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Abstract: We develop a stochastic Galerkin method for a coupled Navier-Stokes-cloud system that models
dynamics of warm clouds. Our goal is to explicitly describe the evolution of uncertainties that arise due to
unknown input data, such as model parameters and initial or boundary conditions. The developed stochas-
tic Galerkin method combines the space-time approximation obtained by a suitable �nite volume method
with a spectral-type approximation based on the generalized polynomial chaos expansion in the stochas-
tic space. The resulting numerical scheme yields a second-order accurate approximation in both space and
time and exponential convergence in the stochastic space. Our numerical results demonstrate the reliability
and robustness of the stochastic Galerkin method. We also use the proposed method to study the behavior
of clouds in certain perturbed scenarios, for examples, the ones leading to changes in macroscopic cloud
pattern as a shift from hexagonal to rectangular structures.

1 Introduction

Clouds constitute one of themost important components in the Earth-atmosphere system. They in�uence the
hydrological cycle and by interacting with radiation they control the energy budget of the system. However,
clouds are one of the most uncertain components, which, unlike the atmospheric �ows, cannot be modeled
using �rst principles of physics.

Clouds are composed by myriads of water particles in di�erent phases (liquid and solid), and thus they need
to be described by a large ensemble in a statistical sense. A commonway of obtaining such an ensemble is by
using a mass or size distribution, which would lead to a Boltzmann-type evolution equation. Although there
are someapproaches available in literature to formulate cloudmodels in such away [4, 18, 19], a complete and
consistent description is missing. Sincemeasurements of size distributions of cloud particles are di�cult, we
are often restricted to averaged quantities such as, for example, mass of water per dry air (mass concentra-
tions). Therefore,models are often formulated in terms of so-called bulk quantities, that is, mass and number
concentrations of the respective water species. Many cloud processes are necessary to describe the time evo-
lution of the cloud as a statistical ensemble, that is, particle formation or annihilation, growth/evaporation
of particles, collision processes, and sedimentation due to gravity. For each of the processes, we have to for-
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mulate a representative mathematical term in the sense of a rate equation. Although for some processes the
physical mechanisms are quite understood, the formulation of the process rates usually contain uncertain
parameters, thus cloud models come with inherent uncertainty. On the other hand, the initial conditions for
atmospheric �ows and the embedded clouds are also not perfectly constrained, leading to uncertainties in
the environmental conditions. It is well-known from former studies that uncertainties in cloud processes and
in environmental conditions can lead to drastic changes in simulations, thus these uncertainties in�uence
predictability of moist atmospheric �ows, clouds and precipitation in a crucial way; for instance, the distri-
bution of latent heat is changed, which in turn can in�uence frontogenesis [16] or convection [15, 25].

For investigations of the impact of these uncertain cloudmodel parameters aswell as the impact of variations
in environmental conditions on atmospheric �ows, sensitivity studies are usually carried out. Since one or
more parameters are (randomly) varied, the Monte Carlo approach can be used. This, however, requires a
large ensemble of simulations to be conducted, which makes Monte Carlo methods computationally expen-
sive and requires a very �ne sampling of the parameter space and possible environmental conditions. Inmost
practical studies, a much smaller set of ensembles (with about 10 − 100 samples only) is used.

In order to improve both the e�ciency and accuracy of a numerical method, we choose a di�erent way of
representing random variations by using spectral expansions in the stochastic space. This approach enables
us to investigate the impact of variations in cloud model parameters and initial conditions on the evolution
of moist �ows with embedded clouds.

We consider amathematicalmodel of cloud physics that consists of theNavier-Stokes equations coupledwith
the cloud evolution equations for the water vapor, cloud water and rain. In this model developed in [23, 35]
and presented in Section 2, the Navier-Stokes equations describeweakly compressible �owswith viscous and
heat conductivity e�ects, while microscale cloud physics is modeled by the system of advection-di�usion-
reaction equations.

Meteorological applications typically inherit several sources of uncertainties, such as model parameters, ini-
tial and boundary conditions. Consequently, purely deterministic models are insu�cient in such situations
and more sophisticated methods need to be applied to analyze the in�uence of uncertainties on numerical
solutions. In this paper, we study a stochastic version of the coupled Navier-Stokes-cloud model in order to
account for uncertainties in input quantities. Our main goal is to design an e�cient numerical method for
quantifying uncertainties in solutions of the studied system. In recent years, a wide variety of uncertainty
quanti�cation methods has been proposed and investigated in the context of physical and engineering ap-
plications. Thesemethods include stochastic Galerkinmethods based on generalized polynomial chaos (gPC)
[11, 34, 41, 42, 48], stochastic collocationmethods [24, 46, 47], andmultilevelMonteCarlomethods [29, 30, 38].
Each of these groups of methods has its own pros and cons. While results obtained by the Monte Carlo sim-
ulations are generally good, the approach is not very e�cient due to a large number of realizations required.
Stochastic collocation methods are typically more e�cient than the Monte Carlo ones, since they only re-
quire solving the underlying deterministic system at the certain quadrature nodes in the stochastic space.
These data are then used to reconstruct the gPC expansion using an appropriate set of orthogonal polynomi-
als. The Monte Carlo as well as the stochastic collocation method fall into a class of the non-intrusive meth-
ods. Stochastic Galerkinmethods o�er an alternative approach for computing the gPC expansion. In general,
they are more rigorous and e�cient than the Monte Carlo and collocation ones; see, e.g., [13]. The stochastic
Galerkin method is an intrusive method since it requires changes in the underlying code. In fact, one needs
to solve a system of PDEs for the gPC expansion coe�cients.

We develop a new stochastic Galerkin method for the coupled Navier-Stokes-cloud system. As it has already
beenmentioned above, the largest source of uncertainties is cloud physics. Therefore, we restrict our consid-
eration to the case in which the uncertainties are only in the cloud physics representation; extension to full
stochastic Navier-Stokes-cloudmodel is left to future studies. Thus, we need to solve the deterministic Navier-
Stokes equations coupled with the PDE system for the gPC expansion coe�cients for the cloud variables. Our
numerical method is an extension of the approach proposed in [23] for the purely deterministic version of the
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coupled Navier-Stokes-cloud system. This method is based on the operator splitting approach, in which the
system is split into the macroscopic Navier-Stokes equations and microscopic cloud model with random in-
puts. The Navier-Stokes equations are then solved by an implicit-explicit (IMEX) �nite-volumemethod, while
for the cloud equations we develop a stochastic Galerkin method based on the gPC. The resulting gPC coe�-
cient system is numerically solved by a �nite-volumemethod combinedwith an explicit Runge-Kuttamethod
with an enlarged stability region [28].

Thepaper is organized as follows.We start in Section 2with thedescription of the deterministicNavier-Stokes-
cloud model. The numerical method for the deterministic model is presented in Sections 3. In Sections 4,
we report on numerical experiments for well-known meteorological benchmarks—rising warm bubble and
Rayleigh-Bénard convection—for the deterministic model. We then continue in Section 5 with the presenta-
tion of the stochastic model, which is followed by the description of the numerical method (Section 6) and
presentation of the numerical experiments (Section 7) for the stochastic model. Our numerical results clearly
demonstrate that the proposed stochastic Galerkinmethod is capable of quantifying the uncertainties of com-
plex atmospheric �ows.

2 Deterministic mathematical model

We study a mathematical model of cloud dynamics, which is based on the compressible nonhydrostatic
Navier-Stokes equations for moist atmosphere (that is, mixture of ideal gases dry air and water vapor),

ρt +∇ · (ρu) = 0,

(ρu)t +∇ ·
(
ρu ⊗ u + p Id − µmρ

(
∇u + (∇u)>

))
= −ρge3, (2.1)

(ρθ)t +∇ · (ρθu − µhρ∇θ) = Sθ ,

and evolution equations for cloud variables,

(ρqv)t +∇ · (ρqvu − µqρ∇qv) = ρ(−C + E),
(ρqc)t +∇ · (ρqcu − µqρ∇qc) = ρ(C − A1 − A2), (2.2)

(ρqr)t +∇ · (−vqρqre3 + ρqru − µqρ∇qr) = ρ(A1 + A2 − E).

Here, ρ is the density, u = (u1, u2, u3)> is the velocity vector, θ is the moist potential temperature, p is the
pressure, g is the acceleration due to gravity, µm is the dynamic viscosity, µh is the thermal conductivity, and
µq is the cloud di�usivity. The cloud variables representing the mass concentration of water vapor, cloud
droplets and rain drops, qv, qc, qr, respectively, as well as the right-hand side (RHS) terms E, C, A1, A2 will
be de�ned below. We denote by t the time variable and by x the space vector; x = (x1, x2, x3) in the three-
dimensional (3-D) and x = (x1, x3) in the two-dimensional (2-D) cases. Furthermore, e3 = (0, 0, 1)> and
e3 = (0, 1)> in the 3-D and 2-D cases, respectively. We set µm = 10−3 and µh = 10−2 = µq. Note that the
systems (2.1) and (2.2) are coupled through the source term Sθ, which represents the impact of phase changes
and will be de�ned below, see (2.6). The temperature T can be obtained from the moist adiabatic ideal gas
equation

T = R
Rm

θ
(
p
p0

)Rm/cp
, (2.3)

where p0 = 105 Pa is the reference pressure at sea level. In addition to the usual de�nition of a potential
temperature, we use Rm = (1 − qv − qc − qr)R + qvRv with the ideal gas constant of dry air R = 287.05 J/(kg·K),
the gas constant of water vapor Rv = 461.51 J/(kg·K) and the speci�c heat capacity of dry air for constant
pressure cp = 1005 J/(kg·K). In order to close the system, we determine the pressure from the equation of state
that includes moisture

p = p0

(
Rρθ
p0

)γm
with γm = cp

cp − Rm
. (2.4)
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We note that in the dry case Rm reduces to R, Sθ = 0 and the moist ideal gas equation as well as the moist
equation of state become their dry analogon.

In this paper, we restrict our investigations to clouds in the lower part of the troposphere, that is, to clouds
consisting of liquid droplets exclusively. All of the processes involving ice particles are left for future research.
For the representation of liquid clouds in our model we use the so-called single moment scheme, that is,
equations for the bulk quantities of mass concentrations of di�erent water phases. For the representation of
the relevant cloud processes we adapt a recently developed cloud model [35]. Note that for bulk models, the
process rates cannot be derived completely from �rst principles. Consequently, some uncertain parameters
show up naturally. This underlies the need of a rigorous sensitivity study which is the goal of the present
paper.

Generally, we follow the standard approach in cloud physics modeling for separating hydrometeors of dif-
ferent sizes, as �rstly introduced in [17]. This relies on the observations that small droplets have a negligible
falling velocity. In addition, measurements indicate two di�erent modes of droplets in the size distribution,
which can be associated to small cloud droplets and large rain drops [43]. Thus, we use the cloud variables
qc and qr indicating mass concentration of (spatially stationary) cloud droplets and (falling) rain drops, re-
spectively, and the water vapor concentration qv, that is,

q` = mass of the respective phase
mass of dry air for ` ∈ {v, c, r}.

The rest of this section is devoted to a description of the di�erent terms on the RHS of (2.2), which represents
the following relevant cloud processes, see [35].

2.1 Single particle properties

• General properties of a single water particle

Aswe exclusively investigate water clouds, we can assume a spherical shape of water particles. For small
clouddroplets this is a very goodapproximation,while for large raindropsdrag e�ects change their shape
[39, 40]. However, for our investigations of ensembles of rain drops, the spherical shape approximation
is appropriate. Thus, mass and radius of droplets are related by the usual equation

m = 4
3πρ`r

3 ⇐⇒ r =
(

3
4πρ`

) 1
3
m

1
3

with the liquid water density ρ` = 103 kg m−3. We make a general assumption that small cloud droplets
are stationary, while large rain drops are accelerated by gravity. After balancing gravity by frictional
forces, spherical rain drops fall with a terminal velocity, depending only on the dropmass and the density
of air. According to [35], the terminal velocity for a droplet of mass m is given by

vτ(m) = α mβ
( mτ
mτ + m

)β (ρ*
ρ

) 1
2
, α = 190.3 m s−1 kg−β , β = 4

15 , mτ = 1.21 · 10−5kg,

with the reference density ρ* = 1.255 kg m−3 at T* = 288 K and p* = 101 325 Pa. For masses m �
mτ, we can approximate the terminal velocity by vτ = α mβ

√
ρ*
ρ ; this approximation will be used in the

description of the process accretion (collection of cloud droplets by rain drops).

• Di�usion processes: Growth and evaporation
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Di�usion processes (transfer of water molecules to and from the liquid particle) can be described by the
following growth equation:

dm
dt = −4πrDvGρ(q* − qv) fv = −4πDvG

(
3

4πρl

) 1
3

︸ ︷︷ ︸
=:d

ρ(q* − qv)m 1
3 fv ,

whereDv denotes the di�usion constant,G determines corrections due to the latent heat release for phase
changes, and fv is the ventilation correction for large particles taking into account the e�ect of �ows
around the falling spheres. A thermodynamics equilibrium is determined by the saturation mixing ratio
q* = q*(p, T) = εps(T)/p with the saturation water vapor pressure over a liquid surface ps(T) given in [31].
By neglecting curvature e�ects, water particles grow for qv > q* and evaporate for qv < q*, respectively.
The di�usion constant is given according to [36]:

Dv = Dv0

(
T
T0

)1.94 p0
p , Dv0 = 2.11 · 10−5m2 s−1, T0 = 273.15 K, p0 = p* = 101 325 Pa

and the impact of latent heat release is described by

G =
[(

L
RvT

− 1
)
Lps(T)
RvT2

Dv
KT

+ 1
]−1

,

where the latent heat of vaporisation L = 2.53 · 106J kg−1 and the heat conduction of dry air is (see [12])

KT = aKT
3
2

T + bK10
cK
T
, aK = 0.002646 W m−1 K− 5

2 , bK = 245.4 K, cK = −12 K.

Ventilation of large spherical particles of radius r canbe taken into account using an empirical ventilation
coe�cient

fv = av + bvN
1
3
ScN

1
2
Re, av = 0.78, bv = 0.308,

where the Schmidt and Reynolds numbers are de�ned as

NSc = µ
ρDv

and NRe = ρ
µ vτ(2r), (2.5)

respectively. In (2.5), µ is the dynamic viscosity of air, which is expressed according to [12] by

µ = µ0T
3
2

T + Tµ
, µ0 = 1.458 · 10−6s Pa K− 1

2 , Tµ = 110.4 K.

For cloud droplets, we neglect the ventilation correction, thus the mass rate of di�usion for a cloud
droplet of mass mc can be expressed as

dmc
dt = dρ(qv − q*)m

1
3
c .

For rain drops, growth due to the di�usion is negligible, and thus we obtain the mass rate for rain drops
of mass mr as

dmr
dt = −dρ(q*−qv)+

[
aEm

1
3
r + bEvτ(mr)

1
2 m

1
2
r

]
, aE = av , bE = bv

(
µ
ρDv

) 1
3
√

2ρ
µ

(
3

4πρ`

) 1
6
.

Here, (·)+ := max(·, 0) denotes the positive part.

• Collision of rain drops with cloud droplets: Accretion

A spherical rain drop of mass mr (radius r) falls with terminal velocity vτ(mr) through a volume V =
πr2vτ(mr)∆t (during a time interval ∆t) and collects cloud droplets of total mass Mc = Vρqc. Thus, the
corresponding growth rate of the rain drop is given by

dmr
dt = k′2ρπqcvτ(mr)

(
3

4πρ`

) 2
3
m

2
3
r

with an e�ciency k′2 > 0.
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2.2 Ensemble/collective properties

For the description of clouds as an ensemble of water particles, we would have to introduce such averaged
quantities as mass concentrations (as described above, that is, qc and qr) as well as number concentrations
of cloud droplets, nc, and rain drops, nr. Since we do not extend the systems of equations for these two
quantities, we introduce relations betweenmass and number concentrations in order to keep themain e�ects
in a simpli�ed way.

• Formation of cloud droplets: Activation

Cloud droplets can be formed by the activation of so-called cloud condensation nuclei (CCN). Liquid
aerosol particles can grow bywater vapor uptake to larger sizes; this e�ect can be described by the Köhler
theory; see, e.g., [20, 33]. As described in detail in [35], we represent the cloud droplet number concen-
tration nc by a nonlinear relation

nc = qc N∞
qc + N∞m0

coth
(

qc
N0m0

)
.

Here, N∞ denotes the maximum number of CCN (depending on environmental conditions, e.g. clean or
polluted air),m0 can be interpreted as the activation mass of cloud droplets, and N0 is the approximated
number of activated droplets at qv = q*. In our investigations, we set these three parameters to the fol-
lowing values:

N∞ = 8 · 108 kg−1, m0 = 5.236 · 10−16kg, N0 = 103 kg−1.

For the initialization of the cloud droplet production, we introduce an additional factor in case of super-
saturation

Cact = N0 dρ(qv − q*)+ m
1
3
0 .

• Relation between number and mass concentration for rain drops

In contrast to the formulation in [35], we do not include another equation for the number concentration
of rain drops. In a similar way as for cloud activation, we use a relation between nr and qr, that is, a
closure of the form nr = f (qr , c). Since we implicitly assume that the rain drops are distributed according
to their size, this approach should be used for mimicking the shape of the distribution in a proper way.
We propose the (non)linear relation

nr = crqγr , 0 < γ ≤ 1.

Assuming a constantmeanmass of rain dropsmr, we can determine the constants as cr = m−1
r and γ = 1.

This approachwouldbemeaningful for the case of a symmetric size distribution of rain droplets, centered
around themeanmass. However, it is well-known that size distributions of rain are usually skew to larger
sizes, thus a linear relation is not appropriate. For sizes of rain drops often an exponential distribution
is assumed, this leads to an exponent γ = 1

4 and a coe�cient cr = cr0ρ−
3
4 (cr0 = 23752.6753 kg−

1
4 m 3

4 ,
[cr] = kg−1) as derived in Appendix A.

• Rates for di�usion processes

For the mass mixing ratios qc and qr, the rates for the di�usion processes are given by multiplication of
the single particle rates by the number concentration of the respective particles, namely:

dqc
dt = nc dmc

dt , dqr
dt = nr dmr

dt .

Applying the relations between the mass and number concentrations as stated above, we obtain

C1 = dqc
dt = ncdρ(qv − q*)m

1
3
c
mc= qc

nc= dρ(qv − q*)
(

N∞
qc + N∞m0

coth
(

qc
N0m0

)) 2
3
qc
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and

E = −dqrdt = nrdρ(q* − qv)+
[
aEm

1
3
r + bEvτ(mr)m

1
2
r

]
mr= qr

nr= dρ(q* − qv)+
[
aEc

2
3
r q

1
3 +γ 2

3
r + bEc

1
2
r vτ(qr)

1
2 q

1
2 +γ 1

2
r

]
using a reformulated terminal velocity

vτ(mr) = vτ(qr) = αqβr
(

mτ
qr + mτcrqγr

)β (ρ*
ρ

) 1
2
.

Note, that the rates for activation and di�usion growth of cloud droplets are combined in the model for-
mulation, that is, C = C1 + Cact.

• Rate for accretion

For the rate of accretion of rain water, we obtain

A2 = dqr
dt = nr dmr

dt = k2ρπc
1
3
r

(
3

4πρ`

) 2
3
qcvτ(qr)q

2+γ
3
r .

Note that for compensating e�ects of the averaging the parameter k2 can be adjusted (such that k2 =
0.8 kg ≠ k′2) and the impact of the uncertainty of this parameter is of high interest, since it cannot be
measured or derived from the �rst principles.

• Collision of cloud droplets, forming a rain drop: Autoconversion

Beside the growth of an existing rain drop by collecting cloud droplets, a rain drop can be formed by the
collision of two cloud droplets. According to [35], we formulate the growth rate similarly to population
models, namely:

A1 = dqc
dt = k1

ρq2
c

ρ`
.

Note that the coe�cient k1 cannot be measured or derived from the �rst principles. It is a free parameter,
which must be �xed using parameter estimations. Thus, the impact of the uncertainty of this parameter
is of high interest. In our deterministic experiments, we choose k1 = 0.0041 kg s−1, as indicated in [35].

• Sedimentation of rain mass mixing ratio

We have introduced an additional convection term into the equation for the evolution of qr in (2.2), that
is, the term∇ · (−vqρqre3), where

vq = vq(qr) = αqβr
(

mτ
qr + mτcrqγr

)β (ρ*
ρ

) 1
2
.

The parameter α can be derived empirically, but the in�uence of uncertainty in α is of high interest.

Note that activation and di�usion processes are formulated explicitly, in contrast to the usual approach of
saturation adjustment (see, e.g., [22]), which is less accurate, but commonly used in operational weather
forecast models. This explicit formulation introduces sti�ness caused by modeling cloud processes on the
RHS of the cloud equations with fractional exponents between −1 and 1. In order to avoid the root evaluation
for an argument that is close to zero, we introduce a cut-o� function and replace ζ ξ , ξ ∈ (−1, 1), with{

ζ ξ , if ζ > 10−16,
0, otherwise.

Due to phase changes (activation and growth/evaporation of water particles) latent heat is released or ab-
sorbed. These processes are modeled by the source term in (2.1):

Sθ = ρ LθcpT (C − E) , (2.6)
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whereas the terms C = C1 + Cact and E are explained in details in Section 2.2, Rates for di�usion processes.

Solving the Navier-Stokes equations (2.1) in a weakly compressible regime is known to cause numerical insta-
bilities due to the multiscale e�ects. We follow the approach typically used in meteorological models, where
the dynamics of interest is described by a perturbation of a background state, which is the hydrostatic equi-
librium. The latter expresses a balance between the gravity and pressure forces. Denoting by p̄, ρ̄, ū = 0, θ̄
and ρθ the respective background state, the hydrostatic equilibrium satis�es

∂p̄
∂x3

= −ρ̄g, Sθ = 0,

where p̄ is obtained from the equation of state (2.4)

p̄ = p(ρθ) = p0

(
Rρθ
p0

)γm
. (2.7)

Let p′, ρ′, u′, θ′ and (ρθ)′ stand for the corresponding perturbations of the equilibrium state, then

p = p̄ + p′, ρ = ρ̄ + ρ′, θ = θ̄ + θ′, u = u′, ρθ = ρ̄θ̄ + ρ̄θ′ + ρ′ θ̄ + ρ′θ′ = ρθ + (ρθ)′.

The pressure perturbation p′ is derived from (2.4) and (2.7) using the following Taylor expansion

p(ρθ) ≈ p(ρθ) + ∂p
∂(ρθ)

(
ρθ − ρθ

)
= p̄ + γmp0

(
Rρθ
p0

)γm (ρθ)′

ρθ
,

which results in
p′ ≈ γmp0

(
Rρθ
p0

)γm (ρθ)′

ρθ
.

Consequently, a physicalmotivation from the hydrostatic balance state leads to a numerically preferable scal-
ing and the perturbation formulation of the Navier-Stokes equations (2.1) then reads as

ρ′t +∇ · (ρu) = 0,

(ρu)t +∇ ·
(
ρu ⊗ u + p′ Id − µmρ

(
∇u + (∇u)>

))
= −ρ′ge3, (2.8)

(ρθ)′t +∇ · (ρθu − µhρ∇θ) = Sθ .

For alternative representations of cloud dynamics and their numerical investigations, we refer the reader to
[3, 37] and references therein.

3 Numerical scheme for the deterministic model

The numerical approximation of the coupled model (2.8), (2.2) is based on the second-order Strang operator
splitting. Therefore, we split the whole system into the macroscopic Navier-Stokes �ow equations and the
microscopic cloud equations. The Navier-Stokes equations (2.8) are approximated by an IMEX �nite-volume
method and the cloud equations (2.2) are approximated by a �nite-volume method in space and an explicit
Runge-Kutta method with an enlarged stability region in time.

3.1 Operator form

Letw := (ρ′, ρu, (ρθ)′)> andwq := (ρqv , ρqc , ρqr)> denote the solutionvectors of (2.8) and (2.2), respectively.
Then, the coupled system can be written as

wt = −∇ · F(w) + D(w) + R(w),
(wq)t = −∇ · Fq(wq) + Dq(wq) + Rq(wq),
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where F and Fq are advection �uxes andD,R andDq,Rq denote the di�usion and reaction operators of the
respective systems. They are given by

F(w) :=
(
ρu, ρu ⊗ u + p′ Id, ρθu

)> ,

D(w) :=
(

0,∇ · (µmρ(∇u + (∇u)>)),∇ · (µhρ∇θ)
)>

, (3.1)

R(w) :=
(

0, −ρ′ge3, Sθ
)> ,

Fq(wq) := (ρqvu, ρqcu, ρqru − vqρqre3)> ,

Dq(wq) :=
(
∇ · (µqρ∇qv),∇ · (µqρ∇qc),∇ · (µqρ∇qr)

)> ,
Rq(wq) := (−C + E, C − A1 − A2, A1 + A2 − E)> .

In order to derive an asymptotically stable, accurate and computationally e�cient scheme for the Navier-
Stokes equations,we�rst split the equations into linear andnonlinear parts; see [6, 23] and references therein.
Consequently, we introduce

• F(w) = FL(w) + FN(w) with FL(w) :=
(
ρu, p′ Id, θ̄ρu

)> and FN(w) :=
(

0, ρu ⊗ u, θ′ρu
)>;

• D(w) = DL(w) + DN(w) with

DL(w) :=
(

0, µm(∆(ρu) +∇(∇ · (ρu))), µh∆(ρθ)′
)> and

DN(w) :=
(

0, −µm((∆ρ)u + (D2ρ)u +∇u∇ρ +∇ρ∇ · u), µh(∆(ρθ) − θ∆ρ −∇ρ ·∇θ)
)>

;

• R(w) = RL(w) + RN(w) withRL(w) :=
(

0, −ρ′ge3, 0
)> and RN(w) := (0, 0, Sθ)>.

We would like to point out that the choice of the linear and nonlinear operators is crucial. We choose the
linear part tomodel linear acoustic andgravitationalwaves aswell as linear viscous�uxes. Thenonlinear part
describes nonlinear advective e�ects together with the remaining nonlinear viscous �uxes and the in�uence
of the latent heat. We will use the following notation:

L := −∇ · FL(w) + DL(w) + RL(w) and N := −∇ · FN(w) + DN(w) + RN(w).

3.2 Discretization in space

The spatial discretization is realized by a �nite-volume method. We take a cuboid computational domain
Ω ⊂ Rd, which is divided into N uniform Cartesian cells. The cells are labeled in a certain order using a
single-index notation. For simplicity of notation, we assume that the cells are cubes with the sides of size h
so that |Ci| = hd. We also introduce the notation S(i) for the set of all neighboring cells of cell Ci, i = 1, . . . , N.

We assume that at a certain time t the approximate solution is realized in terms of its cell averages

wi(t) ≈
1
hd

∫
Ci

w(x, t) dx and (wq)i(t) ≈
1
hd

∫
Ci

wq(x, t) dx, i = 1, . . . , N .

In order to simplify the notation, we will now omit the time dependence of wi(t) and (wq)i(t). Next, we in-
troduce the notation wh := {wi}Ni=1 and (wq)h := {(wq)i}Ni=1 and consider the following approximation of the
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advection, di�usion and reaction operators:

Ai(wh) = (AL)i(wh) + (AN)i(wh) ≈ 1
hd

∫
Ci

∇ · FL(w(x, t)) dx + 1
hd

∫
Ci

∇ · FN(w(x, t)) dx,

Di(wh) = (DL)i(wh) + (DN)i(wh) ≈ 1
hd

∫
Ci

DL(w(x, t)) dx + 1
hd

∫
Ci

DN(w(x, t)) dx,

Ri(wh) = (RL)i(wh) + (RN)i(wh) ≈ 1
hd

∫
Ci

RL(w(x, t)) dx + 1
hd

∫
Ci

RN(w(x, t)) dx.

Analogous notation will be used for the approximations (Aq)i(wh), (Dq)i(wh) and (Rq)i(wh) of the cloud
operators.

3.2.1 Advection

The advection terms are discretized using �ux functions as follows:

(AL)i(wh) = 1
h
∑
j∈S(i)

HLij(wh)
d∑
k=1

n(k)
ij ,

(AN)i(wh) = 1
h
∑
j∈S(i)

HNij (wh)
d∑
k=1

n(k)
ij ,

(Aq)i((wq)h) = 1
h
∑
j∈S(i)

(Hq)ij((wq)h)
d∑
k=1

n(k)
ij ,

where the numerical �uxes HLij, HNij and (Hq)ij approximate the corresponding �uxes between the computa-
tional cells Ci and Cj, and n(k)

ij denotes the k-th component of the outer normal unit vector of cell Ci in the
direction of cell Cj. We use the Rusanov numerical �ux for HNij and (Hq)ij and the central �ux for HLij. For
(AN)i(wh) and (Aq)i((wq)h) a discretization is obtained via a MUSCL-type approach using piecewise linear
reconstructions with the minmod limiter. It is well-known this approach yields an approximation, which is
almost second-order accurate as its accuracy deteriorates at sudden changes, i.e. jumps, discontinuities or
large curvatures. The numerical �uxes are given by

HLij(wh) = 1
2
(
FL(wj) + FL(wi)

)
,

HNij (wh) = 1
2
(
FN(w+

ij) + FN(w−ij)
)
− λij2

(
w+
ij − w−ij

)
, (3.2)

(Hq)ij((wq)h) = 1
2
(
Fq((wq)+

ij) + Fq((wq)−ij)
)
− (λq)ij

2
(

(wq)+
ij − (wq)−ij

)
.

Here,w−ij,w+
ij and (wq)−ij, (wq)+

ij denote the corresponding interface values, which are computed using a piece-
wise linear reconstruction so that

w−ij = wi + sij
h
2

d∑
k=1

n(k)
ij , w+

ij = wj − sji
h
2

d∑
k=1

n(k)
ij ,

where the slopes sij are computed by the minmod limiter,

sij = 1
hminmod

(
wj − wi ,wi − wj*

) d∑
k=1

n(k)
ij ,
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applied in a component-wise manner. Here,

minmod(a, b) =


a, if |a| < |b| and ab > 0,
b, if |b| < |a| and ab > 0,
0, if ab ≤ 0,

and (wq)−ij and (wq)+
ij are obtained similarly. Thereby Cj* is the other neighboring cell of Ci in the opposite

direction from Cj. Finally, the values λij and (λq)ij are given by

λij = max
{
σ
(
∂FN(w−ij)
∂w

)
, σ
(
∂FN(w+

ij)
∂w

)}
, (λq)ij = max

{
σ
(
∂Fq((wq)−ij)

∂wq

)
, σ
(
∂Fq((wq)+

ij)
∂wq

)}
,

where σ denotes the spectral radius of the corresponding Jacobians.
Remark 3.1. Note that in the computation of HLij in (3.2), we use the cell averages rather than the point values
at the cell interfaces for the following two reasons. First, the �ux is second-order accurate. Second, in Section
3.3, we will treat the linear part of the �ux implicitly and this is much easier to do when the numerical �ux is
linear as well.

3.2.2 Di�usion

The components of the discrete di�usion operators are discretized in a straightforwardmanner using second-
order central di�erences.

3.2.3 Reaction

The reaction terms are discretized by a direct evaluation of the reaction operators at the cell centers:

Ri(wh) = RL(wi) + RN(wi), (Rq)i((wq)h) = Rq((wq)i).

After the spatial discretization, we obtain the following system of time-dependent ODEs:

d
dtwi = −Ai(wh) + Di(wh) + Ri(wh), (3.3)

d
dt (wq)i = −(Aq)i((wq)h) + (Dq)i((wq)h) + (Rq)i((wq)h). (3.4)

This system has to be solved using an appropriate ODE solver as discussed in Section 3.3.

3.3 Discretization in time

Let wn
h and (wq)nh denote the numerical approximation of the solutions wh(t) and (wq)h(t) at the discrete

time level tn. We evolve the solution to the next time level tn+1 = tn + ∆tn, where ∆tn is the size of the Strang
operator splitting time step. In the operator splitting approach, we �rst numerically solve the ODE system
(3.3) with ∆tnNS = ∆tn/2, we then numerically integrate the ODE system (3.4) with ∆tn and �nally we solve the
system (3.3) again with ∆tnNS.

Notice that the system (3.3) may be very sti� as the Navier-Stokes equations are in the weakly compressible
regime. We therefore follow the approach in [6] (see also [5]), and employ the second-order ARS(2,2,2) IMEX
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method from [2]:

wn+ 1
4

h = wn
h + β∆tnNS

(
L
(
wn+ 1

4
h

)
+ N

(
wn
h
))

,

wn+ 1
2

h = wn
h + ∆tnNS

(
δN
(
wn
h
)

+ (1 − δ)N
(
wn+ 1

4
h

))
+ ∆tnNS

(
βL
(
wn+ 1

2
h

)
+ (1 − β)L

(
wn+ 1

4
h

))
,

(3.5)

where α = 1 − 1/√2, δ = 1 − 1/2β, tn+ 1
2 = tn + ∆tnNS, tn+ 1

4 = tn + ∆tnNS/2, and ∆tnNS satis�es the following CFL
condition:

max
s=1,2,3

max
i=1,...,N

(|(us)i|)
∆tnNS
h < 0.5.

For solving the linear systems arising in (3.5), we use the generalized minimal residual (GMRES) method
combined with a preconditioner, the incomplete LU factorization (ILU). As it was shown in [6] (see also [5]),
the resulting method is both accurate and e�cient in the weakly compressible regime.

The ODE system (3.4) is also sti�, but its sti�ness only comes from the di�usion and power-law-type source
terms. We therefore e�ciently solve it using the large stability domain third-order Runge-Kutta method from
[28]. We have utilized the ODE solver DUMKA3, which is a free software that can be found in [27]. We note
that DUMKA3 selects time steps automatically, but in order to improve its e�ciency, one needs to provide the
code with a time step stability restriction for the forward Euler method; see [27, 28]. This bound is obtained
by min{∆tn , ∆tncloud}, where ∆tncloud satis�es the following CFL condition for the cloud system:

max
s=1,2

max
i=1,...,N

(|(us)i|, |(u3)i + vq|)
∆tncloud
h < 0.5.

4 Deterministic numerical experiments

In this section, we test the numerical method described in Section 3. The experimental order of convergence
is computed for the so-called free convection of amoist warm air bubble and the structure formation in cloud
dynamics is shown in the Rayleigh-Bénard convection. The latter will be simulated in both the 2-D and 3-D
cases.

4.1 Free convection of a moist warm air bubble in 2-D

We start with the well-knownmeteorological benchmark describing the free convection of a smoothwarm air
bubble; see, e.g., [8, 10].

Example 1

In this experiment, the warm bubble rises and deforms axisymmetrically due to the shear friction with the
surrounding air at the warm/cold air interface, gradually forming amushroom-like shape. The warm air bub-
ble is placed at (3500 m, 2000 m) with the initial perturbation:

ρ′(x, 0) = −ρ̄(x) θ′(x, 0)
θ̄(x) + θ′(x, 0)

, ρ̄(x) = p0
Rθ̄(x)

πe(x)
1

γ−1 , πe(x) = 1 − gx3
cp θ̄

,

u(x, 0) = 0,

θ′(x, 0) =
{

2 cos2 ( πr
2
)
, r :=

√
(x1 − 3500)2 + (x3 − 2000)2 ≤ 2000,

0, otherwise,
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where θ̄ = 300 K and p0 = p̄ = 105 Pa. The experiment was simulated in a domain Ω = [0, 7000] ×
[0, 5000] m2. For the cloud variables we choose the following initial conditions:

qv(x, 0) = 0.08 θ′(x, 0), qc = 10−3 θ′(x, 0), qr = 10−5 θ′(x, 0).

Furthermore, we apply the no-�ux boundary conditions u · n = 0,∇ρ′ · n = 0,∇(ρθ)′ · n = 0,∇(ρq`) · n = 0,
` ∈ {v, c, r}.

In Figure 1, we show the potential temperature θ and cloud variables qv, qc and qr, computed on a 160 ×160
mesh at t = 150 and 200s. One can clearly observe condensation taking place on the interface between cold
and warm air and leading to cloud formation in this region. In consequence, rain is formed in the clouds and
falls towards the surface. Note that the order of magnitude of the di�erent water mass concentrations is very
di�erent, that is, qv � qc � qr, as expected. The experimental convergence study for the cloud and �ow
variables is presented in Tables 1 and 2, respectively. The experimental order of convergence (EOC) has been
computed in the following way:

EOC = log2

(
‖vN,∆t − v2N,∆t/2‖L2(Ω)
‖v2N,∆t/2 − v4N,∆t/4‖L2(Ω)

)
,

where vN,∆t is the numerical solution computed on a grid with N ×N grid cells and using a �xed time step ∆t.
As one can clearly see, the expected second order of accuracy has been achieved. For comparison, we present
in Figures 2 and 3 the errors measured in the L1-, L2- and L∞-norms. They all give similar results.

Table 1: Example 1: L2-errors and EOC for the cloud variables computed at time t = 10s using ∆t = 20/N.

N L2-error in ρqv EOC L2-error in ρqc EOC L2-error in ρqr EOC
10 6.870e+00 – 1.019e-01 – 1.159e-03 –
20 1.711e+00 2.01 2.544e-02 2.00 3.152e-04 1.88
40 4.271e-01 2.00 6.380e-03 2.00 1.240e-04 1.35
80 1.080e-01 1.98 1.611e-03 1.99 4.952e-05 1.32
160 2.703e-02 2.00 4.042e-04 1.99 1.571e-05 1.67
320 6.765e-03 2.00 1.016e-04 1.99 5.666e-06 1.47

Table 2: Example 1: L2-errors and EOC for the flow variables computed at time t = 10s using ∆t = 20/N.

N L2-error in ρ′ EOC L2-error in ρu1 EOC L2-error in ρu2 EOC L2-error in (ρθ)′ EOC
10 7.522e-01 – 1.134e+02 – 5.805e+01 – 1.213e+02 –
20 1.757e-01 2.10 2.607e+01 2.12 1.744e+01 1.74 3.494e+01 1.80
40 4.418e-02 2.00 5.604e+00 2.22 5.462e+00 1.67 9.641e+00 1.86
80 1.147e-02 1.95 1.436e+00 1.96 1.658e+00 1.72 2.584e+00 1.90
160 3.170e-03 1.85 3.972e-01 1.85 5.875e-01 1.50 7.577e-01 1.77
320 9.810e-04 1.70 1.159e-01 1.78 2.420e-01 1.28 2.556e-01 1.57

4.2 Rayleigh-Bénard convection

In this experiment, we study a natural convection that is used to model structure formation. It occurs in a
planar �ow between two horizontal plates, where the lower one is heated from below and the upper one is
cooled from above. Due to the presence of buoyancy, and hence gravity, the �uid develops a regular pattern
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Figure 1: Example 1: Potential temperature θ, water vapor concentration qv, cloud drops concentration qc and rain concentra-
tion qr at times t = 150 (left column) and 200s (right column) simulated on a 160 × 160 mesh.

Figure 2: Example 1: Comparison of di�erent error norms for the cloud variables qv, qc and qr computed at time t = 10s using
∆t = 20/N.
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Figure 3: Example 1: Comparison of di�erent error norms for the flow variables ρ′, ρu1, ρu2 and (ρθ)′ at time t = 10s using
∆t = 20/N.

of convection roles, known as the Bénard cells. In 3-D, these convection roles form additionally hexagonal
structures; see, e.g., [1, 14, 32].

For our numerical simulations, we prescribe the following initial conditions:

ρ′(x, 0) = −ρ̄(x) θ′(x, 0)
θ̄(x) + θ′(x, 0)

, ρ̄(x) = p0
Rθ̄(x)

πe(x)
1

γ−1 , πe(x) = 1 − gx3
cp θ̄

,

u(x, 0) = 0, θ′(x, 0) = η(x), θ̄(x) = 284 − 1
1000 x3,

where p0 = p̄ = 105 Pa and η(x) is a random perturbation uniformly distributed in [−0.0021, 0.0021]. For
the cloud equations, the following initial data are used:

qv(x, 0) = 2 · 10−5 θ̄(x), qc = 0, qr = 0.

We apply periodic boundary conditions in horizontal direction and the following conditions vertically: u ·n =
0,∇ρ′·n = 0,∇(ρq`)·n = 0, ` ∈ {v, c, r}with theDirichlet boundary conditions for thepotential temperature,

θ(x3 = 0) = 284 K and θ(x3 = 1000) = 283 K.

Example 2: 2-D case

In Figures 4–7, we present time snapshots of the numerical solution computed in a domain Ω = [0, 5000] ×
[0, 1000] m2 that has been discretized using 320 × 320 mesh cells. The potential temperature, water vapor
mixing ratio, cloudmass and rainmass concentration are presented at two distinct times (t = 800 and 1400s)
in Figures 4–7, where we can clearly see the formation and evolution of a pattern. At an earlier time t = 800 s,
one can observe the formation of small convective cells, visible as narrow �nger-like structures reaching to-
wards the top of the domain. Inside these cells, the potential temperature is enhanced, partly due to the up-
ward transport of higher values frombelowandpartly due to phase changes and thus latent heat release. Also
the mass concentrations of water vapor and cloud water follow the small scale structure and show enhanced
values inside the �ngers. Even at this early stage, rain can be formed at the top of the domain, since there
the cloud water concentration is high enough for autoconversion and accretion. Nevertheless, the structure
of rain water is very di�erent since after the formation of rain, it is vertically transported due to sedimenta-
tion leading to vertically smeared structures. By a later time t = 1400 s, much larger structures, which are
similar to classical structures for dry thermal convection, have been formed. In the variables θ, qv and qc, the
spatially extended convective cells can be clearly seen. In contrast, rain water is not following the convective
structure although some larger features can be seen. In general, smearing due to sedimentation is again a
major feature of the rain mass concentration.
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Figure 4: Example 2: Time evolution of the potential temperature θ.

Figure 5: Example 2: Time evolution of the water vapor concentration qv.

Example 3: 3-D case

In this example, we compute the numerical solution in a domain Ω = [0, 5000]× [0, 5000]× [0, 1000] m3 that
has been discretized using 50×50×50 mesh cells. Withoutmoisture, this would be the classical setup for dry
Rayleigh-Bénard convection. While for the dry case phase diagrams for resulting patterns, as e.g. rolls and
hexagons, are available, see, e.g., [7], only little is known about patterns in moist Rayleigh-Bénard convec-
tion. Few studies with reduced order models indicate the possibility of roll-like structures or the formation of
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Figure 6: Example 2: Time evolution of the cloud drops concentration qc.

Figure 7: Example 2: Time evolution of the rain concentration qr.

hexagons, e.g. [44], but no results for compressible Navier-Stokes equations coupled with full cloud micro-
physics are available, at least to our knowledge. Thus, we would expect similar patterns as evolving in dry
convection, although the latent heat releasemight change these patterns partially. Figures 8–11 show θ, qv, qc
and qr computed at times t = 1200, 1600, 1800 and 2000s. In order to better visualize the computed struc-
tures, we have plotted the solution in a slightly smaller domain [0, 5000] × [0, 5000] × [0, 980] m3. As in the
2-D case, di�erent structures are formed in the di�erent variables. At an earlier time t = 1200 s, small scale
structures can be seen at the top layer of the domain, especially in the potential temperature (Figure 8) and
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cloud water (Figure 10). As time progresses, these structures aggregate and reorganize to quasi-hexagonal
structures, which would be typical for classical dry thermal convection—Rayleigh-Bénard convection. These
structures in potential temperature seem to be quite robust as the overall scales and pattern do not change
from t = 1800 s to t = 2000 s. As one can see in Figure 10, the structures in the cloud water are very similar
since the variables θ and qc are closely connected; the structures are mainly visible in horizontal planes. For
the rain distribution, the evolved structures are quite di�erent since rain is formed at regions with high cloud
water (that is, at the top layers) and then transported by sedimentation leading to more pronounced pattern
in the vertical direction, since sedimentation is the dominant process after the rain has formed.

Figure 8: Example 3: Time evolution of the potential temperature θ.

Remark 4.1. Let us note that the Rayleigh-Bénard convection can be understood as a very simpli�ed model
for atmospheric convection in the turbulent planetary boundary layer. In [32, 45], numerical simulations
for moist Rayleigh-Bénard convection have been realized using the Boussinesq approximation, a simpli�ed
equation of state, and the rigid-lid boundary conditions at the top and bottom of the computational domain.
Our mathematical model is more general and takes weakly compressible e�ects into account. Numerical ex-
periments presented in Examples 2 and 3 are in good agreement with the results presented in the literature,
but the focus of those studies di�ers from ours.

5 Stochastic mathematical model

In meteorological applications, it is typical that initial or boundary data as well as parameters are uncertain.
In order to take this into account and analyze the in�uence of such uncertainties on the output of numerical
simulations, we apply the stochastic Galerkinmethod that will be described below. In this paper, we consider
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Figure 9: Example 3: Time evolution of the water vapor concentration qv.

Figure 10: Example 3: Time evolution of the cloud drops concentration qc.

the case where the uncertainty arises from the initial data or some coe�cients in the microphysical cloud
parametrizations. In order to mathematically describe the uncertainty, we introduce a random variable ω.
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Figure 11: Example 3: Time evolution of the rain concentration qr.

We assume that either the initial data or some well-chosen model parameters depend on ω, that is,

(ρq`)
∣∣
t=0 = (ρq`)(x, t = 0, ω) with ` ∈ {v, c, r}

or
k1 = k1(ω), k2 = k2(ω), α = α(ω).

Consequently, the solution at later time will also depend on ω, that is, (ρq`)(x, t, ω) for ` ∈ {v, c, r}, and the
system (2.2) for cloud variables will read as

((ρqv)(ω))t +∇ ·
(

(ρqv)(ω)u − µqρ∇qv(ω)
)

= ρ(−C(ω) + E(ω)),
((ρqc)(ω))t +∇ ·

(
(ρqc)(ω)u − µqρ∇qc(ω)

)
= ρ(C(ω) − A1(ω) − A2(ω)), (5.1)

((ρqr)(ω))t +∇ ·
(

(ρqr)(ω)(−vq(ω)e3 + u) − µqρ∇qr(ω)
)

= ρ(A1(ω) + A2(ω) − E(ω)).

From now on we will stress the dependence on ω, but we will omit the dependence on x and t to simplify the
notation. We would like to point out that the solution of the Navier-Stokes equations (2.8) will also depend
on ω, because of the source term Sθ. In this paper, we will consider a simpli�ed situation by replacing

Sθ(ω) = ρ LθcpT
{
C((ρqv)(ω), (ρqc)(ω)) − E((ρqv)(ω), (ρqr)(ω))

}
in (2.8) by S̄θ which only depends on the expected values of the cloud variables

S̄θ := ρ LθcpT
{
C(E[ρqv],E[ρqc]) − E(E[ρqv],E[ρqr])

}
.

This ensures that all of the �uid variables, ρ′, ρu and (ρθ)′, remain deterministic.
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6 Numerical scheme for the stochastic model

In this section, we describe a generalized polynomial chaos stochastic Galerkin (gPC-SG) method for the sys-
temof cloud equations (5.1). Suchmethodbelongs to the class of intrusivemethods and theuse of theGalerkin
expansion leads to a system of deterministic equations for the expansion coe�cients. In the gPC-SGmethod,
the solution is sought in the form of a polynomial expansion

ρq`(x, t, ω) =
M∑
k=0

(ρ̂q`)k(x, t)Φk(ω) with ` ∈ {v, c, r}, M ≥ 0, (6.1)

whereΦk(ω), k = 0, . . . ,M, are polynomials of k-th degree that are orthogonal with respect to the probability
density function µ(ω). The choice of the orthogonal polynomials {Φk(ω)}Mk=0 depends on the distribution of
ω. In our case, we use a uniformly distributed ω ∈ Γ = (−1, 1), which de�nes the Legendre polynomials,
which satisfy ∫

Γ

Φk(ω)Φk′ (ω)µ(ω) dω = 1
2k + 1 δkk′ for 0 ≤ k, k′ ≤ M, (6.2)

where δkk′ is the Kronecker symbol and Γ is the sample space.

We use the same expansion for the uncertain coe�cients,

k1(ω) =
M∑
k=0

(k̂1)kΦk(ω), k2(ω) =
M∑
k=0

(k̂2)kΦk(ω), α(ω) =
M∑
k=0

α̂kΦk(ω), (6.3)

for the source terms on the RHS of (5.1),

ρ
(
−C(x, t, ω) + E(x, t, ω)

)
=: R1(x, t, ω) =

M∑
k=0

(r̂1)k(x, t)Φk(ω),

ρ
(
C(x, t, ω) − A1(x, t, ω) − A2(x, t, ω)

)
=: R2(x, t, ω) =

M∑
k=0

(r̂2)k(x, t)Φk(ω), (6.4)

ρ
(
A1(x, t, ω) + A2(x, t, ω) − E(x, t, ω)

)
=: R3(x, t, ω) =

M∑
k=0

(r̂3)k(x, t)Φk(ω),

as well as for the raindrop fall velocity,

vq(x, t, ω) =
M∑
k=0

(v̂q)k(x, t)Φk(ω). (6.5)

Since ρ(x, t) = ρ̂0(x, t), we also obtain

q`(x, t, ω) =
M∑
k=0

(q̂`)k(x, t)Φk(ω) with (q̂`)k(x, t) = (ρ̂q`)k(x, t)
ρ(x, t) for ` ∈ {v, c, r}, k = 1, . . . ,M. (6.6)

We note that if ρ(x, t) is very small, the computation of the coe�cients (q̂`)k(x, t) should be desingularized;
see [21, formulae (5.16)–(5.18)].

Applying the Galerkin projection to (5.1) yields〈
(ρqv)t +∇ · (ρqvu − µqρ∇qv) ,Φk

〉
=
〈
ρ(−C + E),Φk

〉
,〈

(ρqc)t +∇ · (ρqcu − µqρ∇qc) ,Φk
〉

=
〈
ρ(C − A1 − A2),Φk

〉
, (6.7)〈

(ρqr)t +∇ ·
(
ρqr(−vqe3 + u) − µqρ∇qr

)
,Φk

〉
=
〈
ρ(A1 + A2 − E),Φk

〉
,
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for k = 0, . . . ,M, where 〈·, ·〉 is the scalar product in our probability space which is given through

〈u, v〉 =
1∫

−1

u(ω)v(ω)µ(ω) dω.

We now substitute (6.1), (6.4)–(6.6) into (6.7) and use the orthogonality property (6.2) to obtain the following
3(M + 1) × 3(M + 1) deterministic system for the gPC coe�cients:

∂
∂t (ρ̂qv)k +

d∑
s=1

∂
∂xs

(
(ρ̂qv)kus

)
− µq

d∑
s=1

(
∂ρ
∂xs

∂
∂xs

(q̂v)k + ρ ∂
2

∂x2
s

(q̂v)k
)

= (r̂1)k ,

∂
∂t (ρ̂qc)k +

d∑
s=1

∂
∂xs

(
(ρ̂qc)kus

)
− µq

d∑
s=1

(
∂ρ
∂xs

∂
∂xs

(q̂c)k + ρ ∂
2

∂x2
s

(q̂c)k
)

= (r̂2)k , (6.8)

∂
∂t (ρ̂qr)k −

∂
∂xd

α̂k +
d∑
s=1

∂
∂xs

(
(ρ̂qr)kus

)
− µq

d∑
s=1

(
∂ρ
∂xs

∂
∂xs

(q̂r)k + ρ ∂
2

∂x2
s

(q̂r)k
)

= (r̂3)k ,

for k = 0, . . . ,M. Here, the coe�cients {α̂k}Mk=0 are obtained using the following expansion:

vq(x, t, ω)(ρqr)(x, t, ω) =
M∑
j=0

(v̂q)j(x, t)Φj(ω)
M∑
m=0

(ρ̂qr)m(x, t)Φm(ω) =:
M∑
k=0

α̂k(x, t)Φk(ω).

The coe�cients {(r̂1)k , (r̂2)k , (r̂3)k}Mk=0, aswell as {α̂k}Mk=0 are calculated viadiscrete Legendre transform (DLT)
and inverse discrete Legendre transform (IDLT), which can be brie�y described as follows.

• DLT: First, the Galerkin projection applied to the expansion f (x, t, ω) = ∑M
k=0 f̂k(x, t)Φk(ω) yields

f̂k(x, t) = 2k + 1
2

1∫
−1

f (x, t, ω)Φk(ω) dω for 0 ≤ k ≤ M. (6.9)

Then, approximating the integral in (6.9) using the Gauss-Legendre quadrature leads to

DLT
[{
f (x, t, ω`)

}M
`=0

]
=
{
f̂k(x, t)

}M
k=0

=
{

2k + 1
2

M∑
l=0

β`f (x, t, ω`)Φk(ω`)
}M
k=0

,

where β` are the Gauss-Legendre quadrature weights and ω` is the `-th root of ΦM+1.

• IDLT: Given the coe�cients {f̂k}Mk=0, we compute the function f through the gPC expansion

IDLT
[{
f̂k(x, t)

}M
k=0

]
=
{
f (x, t, ω`)

}M
l=0 =

{ M∑
k=0

f̂k(x, t)Φk(ω`)
}M
`=0

.

Consequently, we obtain

{(r̂1)k}Mk=0 = DLT
[
R1
(
IDLT

[{
(ρ̂qv)k

}M
k=0

]
, IDLT

[{
(ρ̂qc)k

}M
k=0

]
, IDLT

[{
(ρ̂qr)k

}M
k=0

])]
,

and analogously for {(r̂2)k}Mk=0, {(r̂3)k}Mk=0 and {α̂k}Mk=0.
Remark 6.1. We stress that since the values Φk(ω`), 0 ≤ k, ` ≤ M, are needed every time either DLT or IDLT is
applied, one can pre-compute them for the code e�ciency.

For the spatial and temporal discretizations of the system (6.8), we apply the same �nite volume method as
described in Section 3.2 and the same large stability domain explicit time integration method mentioned in
Section 3.3. As in the deterministic case, we implement the ODE solver DUMKA3, which we provide with the
following time step stability restriction for the forward Euler method:

max
s=1,2

max
i=1,...,N

(|(us)i|, |(u3)i + vq(ωl)|)
∆tncloud
h < 0.5,

which should be satis�ed for all of the Legendre roots ω`, ` = 0, . . . ,M.
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7 Stochastic numerical experiments

In this section, we conduct numerical experiments with the stochastic Galerkin method described in Section
6 for the free convection of amoist warm air bubble and the Rayleigh-Bénard convection.We demonstrate the
in�uence of uncertainty in initial data as well as in cloud parameters on the solution of the coupled Navier-
Stokes-cloud model (2.8), (5.1). In all of our numerical examples below, we take M = 3. Our extensive tests,
from which we present here only a selected part, showed that this was su�cient. Indeed, as documented in
Example 6, high-order stochastic coe�cients typically have very small in�uence on a solution (see Figure 15),
and thus can be neglected. Similar behavior was observed in other experiments.

7.1 Free convection of a smooth warm air bubble

In this test, wemodify Example 1 by randomly perturbing either the initial data or selectedmodel parameters.

Example 4: 2-D case with stochastic initial data

We begin by considering the following experiment with a 10% perturbation of the initial water vapor con-
centration:

(q̂v)0(x, 0) = 0.02θ′(x, 0), (q̂v)1(x, 0) = 0.1(q̂v)0(x, 0), (q̂v)k(x, 0) = 0 for 2 ≤ k ≤ M,
(q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 0 ≤ k ≤ M.

We compute the solution using di�erent meshes until the �nal time t = 10s.

The experimental convergence study for the cloud and�owvariables is presented in Figure 12. Similarly to the
deterministic case, one can observe second-order convergence in space and time. In order to test the conver-
gence in the stochastic space, we obtain a reference solution computed by the stochastic Galerkin method
with 20 stochastic modes. The convergence study is presented in Figure 13, where we plot the di�erence
between the approximate and reference solutions, both computed using a mesh with 160 × 160 cells and
∆t = 0.01 at time t = 10s. One can clearly see a spectral convergence with the rate e−0.3M.

Figure 12: Example 4: Convergence study for the flow variables (left) and the expected values of (ρq`)k, ` ∈ {v, c, r} (right) in
space and time.
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Figure 13: Example 4: Convergence study for the cloud variables (ρq`), ` ∈ {v, c, r} in the stochastic space.

Example 5: 2-D case with stochastic parameters

In this experiment, we perturb the three selected model parameters (k1, k2 and α) by 50% each:

(k̂1)0 = 0.0041, (k̂1)1 = 0.5(k̂1)0, (k̂1)k = 0 for 2 ≤ k ≤ M,

(k̂2)0 = 0.8, (k̂2)1 = 0.5(k̂2)0, (k̂2)k = 0 for 2 ≤ k ≤ M,
α̂0 = 190.3, α̂1 = 0.5α̂0, α̂k = 0 for 2 ≤ k ≤ M.

These parameters were proposed in [35] as themost sensitivemodel parameters. We study the convergence in
the stochastic space. To this end, we plot in Figure 14 the di�erence between the approximate and reference
(obtained with 20 stochastic modes) solutions, both computed using a mesh with 160 × 160 cells and ∆t =
0.01 at time t = 10s. As in Example 4, one can observe a spectral convergence with the rate e−0.3M.

Figure 14: Example 5: Convergence study for the cloud variables (ρq`), ` ∈ {v, c, r} in the stochastic space.

Example 6: Comparison of the stochastic Galerkin and stochastic collocation methods in the 3-D case

In this comparison test, we consider free convection of amoist smoothwarm air bubble with perturbed initial
data as in Example 4. Numerical solutions are computed on 50 × 50 × 50 mesh at time t = 1s. We compare
the performance of the stochastic Galerkin and stochastic collocationmethods. The collocationmethod (see,
e.g., [9]) is an interpolationmethod in the stochastic space, which uses a deterministic model with the values
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of the stochastic variable taken at collocation points suitably chosen on the interval (−1, 1); here, we use the
Gauss-Legendre points.

In Figure 15, the L2-norms of the stochastic coe�cients of the stochastic Galerkin (‖(ρ̂q`)m‖L2(Ω)) and stochas-
tic collocation (‖(ρ̃q`)m‖L2(Ω)) methods for ` ∈ {v, c, r} and m = 0, . . . , 19 are shown. One can observe an
exponential decay with respect to m and good agreement between both methods that demonstrates the re-
liability of the stochastic Galerkin method. We note, however, that the norms of the solutions computed by
these two di�erent methods are not equal since the stochastic Galerkin method uses the expected values of
the cloud variables in the Navier-Stokes equations.

Figure 15: Example 6: L2(Ω)-norms of the stochastic coe�cients computed by the stochastic Galerkin ((ρ̂q`)m) and stochastic
collocation ((ρ̃q`)m) methods, ` ∈ {v, c, r}.

In Figure 16,we compare the CPU times consumedby the stochastic Galerkin and stochastic collocationmeth-
ods with the same number M of stochastic modes/collocation points. Since the stochastic Galerkin method
solves the Navier-Stokes equations just once instead of M times, as needed by the stochastic collocation
method does, it is expected to outperform the stochastic collocation method. This has been con�rmed by
our simulations.

Figure 16: Example 6: Relative CPU times consumed by the stochastic Galerkin and stochastic collocation methods.

7.2 Rayleigh-Bénard convection

In this section, we present results of uncertainty study for the Rayleigh-Bénard convection in both 2-D and
3-D.We investigate uncertainty propagation, which is triggered either by the initial data or cloud parameters.
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Example 7: 2-D case with stochastic initial data

In this experiment, we choose the same initial data for the �ow variables as in Section 4.2 and perturb the
initial data in qv by 5%, 10%, 20% and 50%:

(q̂v)0(x, 0) = 2 · 10−5 θ̄, (q̂v)1(x, 0) = ν(q̂v)0(x, 0), (q̂v)k = 0 for 2 ≤ k ≤ M,
(q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 0 ≤ k ≤ M,

(7.1)

where ν = 0.05, 0.1, 0.2 and 0.5, respectively. It should be observed that uniform perturbations in the ini-
tial conditions for qv may lead to either reduced or enhanced water vapor concentrations as compared to the
deterministic simulations. Since the temperature gradient is quite small, a change in qv translates to an (al-
most) linear change in saturation ratio, which directly controls cloud formation. Thus, in the case of positive
perturbations, a higher water vapor concentration leads to earlier cloud formation and, in addition, a higher
potential temperature change since more water is available in the system. On the other hand, lower values
of qv lead to a time delay in the formation of clouds, even if small convective cells are driven by the dry un-
stable situation. In a feedback cycle, a reduced or even delayed formation of cloud water propagates further
to a weaker rain formation. Finally, the evaporation of rain water leads to a strong cooling e�ect of the lower
layers of the domain, which also crucially depends on the amount of sedimenting rain water. These e�ects
have to be taken into account for the evaluation of the di�erent perturbation scenarios.

Numerical solutions for both the potential temperature θ (Figure 17) and the expected value of the clouddrops
concentration qc (Figure 18) are computed at time t = 1400s using 320 × 320 mesh cells and presented for
ν = 0, 0.05, 0.1, 0.2 and 0.5. For a better comparison, we have used the same range of values for di�erent
perturbations in all of the plots.

From the results shown in Figure 17 for the potential temperature θ, one can observe two major features that
increase in strength with increasing strength of perturbations. First, larger perturbations lead to more con-
cise �ne structures, that is, for the deterministic simulation (ν = 0), the variable is quite smooth, whereas for
large perturbations, large gradients on a very small scale appear. This feature can also be recognized for the
cloud water, that is, for the expected values E[qc] of cloud water concentrations in Figure 18. This is proba-
bly due to the fact that even small variations in water vapor have a strong impact on cloud formation, since
the activation of cloud droplet is basically a threshold process. For values closer to saturation, even small
variations in vertical upward motions can trigger cloud formation. Thus, the small scale variations are more
prominent in the massively perturbed scenarios. The second feature is even more striking. Increasing the
perturbation in the initial water vapor distribution leads to a stronger vertical gradient in potential tempera-
ture, that is, at low levels the temperature is much smaller than in the deterministic case. This feature is due
to cooling of sedimenting rain water. For simulations with a high water vapor loading, more cloud and thus
more rain is formed,which is subsequently falling down into lower levels and cools the environment by evap-
oration. Since this process is very e�ective, the temperature can be reduced drastically. Note that this feature
is well-known for the real atmosphere: Falling rain can cool lower levels e�ciently, so that a transition from
melting rain droplets to snow can be possible for winter seasons. The e�cient formation of rain also leads to
a strong reduction in cloud water, since accretion can eat up cloud droplets in the lower level; see Figure 18.
For reduced values of initial water vapor, processes of cloud and precipitation formation is strongly reduced.
However, on average the positive perturbations dominate the statistical picture.

In Figure 19, we plot the standard deviation of the cloud drops concentration. Here, we compute the standard
deviation for a function f (x, t, ω) = ∑M

k=0 f̂k(x, t)Φk(ω) as

σ(f (x, t, ω)) =

√√√√ M∑
k=1

1
2k + 1 f̂k(x, t)2, (7.2)

which follows from the orthogonal property (6.2).
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Figure 17: Example 7: Potential temperature θ for ν = 0, 0.05, 0.1, 0.2 and 0.5 (from top to down).
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Figure 18: Example 7: Cloud drops concentration qc for ν = 0, 0.05, 0.1, 0.2 and 0.5 (from top to down).
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Figure 19: Example 7: Standard deviation of the cloud drops concentration qc for ν = 0.05, 0.1, 0.2 and 0.5 (from top to down).

In order to investigate the in�uence of perturbations, the time evolution of the mean expected value per m2

as well as the mean standard deviation per m2 for the cloud variables are presented in Figure 20. In d-space
dimensions these quantities can be computed in the following way:

E

[
hd
|Ω|

N∑
i=1

(q`)i

]
= hd
|Ω|

N∑
i=1

E
[
(q`)i

]
= hd
|Ω|

N∑
i=1

̂((q`)i)0,

σ
(
hd
|Ω|

N∑
i=1

(q`)i

)
= hd
|Ω|

√√√√√ M∑
k=1

( N∑
i=1

̂((q`)i)k

)2
1

2k + 1 ,

where N is the number of mesh cells and ` ∈ {v, c, r}.
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Figure 20: Example 7: Time evolution of the expected values with their standard deviations for the cloud variables per m2

(shaded region, left column) and standard deviation (right column) for ν = 0.05, 0.1, 0.2 and 0.5 (from top to down).

These averaged quantities show the qualitative di�erence in the di�erent perturbation scenarios, as already
described above. For low perturbations, the di�erence of the expectation value is quite small and also the
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standard deviation remains small. For increasing perturbations, the spread is increased. As noted before, the
averaged quantities are dominated by the positive perturbations, leading to (i) earlier cloud formation, (ii)
thicker clouds due to more available water vapor, and (iii) to enhanced rain formation. These three features
canbe seen very nicely in the strongest perturbations (ν = 0.5), with a large drop inwater vapor concentration
accompanied by a strong increase in cloudwater and earlier onset of precipitation.Wewould also like to note
that the spread is only given by the standard deviation, whereas the actual minima (for instance, almost no
cloud formation) cannot be seen directly, although these scenarios are possible.

Example 8: 2-D case with stochastic parameters

In the following experiment we study uncertainty propagation due to incomplete information about the
model parameters which is a very typical problem arising in atmospheric science. We chose the same ini-
tial data for the �ow and cloud variables as in Section 4.2. More precisely, we take the following initial cloud
variables:

(q̂v)0(x, 0) = 0.02θ′(x, 0), (q̂v)k(x, 0) = (q̂c)k(x, 0) = (q̂r)k(x, 0) = 0 for 1 ≤ k ≤ M.

Consequently, in order to investigate uncertainty propagation in the numerical solutionwe choose 10%, 20%
and 50% perturbation of these coe�cients, namely, we take

(k̂1)0 = 0.0041, (k̂1)1 = ν(k̂1)0, (k̂1)k = 0 for 2 ≤ k ≤ M,

(k̂2)0 = 0.8, (k̂2)1 = ν(k̂2)0, (k̂2)k = 0 for 2 ≤ k ≤ M,
α̂0 = 190.3, α̂1 = να̂0, α̂k = 0 for 2 ≤ k ≤ M,

where ν = 0.1, 0.2 and 0.5, respectively. The numerical solution is computed at time t = 1400s on a 320 ×
320 mesh. Figures 21 and 22 present the potential temperature θ and the expected values of the cloud drops
concentration qc, respectively, for ν = 0, 0.1, 0.2 and 0.5.

In these scenarioswith perturbed cloudmodel parameters, the overall structures aremore stable and changes
are less pronounced than in Example 7. Nevertheless, themain features of the variations are obviously driven
by precipitation processes since the only perturbed parameters are those determining rain processes. Again,
one key feature of the perturbed scenarios is the signature of evaporating rain in lower levels of the 2-D do-
main. For positive perturbations, that is, larger parameters k1, k2 and α, rain formation is enhanced (more
rain is formed from cloud water, due to larger k1 and k2) and sedimentation is enhanced (more rain is falling
downwards due to larger α). Thus, more rain water is transported downwards into subsaturated regions,
which is then evaporated inducing cooling due to latent heat consumption. These positive variations again
dominate the potential temperature �eld; see Figure 21. For the cloud water �eld (Figure 22), one can observe
higher expected values for stronger perturbations. This is probably due to the fact that more rain is evapo-
rated in lower levels, thus more water vapor is then available for cloud formation in upward motions of the
convective cells. This redistribution of water vapor as well as the reduction of rain for negative perturbation
lead to larger variations of cloud water in the 2-D domain, as can be seen in the standard deviation for the
cloud drops concentration qc, as depicted in Figure 23.

The expected values as well as the standard deviation for the cloud variables vary considerably with respect
to the perturbation ofmodel parameters; see Figure 24. Our numerical experiments indicate that the standard
deviation increases in time and also depends on the size of the parameter perturbation. Indeed, the larger
the parameter perturbation, the higher is the standard deviation of the cloud variables. The size of the corre-
sponding standard deviations is depicted in the right column of Figure 24. As expected, rain formation sets
on earlier for large perturbations, leading also to a strong decrease in the overall water vapor in comparison
to less perturbed scenarios. However, the variations in all water variables increase a lot from the onset of
precipitation to later times, and even the spread in cloud water increases in contrast to the time evolution
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Figure 21: Example 8: Potential temperature θ for ν = 0, 0.1, 0.2 and 0.5 (from top to down).

in Example 7. Generally, the spread in the mean values is smaller than in Example 7; changes in initial data
produce a larger variation, that means the model physics is quite stable with respect to perturbations in rain
process formulations.

Example 9: 3-D case with stochastic initial data

Similarly to Example 7, we now investigate the uncertainty quanti�cation in the 3-D Rayleigh-Bénard convec-
tion for stochastically perturbed initial data of the cloud variables given by (7.1). The numerical solution is
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Figure 22: Example 8: Cloud drops concentration qc for ν = 0, 0.1, 0.2 and 0.5 (from top to down).

computed in a domain Ω = [0, 5000] × [0, 5000] × [0, 1000] m3, which is discretized using 50 × 50 × 50 mesh
cells. In Figure 25, we show the in�uence of 0%, 10%, 20% and 50% perturbation on the potential temper-
ature θ as well as the expected value of the cloud drop concentration qc. For the perturbation scenarios in
the case of the 3-D moist Rayleigh-Bénard convection, one can see overall a qualitatively similar picture as
for the corresponding 2-D simulations. However, due to an additional spatial direction, the 3-D structures can
further change their patterns. For positive perturbations, clouds can be formed even at low vertical upward
motions. The latent heat release increases the vertical motions in the convective cells, which leads to addi-
tional feedback, such as stronger cloud formation, which in turn leads to formation of larger amount of rain
water. As in the 2-D case, the potential temperature distribution changes considerably at lower levels of the
3-D domain since evaporative cooling of precipitation is a dominant process. Similarly, themean cloud water
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Figure 23: Example 8: Standard deviation of the cloud drops concentration qc for ν = 0.1, 0.2 and 0.5 (from top to down).

distribution is crucially changed. For positive perturbations, which are dominant on average in the begin-
ning, more cloud water is formed and is later removed. Thus, less cloud water is available in the domain at
later times. This can also be seen in the time evolution of spatially averaged variables, as shown in Figure 26,
where the time evolution of the mean expected value per m3 and the mean standard deviation per m3 of the
cloud variables are plotted. The time evolution of these variables is very similar to the 2-D case, but the 3-D
scenarios show a very interesting feature, which is not available in 2-D. For larger perturbations, the pattern
of the convective cells is changed. While convective cells have a quasi hexagonal shape for the determinis-
tic simulation, they are ordered in a di�erent way for larger perturbations. At upper levels, a more roll-like
structure or even rectangular shape is formed. Thus, there is a transition of structures due to perturbations
in the initial conditions. This feature has not been documented until now. A more detailed analysis of these
structures is left for future studies. The change in structures in these experiments is very likely a result from
di�erent initial conditions. Of course, our results are preliminary and the observed parameter dependences
and possible grid alignment e�ects of the solution structures deserve further attention in future work.
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Figure 24: Example 8: Time evolution of the expected values with their standard deviations for the cloud variables per m2

(shaded region, left column) and standard deviation (right column) for ν = 0.1, 0.2 and 0.5 (from top to down).
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Figure 25: Example 9: Potential temperature θ (left column) and cloud drops concentration qc (right column) using 0%, 10%,
20% and 50% (from top to down) perturbation of the initial data in qv.

Unauthenticated
Download Date | 11/23/19 4:57 PM



Stochastic Galerkin method for cloud simulation | 101

Figure 26: Example 9: Time evolution of the expected values with their standard deviations for the cloud variables per m3

(shaded region, left column) and standard deviation (right column) using 0%, 10%, 20% and 50% (from top to down) pertur-
bation of the initial data in qv.
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8 Conclusion

In the present paper, we have studied uncertainty propagation in an atmospheric model that combines the
Navier-Stokes equations for weakly compressible �uids (2.1) with the cloud equations (2.2). The latter has
been recently proposed in [35] and is based on the so-called single moment approach considering the evolu-
tion equations for themass concentrations of thewater vapor, cloud drops and rain. Our numerical strategy is
based on the stochastic Galerkin method that combines a �nite-volumemethod for space-time discretization
with a spectral approximation in the stochastic space. We point out that atmospheric �ows are weakly com-
pressible which leads to the low Mach number problem. One therefore needs to use a �nite-volume method,
which is accurate and e�cient in the low Mach number regime; see [5, 6]. To this end, we have chosen a
suitable linear-nonlinear splitting between the fast and slow �ow variables and the second-order IMEX dis-
cretization in time (the ARS (2,2,2) scheme) as described in Section 3. Coupling between the cloudmodel (2.2)
and the Navier-Stokes system (2.8) is realized numerically by the second-order Strang splitting. The cloud
equations are approximated in space by the �nite-volume method and in time using the explicit third-order
Runge-Kutta method with an enlarged stability region as explained in Section 3. Note that microscopic cloud
dynamics requires a smaller time step than the �ow dynamics and thus several microscopic cloud subiter-
ations are realized within one macroscopic splitting time step, whose size is dictated by the �ow dynamics.
To the best of our knowledge, this is the �rst contribution that combines an accurate and e�cient method
for the weakly compressible Navier-Stokes equations with the stochastic Galerkinmethod for the uncertainty
quanti�cation of time evolution of the mass densities of water vapor, cloud drops and rain.

We have conducted extensive numerical benchmarking for both the deterministic and stochastic models and
present the obtained numerical results in Sections 4 and 7. In the latter, we took into account the uncer-
tainties in both initial data and cloud model parameters. Our numerical study clearly demonstrates applica-
bility of the stochastic Galerkin method for the uncertainty quanti�cation in complex atmospheric models.
We have obtained interesting results illustrating the behavior of clouds in di�erent perturbed scenarios and
demonstrated that perturbations in the initial conditions can crucially change the time evolution of themoist
Rayleigh-Bénard convection. In particular, it has been shown that for larger perturbation, on average the pos-
itive perturbations dominate the expectation values, although the standard deviation can be quite large. The
main feature is a strong evaporative cooling in lower levels of the (2-D/3-D) domain due to enhance rain for-
mation and sedimentation into low humidity levels. In the 3-D case, a change in the formed pattern can be
seen, changing from hexagons to rolls/rectangles, which is quite surprising. For perturbations in parameters
for rain processes, the results are also dominated by the positive part of the perturbations. Since rain pro-
cesses are a�ected, the spread in the time evolution is increasing since the changes depend crucially on the
interaction of formed rain drops with other variables. Overall, it seems that for cloud physics, the expecta-
tion values are dominated by the positive perturbations leading to a change in the distributions. This is an
interesting topic for detailed studies in future. Our further goal is to extend the developed numerical method
to the fully random Navier-Stokes-cloud system by considering random weakly compressible Navier-Stokes
equations. We are also interested in considering di�erent random e�ects, such as initial data, boundary data
and model parameters simultaneously, which would require a multivariate stochastic Galerkin method. This
will allow one to quantify more precisely the propagation of small scale stochastic errors initiated at cloud
scales to macroscopic scales of �ow dynamics.
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A Appendix: Closure for single moment schemes

The number concentration of rain drops can be approximated by a function of the respectivemass concentra-
tion nr = f (qr , cr). Since we implicitly assume that rain drops are distributed according to a size distribution,
this approach should be used formimicking the shape of the distribution in a proper way. If we use a constant
mean mass of rain drops, the function will be a simple linear relation nr = 1

mr
qr. We extend this approach

and propose the following nonlinear relation:

nr = cr · qγr , 0 < γ ≤ 1.

Using this approach, one can replace the quantity nr in the processes related to rain drop number concentra-
tion. For the simple case of a constant meanmassmr, we can determine the constants as cr = m−1

r and γ = 1.
This approach would be meaningful for the case of a symmetric size distribution of rain droplets centered
around the mean mass. However, it is well-known that size distributions of rain are usually skew to larger
sizes and thus a linear relation is inappropriate. For sizes of rain drops, an exponential distribution is often
assumed (see [26]), namely:

f (r) = Bre−λr

with a constant parameter Br = 2 ·107 m−4 and the drop radius r. Using the general moments of the distribu-
tion,

µk[r] = Γ(k + 1)
λk+1 Br

with the gamma function Γ(x) :=
∫∞

0 tx−1 exp(−t) dt, we obtain

ρnr = µ0[r] = Br
λ and ρqr = 4

3πρ`
Γ(4)
λ4 Br .

Using these relations, one can derive the following function for the number concentration nr:

nr = B
3
4
r ρ−

3
4 (8πρ`)−

1
4︸ ︷︷ ︸

=cr

q
1
4
r = crqγr , γ = 1

4 .

We stress that cr is, in fact, a function of the air density ρ, that is, cr = cr0 · ρ−
3
4 .

B Appendix: Explicit formulation of the cloud equations

We present the equations of microphysical processes in an explicit way as they are used in our numerical
experiments. In Tables 3 and 4, we present physical constants and model parameters with their values used
in our numerical simulations.
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nc = qc 8 · 108

qc + 4.1888 · 10−7 coth
( qc

5.236 · 10−13

)
, Cact = 6.2832 · 10−3DvGρ (qv − q*)+ ,

C1 = 0.7796DvG (qv − q*)
(

8 · 108

qc + 4.1888 · 10−7 coth
( qc

5.236 · 10−13

)) 2
3

ρqc ,

ps(T) = exp
{

54.842763 − 6763.22/T − 4.21 ln T + 0.000367T + tanh(0.0415(T − 218.8))

· (53.878 − 1331.22/T − 9.44523 ln T + 0.014025T)
}
,

nr = 23752.6753ρ− 3
4 q

1
4
r , r =

(
1.21 · 10−5

qr + 0.2874ρ− 3
4 q

1
4
r

) 4
15

,

E = −0.7796DvG (q* − qv)+

(
644.5198√ρqr + 17.5904µ− 1

6 D−
1
3

v
√
αrρ

13
24 q

91
120
r

)
,

A1 = 10−3k1ρq2
c , A2 = 0.3846αk2ρ

1
4 qcrq

61
60
r , vq = 1.1068αq

4
15
r rρ−

1
2 .

Table 3: Physical constants and reference quantities, [35].

Constant Description
p* = 101 325 Pa reference pressure
T* = 288 K reference temperature
T0 = 273.15 K melting temperature
ρ* = 1.225 kg m−3 reference air density
ρl = 1000 kg m−3 density of liquid water
Rv = 461.52 J kg−1 K−1 speci�c gas constant, water vapor
cp = 1005 J kg−1 K−1 speci�c heat capacity, dry air
g = 9.81 m s−2 acceleration due to gravity
L = 2.53 × 106 J kg−1 latent heat of vaporization
ε = Mmol,v

Mmol,a
= 0.622 ratio of molar masses of water and dry air

D0 = 2.11 × 10−5 m2 s−1 di�usivity constant

Table 4:Model parameters, [35].

Parameter Description
α = 190.3 ± 0.5 · 190.3 m s−1 kg−β parameter for terminal velocity
k1 = 0.0041 ± 0.5 · 0.0041 kg s−1 parameter for autoconversion
k2 = 0.8 ± 0.5 · 0.8 kg parameter for accretion
β = 4

15 parameter for terminal velocity
mt = 1.21 × 10−5 kg parameter for terminal velocity
N0 = 1000 m−3 parameter for activation
N∞ = 8 × 108 kg−1 parameter for activation
m0 = 5.236 × 10−16 kg parameter for activation
aE = 0.78 parameter for evaporation
av = 0.78 parameter for ventilation
bv = 0.308 parameter for ventilation
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