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Nickel aluminide (Ni3Al) is an important material for a number of applications, especially when used as a
strengthening constituent in high-temperature Ni-based superalloys. Despite this, there is minimal information
on its mechanical properties such as strength, plasticity, creep, fatigue, and fracture. In the present work, a
first-principles based pure alias shear deformation has been applied to shed light on dislocation characteristics
in Ni3Al using the predicted stacking fault energy (i.e., the γ surface) and ideal shear strength (τIS). Results
include direct evidence for the splitting of a 1/2[1̄10] dislocation into two Shockley partials on the {111} plane,
which is further supported by the equivalence of the complex stacking fault (CSF) energy γCSF and the antiphase
boundary (APB) energy γAPB111. Estimates of the Peierls stresses using τIS and elastic properties suggest the
prevalence of edge dislocations in Ni and screw dislocations in Ni3Al, agreeing with experimental observations
regarding the dominance of edge dislocations in the first stage of crystal deformation in fcc metals and the
yield-strength anomaly related to screw dislocations in Ni3Al. The present calculations further point out that
the CSF and APB111 are easily formed by shear due to the low-energy barriers, although the lowest planar
energies are for the superlattice intrinsic stacking fault and the APB001. Through the case of Ni3Al, the present
work demonstrates that the pure alias shear methodology is not only computationally efficient but also provides
valuable insight into the nature of shear-related properties.
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I. INTRODUCTION

Shear deformation and associated properties such as stack-
ing fault energy, γ , ideal (or theoretical) shear strength, τIS,
and critical resolved shear stress (CRSS), τCRSS, are funda-
mental for understanding and modeling a vast number of
materials properties and phenomena related to dislocations,
plastic deformation, crystal growth, and phase transitions
[1,2]. One example is the rise of yield strength with temper-
ature, known as a yield-strength anomaly (YSA), that occurs
in the presently studied Ni3Al and other materials with the
L12 structure [3,4]. It is generally agreed that the YSA occurs
primarily due to thermally activated cross slip of screw dislo-
cations from the {111} primary glide plane to the {001} cross-
slip plane [5,6], where they remain locked in Kear-Wilsdorf
(KW) configurations [7]. The occurrence of the YSA can be
understood using energies in the γ surface of Ni3Al—i.e., the
energetic landscape of the generalized stacking fault energy
[1]—including the antiphase boundary energy (γAPB111), the
complex stacking fault energy (γCSF), and the superlattice
intrinsic stacking fault energy (γSISF) on the {111} slip plane,
as well as the γAPB001 on the {001} cross-slip plane [3]. It is
believed that the R value,

R = γAPB111/γAPB001, (1)

determines the driving force of cross slip to form KW locks
[8], and the condition R >

√
3 indicates favorability of the

*Corresponding author: sus26@psu.edu

KW locks according to the Paidar-Pope-Vitek model [9]. In
addition to the value of γAPB, a low value of γCSF reduces
thermal activation necessary for the formation of KW locks
[3]. Besides providing an understanding for the YSA, energies
in the γ surface can also be used to predict solid-solution
strengthening and thermal cross-slip stress as shown for Mg
alloys [10,11]; to explore twinnability as demonstrated for fcc
and hcp metals [1,12]; and to study dislocation nucleation at
a crack tip via the value of

√
γUS (where γUS is the unstable

stacking fault energy) according to the Rice criterion [13].
The ideal shear strength τIS is also fundamental to material

behavior [1]. The value of τIS sets an upper bound on the
attainable stress [14] related to such topics as (i) the minimum
stress needed to plastically deform a perfect single crystal, (ii)
the formation of a stacking fault, and (iii) materials strength
and the extent of dislocation cores in a particular material
[1,15]. Notably, τIS is a key parameter to estimate the Peierls
stress—the force required to move an individual dislocation.
The Peierls stress, τP, is approximately equal to τCRSS at 0 K
[16]. For the case of a wide dislocation and according to Joós
and Duesbery [17],

τP = Kb

a
exp(−2πζ/a), (2)

where b is the Burgers vector, a the row spacing of atoms
within the slip plane, K an elastic factor, and ζ the half-width
of the dislocation with ζ = Kb

4πτIS
. For an isotropic crystal,

Kiso = μ
(

sin2θ
1−ν

+ cos2θ
)

with μ being shear modulus, ν being
Poisson’s ratio, and θ the angle between the dislocation line
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TABLE I. Calculated (Calc.) properties in Ni3Al related to alias shear deformation in comparison with data in the literature (Expt., results
at room temperature) including the stable and unstable stacking fault energies in mJ/m2 (γS and γUS, respectively), the ideal shear strength τIS

in GPa, and the corresponding engineering strains ε [see its definition in Eq. (5)].

Shear εS γS εUS γUS εIS τIS Notes and references

(111)[112] 0.20 203 0.13 229 0.12 3.7 Calc., this work, pure shear
CSF 0.20 212 0.14 254 0.10 5.1 Calc., this work, simple shear, relaxed

0.20 252 0.14 284 0.07 2.2 Calc., this work, simple shear, unrelaxed
205a 254 Calc., DFT, slab model [31]
225 Calc., DFT [22]
223 Calc., DFT+Peierls model [5]
120 ∼ 218 Calc., several EAM simulations [46]
235 ± 40 Expt., weak-beam TEM images [3]
206 ± 30 Expt., for alloy Ni76Al24 [3]

(111)[112] 0.47 72 0.23 1308 0.22 15.2 Calc., this work, pure shear
SISF 0.47 92 0.24 2273 0.14 9.4 Calc., this work, simple shear, unrelaxed

75a 1368 Calc., DFT, slab model [31]
80 Calc., DFT [22]

0.32 13.7 Calc., DFT, not pure shear [32]
79 Calc., DFT+Peierls model [5]
13 ∼ 51 Calc., several EAM simulations [46]
6 ± 0.5 Expt., weak-beam TEM images [3]
10 ∼ 276 Expt., from several resources [43]

(111)[110] 0.16 205 0.119 230 0.12 4.2 Calc., this work, pure shear
APB111 0.41 215 0.272 582 0.12 7.6 Calc., this work, simple shear, relaxed

0.41 314 0.214 1080 0.10 4.8 Calc., this work, simple shear, unrelaxed
180a 778 Calc., DFT, slab model [31]
178 Calc., DFT results at 100 K [33]
210 Calc., DFT [22]

0.18 5.8 Calc., DFT, not pure shear [32]
172 Calc., DFT+Peierls model [5]
142 ∼ 252 Calc., several EAM simulations [46]
175 ± 15 Expt., weak-beam TEM images [3]
180 ± 20 Expt., for alloy Ni76Al24 [3]
206 ± 22 Expt. [3]

4.15 Expt. for dislocation-free Ni3Al [49]

(001)[110] 0.37 64 0.17 1152 0.16 14.8 Calc., this work, pure shear
APB001 0.35 110 0.18 1200 0.15 14.8 Calc., this work, simple shear, relaxed

0.35 119 0.19 2084 0.10 7.9 Calc., this work, simple shear, unrelaxed
121 Calc., DFT+Peierls model [47]
73 Calc., DFT results at 100 K [33]
74 ∼ 102 Calc., several EAM simulations [46]
104 ± 15 Expt., weak-beam TEM images [3]

Unspecified 13.5 Expt., nanoindentation [44]
∼8 Expt., nanoindentation [28,45]

18.8 Expt. plus Calc. (MD simulations) [46]

aEstimated values based on the published figures [31].

and its Burgers vector with 0◦ for screw dislocations and 90◦
for edge dislocations. The Peierls stress, τP, is hence essen-
tially proportional to τIS based on Eq. (2). Furthermore, these
stresses (τIS, τP, and/or τCRSS) are key inputs for continuum
models such as finite-element and phase-field simulations to
predict plastic deformation and recrystallization [18,19].

Determining stacking fault energy, γ , and ideal shear
strength, τIS, from experiments is not a trivial task. Weak-
beam transmission electron microscopy (TEM) images can
be used to calculate γ values [3], and τIS values may be
determined from well-controlled nanoindentation tests [20].
Relevant to the present Ni3Al system, the measured γ values

using weak-beam TEM by Karnthaler et al. [3] are widely
accepted (see the values in Table I). Karnthaler et al. [3]
showed that the value of γAPB111 (175 ± 15 mJ/m2) is in
general lower than that of γCSF (235 ± 40 mJ/m2). Based on
the relationship between the γ values and the splitting of
dislocations in fcc metals (e.g., Al, Cu, and Ni [15,21]), the
inequivalent values of γAPB111 and γCSF by Karnthaler et al.
[3] make it difficult to understand the splitting of 1/2[1̄10]
dislocation into two Shockley partials on the {111} plane [22],

1
2 [1̄10] → 1

6 [2̄11] +CSF + 1
6 [1̄21̄]. (3)
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Note that direct observations of dislocation core splitting from
first-principles based calculations can be made through the
present pure alias shear deformation methodology as shown in
Al and Cu [21], Ni [15], and Ni3Al (this work). Additionally,
core splitting can be observed using the lattice Green’s func-
tion approach to explore equilibrium dislocation geometries
and associated strength and ductility as demonstrated in Al
[23,24], Fe [25], W [26], and Mg-Y alloy [27].

Regarding the ideal shear strength, τIS, it is generally
believed that the τIS value of Ni3Al (around 8 GPa) is roughly
equal to that of Ni according to nanoindentation experiments
[28]. This τIS value is in good agreement with the commonly
accepted approximation that τIS is on the order of μ/10
(shear modulus μ = 76 GPa for Ni3Al based on the measured
elastic constants [29] and the Hill approach [30]). However,
the predicted Peierls stress τP of Ni3Al using τIS = 8 GPa
and Eq. (2) is at least one order of magnitude higher than
experimental τCRSS values (see details in Sec. III B).

Unlike large uncertainties in estimating γ and τIS values
from experiments, theoretical calculations are expected to
simulate accurately shear deformation and associated proper-
ties. Existing calculations in Ni3Al usually use the slab model
(with vacuum) to estimate planar fault energies [31] and the
non-pure shear deformation for stress [32]. The slab model
results in smooth yet less insightful strain versus energy (or
stress) curves [31,32] due to the deformation of atoms instead
of lattice vectors during shear. This makes full relaxations
(except for the one fixed angle required in pure shear deforma-
tion) difficult; see details about relaxations below. Predicted γ

and τIS values from a slab model with insufficient relaxations
(for example, γCSF = 205 mJ/m2 and γAPB111 = 180 mJ/m2

[33], and τIS = 5.8 GPa for {111}〈110〉 shear [32]; see details
in Table I) hence cannot provide more valuable insight into
dislocation characteristics of Ni3Al than the aforementioned
experimental values.

It is worth mentioning that first-principles calculations
based on density-functional theory (DFT) are usually per-
formed at 0 K, but the predicted results are comparable to
experimental data measured at room temperature (298 K) for
many properties. For example, DFT calculations of enthalpy
of formation (	H) for metal sulfides indicate that the differ-
ence of 	H is negligible (<0.2 kJ/mol) between 0 K and room
temperature [34]. Additionally, DFT calculations using the
quasiharmonic approach show that the predicted bulk moduli
of Ni and Ni3Al decrease about 9 GPa (5%) from 0 K to room
temperature [35], and the DFT-based quasistatic approach
indicates that ideal shear strength of Ni decreases about 0.1
GPa (only 2%) [15]. Furthermore, Eq. (2) shows that Peierls
stress, τP, increases with increasing ideal shear strength, τIS,
but decreases with increasing elastic properties, implying
the net change of τP value from 0 K to room temperature
will be smaller than either individual effect. In the present
work, all DFT calculations were performed at 0 K while all
experimental data were gathered at room temperature.

Considering the significance of shear deformation and
associated properties in Ni3Al and the lack of detailed insights
available in the literature, the present work aims to perform
first-principles calculations of pure alias shear deformation,
using the underlying science to unveil the relationship among
stacking fault energy, ideal shear strength, and dislocation

FIG. 1. Schematic diagrams of alias shear with atoms in one
plane involved during the initial stage of shear (i.e., the number
of involved atomic planes n = 1, shown as one unshaded area)
and affine shear with atoms in all planes involved during the shear
(n = ∞; all areas are unshaded), together with the 24-atom or-
thorhombic supercell of Ni3Al with its lattice vectors parallel to the
[112̄], [1̄10], and [111] directions of the conventional L12 lattice.

characteristics in Ni3Al. Unlike partial relaxations of the
supercell used widely in the literature (such as in the slab
model [31]), here, the pure shear deformation indicates that all
relaxations, including cell shape, cell volume, and atomic po-
sitions, are allowed except for the fixed shear angle. Further-
more, in alias shear, only one atomic plane is involved in shear
deformation while the other atoms initially remain in their
original positions. The displacement then propagates through
the supercell due to the interaction between the atoms during
the shear processes [1,15,21]; see the schematic in Fig. 1 for
the case of n = 1. In comparison to affine shear (where n = ∞
in Fig. 1), pure alias shear represents a deformation closer to
actual shear processes [21], and generates both the γ surface
and the ideal shear strength.

More insights can hence be gained, as shown in the present
study of Ni3Al where findings include (i) the direct observa-
tion of dislocation decomposition according to Eq. (3); (ii) the
equivalent γAPB111 and γCSF; and (iii) the prevalence of screw
dislocations in Ni3Al based on the predicted τP using Eq. (2).

II. METHODOLOGY

A. Alias shear deformation of Ni3Al

As schematically shown in Fig. 1, the alias shear with
one sliding layer (n = 1), which is closer to the actual shear
situations, was adopted in the present work to study Ni3Al
with L12 structure. By considering the dominant slip systems
of {001}〈110〉 and {111}〈110〉 in Ni3Al [36] as well as the
splitting of 1/2[1̄10] dislocation shown in Eq. (3), two super-
cells were built for the facility of first-principles calculations,
namely, (i) a 16-atom tetragonal supercell with lattice vectors
atet, btet, and ctet of respective lengths

√
2a0,

√
2a0, and 2a0

(where a0 is the lattice parameter of the L12 lattice) parallel
to the [11̄0], [110], and [001] directions of the conventional
L12 lattice; and (ii) a 24-atom orthorhombic supercell with
lattice vectors aorth, borth, and corth of respective lengths√

6a0,
√

2a0, and
√

3a0 parallel to the [112̄], [1̄10], and [111]
directions; see the orthorhombic supercell in Fig. 1. It is worth
mentioning that the alias shear deformation of {001}〈110〉
generates the APB001 fault; the alias shear deformation of
{111}〈112̄〉 along the easy and hard directions generates the
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planar faults of CSF and SISF, respectively [14]; and the alias
shear deformation of {111}〈1̄10〉 generates the APB111 fault.

After alias shear of the tetragonal or the orthorhombic su-
percell, the deformed lattice vector matrix R̄ can be expressed
by [1,15]

R̄ = RD, (4)

where R is the undeformed lattice vector matrix, and D
the deformation matrix. For example, the D matrices for
the {111}〈112̄〉 and {111}〈1̄10〉 shears of the aforementioned
orthorhombic supercell are as follows:

D〈112̄〉 =
⎡
⎣1 0 0

0 1 0
ε 0 1

⎤
⎦ and D〈1̄10〉 =

⎡
⎣1 0 0

0 1 0
0 ε 1

⎤
⎦, (5)

where ε is the shear magnitude corresponding to the engi-
neering shear strain, i.e., the ratio of shear displacement with
respect to the height of the supercell [1,15]. In the present
practice of first-principles calculations, Cartesian coordinates
for the initial atomic positions were employed for the facility
of alias shear deformation [1,15,21]. Pure shear deformations,
including relaxations of atomic positions, cell shape, and cell
volume except for the fixed shear angle, were performed by an
external PYTHON optimizer GADGET developed by Bučko et al.
[37] to control first-principles calculations of both stresses
and forces acting on each atom. Note that the alias shear
deformation employs only half atoms (and no vacuum layers)
in the supercell in contrast to the slab model, making alias
shear more computationally efficient to study shear-related
properties.

B. First-principles calculations

All first-principles calculations in the present work were
performed by the Vienna Ab initio Simulation Package (VASP)
[38] together with the ion-electron interaction described by
the projector augmented wave method [39]. The exchange-
correction functional was depicted by the generalized gradient
approximation [40], the same potential as our previous first-
principles calculations for Ni-based alloys [2,15,41]. The core
configurations recommended by VASP were adopted in the
present work, i.e., [Ne] for Al and [Ar] for Ni. During VASP

calculations, the k-point meshes of 4×7×6 were used for
the 24-atom orthorhombic supercell (or 8×8×6 for the 16-
atom tetragonal supercell) and a cutoff energy of 270 eV was
employed for the plane-wave basis set according to our trial
calculations. The energy convergence criterion of electronic
self-consistency was selected as 10−5 eV per supercell for
all calculations. The reciprocal-space energy integration was
performed by the Methfessel-Paxton [42] technique with a
0.2 eV smearing width, which results in accurate total energies
as well as stresses. Concerning pure shear deformation, all
relaxed stress components except for the one corresponding
to the fixed shear angle were less than 0.15 GPa, and the
forces acting on atoms were less than 0.03 eV/Å. Besides
the present focus of pure alias shear, two more ancillary shear
deformations were also employed for comparison: the simple
alias shear without relaxations of the supercell (represented by
“simple” for short) and the simple alias shear with relaxations
of atomic positions only (represented by “simple+RX” for

short). In addition, spin polarization was considered in all
DFT calculations due to the magnetic nature of Ni.

III. RESULTS AND DISCUSSION

A. Shear-related properties in Ni3Al

Figures 2 and 3 illustrate the variations of planar fault
energy γ , shear stress τ , and spin magnetic moment of
Ni3Al during the alias shear deformations of {111}〈112̄〉,
{111}〈1̄10〉, and {001}〈110〉. These two figures show that
only the simple shear gives smooth energy and stress curves
while the relaxations (pure shear or simple+RX) lead to
sudden changes of energy around the unstable shear positions,
corresponding to the zero stress and the unstable stacking
fault energy (γUS). Furthermore, the maximum stress gives
the ideal shear strength τIS and the local minimum in en-
ergy curve gives the stable stacking fault energy (γS). The
present γS, γUS, and τIS values as well as the corresponding
engineering strains shown in Figs. 2 and 3 are also listed
in Table I. In general, the present predictions are in good
agreement with experimental estimations [3,28,43–46] and
other DFT and embedded-atom method (EAM) calculations
[5,22,31–33,46,47]; see details in Table I. For example, the
present γCSF values (203 mJ/m2 from pure shear and even
212 and 252 mJ/m2 from simple shears) agree well with the
previous calculations (120 ∼ 225 mJ/m2) [5,22,31,46] and
experiments (206 ∼ 235 mJ/m2) [3] with large uncertainties.
Among the γS and γUS values related to CSF, SISF, APB111,
and APB001 (cf. Table I), it is found that the lower γS

values relate to the formation of SISF (72 mJ/m2 from pure
shear) and APB001 (64 mJ/m2 from pure shear), match-
ing reasonably well the previous simulations (γSISF = 13 ∼
80 mJ/m2 and γAPB001 = 73 ∼ 121 mJ/m2) and experiments
(γSISF = 6 ∼ 276 mJ/m2 and γAPB001 = 104 mJ/m2). Despite
the lower γSISF and γAPB001 values, shear deformations to form
SISF and APB001 are difficult due to the large energy barriers,
e.g., γUS > 1000 mJ/m2 based on pure shear deformation.

It is interesting to find that the stable (as well as the
unstable) stacking fault energies related to the formation of
CSF and APB111 from pure alias shear are almost identical,
which is contrary to the experimental results by Karnthaler
et al. [3], viz., γCSF ≈ γAPB111 (203 ∼ 205 mJ/m2) and the
γUS values ∼230 mJ/m2 for both faults (cf. Table I), providing
indirect evidence about the splitting of 1/2[1̄10] dislocation in
terms of Eq. (3) (see more discussion in Sec. III B). The lower
γUS value (∼230 mJ/m2 to form CSF and APB111 compared
to γUS > 1000 mJ/m2 to form SISF and APB001) indicates
that both CSF and APB111 are easy to be formed by shear.

The ideal shear strength τIS is in general proportional to
the unstable stacking fault energy γUS (see Table I, Figs. 2,
and 3), indicating the degree of difficulty to form a planar
fault by shear in the present work. It should be mentioned
that the τIS value is inversely proportional to the number of
layers in the supercell [48]. Considering the limited layers
(such as one layer) involved in actual shear deformation,
the minimum of three {111} layers is employed for both the
tetragonal and orthorhombic supercells of the L12 lattice in
the present work, corresponding to the highest τIS value to be
obtained for a given shear deformation [48]. It is seen that the
lowest τIS value in Ni3Al (3.7 GPa by pure shear) is related
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FIG. 2. Variations of (a) relative energy, i.e., the γ surface, (b) shear stress, τ , and (c) magnetic moment of Ni3Al in terms of {111}〈112̄〉
alias shear using different shear schemes, including pure shear and simple shears with and without relaxations, where a0 is the lattice parameter
of the L12 lattice.

to the formation of CSF, followed by τIS = 4.2 GPa to form
APB111. However, the τIS values are quite high (∼15 GPa)
to form SISF and APB001, agreeing with the higher γUS

values to form these faults. The present τIS values (3.7, 4.2,
14.8, and 15.2 GPa from different pure shear deformations)
are in good agreement with the estimates from compressive
strength of dislocation-free nanocube (4.15 GPa) [49], nanoin-
dentation experiments (∼8 and 13.5 GPa) [28,44,45], and
molecular-dynamic simulations (16.5 ∼ 18.8 GPa) [46]; see
details in Table I. Especially the present τIS value (4.2 GPa
from {111}〈1̄10〉 pure shear) agrees well with the estimated
resolved shear stress of 4.15 GPa according to the measured
compressive strength by assuming a {111}〈110〉 slip [49]. It is
worth mentioning that the lowest τIS value of Ni3Al (3.7 GPa
in the present work) is lower than that of pure Ni (5.1 GPa
based on pure shear deformation [15]) due to the soft nature
of Al compared to Ni (e.g., bulk moduli 74 vs 196 GPa based
on DFT calculations [50]).

The degree of difficulty regarding shear deformation can
be qualitatively understood via the distribution of differential

charge density, 	ρ [1,2,41,51,52]. The 	ρ is defined as
the charge-density difference with respect to the reference
(or noninteracting) charge density, which is determined by
DFT calculations of one electronic step in the present work
[1]. Based on density-functional theory, the denser the 	ρ

values, the stronger the bonding between atoms. Therefore,
the anisotropic 	ρ corresponds to anisotropic properties such
as elasticity in fcc Al [52], and the nonspherical distribution of
	ρ hinders shear deformation due to the difficulty of charge
redistribution, resulting in higher stacking fault energies and
ideal shear strengths. As an example, Fig. 4 shows the 	ρ

contour maps of Ni3Al during the simple alias shear along
{111}〈112̄〉. The 	ρ around each Ni displays a cube-shaped
distribution, implying the difficulty of shear deformation.
During shear deformation from Figs. 4(a) to 4(d), the Ni-
3 atom, for instance, approaches Ni-4, resulting in the re-
distribution of 	ρ and an increasing stacking fault energy
and shear stress. The shear position in Fig. 4(d) roughly
corresponds to the maximum (unstable) stacking fault energy
γUS.
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Furthermore, the magnetic moment of Ni3Al is relatively
small (<0.17 μB/atom); see Figs. 2(c) and 3(c). In general,
the magnetic moment of Ni3Al decreases with increasing
shear displacement and appears scattered as a function of

applied strain due mainly to the sudden change of stress
and energy (as well as volume, not shown here) near the
regions of ideal shear strength and unstable stacking fault
energy. Figures 2(c) and 3(c) show that the magnetic moments

FIG. 4. Contour maps of differential charge density (	ρ, in unit of e/Å3) during the {111}〈112̄〉 simple alias shear of Ni3Al from the initial
configuration (a) to the configuration (d) with the highest shear stress.
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FIG. 5. Movement of an Al atom located at the Al-1 position of
the {111} plane (layer-1) adjacent to the stacking fault plane during
the pure alias shear deformations of {111}〈1̄10〉 (from the Al-1 to
Ni-1 position) and {111}〈112̄〉 (from the Al-1 to Ni-3 position). The
numbers 1, 2, and 3 indicate three {111} layers of Ni3Al.

of Ni3Al are close to zero (<0.04 μB/atom) in most shear
positions, especially for the cases with relaxations (pure shear
and simple+RX). Note that the near-zero magnetic moment
has negligible influence on the resulting total energy and
stress, and hence the scattered magnetic moments are not
further examined with respect to such potential factors as
k-point mesh density, which was found to be significant in
the cases of LaNi5 and LaNi5H7 [53].

B. Applications of shear-related properties and dislocation
characteristics in Ni3Al

As an example, Fig. 5 shows the movement of one Al
atom (see Al in the original Al-1 position) on the stacking
fault plane (here the number 1 after Al or Ni indicates the
stacking fault plane, 2 and 3 indicate the other planes) during
(a) the pure alias shear of {111}〈112̄〉 to generate the CSF (see
the black � symbols to the Ni-1 position) and (b) the pure
alias shear along {111}〈1̄10〉 to generate the APB111 (see the
green # symbols to the Ni-3 position). It can be seen that the
movement of Al during the pure alias shear of {111}〈112̄〉 is
almost along the straight line from Al-1 to Ni-3. However, the
movement of Al during the pure alias shear of {111}〈1̄10〉 is
along two {111}〈112̄〉 directions from Al-1 to Ni-2 and then to
Ni-1, i.e., the movement of Al shows directly the splitting of
a 1/2[1̄10] dislocation into two Shockley partials on the {111}
plane as indicated by Eq. (3). Note that the other atoms in the
stacking fault plane show almost the same behaviors as that of
Al in the Al-1 position.

To further examine the splitting of the 1/2[1̄10] disloca-
tion, Fig. 6 shows the variations of lattice parameters and
angles between them during the pure alias shear of {111}〈1̄10〉
in the orthorhombic supercell (see Fig. 1). In the initial
stage of shear up to the engineering shear strain of 0.11, the
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FIG. 6. Variations of lattice parameters (a), (b), and (c) and their
angles (α, β, and γ ) during the pure alias shear deformation of
{111}〈1̄10〉 for the orthorhombic supercell of Ni3Al; see Fig. 1.

lattice parameters and angles change smoothly (see Fig. 3).
Around an engineering shear strain of 0.11, sudden changes
in the lattice parameters occur due to reaching the ideal shear
strength and unstable stacking fault energy (see Fig. 3) which
also coincides with a direction change in atomic movements
(see Fig. 5). The sudden fluctuations of lattice parameters and
angles signal dislocation splitting and the appearances of γUS

and τIS during pure alias shear deformation.
The predicted τIS value can be used to estimate Peierls

stress τP according to Eq. (2). In contrast to the elastic factor
Kiso for an isotropic crystal as in Eq. (2), the elastic factor K
of an anisotropic crystal is direction dependent. For an edge
dislocation aligned with the z direction with a Burgers vector
b = (bx, by, 0), the Kex along the x direction is given by [54]

Kex = (c̄′
11 + c′

12)

[
c′

66(c̄′
11 − c′

12)

(c̄′
11 + c′

12 + 2c′
66)c′

22

]1/2

, (6)

where c̄′
11 = (c′

11c′
22)1/2, and the c′

i j represents the trans-
formed elastic constants onto the slip system of interest. In the
present orthorhombic supercell shown in Fig. 1, for example,
the transformed lattice vectors are parallel to the [112̄], [1̄10],
and [111] directions. Note that for the present Ni3Al cell
shown in Fig. 1, Kex = Key (= Ke) for edge dislocations along
both the x- and y directions. In addition, the elastic factor
Ks for screw dislocations of an anisotropic crystal can be
expressed as [54]

Ks = (
c′

44c
′
55 − c

′2
45

)1/2
. (7)

By means of Eq. (2) [as well as Eqs. (6) and (7)] with input
of the minimum τIS = 3.7 GPa for Ni3Al (cf. Table I) and the
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TABLE II. Calculated Peierls stresses (τP, MPa) at 0 K for four cases of edge (e) and screw (s) dislocations using elastic factors for isotropic
(iso) and anisotropic (aniso) crystals in comparison with experimental CRSS values (τCRSS, MPa) at room temperature for both Ni3Al and Ni.

Material τP (iso-e) τP (iso-s) τP (aniso-e) τP (aniso-s) Experimental τCRSS

Ni3Ala 0.7b 14.2b 0.4b 75.0b 27 ± 5,e 75 ± 20,f 40–90g

3.0c 38.6c 1.8c 161.8c

1088d 0.4d

Nia 19.2b 168.7b 14.4b 374.5b 5.7,h 5.9 ∼ 8.3,i 9.9,j 10.2,k 17.5l

49.7c 327.5c 38.5c 651.0c

aElastic constants (cij) and lattice parameters a0 to predict τP by Eq. (2) were taken from our previous DFT calculations, i.e., c11 = 242 GPa,
c12 = 152 GPa, c44 = 125 GPa, and a0 = 3.57 Å for Ni3Al [55]; and c11 = 273 GPa, c12 = 160 GPa, c44 = 114 GPa, and a0 = 3.52 for Ni
[48].
bThe lowest τIS values of {111}〈112̄〉 slip were used to predict τP, i.e., τIS = 3.7 GPa for Ni3Al (see Table I) and τIS = 5.1 GPa for Ni [15].
cThe second lowest τIS values of {111}〈1̄10〉 slips were used to predict τP, i.e., 4.2 GPa for Ni3Al (see Table I) and 5.8 GPa for Ni [15].
dFor reference only using the Poisson’s ratio (estimated by cij values and the Voigt approach) to predict the half-width of dislocation and
then τP.
eCRSS value for Ni3Al sample with 78 at. % Ni and 22 at. % Al as well as 0.2% plastic strain [3].
fCRSS value of tensile tests for Ni3Al samples with 77 at. % Ni and 23 at. % Al for (111)[110] slip [60].
gOrientation-dependent CRSS values of Ni3Al alloys [61].
hCRSS value of Ni measured in 1933 [56].
iCRSS value of Ni measured in 1958 [57].
jCRSS value of Ni measured in 2016 [69].
kCRSS value of Ni measured in 1951 [58].
lCRSS value of Ni measured in 2005 [59].

DFT-predicted elastic constants of Ni3Al [55], the predicted
τP values for both the edge (e) and screw (s) dislocation
cases of Ni3Al using both the isotropic (iso) and anisotropic
(aniso) elastic factors are given in Table II (i.e., predictions
of four cases: iso-e, iso-s, aniso-e, and aniso-s). For the sake
of comparison, the predicted τP values of fcc Ni and the
measured CRSS values at room temperatures for both Ni
[56–59] and Ni3Al [3,60,61] are also listed in Table II and
plotted in Fig. 7. All the required data to predict τP values of
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FIG. 7. Calculated Peierls stresses at 0 K for four cases of edge
(e) and screw (s) dislocations using elastic factors for isotropic (iso)
and anisotropic (aniso) crystals in comparison with experimental
CRSS values at room temperature for Ni3Al and Ni; see the detailed
values in Table II.

Ni3Al and Ni are detailed as footnotes of Table II, including
τIS, cij, and lattice parameters [15,55]. Table II and Fig. 7 show
that the range of the predicted τP values for anisotropic crystal
from edge to screw dislocations (blue symbols) is larger than
that of the isotropic crystal from edge to screw dislocations
(red symbols) for both Ni3Al and Ni. It is seen that the
predicted τP values of Ni3Al are smaller than those of Ni due
mainly to the smaller τIS used for Ni3Al (3.7 GPa vs. 5.1 GPa
for Ni3Al and Ni, respectively; see Table II). It can be seen
that the τP values of Ni3Al for screw dislocations (circular
symbols) and the τP values of Ni for edge dislocations (square
symbols), especially the values for anisotropic cases (the blue
symbols), agree reasonably well with experimental CRSS val-
ues (which are scattered; see the filled gray bars as well as the
values in Table II). This comparison of calculated τP values
and experimental CRSS values indicates the predominance
of screw dislocations in Ni3Al and edge dislocations in Ni.
In terms of experimental observations, the edge dislocation
dipoles that are prevalent in stage I of fcc single-crystal
deformation can be explained by mutual annihilation of screw
segments through cross slip [3,62]. It was observed that Ni3Al
exhibits long and straight screw dislocations, adopting either
incomplete or complete KW locking configurations, while the
edge dislocations mainly act as links between the long screw
dislocations and their cross-slipped parts [6,36]. It was further
observed that deformation of Ni3Al-based superalloy is dom-
inated by screw dislocations in the early stage of tensile tests
using different strain levels (from 0.8 to 8.2%) [63]. Similarly
to Ni, the τP values of Ni3Al from edge dislocations are lower
than those from screw dislocations (see Fig. 7), indicating
plastic deformation should start from the easy deformed edge
dislocations for both Ni and Ni3Al. Experimentally it was
observed that the mobile edge dislocations (instead of the
sessile screw dislocations) contribute most to the primary
creep strain in Ni3Al [64,65]. Here, the commonly observed
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screw dislocations in Ni3Al [6,36,63] may be due to (i) the not
enough active edge dislocations to initiate plastic deformation,
(ii) the easy trigger of screw dislocations during plastic defor-
mation, and/or (iii) the less accurate Peierls stresses predicted
in the present work. Detailed dislocation mechanism in Ni3Al
can be explored using such as the crystal plasticity finite-
element simulations [48,63,66], but this study is beyond the
scope of the present work.

The agreement between the present predictions and ex-
perimental observations on dislocation types (Table II and
Fig. 7) indicates that it is reasonable to select the minimum
τIS value in Ni3Al to predict τP. It is worth mentioning that
the lower τP values in Ni3Al can be increased by using higher
τIS values. For example, from τIS = 3.7 GPa (to generate the
CSF) to 4.2 GPa (to generate the APB111) by considering
the dominant slip system of {111}〈110〉 in Ni3Al [36], the
predicted τP values increase about 2.2 to 4.5 times, and the
predicted τP values of screw dislocations (38.6 ∼ 161.8 MPa)
are still in a good agreement with experimental τCRSS values
(27 ∼ 90 MPa); see detailed values in Table II.

It is found that τIS is a key value to predict the half-width of
dislocation ζ and hence the Peierls stress, τP, by using Eq. (2).
As an example of the use of inaccurate values, the predicted
τP is 372 MPa for an isotropic edge dislocation using τIS =
8 GPa estimated from nanoindentation [28], and the predicted
τP is 1088 MPa for an isotropic edge dislocation using the
ζ value from Poisson’s ratio ν via ζ = d

2(1−ν ) (where d is
the distance between slip planes). These τP values (372 and
1088 MPa) are at least one and even two orders of magnitude
higher than experimental τCRSS values at room temperature
(27 ∼ 90 MPa; see Table II), supporting the observations that
the predicted Peierls stress is less accurate by using less
accurate τIS such as the one estimated from the γ surface [67].
It was further observed that the calculated Peierls stress can be
improved by allowing strain-field relaxation in the process of
overcoming the Peierls potential [68].

In addition to predicting Peierls stress from τIS, the γ sur-
face is also fundamental to understand and model numerous
material properties and phenomena as mentioned in Sec. I.
For example, the presently predicted R value [see Eq. (1)] is
3.2 based on the pure alias shear deformation. As this R value
is greater than

√
3, this indicates the possibility of forming

KW locks in Ni3Al [9]. Additionally, the D value, defined as
the ratio of surface energy to unstable stacking fault energy
as D = γsurface/γUS, can be used to determine the ductility by
using the Rice criterion [13]. The presently predicted value of
D is 16.2 using the values of γUS = 229 mJ/m2 to generate the
CSF (see Table I) and γsurface = 3705 mJ/m2 [31]; in contrast,
D = 2.8 using the values of γUS = 1308 mJ/m2 to generate
the SISF (see Table I). It is therefore meaningful to predict
the influence of alloying elements on the R, D, and τP values
of Ni3Al or other L12 alloys to understand trends and design
alloys. In addition, the presently employed methodology of
pure alias shear provides not only a simple and accurate way
to calculate shear-related properties but also gives valuable
insight into dislocation characteristics.

IV. SUMMARY

The present work investigates shear-related properties with
a focus on dislocation characteristics in Ni3Al by means of
a computationally efficient methodology of pure alias shear.
The present first-principles results provide direct evidence
concerning the splitting of the 1/2[1̄10] dislocation into two
Shockley partials on the {111} plane [cf. Eq. (3)], and this
splitting is further supported by the equivalent planar fault
energies of γCSF and γAPB111 predicted by the pure alias shears
on the {111} plane. Comparing the predicted Peierls stresses
τP with experimental τCRSS, the present work suggests the
prevalence of screw dislocations in Ni3Al as well as edge
dislocations in Ni due to the fact that the minimum ideal
shear strength of Ni3Al is about 30% lower than that of Ni
(3.7 vs 5.1 GPa).

In addition, the present dislocation characteristics agree
well with experimental observations regarding (a) the domi-
nant edge dislocations in stage I of fcc single-crystal defor-
mation; and (b) the yield-strength anomaly (YSA) in Ni3Al
related to screw dislocations adopting the Kear-Wilsdorf con-
figurations [7]. Note that the YSA also can be understood
by means of empirical relationships in the literature (see the
Introduction) and the presently predicted planar fault energies,
ideal shear strengths, and Peierls stresses (i.e., the CRSS
values at low temperatures). It is further observed that the
planar faults of CSF and APB111 are easily formed by shear
due to the lower energy barriers (both the lower ideal shear
strength and the lower unstable stacking fault energy as shown
in Table I), although even lower planar fault energies are found
for SISF and APB001. The present predictions of ideal shear
strength and stacking fault energy are in favorable accord with
the scattered results from experiments and other calculations.
However, only the present predictions—from the pure alias
shear deformation—provide more insights into the underlying
science of Ni3Al dislocation splitting and dislocation charac-
ter than, for example, the commonly employed slab model.
Beyond the present work, we also can explore more properties
of Ni3Al such as (i) temperature-dependent Peierls stress in
Ni3Al by means of the quasistatic approach [15]; (ii) solute
strengthening in Ni3Al by predicting the effect of alloying
elements on Peierls stress (i.e., the CRSS value) using Eq. (2);
and (iii) stress versus strain curve through the combination of
Peierls stress and finite-element simulations [48].
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(2009).
[22] O. N. Mryasov, Y. N. Gornostyrev, M. van Schilfgaarde, and

A. J. Freeman, Acta Mater. 50, 4545 (2002).
[23] C. Woodward, D. R. Trinkle, L. G. Hector, and D. L. Olmsted,

Phys. Rev. Lett. 100, 045507 (2008).
[24] G. P. M. Leyson, W. A. Curtin, L. G. Hector, and C. F.

Woodward, Nat. Mater. 9, 750 (2010).
[25] M. R. Fellinger, A. M. Z. Tan, L. G. Hector, Jr., and D. R.

Trinkle, Phys. Rev. Mater. 2, 113605 (2018).
[26] Y.-J. Hu, M. R. Fellinger, B. G. Bulter, Y. Wang, K. A. Darling,

L. J. Kecskes, D. R. Trinkle, and Z.-K. Liu, Acta Mater. 141,
304 (2017).

[27] D. Buey, L. G. Hector, and M. Ghazisaeidi, Acta Mater. 147, 1
(2018).
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[37] T. Bučko, J. Hafner, and J. G. Ángyán, J. Chem. Phys. 122,

124508 (2005).
[38] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[39] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[40] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R.

Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671
(1992).

[41] S. L. Shang, D. E. Kim, C. L. Zacherl, Y. Wang, Y. Du, and
Z. K. Liu, J. Appl. Phys. 112, 053515 (2012).

[42] M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616
(1989).

[43] R. E. Voskoboinikov and C. M. F. Rae, IOP Conf. Ser.: Mater.
Sci. Eng. 3, 012009 (2009).

[44] W. Wang, C. B. Jiang, and K. Lu, Acta Mater. 51, 6169 (2003).
[45] Y. Chiu and A. H. Ngan, Acta Mater. 50, 1599 (2002).
[46] K. Xiong, H. Lu, and J. Gu, Comput. Mater. Sci. 115, 214

(2016).
[47] S. Kohlhammer, M. Fähnle, and G. Schoeck, Scr. Mater. 39, 359

(1998).
[48] S. Qin, S.-L. Shang, J. Shimanek, Z.-K. Liu, and A. M. Beese

(unpublished).
[49] R. Maaß, L. Meza, B. Gan, S. Tin, and J. R. Greer, Small 8,

1869 (2012).
[50] S. L. Shang, A. Saengdeejing, Z. G. Mei, D. E. Kim, H. Zhang,

S. Ganeshan, Y. Wang, and Z. K. Liu, Comput. Mater. Sci. 48,
813 (2010).

[51] S. Ogata, J. Li, and S. Yip, Science 298, 807 (2002).
[52] P. N. H. Nakashima, A. E. Smith, J. Etheridge, and B. C.

Muddle, Science 331, 1583 (2011).
[53] L. G. Hector, J. F. Herbst, and T. W. Capehart, J. Alloys Compd.

353, 74 (2003).
[54] J. P. Hirth and J. Lothe, Theory of Dislocations (Krieger,

Malabar, FL, 1992).
[55] D. E. Kim, S. L. Shang, and Z. K. Liu, Intermetallics 18, 1163

(2010).
[56] V. E. Osswald, Z. Phys. A: Hadron. Nucl. 83, 55 (1933).
[57] P. Haasen, Philos. Mag. 3, 384 (1958).
[58] E. N. D. C. A. Andrade and C. Henderson, Philos. Trans. R.

Soc. London A 244, 177 (1951).
[59] D. M. Dimiduk, M. D. Uchic, and T. A. Parthasarathy,

Acta Mater. 53, 4065 (2005).
[60] F. E. Heredia and D. P. Pope, Acta Metall. Mater. 39, 2027

(1991).
[61] T. Hirano, M. Demura, and D. Golberg, Acta Mater. 47, 3441

(1999).
[62] W. G. Nöhring and W. A. Curtin, Acta Mater. 128, 135 (2017).
[63] J. Xiao, H. Cui, H. Zhang, W. Wen, and J. Zhou, Mater. Sci.

Eng.: A, doi:10.1016/j.msea.2019.138631 (2020).
[64] W. Zhu, D. Fort, I. P. Jones, and R. E. Smallman, Philos. Mag.

Lett. 77, 307 (1998).
[65] T. S. Rong, I. P. Jones, and R. E. Smallman, J. Phys. IV 03,

C7-457 (1993).

024102-10

https://doi.org/10.1016/j.actamat.2013.12.019
https://doi.org/10.1016/j.actamat.2013.12.019
https://doi.org/10.1016/j.actamat.2013.12.019
https://doi.org/10.1016/j.actamat.2013.12.019
https://doi.org/10.1088/0953-8984/24/50/505403
https://doi.org/10.1088/0953-8984/24/50/505403
https://doi.org/10.1088/0953-8984/24/50/505403
https://doi.org/10.1088/0953-8984/24/50/505403
https://doi.org/10.1016/1359-6454(95)00191-3
https://doi.org/10.1016/1359-6454(95)00191-3
https://doi.org/10.1016/1359-6454(95)00191-3
https://doi.org/10.1016/1359-6454(95)00191-3
https://doi.org/10.1016/0001-6160(84)90118-4
https://doi.org/10.1016/0001-6160(84)90118-4
https://doi.org/10.1016/0001-6160(84)90118-4
https://doi.org/10.1016/0001-6160(84)90118-4
https://doi.org/10.1080/095008399176544
https://doi.org/10.1080/095008399176544
https://doi.org/10.1080/095008399176544
https://doi.org/10.1080/095008399176544
https://doi.org/10.1080/02670836.2016.1215961
https://doi.org/10.1080/02670836.2016.1215961
https://doi.org/10.1080/02670836.2016.1215961
https://doi.org/10.1080/02670836.2016.1215961
https://doi.org/10.1038/lsa.2016.162
https://doi.org/10.1038/lsa.2016.162
https://doi.org/10.1038/lsa.2016.162
https://doi.org/10.1038/lsa.2016.162
https://doi.org/10.1016/0001-6160(84)90117-2
https://doi.org/10.1016/0001-6160(84)90117-2
https://doi.org/10.1016/0001-6160(84)90117-2
https://doi.org/10.1016/0001-6160(84)90117-2
https://doi.org/10.1016/j.actamat.2011.05.040
https://doi.org/10.1016/j.actamat.2011.05.040
https://doi.org/10.1016/j.actamat.2011.05.040
https://doi.org/10.1016/j.actamat.2011.05.040
https://doi.org/10.1016/j.actamat.2012.01.004
https://doi.org/10.1016/j.actamat.2012.01.004
https://doi.org/10.1016/j.actamat.2012.01.004
https://doi.org/10.1016/j.actamat.2012.01.004
https://doi.org/10.1103/PhysRevB.69.094116
https://doi.org/10.1103/PhysRevB.69.094116
https://doi.org/10.1103/PhysRevB.69.094116
https://doi.org/10.1103/PhysRevB.69.094116
https://doi.org/10.1016/S0022-5096(05)80012-2
https://doi.org/10.1016/S0022-5096(05)80012-2
https://doi.org/10.1016/S0022-5096(05)80012-2
https://doi.org/10.1016/S0022-5096(05)80012-2
https://doi.org/10.1088/0953-8984/20/33/335216
https://doi.org/10.1088/0953-8984/20/33/335216
https://doi.org/10.1088/0953-8984/20/33/335216
https://doi.org/10.1088/0953-8984/20/33/335216
https://doi.org/10.1088/0953-8984/24/15/155402
https://doi.org/10.1088/0953-8984/24/15/155402
https://doi.org/10.1088/0953-8984/24/15/155402
https://doi.org/10.1088/0953-8984/24/15/155402
https://doi.org/10.1038/nature10687
https://doi.org/10.1038/nature10687
https://doi.org/10.1038/nature10687
https://doi.org/10.1038/nature10687
https://doi.org/10.1103/PhysRevLett.78.266
https://doi.org/10.1103/PhysRevLett.78.266
https://doi.org/10.1103/PhysRevLett.78.266
https://doi.org/10.1103/PhysRevLett.78.266
https://doi.org/10.1080/14786430902877802
https://doi.org/10.1080/14786430902877802
https://doi.org/10.1080/14786430902877802
https://doi.org/10.1080/14786430902877802
https://doi.org/10.1016/j.msea.2006.11.068
https://doi.org/10.1016/j.msea.2006.11.068
https://doi.org/10.1016/j.msea.2006.11.068
https://doi.org/10.1016/j.msea.2006.11.068
https://doi.org/10.1557/mrs2007.48
https://doi.org/10.1557/mrs2007.48
https://doi.org/10.1557/mrs2007.48
https://doi.org/10.1557/mrs2007.48
https://doi.org/10.1103/PhysRevB.79.224103
https://doi.org/10.1103/PhysRevB.79.224103
https://doi.org/10.1103/PhysRevB.79.224103
https://doi.org/10.1103/PhysRevB.79.224103
https://doi.org/10.1016/S1359-6454(02)00282-3
https://doi.org/10.1016/S1359-6454(02)00282-3
https://doi.org/10.1016/S1359-6454(02)00282-3
https://doi.org/10.1016/S1359-6454(02)00282-3
https://doi.org/10.1103/PhysRevLett.100.045507
https://doi.org/10.1103/PhysRevLett.100.045507
https://doi.org/10.1103/PhysRevLett.100.045507
https://doi.org/10.1103/PhysRevLett.100.045507
https://doi.org/10.1038/nmat2813
https://doi.org/10.1038/nmat2813
https://doi.org/10.1038/nmat2813
https://doi.org/10.1038/nmat2813
https://doi.org/10.1103/PhysRevMaterials.2.113605
https://doi.org/10.1103/PhysRevMaterials.2.113605
https://doi.org/10.1103/PhysRevMaterials.2.113605
https://doi.org/10.1103/PhysRevMaterials.2.113605
https://doi.org/10.1016/j.actamat.2017.09.019
https://doi.org/10.1016/j.actamat.2017.09.019
https://doi.org/10.1016/j.actamat.2017.09.019
https://doi.org/10.1016/j.actamat.2017.09.019
https://doi.org/10.1016/j.actamat.2017.12.066
https://doi.org/10.1016/j.actamat.2017.12.066
https://doi.org/10.1016/j.actamat.2017.12.066
https://doi.org/10.1016/j.actamat.2017.12.066
https://doi.org/10.1016/j.pmatsci.2015.04.001
https://doi.org/10.1016/j.pmatsci.2015.04.001
https://doi.org/10.1016/j.pmatsci.2015.04.001
https://doi.org/10.1016/j.pmatsci.2015.04.001
https://doi.org/10.1016/0378-4363(86)90557-7
https://doi.org/10.1016/0378-4363(86)90557-7
https://doi.org/10.1016/0378-4363(86)90557-7
https://doi.org/10.1016/0378-4363(86)90557-7
https://doi.org/10.1088/0370-1298/65/5/307
https://doi.org/10.1088/0370-1298/65/5/307
https://doi.org/10.1088/0370-1298/65/5/307
https://doi.org/10.1088/0370-1298/65/5/307
https://doi.org/10.1016/j.msea.2011.12.112
https://doi.org/10.1016/j.msea.2011.12.112
https://doi.org/10.1016/j.msea.2011.12.112
https://doi.org/10.1016/j.msea.2011.12.112
https://doi.org/10.1016/j.scriptamat.2009.03.042
https://doi.org/10.1016/j.scriptamat.2009.03.042
https://doi.org/10.1016/j.scriptamat.2009.03.042
https://doi.org/10.1016/j.scriptamat.2009.03.042
https://doi.org/10.1016/j.actamat.2014.09.005
https://doi.org/10.1016/j.actamat.2014.09.005
https://doi.org/10.1016/j.actamat.2014.09.005
https://doi.org/10.1016/j.actamat.2014.09.005
https://doi.org/10.1103/PhysRevMaterials.3.015401
https://doi.org/10.1103/PhysRevMaterials.3.015401
https://doi.org/10.1103/PhysRevMaterials.3.015401
https://doi.org/10.1103/PhysRevMaterials.3.015401
https://doi.org/10.1016/j.commatsci.2009.12.006
https://doi.org/10.1016/j.commatsci.2009.12.006
https://doi.org/10.1016/j.commatsci.2009.12.006
https://doi.org/10.1016/j.commatsci.2009.12.006
https://doi.org/10.1007/BF02652207
https://doi.org/10.1007/BF02652207
https://doi.org/10.1007/BF02652207
https://doi.org/10.1007/BF02652207
https://doi.org/10.1063/1.1864932
https://doi.org/10.1063/1.1864932
https://doi.org/10.1063/1.1864932
https://doi.org/10.1063/1.1864932
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1103/PhysRevB.46.6671
https://doi.org/10.1063/1.4749406
https://doi.org/10.1063/1.4749406
https://doi.org/10.1063/1.4749406
https://doi.org/10.1063/1.4749406
https://doi.org/10.1103/PhysRevB.40.3616
https://doi.org/10.1103/PhysRevB.40.3616
https://doi.org/10.1103/PhysRevB.40.3616
https://doi.org/10.1103/PhysRevB.40.3616
https://doi.org/10.1088/1757-899X/3/1/012009
https://doi.org/10.1088/1757-899X/3/1/012009
https://doi.org/10.1088/1757-899X/3/1/012009
https://doi.org/10.1088/1757-899X/3/1/012009
https://doi.org/10.1016/S1359-6454(03)00436-1
https://doi.org/10.1016/S1359-6454(03)00436-1
https://doi.org/10.1016/S1359-6454(03)00436-1
https://doi.org/10.1016/S1359-6454(03)00436-1
https://doi.org/10.1016/S1359-6454(02)00025-3
https://doi.org/10.1016/S1359-6454(02)00025-3
https://doi.org/10.1016/S1359-6454(02)00025-3
https://doi.org/10.1016/S1359-6454(02)00025-3
https://doi.org/10.1016/j.commatsci.2015.12.045
https://doi.org/10.1016/j.commatsci.2015.12.045
https://doi.org/10.1016/j.commatsci.2015.12.045
https://doi.org/10.1016/j.commatsci.2015.12.045
https://doi.org/10.1016/S1359-6462(98)00176-6
https://doi.org/10.1016/S1359-6462(98)00176-6
https://doi.org/10.1016/S1359-6462(98)00176-6
https://doi.org/10.1016/S1359-6462(98)00176-6
https://doi.org/10.1002/smll.201102603
https://doi.org/10.1002/smll.201102603
https://doi.org/10.1002/smll.201102603
https://doi.org/10.1002/smll.201102603
https://doi.org/10.1016/j.commatsci.2010.03.041
https://doi.org/10.1016/j.commatsci.2010.03.041
https://doi.org/10.1016/j.commatsci.2010.03.041
https://doi.org/10.1016/j.commatsci.2010.03.041
https://doi.org/10.1126/science.1076652
https://doi.org/10.1126/science.1076652
https://doi.org/10.1126/science.1076652
https://doi.org/10.1126/science.1076652
https://doi.org/10.1126/science.1198543
https://doi.org/10.1126/science.1198543
https://doi.org/10.1126/science.1198543
https://doi.org/10.1126/science.1198543
https://doi.org/10.1016/S0925-8388(02)01324-5
https://doi.org/10.1016/S0925-8388(02)01324-5
https://doi.org/10.1016/S0925-8388(02)01324-5
https://doi.org/10.1016/S0925-8388(02)01324-5
https://doi.org/10.1016/j.intermet.2010.02.024
https://doi.org/10.1016/j.intermet.2010.02.024
https://doi.org/10.1016/j.intermet.2010.02.024
https://doi.org/10.1016/j.intermet.2010.02.024
https://doi.org/10.1007/BF01331092
https://doi.org/10.1007/BF01331092
https://doi.org/10.1007/BF01331092
https://doi.org/10.1007/BF01331092
https://doi.org/10.1080/14786435808236826
https://doi.org/10.1080/14786435808236826
https://doi.org/10.1080/14786435808236826
https://doi.org/10.1080/14786435808236826
https://doi.org/10.1098/rsta.1951.0019
https://doi.org/10.1098/rsta.1951.0019
https://doi.org/10.1098/rsta.1951.0019
https://doi.org/10.1098/rsta.1951.0019
https://doi.org/10.1016/j.actamat.2005.05.023
https://doi.org/10.1016/j.actamat.2005.05.023
https://doi.org/10.1016/j.actamat.2005.05.023
https://doi.org/10.1016/j.actamat.2005.05.023
https://doi.org/10.1016/0956-7151(91)90172-W
https://doi.org/10.1016/0956-7151(91)90172-W
https://doi.org/10.1016/0956-7151(91)90172-W
https://doi.org/10.1016/0956-7151(91)90172-W
https://doi.org/10.1016/S1359-6454(99)00202-5
https://doi.org/10.1016/S1359-6454(99)00202-5
https://doi.org/10.1016/S1359-6454(99)00202-5
https://doi.org/10.1016/S1359-6454(99)00202-5
https://doi.org/10.1016/j.actamat.2017.02.027
https://doi.org/10.1016/j.actamat.2017.02.027
https://doi.org/10.1016/j.actamat.2017.02.027
https://doi.org/10.1016/j.actamat.2017.02.027
https://doi.org/10.1016/j.msea.2019.138631
https://doi.org/10.1016/j.msea.2019.138631
https://doi.org/10.1016/j.msea.2019.138631
https://doi.org/10.1080/095008398178273
https://doi.org/10.1080/095008398178273
https://doi.org/10.1080/095008398178273
https://doi.org/10.1080/095008398178273
https://doi.org/10.1051/jp4:1993772
https://doi.org/10.1051/jp4:1993772
https://doi.org/10.1051/jp4:1993772
https://doi.org/10.1051/jp4:1993772


UNVEILING DISLOCATION CHARACTERISTICS IN … PHYSICAL REVIEW B 101, 024102 (2020)

[66] S. Keshavarz and S. Ghosh, Philos. Mag. 95, 2639 (2015).
[67] Y. Kamimura, K. Edagawa, A. M. Iskandarov, M. Osawa,

Y. Umeno, and S. Takeuchi, Acta Mater. 148, 355
(2018).

[68] K. Edagawa, Y. Kamimura, A. M. Iskandarov, Y. Umeno, and
S. Takeuchi, Materialia 5, 100218 (2019).

[69] Y. Luo, J. Liu, W. Guo, Q. Yu, and S. Li, J. Dyn. Behav. Mater.
2, 223 (2016).

024102-11

https://doi.org/10.1080/14786435.2015.1073858
https://doi.org/10.1080/14786435.2015.1073858
https://doi.org/10.1080/14786435.2015.1073858
https://doi.org/10.1080/14786435.2015.1073858
https://doi.org/10.1016/j.actamat.2018.02.009
https://doi.org/10.1016/j.actamat.2018.02.009
https://doi.org/10.1016/j.actamat.2018.02.009
https://doi.org/10.1016/j.actamat.2018.02.009
https://doi.org/10.1016/j.mtla.2019.100218
https://doi.org/10.1016/j.mtla.2019.100218
https://doi.org/10.1016/j.mtla.2019.100218
https://doi.org/10.1016/j.mtla.2019.100218
https://doi.org/10.1007/s40870-016-0060-8
https://doi.org/10.1007/s40870-016-0060-8
https://doi.org/10.1007/s40870-016-0060-8
https://doi.org/10.1007/s40870-016-0060-8

