooves results in lower Cy at all the tested Re;, compared to
their corresponding flat surface skin friction. However, unlike a flat surface with zero-pressure drag,
transverse grooves in the flow always result in positive C,.

Finally, we plot the total drag reduction (DR) in Fig. 18. DR is defined as (Fp — Fpo)/Fpo where
Fp and Fpg represent the total drag force of the grooved plate and the flat plate, respectively. In
this sense, DR and ACp/Cpg have equal values for each case. The trade-off between skin friction
reduction and the pressure drag increase at different Re; creates distinct behaviors for different ¢.
We can see that at smaller ¢, DR remains negative for all the AR and Re;, which indicates that in
such grooves the decrease in skin friction overcomes the increase in pressure drag. Moreover, we
can notice that in general, smaller AR performs slightly better at lower Re; . Increasing AR can have
significantly different effects on the drag. For smaller ¢, the drag gradually increases, whereas, for
bigger e, it initially decreases. However, further increase in AR for bigger ¢ causes a quick rise in
the drag, as a result of the substantial increase in the pressure drag, which becomes worse with the
unsteady fluctuation of vortices over the grooves. It is therefore extremely important to choose the
appropriate groove dimensions depending on the overall flow conditions of the system. The results
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FIG. 18. Comparison of the total drag reduction (DR) over the grooved surfaces with different groove
aspect ratios (AR) and global Reynolds numbers (Re.). Each plot represents a different roughness value (¢ =
C/Lp).

show a drag reduction as low as 10% for the range of the flow conditions and groove dimensions
simulated in this study.

V. CONCLUSIONS

In this paper, we have studied drag characteristics of periodic spanwise grooves in incompressible
viscous laminar flows. The grooves have rectangular cross sections, which are characterized by
their width-to-depth aspect ratio (AR = B/C), and a relative roughness that shows the ratio of the
grooves’ depth to the plate’s nominal length (¢ = C/L,). We have used numerical simulations to
study the pressure and velocity fields over the plate and to investigate the evolution of boundary
layer along the grooves. We defined a critical aspect ratio, denoted by AR*, to distinguish the flow
behavior of the grooves. The presence of transverse grooves in the flow results in vortical flow
structures inside the grooves. Specifically, when AR < AR* the grooves are filled with permanent
steady circulations, which are able to sustain the main flow that is traveling on top of them. By
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creating a partial slip condition above the grooves, such vortices facilitate flow movement over the
plate and result in a lower skin friction in comparison to a flat plate. An inevitable consequence of
spanwise grooves is the emergence of the pressure drag. The interaction of flow with vertical walls
of the grooves results in a net pressure force. The increase in pressure drag and the reduction in skin
friction lead to a trade-off in the total drag, which ultimately determine the grooves drag-reducing or
even -increasing effects, as compared to a flat surface. When AR > AR*, the free stream penetrates
the grooves. With the main flow reaching the bottom of the grooves, the effect of the vortices
is mainly confined to the grooves’ corners, whereas the flow exerts shear to most of the bottom
surface. Moreover, as the flow travels to the subsequent groove, the vertical walls that separate
each two grooves behave as a block to the main flow, which adds a substantial pressure drag.
Therefore, the total drag may even increase in comparison to a flat plate. As grooves get deeper
(larger ¢), the action of vertical walls as a blunt body becomes more pronounced. At higher Re;,
the flow interaction with deeper grooves causes unsteady flow behaviors, namely, vortex shedding,
which further increases the total drag. With careful design of the groove dimensions at different flow
conditions, transverse grooves can provide a net drag reduction despite increasing the wetted area of
the plate. The numerical results show that a total drag reduction of about 10% can be obtained in the
laminar regime. The trench profiles can be optimized in future studies to reduce the adverse pressure
effects while maintaining the interior circulations to create further drag reductions. Moreover,
the introduction of these transverse grooves may even result in delaying the laminar-to-turbulent
transition, by reducing the overall momentum thickness along the surface, which is worth studying
in future works. Similarly, a combination of different texture configurations (e.g., streamwise and
herringbone geometries) can be used in conjunction with transverse geometries to provide an
optimum solution to drag reduction for a wide range of flow conditions in both laminar and turbulent
regimes.
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