On Detecting Cherry-picked Trendlines -

Abolfazl Asudeh
University of lllinois at
Chicago
asudeh@uic.edu

H. V. Jagadish

University of Michigan
jag@umich.edu

ABSTRACT

Poorly supported stories can be told based on data by cherry-picking
the data points included. While such stories may be technically ac-
curate, they are misleading. In this paper, we build a system for
detecting cherry-picking, with a focus on trendlines extracted from
temporal data. We define a support metric for detecting such trend-
lines. Given a dataset and a statement made based on a trendline,
we compute a support score that indicates how cherry-picked it is.
Studying different types of trendlines and formalizing terms, we
propose efficient and effective algorithms for computing the sup-
port measure. We also study the problem of discovering the most
supported statements. Besides theoretical analysis, we conduct ex-
tensive experiments on real-world data, that demonstrate the valid-
ity of our proposed techniques.

PVLDB Reference Format:

Abolfazl Asudeh, H. V. Jagadish, You (Will) Wu, Cong Yu. On Detecting
Cherry-picked Trendlines. PVLDB, 13(6): 939-952, 2020.

DOT: https://doi.org/10.14778/3380750.3380762

1. INTRODUCTION

“A lie which is half a truth is ever the blackest of lies.”

— ALFRED, LORD TENNYSON
Fake news is receiving much attention today. Sometimes fake news
may be a complete fabrication. More often, it is based on a grain of
truth, such as a fact reported out of context or analysis on cherry-
picked data [1]. In fact, cherry-picking is prevalent in almost every
controversial domain from tax policy to climate change.

Partisans on one side of an argument look for statements they can
make about trends that support their position. They would like not
to be caught blatantly lying, so they cherry-pick the factual basis for
their conclusion. That is, the points based on which a statement is
made are carefully selected to show a misleading “frendline” that
is not a “reasonable” representation of the situation. Even though
the trendline is not fake, in that it is supported by the selected data
points, it is misleading. In this paper, we study such cherry-picked
trendlines. But first, let us look at a couple of examples.

*The work of H. V. Jagadish was supported in part by NSF Grants No.
1741022 and 1934565.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 6

ISSN 2150-8097.

DOL: https://doi.org/10.14778/3380750.3380762

wuyou@google.com

939

You (Will) Wu

Google Research

Cong Yu

Google Research
congyu@google.com

EXAMPLE 1 (NORTHERN HEMISPHERE’S TEMPERATURE).
In [2], John Mason explains how cherry-picking short time-frames
can distort the reality of global warming. He uses the monthly cli-
mate data of the year 2012 to support the fantasy-like claim that
THE NORTHERN HEMISPHERE SUMMERS ARE COLDER THAN WINTERS.
Such a statement can be made by selecting two specific time/days in
summer and winter, as well as specific locations in Northern Hemi-
sphere, and comparing the temperatures of the selected locations
in selected time/days: summer was colder than winter in 2012 as,
for example, the (average) temperature' of Ann Arbor (MI, USA)
on Aug. 18 (a summer day) was 58°F degrees, whereas its temper-
ature in Mar. 15 (a winter day) was 66°F.

The end points considered for a trendline may not be readily avail-
able as data points. Instead, they may need to be aggregated over
a period, which could itself be cherry-picked, as we see in the next
example. In fact, even in the example above, the average daily tem-
perature may not so neatly have been materialized, leaving us to
average individual temperature readings, taken ever minutes, over
a period of our choice.

EXAMPLE 2 (GIULIANI’S ADOPTION CLAIM). Wuetal. [3]
provide an example claim made by Rudy Giuliani in the 2007 Re-
publican presidential candidates’ debate that “adoptions went up
65 to 70 percent” in New York City “when he was the mayor”. The
claim considered the total number of adoptions during 1996-2001
v.s. 1990-1995, while Giuliani actually was in office in 1994-2001.

In this paper, we focus on trends derived by comparing a pair of
points in data to make a statement. As we can see from the exam-
ples above, such statements are quite common. > There are other,
potentially more robust, methods to find a trendline, such as line
fitting with least squared error. Our focus is restricted to trendlines
based on selected endpoints. The question we ask is whether the
chosen points gives us a “reasonable” trend.

Note that the trendlines are technically “not fake” in that they are
derived from actual data points: our task is to determine whether
the data points were cherry-picked, whether intentionally or by ac-
cident. To this end, we ask what other data points could have been
chosen for a similar analysis. We can then look at the trendlines ob-
tained from all such alternative pairs of points. The trend observed
over these alternatives should not differ by much from the reported
trend if it is stable. In contrast, a trendline is presumed to be cherry-
picked, if it differs greatly from most alternatives considered. Even
if it is not intentionally chosen to mislead, there is no question that
it does mislead its consumers about the observed trend.

'based on www.wunderground.com

2 A detailed discussion about the recent real-life cherry-picking
instances, if those fit to the scope of this paper, and required adjust-
ments is provided in § 9.

Of course, this begs the question of what alternatives to consider
for the start and end points of a trend line. In the simplest, and
most common case, there are no additional constraints, and we can
define a region around the original start and end points. However,
in other problems, we may have constraints. For example, we may
need the distance between begin and end points to be exactly one
year, or we may need the start point always to be a Monday. We
formally define a rich set of constraints, covering most examples
we have seen in practice.

The set of possible choices can be very large for each end-point.
Therefore, the number of pairs to consider can become impracti-
cal, as in a full cartesian product. We develop efficient algorithms
for computing the support of statements. For unconstrained trend-
lines, we design an exact linearithmic algorithm. Similarly, for
constrained trendlines, we design the proper data structure and an
exact linearithmic algorithm. Next, we use Monte-Carlo methods
and design sampling-based approximation algorithms for comput-
ing support in scale. Providing a negative result, we also propose a
randomized heuristic, effective in practice.

If we believe that a particular statement is cherry-picked, we may
ask what would be an alternative statement with greater support.
Towards this end, we formalize the problem of finding the trendline
statement with the most support in a dataset, We present two formal
definitions, and design algorithms for both. In summary, we make
the following major contributions in this paper:

e We define the notion of support as a metric to identify cherry-
picking in trendlines reported (§ 2).

e We develop efficient exact algorithms to compute support for
different types of trendlines (§ 3 and § 4).

We develop randomized algorithms based on Monte-Carlo
methods to compute support, efficiently and effectively (§ 5).

We define the notion of a most supported statement and de-
velop algorithms for discovering it(§ 6).

e We conduct extensive experiments on real-world datasets to
study the efficiency and effectiveness of our proposal, as well
as providing a proof of concept (§ 7).

2. PRELIMINARIES
2.1 Data Model

In this paper, we consider the trend statements derived by com-
paring a pair of points. Consider a dataset D defined over trend
attributes (w1, 2, -+ ,xq) and a target attribute y which is the
“measure of goodness” for each combination of target values. We
use n to refer to the number of tuples in D. The trend attributes
can be continuous or discrete. For instance, consider Example 1.
The trendline attributes are time and location. Location, for ex-
ample, in the form of different countries is discrete, whereas the
location in the form of longitude and latitude is continuous. In
Example 1, the target attribute is temperature. We use a vector
(p[1],p[2], - - , p[d]) to refer to a point p in the space value combi-
nations for the trend attributes. For every such point p, the notation
y(p) is used to refer to the value of y for p. For instance, in Ex-
ample 1, the vector p = (July 20 2012, Ann Arbor - MI) and
y(p) = 70 show that the temperature of Ann Arbor - MI in July 20
2012 was 70 degrees.

Typically, the dataset D has tuples that comprise both trend and
target attributes. Therefore, given the combination of trend values,
the target value can simply be looked up, for example, by using

940

an index into the dataset. We allow more general cases where the
target attribute value is somehow determined as a function of the
trend values: this could be additional data collection, a function
computation, or something else. We model this as an oracle that,
given the combination of the trend values returns the target value
for some “cost”. The oracle cost for the traditional dataset model
could be as low as O(1), but in some other situations we may need
to address costly oracles.

2.2 Trendline Statement

We consider trendlines based on selecting a pair of points in the
space of the trend attributes. For example, in Example 1, the trend-
line compares the temperature of Ann Arbor on two different days.
Formally, such a trendline is defined as follows:

DEFINITION 1 (TRENDLINE). For a dataset D, a trendline 0
is a defined as a pair of trend points b (the beginning) and e (the
end) and their target values in the form of 0 = ((b, y(b)), (e, y(e))).

Trendlines can also be made based on an aggregate over the tar-
get values in a window. For instance, consider Example 2. In this
example, year is the trend attribute. For every year p, the target at-
tribute y(p) shows the total number of adoptions in that year. Giu-
liani’s claim is based on the aggregate over a 5-year window. The
aggregate window is identified by its beginning and its width. For
example, the aggregate window 1996-2001 in Example 2 is identi-
fied by the point 1996 and 6 years as the beginning and the length of
the window. Considering a fixed length for the aggregate window,
for every point p, let Y (p) be the aggregate over the values of y(p")
for all points in the window of p. Using this model, Definition 1
gets generalized for aggregate windows by replacing y(b) and y(e)
by Y (b) and Y (e).

The cases for which the length of the aggregate window is not
fixed can also be modeled by Definition 1, by assigning each win-
dow to its beginning point and adding an extra trend attribute show-
ing the length of the window. For instance, in Example 2, the adop-
tion numbers for the years 1996 to 2002 are (approximately) 3600,
4000, 3800, 3750, 3100, 2700, and 2650 [3]. The window 1996-
2001 is modeled as the point p; = (1996, 6) and its target value
(sum) is Y (p1) = 20950. Similarly, the point po = (1998, 5)
shows a window of length 5 years that starts at year 1998; com-
puting the sum for this window, Y (p2) = 16000. Note that pre-
processing the data, for the non-holistic aggregate functions such
as sum and mean, while maintaining the moving aggregate, needs
a single scan. Hence for a dataset of n points, it is in O(n).

Following the above discussion, in the rest of the paper, we con-
sider Definition 1 for trendlines for both single value (Example 1)
and aggregate window (Example 2) trendlines.

Next, we define the trendline statements, or simply statements,
as the claims that are made based on the choice of a trendline.

DEFINITION 2 (STATEMENT). Given a trendline 0 = {(b, y(b)
), (e,y(e))), a statement is made by proposing a condition that is
satisfied by the target values y(b)) and y(e). In this paper, we con-
sider the conditions that are made based on the absolute difference
between y(b) and y(e). Formally, given the trendline 0, the state-
ment Sy is a range (L, T) such that:

y(e) —y(b) € (L, T)

For instance, in Example 1 the beginning point of the trendline 6
is b = (Aug. 18 2012, Ann Arbor - MI) with y(b) = 58°F, and
its end is e = (March 15 2012, Ann Arbor - MI) with y(e) =
66°F. The statement Sp:“summer was colder than winter” is made
by proposing a condition: (0, inf), that is satisfied by 0 as y(e) —

y(b) = 66 — 58 > 0. As another example, consider Example 2.
Assuming a fixed window size of 6 years, the trendline 6’ consists
of the beginning point b’ = 1996 and y(b') = 0.65 (the adoption
rate for a window of 6 years starting at b = 1996 is 65%) and the
end point e’ = 1996 and y(e') = 0.7. The statement Sy :“adoption
rate went up” is made by proposing a condition: (0, inf), that is
satisfied by €', as y(e') — y(b') = 0.7 — 0.65 > 0.

2.3 Support Model

Given a statement based on a trendline, our task is to determine
whether the trendline is based on cherry-picked data points. For
this purpose, we consider the entire dataset and compute a “sup-
port” measure for the given statement in the dataset. We would like
trendline statements to be well-supported by the data.

So, how should support be defined? Our intuition is that cherry-
picked trendlines are carefully selected and, therefore, may change
by slightly changing the trend points. For instance in Example 1, it
turns out that perturbing the beginning and/or the end points of the
chosen dates by even a few days results in trendlines for which a
summer day is not colder than a winter day, i.e., y(e) — y(b) < 0.
Hence, those trendlines do not support the statement that “summer
was colder than winter”.

Following the above discussion, given a Statement S = (L, T)
and a trendline ' = (', y(b")), (¢/,y(e"))), we say that " sup-
ports Sg, if y(e') —y(¥') € (L, T).

We name the space of trend points in which the support of a
statement is studied as the support region. In the following, we
provide two possible ways of identifying a region:

(i) Rectangular region: A rectangular region in the space of trend
attributes is defined as a vector of d ranges R = ([Ry-[1], R4[1]],

-+, [R-[d], R4[d]]) such that Vi € [1,d] : p[i] € [R-[i], R4[Z]].

(ii) Circular region: A circular region in the space of trend at-
tributes is identified by a vector p = (p1, p2, - , pa) and a value
r. It specifies the set of points that have a maximum distance of r
from the vector p. In fact, a rectangular support region can be re-
garded as a special case of a circular region, with scaled L°°-norm.

Given a statement S, a support region for S, Rs = (R(b), R(e)),
is defined as a pair of disjoint regions, where every trendline 0; with
the beginning and end points b; and e; should satisty the conditions
b; € R(b) and e; € R(e) in order to be considered for computing
the support of .S.

A support region may naturally be defined by the statement itself.
For instance, in Example 1, the statement is made on the tempera-
ture of summer versus winter days. This naturally sets the support
region to the set of summer days as R(b), the valid beginnings for
the trendlines, and the set of the winter days as R(e), the set of
end points for them. When the support region of some statement
is not obvious from the statement itself, an appropriate region can
be defined by a domain expert. For instance, in Example 2 it is not
immediately clear if the width of the aggregation window is fixed at
6, or if an aggregation window of other sizes should also be consid-
ered? Also, it is not clear what are the valid years (for defining the
aggregation windows) for the beginning and end of the trendlines.
However, these questions are not difficult to answer for someone
with domain knowledge.

Thus far, we have considered unconstrained support regions.
That is every trendline 8 = ((b, y(b)), (e, y(e))) where b € R(B)
and e € R(FE) is “valid” for studying the support of a statement.
We name such trendlines as unconstrained trendlines. However,
for some statements, all possible trendlines drawn in the support
region may not be valid. For instance, consider Example 1. A trend
point is a combination of a location and a date/time. However, a
trendline that compares the temperature of two different locations

941

on different days does not make sense and sense is not valid. Such
invalid choices must be eliminated from the support region when
computing the support for a statement. We do so by formally spec-
ifying validity constraints.

The two extreme cases based on the validity constraints are:

1. no-constraint: where every trendline 6; = ((b, y(b)), (e, y(e)
)) is valid, as long as its beginning and end points belong to
the support region —i.e., b € R(b) and e € R(e).

2. single-point enforcement: the choice of the beginning point,
enforces the end point to a single point. The trendlines that
are supposed to have a fixed distance between their beginning
and end points fall in this category.

We name the trendlines that require satisfying validity constraints
to be considered for a given statement, as constrained trendlines.
Based on how restrictive the validity constraints are, the choice of
the beginning of the constrained trendline limits the end points for
the valid trendlines. We assume the validity constraints are pro-
vided by the expert. Still, a realistic assumption is that for all start
points, the valid regions in R(e) create a fixed-size window with a
fixed distance from the start points. This, follows a generalization
of the single-point enforcement case, that instead of having a fixed
distance between the beginning and end point, we allow a range
of distances. For instance, in our Example 1, it is like allowing the
comparison in the temperature of the cities, as long as their distance
is within a bounded range; or in Example 2, it is like allowing the
comparison between the adoption rate of the years, so long as their
differences are at least 4 and at most 6 years.

We define the support of a statement as the proportion of (valid)
trendlines in R(b) and R(e) for which their target value difference
remains within the acceptable range. Formally:

DEFINITION 3 (SUPPORT FOR A STATEMENT). Given adata
set D, a statement S = (T,Ll), and a support region Rs =
(R(b), R(e)), the support for S is

w(S,Rs,D) =

vol({valid {p € R(b),p’ € R(e)) | y(r') —y(p) € (L, T)})
vol({valid (p,p') | p € R(b),p" € R(e)})

The denominator in Definition 3 is the universe of possible valid
trendlines from R(b) and R(e). For unconstrained trendlines, this
is the product of the “volume” of R(b) and that of R(e):

vol({(p,p') | p € R(b),p € R(e)}) = /R@ /R(drad,

= / dx/ dx
R(b) R(e)

= vol(R(b)) x vol(R(e))

1)

Having the terms formally defined, next we shall formulate the
problems we address in this paper.

2.4 Problem Formulation

In this paper, our goal is to design a system for detecting cherry-
picked trendlines. To do so, we compute the support for a statement
based on Definition 3. Formally:

PROBLEM 1. Given a dataset D, a trendline statement S, and
a support region Rg, compute w(S, Rg).

While the main focus of the paper is on efficiently addressing
Problem 1, we also aim to find the statement with the highest sup-
port. We consider two formulations for the problem:

PROBLEM 2. Most Supported Statement (MSS) for a fixed range
Given a dataset D, a value d, and a support region Rs find the
statement S = (L, L + d) with the maximum support. Formally,

maz w(S(L,T),Rs)
st. T—1L=d

Given a fixed width for the support statement range, Problem 2
aims to find the most supported statement. An orthogonal alterna-
tive is to fix the support value. Obviously any trendline supports the
range (—oo, 00). Hence, the support of the statement S(—o0, 00)
is always 1. However, this does not provide any information about
the trend since its range is too wide. The tighter the range of a
statement is, the more restrictive, and hence more informative, it
is. Therefore, in Problem 3, our goal is to find the tightest state-
ment with a given support value. Formally, we define the “tightest
statement (TS) for a given support” problem as following:

PROBLEM 3. Tightest Statement (TS) for a given support: Given
a dataset D, a support region Rgs, and a value 0 < s < 1, find the
statement S = (L, T) such that S(S) > sand T —_L is minimized.

Formally, min T — L
s.t. w(S(L,T),Rs) > s

Considering Problem 1 as the main focus of this paper, first in
§ 3 we provide an efficient exact solution for Problem 1, for uncon-
strained trendlines. We will introduce constraints in § 4. Later on,
in § 5 we propose sampling-based approaches for approximating
the support. We will study Problems 2 and 3 in § 6.

3. UNCONSTRAINED TRENDLINES

In this section we aim to design an efficient exact algorithm for
the computation of the support of unconstrained trendline state-
ment. In the following, we first propose a baseline algorithm that
leads to the design of our efficient algorithm in § 3.2.

3.1 Baseline algorithm

First, let us take a careful look at Definition 3, especially the
numerator of the equation. The numerator can be rewritten as a
conditional integral as follows:

vol({(p € R(b),p" € R(e)) | y(@') —y(p) € (L, T)})

:/ (/ dme)dﬂcb)
R(b) N {doeR(e) | y(dze)—y(dey)e(L,T))

Consider the partitioning of the space into the Riemann pieces
(the data records in the dataset D). For a trend point dxy, let
Rz, (€) be the points in R(e) where y(dz.) — y(dxy) € (L, T).
Then, Equation 2 can be rewritten as the following Riemann sum:

> > 3)

Vdxy, € R(b) Vdwe€Rgy, (e)

d.%‘b(dxe)

Consider the example in Figure 1. The horizontal axis shows
the trend attribute while the vertical axis shows y. The trend-
line of interest is specified by the vertical dashed lines; the left
green region identify R(b) while the one in the right shows R(e),
and the curve shows the y values. In this example, the range of
the statement S is (a, 00). A point dzp, in R(b) is highlighted in
red in the left of the figure. For dxy, all points dz. € R(e) for
which y(dze) — y(dzs) > o support S, forming Rgq, (€) (high-
lighted in red in the right-hand side of the figure), and therefore,
are counted for dzp. The summation of these counts for all points
in R(b) computes the numerator of Equation 3. Following this,

942

Algorithm 1 BASELINE
Input: statement S = (L, T), support reg Rs = (R(b), R(e))
Output: w(S, Rs)

cent =0
: for dzy in R(b) do
for dz. in R(e) do
ify(dze) — y(dzy) € (L, T) then ent = ent + 1
end for
end for
return

A A ol Nl

cnt
vol(R(b)) xvol(R(e))

the baseline solution (Algorithm 1), sweeps a vertical line from left
to right through R(b) and counts the acceptable points inR(e) for
each dxy, (similar to highlighted dzy, and Rg., in Figure 1).
Clearly, comparing each pair of points in R(b) and R(e), Algo-
rithm 1 is quadratic in the number of items in dataset, i.e. O(n?).
Next, we show how an observation about R(b) and R(e) lead to
the design of a linearithmic algorithm.

3.2 Efficient exact algorithm

For each point dz[i] in R(b), the baseline algorithm makes a
pass over R(e) to find the set of points that, together with dx[q],
support the statement S, and therefore, is quadratic. In this section,
we seek to design an algorithm that passes through R(b) and R(e)
independently.

Consider Equation 3 once again. For a point dz[i] in R(b), let
wli] be the number of points in R(e) where y(dz.) — y(dz[i]) €
(L, T),ie. ZdeceRdz[i] () dc. Then, Equation 3 can be rewrit-

ten as: Z (4)

Vdxz[i)€ R(b)

wli]

For example, in Figure 1, the weight of the point dzy is the width
of the red rectangle Ry, (€). In the following, we show how the
construction of a cumulative function for R(e) enables efficiently
finding the corresponding weights for the points in R(b).

Let us consider the example of Figure 1 once again. Let dz[1]
to dz[n'] be the set of points in R(b), from left to right. Fig-
ure 2 shows three points dx[i], dz[j], and dz[k] where y(dz[i]) <
y(dxz[j]) < y(dx[k]). It also highlights R,[;)(e), Rag[j)(e), and
R,k (e) in the right. Note that R, (e) consists of two disjoint
rectangles. Looking at the figure, one can confirm that R, [x)(e) is
a subset of Ry, [;)(e) and Ryg[;)(e) is a subset of Rg.[;(e). Since
all points in Ry, (x)(e) belong to Rgy(;)(e) and Rggz(; (e), we don’t
need to recount those points three time for dz[i], dz[j], and dz[k].
Instead, we could start from dz[k], compute its width, move to
dx[j], only consider the parts of Ry,;(e) that is not covered by
Raok)(€), i.e. Raqikj(€)\Razk(e), and set w(j] as w(i] plus the
width of the uncovered regions by Rgz[xj(e). Similarly, in an in-
cremental manner, we could compute w/[i], as we sweep over R(e).

Following the above discussion, if we could design a “cumula-
tive” function F' : R — R, that for every value y, returns the
number of points dz in R(e) where y(dz) < y, we could use it to
directly compute the weights for the points in R(b). Formally, we
seek to design the following function F:

F(y) = {dz € R(e) | y(dz) < y}| Q)

Given such a function F, the weight of the point dz[i] € R(b)
can be computed as following:

wli] = F(y(dali]) + T) — F(y(da[i]) + 1) ©)

Figure 1: Ilustration of a point dz;, and the set of Figure 2: Illustration of weights for three points
dz[i], dz[j], and dz[k] in the example of Figure 1.

points in R(e) for which y(dze) — y(dzp) > a.

Algorithm 2 EXACT,,
Input: statement S = (L, T), support reg. Rs = (R(b), R(e))
Output: w(S, Rg)

§=1]
: for dz in R(e) do add y(dz) to §

: sort § descending ; ecnt = 0

: for dz in R(b) do

i1 = binary_search(y(dz) + L, %)
i2 = binary_search(y(dx) + T,F)
ent = ent + (i2 — i1)

: end for
. return

cnt
vol(R(b)) xvol(R(e))

But first, we need to implement the function F'. We use a sorted
list § for the implementation of F'. § contains the target values in
R(e) such that the i-th element in § shows the y value for the i-th
largest point in R(e).

Having the target values sorted in §, in order to find F(y), it is
enough to find index ¢ for which §[¢] < y and F[i + 1] > y. Then,
F(y) = i. That is because, for all j < i: §[j] < y, while for
all 5 > i: §[j] > y. Therefore, the number of points for which
y(z) < y is equal to i. Also, since the values in § are sorted, we
can use binary search for finding the index 3.

In order to compute the weight of a point point dz € R(b) using
the Equation 6, Algorithm 2 conducts two binary searches on §. It
uses the sums of the weights and calculate w(.S, Rs).

As explained above, the EXACT,, algorithm (Algorithm 2) has
two phases: (i) constructing the sorted list §, and (ii) parsing over
the points in R(b) and calculating the support. (i) is in O(nlogn).
In (ii), for each point in R(b), the algorithm runs two binary searches
over the array F' (of size n) and, therefore, is again in O(nlogn).
Hence, the EXACT,, algorithm is in O(nlogn).

Having designed the efficient algorithm for unconstrained trend-
lines, next we extend it to constrained trendlines in § 4.

4. CONSTRAINED TRENDLINES

So far, our focus was on the unconstrained trendlines, where
6 = ((b,y(b)), (e,y(e))) is valid, so long as its beginning and end
points belong to the support region —i.e., b € R(b) and e € R(e).

In this section, we consider computing the support of the state-
ments that are based on constrained trendlines. Recall that the
single-point enforcement is the extreme case of constrained trend-
lines where the choice of the beginning point, enforces the end
point to a single point. Computing the support for these cases is
straightforward. To do so, given a support statement S = (L, T)
over the support region Rg = (R(b), R(e)), it is enough to make
a pass over the points in R(b), for each point b € R(b) find its cor-
responding point e € R(e), and count up if y(e) —y(b) € (L, T).
This simple algorithm is linear in the size of R(b).

943

g ¥ R(b) Wik <RE_ ¥ R(b) R(e)
| wij] AN i Ry, Ro, Ry,
,,, wli] 2=
b e ijk X bb, b, .

Figure 3: Illustration of the sliding window in
R(b) for constrained trendlines.

A similar approach also works for the less extreme constrained
trendlines. For a point b € R(b), let Ry (e) be the set of valid points
in R(e). One can make a pass over R(b), and for each point b €
R(b) find Ry (e). Then, it is enough to, for each b € R(b), count the
number of trendlines that support S. This algorithm, apparently, is
efficient when the size of Ry (e) is small. Especially, when Ry (e)
is a small constant, just like the single-point enforcement case, the
algorithm is linear to the size of R(b). The problem is, however,
when Rj(e) is a considerably large portion of R(e). For example,
for the constrained trendlines with more freedom where | Ry (e)| is
in O(n), the algorithm becomes quadratic, i.e., O(n?) — just like
our baseline in § 3.1.

Our aim in this section is to maintain the linearithmic perfor-
mance. We note that if |Ry(e)| < O(logn), the baseline solution
is in O(nlog n); that is, it already is efficient.

In § 3.2, we proposed the construction of the cumulative func-
tion F'. The cumulative function gave us the advantage to, for ev-
ery point b € R(b), find the number of points in e € R(e) that
6 = (b, e) supports the statement S. Recall that we use a sorted
list, containing the objective values of the points in R(e), for the
development of F'. Then, every call of F' is equivalent with con-
ducting a binary search on the list, and, hence, is in O(logn). This
method becomes problematic for the constrained trendlines, as not
all the elements in F' correspond to a valid point Ry (e). One still
could make a pass over F' and filter out the invalid points, and then
apply the binary search. However, requiring a pass over F, this
reduces the performance of F' to O(n), dropping the overall per-
formance of the algorithm to O(n?).

The other alternative is to consider Ry(e) as a sliding window
while sweeping over R(b). That is, to initially find Ry (e) for a
(corner) point in R(b), and to move Rj(e), as a sliding window,
while sweeping b (Figure 3). Then, initially constructing the sorted
list of objective values for the first region Ry (e), while sliding the
window, one can update the list by removing the points that are no
further valid, and adding the new points in R(e) that become valid.

Maintaining the objective values of the points inside the window,
however, is problematic when there are updates. That is because
every insert or delete into the list requires to shift the values in the
array which makes the performance of each count linear in | Ry (e)|,
even though the binary search is still in O(logn). Alternatively,
one could use a heap data structure for maintaining the sorted list.
However, even though the operations are efficient in heap, it is not
possible to conduct a binary search of O(logn) on it. This again,
makes the final algorithm quadratic.

In order to develop the sliding window strategy, we need to be
able to update (both insert and delete) and also the search in a log-
arithmic time. The quick answer is a balanced binary search tree.
Red-black trees (RBT) [4], is balanced binary search tree (BST)
that has a logarithmic run-time for insert, delete, and also search.
But there still is a small issue. Search in a BST checks the existence

Figure 4: A sample red black tree in which every node contains the size of
its left sub tree (including the node itself).

of an item in the list and if not a pointer to the location it can get
inserted. We, instead need to count the number of elements smaller
than the queried value in the tree. Given a BST, one would need to
iterate over its nodes in the “left-hand side” of the key, in order to
find the number of nodes with smaller value.

In the following, we show how we adapt BST for finding the
counts efficiently. The central idea is that if the nodes of the BST,
in addition to the node value, maintain the size of their left sub-tree,
then counting the number of nodes in the left-hand side of the key is
doable in logarithmic time. Consider the sample RBT in Figure 4.
Note that, in addition to the node values, every node contains the
count of its left sub tree (including the node itself). In order to count
the number of nodes smaller than a given key value, starting from
the root and following the path for finding the key, it is enough to
add up the count values for the nodes with smaller values than the
key. For instance, in Figure 4, let the key be 8, that is, the goal is
to compute F'(8). Let sum (initially 0) be the variable containing
the sum of counts. The traverse starts from the root and since its
value (6) is smaller than the key (8), its count value is added to sum
making its value 4. It then moves to the right child of the root with
the value of 10. Since 10 > 8, it then moves to its left child (8.1)
and since that also is larger than 8, moves to its left child with value
7. Then, because 7 < 8, it adds its count value to sum making it
4 4+ 1 = 5. The algorithm then stops since this node does not have
aright child, returning F'(8) as 5.

The only remaining issue here is updating the counts while up-
dating the red-black tree. The RBT does not originally contain the
count, and does not consider it while updating the tree. Similar to
the search operation, insertion and deletion operations, traverse the
RBT from the root, while at each iteration conducts constant num-
ber of “rotation” operations (for further details please refer to [4]).
Rotation is a local operation changing O(1) pointers in the tree.
Every rotation operation may change the structure of the tree by
moving the entire sub-tree under a node to another node. There-
fore, assuming that every node maintains the the size of its left
sub-tree (including itself), updating the counts for on each rotation
is also in O(1) — without the need to traverse over the sub-trees.
Consequently, adding the count values to the nodes of RBT does
not affect its logarithmic update time.

Having the proper data structure for developing the sliding win-
dow strategy, Algorithm 3 shows the pseudocode of EXACT,., the
efficient algorithm for computing the support of statement with
constrained trendlines. If the constraints on the validity of trend-
lines are restrictive enough that makes the size of Ry (e) less than
log n, then we follow the baseline strategy for computing the sup-
port, which gives a performance of O(nlogn). Otherwise, the al-
gorithm uses the RBT (with count values) data structure, illustrated
in Figure 4. Then, starting from the left-most point in R(b), it fol-
lows the sliding window strategy, keeping the RBT up-to-date, as
it moves the window. Let the number updates to RBT upon mov-
ing the window be k. Then the algorithm needs to conduct O(k)
updates per move, making its overall run-time in O(k nlogn).

So farin § 3 and 4, we designed efficient exact algorithms that, as

944

Algorithm 3 EXACT,
Input: statement S = (L, T) and support region Rg = (R(b), R(e))
Output: w(S, Rg)

l: ent =0,v0l =0

2: if size of valid region for a point b € R(b) < O(logn) then

3: ford’' € R(b)do

4: Ry (e) ={e’ € R(e) | (V',€') is a valid trendline }

5 vol = vol + | Ry (e)|

6: for ¢’ € Ry (e) do

7: ify(e') —y(b') € (L, T) then ent = cnt + |Ry (e)|
8: end for

9: end for

10: return £

11: end if

12: RBT = new red-black tree
13: b' = the left-most point in R(b)
14: for ¢’ € Ry (e) do add(RBT, y(e'))

15: while true do

16: wol = vol + |RBT|

17: i1 = count_smaller(RBT, y(b') + L)
18: 41 = count_smaller(RBT, y(b') + T)
19: cnt = cnt + (i2 —41)

20: b = sweep_to_next (b', R(b))

21: if b’ = null then break

22: X = the points to be removed from RBT
23: for e’ € X1 do remove(RBT,y(e'))
24: X, = the points to be added to RBT
25: fore’ € X3 do add(RBT,y(e'))

26: end while
27: return <&

vol

we shall demonstrate in § 7, run well for the large settings. How-
ever, for the very large settings, the exact algorithms may not be
very efficient. On the other hand, as an aggregate value, the user
may prefer a quick, yet accurate, estimation of the support over
waiting for the exact value. She therefore, may be willing to trade-
off accuracy with efficiency. Following this, next in § 5, we seek
to design a sampling-based algorithm for estimating the support of
trendline statements.

5. RANDOMIZED ALGORITHM

In very large settings where the number of points in R(b) and
R(e) is significant, or in the absence of explicit target values where
acquiring the data is costly, exact algorithms may not be efficient.
On the other hand, a precise-enough estimation of the support of
a statement may give a good idea of whether or not it is cherry-
picked. Hence a user may prefer to quickly find the estimate, rather
than spending a significant amount of time for finding out the exact
values. In this section, we seek to design a Monte-Carlo method [5,
6] for estimating the support of a statement.

Monte-Carlo methods use repeated sampling and the central limit
theorem [7] for solving deterministic problems. Based on the law
of large numbers [7], the mean of independent random variables
can serve for approximating integrals. That is because the ex-
pected number of occurrence of each observation is proportional
to its probability. At a high level, the Monte-Carlo methods work
as follows: first, they generate a large enough set of random inputs
based on a probability distribution over a domain; then they use
these inputs to estimate aggregate results.

In the following, we first, § 5.2, propose the PAIRSAMPLING al-
gorithm that is based on sampling pairs of points from R(b) to R(e)
and works both for unconstrained and constrained trendlines. Then,

Algorithm 4 PAIRSAMPLING
Input: statement S = (L, T), support region Rg = (R(b), R(e)), a
dataset D, the sampling budget IV, confidence level o

e=2Z(1—2)/~brm

return mg, e

I: ent =0

2: fori=1to N do

3: p = auniform sample from R(b)

4: p’ = auniform sample from R, (e)

5. if (y(»') —y(p)) € (L, T) then cnt = cnt + 1
6: end for

7: me = ant

8:

9:

we will provide POINTSAMPLING in § 5.2 for unconstrained trend-
lines that sample independent points R(b) and R(e). Although
both PAIRSAMPLING and POINTSAMPLING provide unbiased es-
timations, we provide a negative theoretical result about the vari-
ance of POINTSAMPLING. Still as we shall show in in § 7, in
all of our experiments, for a fixed sampling budget, POINTSAM-
PLING provided low variance estimations, tighter than PAIRSAM-
PLING. POINTSAMPLING provides better estimations when sam-
pling is costly and the number of samples are limited.

5.1 Pair sampling

PAIRSAMPLING is a monte-carlo estimation algorithm that fol-
lows the idea of drawing independent trendline samples for esti-
mating the support of a statement (both unconstrained and con-
strained). Consider the trendline statement S = (L, T) with the
support region Rs = (R(b), R(e)). The universe of possible
trendlines from R(b) to R(e) is the set of valid pairs (p, p’) where
p € R(b) and p’ € R(e). Let w be the support of S in the re-
gion Rg, i.e., w(S, Rs). For each uniformly sampled pair (p, p’),
let the random Bernoulli variable z, 7y be 1 if y(p') — y(p) €
(L, T), 0 otherwise. The probability distribution function (pdf) of
the Bernoulli variable z is:

p(z) = {“’ v=1 (7)

l-w =0

The mean and the variance of a Bernoulli variable with the suc-
cess probability of z is 41 = w and the variance is 0® = w (1 — w),
respectively. For every set £ of N iid (independent and identically
distributed) samples taken from the above binary variable x, let m¢
be the random variable showing the average of £. Using the central
limit theorem, m¢ follows the Normal (AKA Gaussian) distribution
N (,u, ﬁ) — the Normal distribution with the mean y and standard
deviation ﬁ

Given a confidence level «, the confidence error e identifies the
range [me — e, mg + e where:

pime—e<pu<me+e)=1—a (8)
Using the Z-table:
o, o
e=272(1--)— 9
-3 ©)

For a large enough value of IV, we can estimate o as \/me¢ (1 — myg).
Hence, Equation 9 can be rewritten as:

me (1 —mg)

«

(10)

945

Following the above discussion, the algorithm PAIRSAMPLING
(Algorithm 4) uses a budget of /N sample trendlines from Rg to es-
timate the support w(S, Rs). The algorithm computes m¢ by ratio
of samples that support S. It then computes the confidence error e,
using Equation 10 and returns m, and e. It is easy to see that, since
the algorithm linearly scans over N samples, it is running time is
in the order of O(V).

An observation is that, in order to take N trendline samples,
PAIRSAMPLING takes IV independent samples from R(b) and also
N from R(e). It, however, does not reuses the sampled points, as it
intends to draw independent trendline samples. Although, reusing
the points would increase the number of sampled trendlines. Next,
we propose POINTSAMPLING, the algorithm that reuses the sam-
pled points to get N sample trendlines.

5.2 Point sampling, a practical solution

PAIRSAMPLING works by drawing independent trendline sam-
ples; hence it does not reuse sampled points from R(b) and R(e).
Reusing the sampled points could result in more trendline samples
and would have the potential to reduce the estimation error.

Let B be a set of NV iid random samples from R(b) and E a set of
N iid random samples from R(e). The combinations of the points
in B and E generate N2 Bernoulli samples based on Equation 7
which may result in more accurate estimations. POINTSAMPLING
uses this idea. It uses the these N2 samples and returns their av-
erage as its estimation for support. In the following, we first pro-
vide an efficient development of the POINTSAMPLING algorithm.
Then, we show the negative result that, even though the number of
samples increase to N2, since the sampled pairs are not indepen-
dent, POINTSAMPLING may not necessarily generate more accu-
rate results. Still, POINTSAMPLING is effective when the sampling
budget is limited, or sampling is costly. As we shall show in § 7,
POINTSAMPLING had a lower variance than PAIRSAMPLING in all
experiments we conducted with a fixed sampling budget.

5.2.1 Algorithm Development

The straight-forward development would literally generate all
N? pairs between B and E, and similar to Algorithm 4 compute
the ratio of pairs for which (y(p") — y(p)) € (L, T) to all pairs.
This, however, is in O(N?), simply because there are N? pairs it
iterates over.

Instead, in the following we propose the efficient implemen-
tation, similar to Algorithm 2, which is linearithmic to N, i.e.,
O(Nlog N). Note that for every sample point b in B our ob-
jective is to find the number of points e in F such that y(e) €
(L + y(b), T 4+ y(b)). That is the number of points in F with
the objective value of less than T + y(b) minus the ones with the
objective value of less than L + y(b).

Similar to Algorithm 2, we first design the “cumulative” function
F : R — R, that for every value y returns the number of points e
in E where y(e) < y. Given the objective values of the points in
E, the sorted list of these values represent §. Then, finding a value
F(y) is possible by applying a binary search on §. Algorithm 5
shows the development of POINTSAMPLING using this strategy.

5.2.2 Variance Analysis

In the following we study the variance of POINTSAMPLING. We
will show that, even though reusing the sampled points increase
the number of samples to N2, due to the dependency between the
samples, the variance will not necessarily drop.

Let b1,---,bn be the set of points sampled from R(b) and
e1,--- ,en be the ones sampled from R(e). Also, let z; ; be the
Bernoulli variable based on Equation 7, defined over the sample

Algorithm 5 POINTSAMPLING
Input: statement S = (L, T), support region Rg
dataset D, the sampling budget IV, confidence level o

(R(b), R(e)), a

1: fori =1to N do

2: add a uniform sample from R(b) to B
3: add a uniform sample from R(e) to E
4: end for

5: § = sorted(y(E[1]) - - - y(E[N]))

6: cnt =0

7: fori=1to N do

8: i1 = binary_search(y(Bli]) + L, %)
9: iy = binary_search(y(B[i]) + T,F)
10: ent = ent + (iz — i1)
11: end for
12: me = %
13: return mg

points b; and e;. Recall that the mean and the variance of such vari-
able is 1, = w and 02 = w(1 — w). Using these m = N? trend-
line samples, POINTSAMPLING outputs the averages z; j, Vi, €
[1, N] x [1, N]. Using these notations, we compute the variance of
the average of x1,1 to xn,~. That is:

1 1
VU/T’EZ —72

m

(EIQ

m
:)’] = E[Y_ @i]?)
i= i=1
m m
— (m o2+ Z Z Cov(zi, x;))
i=1 j=1%#i
Based on Equation 11, the variance of POINTSAMPLING de-
pends on the covariances between the sample pairs. For a sam-
ple pairs x = z;; and 2’ = z ; where i # i and j # j',
Cov(z,z') = 0, simply because those are independent, as b;, by,
ej, and e/ are drawn independently.
For the pairs where i = i’ or j = j’, though, the covariance
is not zero®. Consider the pairs x xi; and ' = x; ;s (the
covariance for z = z; ;j and 2’ = x;/ ; is also the same):

an

Cov(z, m/) = E[x z'] — E[z]E[x’)
Elzijz; ;] — Elwi] E

} 2

Using v to show E[z; ;z; ;] (and Elz; jxy ;)"

[,5]

12

= Elzi jz;

Cov(z,z') =~ —w®

Every sample point b;, Vi = 1 to N, there are N Bernoulli vari-
ables, x; 1 to x; n, that share b;. Hence, for each i, there are
N(N-1) __.
——— pairs z;,; and x; j» where covariance is not zero. Simi-
larly, every sample point e;,Vj = 1 to IV, there are N Bernoulli
variables, x1 ; to zn ;, that share e;, giving N) pairs with
non-zero covariances. Excluding the pairs that share both b; and
ej, there totally are 2NN - W = N?(N — 1) pairs for which
covariance is not zero. Therefore:

Z Z Cov(z;,x;) =

i=1 j=1#4

N*(N-1D(y-w?) (13

Note that either ¢ # i’ or j # j’, as otherwise = and x’ are the same

4y = E[x; jx; ;] is the probability that for a random sample b; from
R(b) and two independent random samples e; and e;s from R(e), both

y(e) —y(b) € [L, Tland y(e) —y(¥') € [L, T].

J

946

Consequently:
Var|— Zm,] = m01+N (Nfl)('yfwg))
- %(w(l SO (NS D) (4

Assuming that sampling is in O(1), the computation cost be-
tween PAIRSAMPLING with N log N independent pairs of points
is equal to the cost of POINTSAMPLING with the budget /N. Hence,
for a similar computation cost, POINTSAMPLING has a better vari-
ance than PAIRSAMPLING, if:

1 2 w(l —w)
aeled -+ (N =D))< Fow 19
Substituting the variables:
(N-1)logN w(l-w)
N —log N v — w? (16)
Let p(S) =w(l —w)/(y — w2), then:
N —
logN < ¢(5) (17)

N —log

Note that ¢(.S) is a function of the input statement .S. Based on
Equation 17, assuming that sampling has a constant cost, for a fixed
time budget, PAIRSAMPLING is preferred over POINTSAMPLING,
unless the time is very limited. On cases that sampling is costly,
though, as we shall show in § 7, POINTSAMPLING is a better al-
ternative, as in all of our experiments it outperformed PAIRSAM-
PLING when both used IV as the sampling budget.

6. MOST SUPPORTED STATEMENT

So far in this paper, we studied the verification problem: given
a statement, compute its support based on the data. Suppose the
statement has a low support. An immediate follow-up question one
may ask is: if not this, what is the right statement supported by
the data? For example, consider the statement of Example 1 that
in 2012 the Northern Hemisphere summer days were colder than
winters. In §7.2 we shall show that this statement has a very low
support. After providing this information, a natural question would
be: what is the statement supported by data? Answering this ques-
tion is our focus in this section. That is, instead of providing blind
support numbers, we provide extra information that can be viewed
as explanation to the user by comparing what is supported by data
v.s. what has been stated. Specifically, we aim to find the statement
(with a fixed range) that has the maximum support (problems 2)
and the statement (with minimum range) for a specific support (§2).
For instance, using Example 1 in § 7.2, we shall find statements
with support of 80% across different cities in Northern Hemisphere.
Finding most supported statements is challenging. That is because
a brute force solution needs to generate all possible statements
and check the support for each using the techniques provided in
the previous sections. Let Ymin and ymae be min(y(R(e))) and
max(y(R(e))) respectively. For MSS, (Ymaz — Ymin) provides a
lower bound for L and (Ymaz — Ymin — d) is an upper bound for
it. The brute-force algorithm can start from the lower bound, check
the support of S(L, L + d), increase the value of L by a small
value €, check the support of the new statement, repeat this process
until L reaches the upper bound, and return the statement with the
maximum support. Note that in addition to the efficiency issue, this
algorithm cannot guarantee the discovery of the optimal solution,
no matter how small € is.

Algorithm 6 TS
Input: Rg = (R(b), R(e)), D, a support value s

for ¥’ € R(b) do
for valid ¢’ in Ry (e) do add y(e’) — y(b') to £
end for
sort £; 0 = s X ||, min = oo
fori=1to |[{| — 6 do
if min > £[i 4] — £[i] then
min = L[i + 6] — L[i]; S = (L[i], £[i + &])
end if
end for
: return S, min

SN A A el >

—

Algorithm 7 MsS
Input: Rg = (R(b), R(e)). D, a statement range width d

1: for Y’ € R(b) do

2: for valid ¢’ in Ry (e) do add y(e’) — y(b') to £
3: end for

4: sort £;max =0

5: for i = 1to |¢| do

6: j =b-search(?, i,|¢|,key = {[i] + d)

7: ifj = —1 /+*not foundx*/ then break
8 if max < (j — i) then

9 maw = (j—) 5 = (¢l lj))
10: endif
11: end for
12: return S, max/|{|

Instead, we first create the “sorted distribution of trendlines”.
That is, we create a sorted list ¢ (from smallest to largest) where
every value is the difference between the target values of a valid
trendline. We shall show that it enables answering both MSS and
TS. Constructing ¢ requires passing over the pairs of trendlines and
then sorting them. Given that the number of pairs is in O(n?),
constructing the ordered list is in O(n? logn).

Finding the tightest statement for a given support value, using ¢,
requires a single pass over the list. Algorithm 6 shows the pseudo-
code for finding TS. Starting from the beginning of the list, the
algorithm moves a window of size § = |¢| x s over the list. Note
that the window i (the window at step 7) identifies a set of J trend-
lines having the indices from 4 to ¢ + § in the sorted list. Also,
all trendlines in the list support the statement S = (¢[i], £[i + J]).
Moreover, since s = §/|€], w(S(L[i], €[i + d])) > s. Using this
observation, while moving the sliding window over /, at every step
the algorithm measures £[i +] — £[¢] as the tightness of the current
statement. The algorithm keeps track of the tightest statement and
if £[i+06]—¢[i] is smaller than this value, it updates the tightest state-
ment to ¢. After sweeping the window over ¢, the algorithm returns
TS. Obviously sweeping the window over £ is in O(|¢|) = O(n?).
Therefore the total running time of the algorithm is determined by
the construction of /, i.e., O(n”log n).

Finding MSS using ¢ is also possible, applying a similar process.
The idea for MSS is also to slide a window over £. The difference,
however, is that the window size is not fixed anymore. Recall that
every value in ¢ represents the target-value difference of a valid
trendline. For a fixed statement range, the support window should
contain all trendlines that their target-value differences belong to
the statement range; hence, the window size is variable. The algo-
rithm for finding MSS is provided in Algorithm 7. Starting from
the beginning of ¢ the algorithm sweeps a window over /. In every
step i, it applies a binary search over ¢ to find the index j, such

947

-
=)
©

-1
= 10
w
] 102 < support = 0.01726
g
§10°
Qo
o
a
10
10° » D & 2 © 2 D
N o @ > (]
& <~\‘° *O« &\\ &rp ,,\°.<;o© q}\e ¥ &,,;*-
o' sS o NP & 0O 8
& @ 2 Q" & ¥ P
N N &2 @
< v &'
> &
Q@ L

Figure 5: Support of Northern Hemisphere’s Temperature Statement in
2012 (Example 1) for different cities

that (€[] — £[i]) < d while (€[+ 1] — £[i]) > d. The support
of the statement identified by the current window is (5 — 4)/|¢|. In
the end, the window with the maximum size (therefore maximum
support) is returned. Applying a binary search at every step, this
algorithm is in O(n? logn).

7. EXPERIMENTS

7.1 Experiments setup

The experiments were conducted using a 3.8 GHz Intel Xeon
processor, 64 GB memory, running Linux. The algorithms were
implemented using Python 2.7.

We use the following real datasets in our experiments:

1. Carbon Dioxide Levels (CO2) [8]: Using data from Earth Sys-
tem Research Lab [9], this dataset contains Atmospheric Carbon
Dioxide Dry Air Mole Fractions from quasi-continuous daily mea-
surements at Mauna Loa, Hawaii. It contains 19,127 records from
Mar. 1958 to Feb. 2019, over the attributes date and price.

L. Weather dataset (WD) [10]: Collected from the OpenWeath-
erMap website’, it contains the historical weather data between the
years 2012-2017 over various weather attributes, for 36 cities in
US, Canada, and Israel. For each city, the dataset contains 42,253
records, each containing hourly weather measurements such as t em—
perature, humidity, and air pressure.

II1. US Department of Transportation flight dataset (DOT) [11]:
This dataset is widely used by third-party websites to identify the
on-time performance of flights, routes, airports, and airlines. Af-
ter removing the records with missing values, the dataset contains
457,892 records, for all flights conducted by the 14 US carriers in
the last month of 2017. Each record contains measurements such
as Air-time, Distance, and Arrival-Delay.

IV. Stock dataset [12]: This is our very large dataset. It contains
21 million records about the daily stock prices for a selection of
several thousand stock tickers from NYSE and NASDAQ. Every
tuple contains 8 attributes ticker, open, close, adj_close,
low, high, volume, and date.

In the following, first in § 7.2, we demonstrate a proof of concept
by studying Example 1, using the weather dataset. Then in § 7.3,
we conduct the performance evaluation of our proposal.

7.2 Proof of concept — Northern Hemisphere’s
Temperature

In this section, we demonstrate the validity of our proposal by
studying the claim in Example 1 that summer in the northern hemi-
sphere was colder than winter in 2012-13. We use the weather
dataset: (xi : date/time ,z2 : city_name), y : temperature. We
consider the comparison between a summer day and a winter day

Sopenweathermap.org

openweathermap.org

o
=]

a
=]

N
o

temp. difference between
a summer and a winter day
N w
o o

-
o

o

Figure 6: Tightest statements with support 0.8 for the temperature of dif-
ferent cities in 2012 (Example 1)

to be valid if it is comparing the temperature of the same city.
Therefore, the support regions Rs is naturally defined as set of
winter days of cities as the beginning (Rp) and set of summer
days of cities as the end (Rg). Following this, we define Rg as
Rs = (R, Rg), where Rg = ({ Dec. 12012, x2), (Mar. 1
2013, xz2)) and Rg = ({ Jun. 12013, z2), (Sep. 1 2013, x3)).
Given Rg, the statement S is defined as S = (—o0,0). Figure 5
shows the overall support, the cities with minimum and maximum
support of the statement, as well as the support for 7 major US
cities. Vancouver with a support of less than 0.0001 had the min-
imum support, while Beersheba with 0.1 had the maximum sup-
port. The overall support of this statement was less than 0.018.
This means that among all valid trendlines, less than 0.018 of them
support the idea that summer was colder than winter! This very
small support clearly shows that the trendline based on which the
statement is made is cherry-picked.

Next, to find “fair” statements supported by data, we run Algo-
rithm 6 to find tightest statements with support w = 0.9 for dif-
ferent cities. Figure 6 show the results. The results confirm that
summer days have been warmer than winter. Among these, the
maximum difference belonged to Las Vegas where summer days
where 14 to 58 degrees warmer than the winter, while the least be-
longed to Beersheba where the differences between summer and
winter days where between -0.6 and 34 degrees.

7.3 Performance evaluation

Having demonstrated a proof of concept, in the rest of the sec-
tion we evaluate the efficiency and effectiveness of our proposed
algorithms. In addition to baseline (Algorithm 1), we compare our
results against [3] (labeled as CFCQP). In the plots, we label our
efficient exact algorithms (Algorithm 2 and Algorithm 3) as EX-
ACT. Our default randomized algorithm is PAIRSAMPLING (Algo-
rithm 4) which is labeled as RANDOMIZED in the plots. Since our
objective in this section is to study efficiency, as the default setting,
we partition the data in two equal-sized partitions R(b) and R(e).
The following are our experiment results.

7.3.1 Unconstrained Trendlines

Following the structure of the paper, first we study unconstrained
trendlines. To do so, we run [3] (CFCQP), Algorithms 1 (Base-
line), and Algorithm 2 (EXACT,,) on different datasets while vary-
ing the input size n. The results are provided in Figure 7, Figure 8,
Figure 9, and Figure 10. We note that adopting [3] for computing
the support of trendlines results in an O (n?* log n) algorithm, while
Baseline is in O(n?) and EXACT,, is linearathmic. This is what
we observed across different settings, independent of the choice
of the dataset. CFCQP did not finish for any of the settings for
DoT dataset (Figure 9). For other datasets also, it had a signifi-
cantly worse running time. For example, for weather dataset and

948

n = 42K tuples, CFCQP took 1709 seconds while BASELINE fin-
ished in 46 seconds and EXACT,, run in 0.01 seconds. Having a
quadratic runtime, Baseline is not scalable as it required more than
half an hour to finish for the DoT dataset with 457K data records
and 32 seconds for the 45K records in the Weather dataset. On
the other hand, the linearithmic complexity of Algorithm 2 resulted
an acceptable efficiency in all of these settings. The Exact algo-
rithm finished in 7 milliseconds for CO2 dataset for 10K records,
in 10 milliseconds for weather dataset, and in 2 seconds for the
DoT dataset with 457K records. For the very large stock dataset,
for 10 million records, it finished in 46 seconds.

7.3.2 Constrained Trendlines

Next we study the performance of Baseline (we adopted Algo-
rithms 1 for constrained trendlines) and EXACT. (Algorithm 3). We
selected the CO2 and Weather datasets for this experiment. Con-
sidering the overhead of the RBT implementation, we use 10 log n
as the O(log n) threshold in line 2 of Algorithm 3. Similar to the
unconstrained trendlines experiments, first, we vary the input size
(n), while setting the width of the window (the size of valid region
for a point b € R(b)) as 1000. The results are provides in Fig-
ures 11 and 12. In all settings Exact outperforms Baseline in an
order of magnitude. Still, comparing the results with the ones for
unconstrained trendlines, Algorithm 3 is slower than Algorithm 2.
That is due to the overhead of RBT operations. Also Baseline has
a better performance for constrained trendlines in comparison with
unconstrained trendlines. That is because here there are less valid
trendlines for Baseline to iterate over. As the next experiment, set-
ting the input size as 20K, we vary the with of the valid window
in R(e) (Figures 13 and 14). While the performance of Baseline
linearly depends on the width of the window, Algorithm 3 is loga-
rithmic to the window size. This is confirmed in our results.

7.3.3 Randomized Algorithms

After studying the performance of the exact algorithms, next
we move to randomized algorithms. Even though, our exact al-
gorithms are linearithmic, they may require a few minutes for the
very large settings. Using the stock dataset and PAIRSAMPLING
as the randomized algorithm, while setting the sampling budget to
N = 10K, we vary the input size from 2 million to 10 million and
compared the performance of EXACT, and PAIRSAMPLING for
computing support. The results are provided in Figures 15 and 16.
While the exact algorithm required up to the order of a minute to
compute the support, PAIRSAMPLING finished in at most one sec-
ond. Still, comparing the dashed lines in Figure 16, its estimate of
the support was almost the same as the exact values.

In § 5.2.2, we studied the variance of the POINTSAMPLING al-
gorithm and showed that, even though it uses N2 samples, its vari-
ance is not necessarily less than PAIRSAMPLING. Here, we also
demonstrate an experimental comparison between these two algo-
rithms. We used weather dataset for this experiment and consid-
ered the temperature in the New York city. In order to have an
accurate comparison between the variances, for each setting we re-
peated each batch of 30 experiments, 30 times. For each batch we
computed the variance and took the average of the 30 variances.
We compare the variance of POINTSAMPLING against PAIRSAM-
PLING with (i) budget of N and (ii) budget of N log N. While (i)
represents the equal sampling budget comparison, (ii) represents
equal computation cost (assuming O(1) cost for sampling). Us-
ing the statements with various supports (discovered using Algo-
rithm 6), we studied the impact of varying support (Figure 17). We
also run an experiment for varying the sampling budget (Figure 18).
In all experiments, for a fixed sampling budget, POINTSAMPLING

-© cFcap ©cFcap
o ¥ Baseline 2 -¥-Baseline 2 2
[£ Exact o £+ Exact o o
@ @ @ @
=2 > = o
K o o o
g 7 0 2107
) o K o
° aEi aE> 010
£ = =10° =102
= o 07 3 4 5 6 7
2000 4000 6000 8000 10000 5 1 2 3 4 5 102 10° 10 10° 10° 10
number of tuples (n) number of tuples (n) 194 number of tuples (n) 10 n - logscale
Figure 7: CO2 dataset, uncon- Figure 8: Weather dataset, uncon- Figure 9: DoT dataset, uncon- Figure 10: Stock dataset, uncon-

strained trendlines, varying n strained trendlines, varying n

10" 10’
-¥-Baseline 3
o
2 £ Exact 2
[+] [+]
0 0
=] o
° o
L i J
e 8 3
(] 3 (1]
1
.E 5 0 -¥-Baseline
I £ Exact
107

1.5
number of tuples (n)

2
x10%

2 3
number of tuples (n)

4
x10%

Figure 11: CO2 dataset, constrained

trendlines, varying n strained trendlines, varying n

10? 03
EExact 1 = = = Exact

% Randomized -F Randomized
8 025
2 10'
o =
o0 S pkrearsesseasiar essanns sassas
° e
& 100 N ’
o .
g 0.15

10'4 0.1

2 4 6 8 10 8 8.5 9 9.5 10
number of tuples (n) 18 number of tuples (n) , 10®

Figure 15: Stock dataset, scala-
bility, Exact v.s. Randomized: ef-

ficiency fectiveness
4 40
Q@
A
= 2 9
o & @
: P e,
— [<}
3 £ £
2 3 =
H
nE) 1 8 20
10]! 25 0 15
2000 4000 6000 8000 10000 0.1 0.3 0.5 0.7 0.9
number of tuples (n) support

Figure 19: Weather dataset, New
York city, tightest statement with sup-
port 0.8, varying n ple 1, varying support

had a lower variance. This indicates that POINTSAMPLING is a
good approach for the cases that sampling is costly. On the other
hand, PAIRSAMPLING with the budget of N log N outperformed
POINTSAMPLING in all cases. This means that when sampling
is not costly (including the traditional dataset model) PAIRSAM-
PLING is preferred.

7.3.4 Most Supported Statement

Finally, we evaluate our proposed algorithms in § 6 for Prob-
lems 2 and 3. Again, as the default dataset, we used the weather
dataset for these experiments, while using the temperature in the
New York city as the target value. First, we use Algorithm 6 for
finding the tightest statements for (i. Figure 19) varying n (while
setting support to 0.8) and (ii. Figure 20) varying support. The
left-y-axis in the plots (and the blue line with the square marker)
show the time, while the right-y-axis (and the dashed line) show

Figure 16: Stock dataset, scala-
bility, Exact v.s. Randomized: ef-

Figure 20: Weather dataset, New
York city, tightest statement in Exam-

strained trendlines, varying n

logscale

time (sec) -

Figure 12: Weather dataset, con- Figure 13: CO2 dataset, constrained
trendlines, varying width of window

variance

width of range
time (sec) - logscale

949

strained trendlines, varying n

102

o 10
4 ©
10 2
o
°
0 1 10°
10 §
2
107, o
¥Baseline| £107 aseline
) HExact HExact
10"
10 100 1000 5000 10 100 1000 5000

width of window -- logscale width of window -- logscale

Figure 14: Weather dataset, con-
strained, varying width of window

0.025

0.02

[point sampling int sampling

variance
=)
=4 o
s =2
-y o

0.005

0
10 20 30 40 50 60 70 80 90 100
number of samples (N)

0
01 03 05 07 09 098

support

Figure 17: Weather dataset, New Figure 18: Weather dataset, New
York city, Pair sampling v.s. Point York city, Pair sampling v.s. Point
sampling, varying support

sampling, varying budget

support
support

time (sec) - logscale

-1
1
02000

0.7
35

10°
15

20 25

width of range

0
4000 6000 8000 10000 30

number of tuples (n)

Figure 21: Weather dataset, New Figure 22: Weather dataset, New
York city, most supported statement, York city, most supported statement in
varying n, o = 30

Example 1, varying o

the width of the range for the tightest statement. The algorithm re-
quired a couple of seconds for finding the tightest statement with
varying support values and up to 20 seconds for varying n. While
the width of the tightest statement does not seem to depend on n,
it clearly increases with the value of support. That is because we
need to make the statements less restrictive such that more trend-
lines support it. Next, we use Algorithm 7 for finding the most
supported statements for (i. Figure 21) varying n (while setting
the statement range width to o = 30) and (ii. Figure 22) varying
width of the statement range. Clearly, as n increases the running
time increases, as it took 315 seconds for the algorithm to finish for
n = 10K. From the right-y-axis in Figure 21, the support value,
as expected, does not depend on n, whereas (looking at Figure 22)
as the width of the statement range increases the support value get
close to 1.

8. RELATED WORK

Initially developed in journalism, computational fact checking
aims to detect fake news, that is comparing the claims extracted
from the news content against the existing facts [3, 13—19]. The
initial fact checking efforts include manual methods based on the
domain knowledge of human expert and crowdsourcing [16, 18].
Manual fact checking efforts, however, are not scalable and do not
use the existing data. As a result, computational fact checking has
emerged, where the ultimate goal is to have a platform that can au-
tomatically evaluate a claim in real-time [15]. Computational fact
checking heavily rely on techniques form natural language process-
ing [20, 21], information retrieval [22,23], and graph theory [13].
A set of work in automated fact checking focus on knowledge ex-
traction from different data sources [24-26], data cleaning and inte-
gration [27-29], and credibility evaluation [30,31]. Existing work
also includes style-based [32-35], propagation-based [36-38], and
credibility-based [37,39—42] study of fake news. Further informa-
tion about fake news and the detection mechanisms can be found in
a literature survey by Zhou and Zafarani [43].

Using perturbations for studying uncertainty has been studied in
different context in data management [44—46]. Perturbation is an
effective technique for studying the robustness of query outputs.
For example, [47-49] use function perturbation for verifying the
stability of ranking queries, as well as discovering fair and stable
rankings. Query perturbation has also been used for retrieving more
relevant query results [S0-53]. The idea of query perturbation has
also seen its applications in the context of the computational jour-
nalism, in both fact-checking [3] and lead-finding [54]. [54] has a
different objective from our problem: finding a few representative
points to capture the high-value regions of a complex surface. Be-
sides, in this paper, we treat all points in the support region indiffer-
ently, and shape of the surface is not our focus. The focus of [3] has
been on the modeling side— a generic framework for perturbation-
based fact-checking. In contrast, this paper is on the technical side.
Drilling down on the trendline statement, we address both checking
and mining aspects. As observed in § 7.3, using [3] for computing
support results in a worse performance than our baseline. The no-
tion of “support”, proposed in this paper, is a natural measure that
can be defined within the framework and complementary to those
defined in [3].

9. DISCUSSIONS

In this paper, we study statements made based on comparing a
pair of points. Cherry-picking has a long history and hence many
different forms. In a nice article at PolitiFact [55], L. Jacobson
goes over some of the examples of cherry-picking in US politics.
According to this article, PolitiFact has reported cherry-picking
“hundreds of times” in their fact-checks. While we believe our no-
tion of support can be adopted for all cherry-picking settings, how
to efficiently compute the support is problem-specific. Of course,
our problem formulation, while covering many, does not cover all
forms of cherry-picking. Still, for many such settings, our algo-
rithms can simply be adopted. In the following, looking into some
real-life problems, we discuss if those fit our problem formulation
and if not whether our proposal can be adjusted for those.

A large number of the cherry-picked statements are made by
comparing a pair of points where our algorithms can directly (or
after small preprocessing as explained in § 2.2) be applied. For ex-
ample, consider President Trump’s tweet, comparing his approval
rate with president Obama [56]. He cherry-picked a single poll
source and a specific date which shows the highest approval for
him. To validate this statement, similar to § 7.2, one could compute

950

the statement support for different times/poll-sources for President
Trump v.s. President Obama. Another example is Trump’s cam-
paign ad. about undocumented immigrants. The ad. cherry-picked
a single undocumented immigrant to picture the whole group “as
dangerous”, compared to native-born Americans. Of course, com-
puting the support of the statement “undocumented immigrant are
more dangerous (commit crime more) than native-born Americans”
can numerically show how accurate it is. Yet other examples are the
statement made by President Trump about income levels and unem-
ployment numbers of African Americans being worst under presi-
dent Obama than ever [57] or president Trump having the highest
Poll Numbers in the history of the Republican Party [58], which
can be evaluated by computing their supports.

Some statements are made based on a single point, rather than
a pair of points. An example is a statement by the Democratic
National Committee that no middle-class taxpayers stood to gain
from President Trump’s tax bill. Such cases can be viewed as
special cases of constrained trendlines (by fixing R(e) to a sin-
gle point) where Algorithm 3 runs in O(n). Another variation is
when all trendlines are not equally important. For instance, the
data in different time periods may have different contributions to
the correctness of a statement. In such cases, instead of comput-
ing the simple average, one can consider a weighted average using
a user-provided importance function (such as Gaussian decaying
functions around the initial trendline points b and e). Let w(-) be
the user-provided importance function. To adjust for these cases,
Equation 5 shall be adapted to reflect the sum of weights, instead of
counts, i.e., F'(y) = Zde€R<e> | y(dz) <y w(dx). Equation 6 shall
also be adapted accordingly to w[i] = w(dz[i])(F (y(dz[i]) +
T) — F(y(dzli]) + L)). Such modeling change would not af-
fect the complexity of the proposed efficient algorithms.

We would like to reiterate that not all forms of cherry-picking
are covered by our formulation. Sometimes, a trendline statement
is not cherry-picked, but the narrative around it can be mislead-
ing. President Trump’s tweet: “Because of my policies, Black Un-
employment has just been reported to be at the lowest rate ever
recorded” [59] is such an example. Similarly, he wrongly claimed
credit for lack of commercial airline crash deaths during his presi-
dency, while there have not been crash-deaths since 2013 [60]. An-
other case is cherry-picking sentences from natural language texts
that cannot be directly evaluated with our method since our notion
of support is based on numerical values. Still, in such cases, experts
or NLP methods can be used for classifying sentences as if those
support the overall statement and then compute their support.

Finally, we would like to emphasize that human-in-the-loop is
necessary to transform “complicated” statements to the problem
inputs and to identify and provide proper data to the system.

10. CONCLUSION

In this paper, we proposed a system for detecting cherry-picked
trendlines. We defined a notion of support for this purpose and,
formally defining terms, designed linearithmic exact algorithms for
trendlines with different constraint models, followed by random-
ized approximation algorithms. We also studied the problem of
finding mostly supported statements by data. Besides theoretical
analysis, we conducted extensive experiments on real-world datasets
that confirm the validity, efficiency, and effectiveness of our pro-
posal In this paper we proposed sampling-based approximation
for scalability. We will consider designing massively parallel algo-
rithms, similar to [61], as part of our future work.

11.
(1]
(2]

(3]

(4]

(3]

(6]

(7]
(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

REFERENCES

Claire Wardle. Fake news. its complicated. First Draft News,
16, 2017.

John Mason. How to use short timeframes to distort reality: a
guide to cherrypicking.
www.skepticalscience.com/cherrypicking-guide.html, 25
September 2013.

You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and
Cong Yu. Computational fact checking through query
perturbations. ACM Transactions on Database Systems
(TODS), 42(1):4, 2017.

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest,
and Clifford Stein. Introduction to algorithms. MIT press,
2009.

Christian P Robert. Monte carlo methods. Wiley Online
Library, 2004.

Fred J Hickernell, Lan Jiang, Yuewei Liu, and Art B Owen.
Guaranteed conservative fixed width confidence intervals via
monte carlo sampling. In Monte Carlo and Quasi-Monte
Carlo Methods 2012, pages 105-128. Springer, 2013.

Rick Durrett. Probability: theory and examples. Cambridge
university press, 2010.

Carbon dioxide levels in the atmosphere (ppm on a daily
basis). github.com/datasets/co2-ppm-daily.

Earth system research laboratory. www.esrl.noaa.gov/.
Historical hourly weather data 2012-2017, kaggle.
www.kaggle.com/selfishgene/historical-hourly-weather-
data’home.

Accessed: 2018.

Us department of transportation.
www.transtats.bts.gov/DLgselect Fields.asp?

Accessed: 2018.

Evan Hallmark. Daily historical stock prices (1970 - 2018).
www.kaggle.com/ehallmar/daily-historical-stock-prices-
1970-2018/.

Sarah Cohen, James T Hamilton, and Fred Turner.
Computational journalism. Communications of the ACM,
54(10):66-71, 2011.

You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and
Cong Yu. Toward computational fact-checking. PVLDB,
7(7):589-600, 2014.

Naeemul Hassan, Bill Adair, James T Hamilton, Chengkai
Li, Mark Tremayne, Jun Yang, and Cong Yu. The quest to
automate fact-checking. In Proceedings of the 2015
Computation+Journalism Symposium, 2015.

Naeemul Hassan, Fatma Arslan, Chengkai Li, and Mark
Tremayne. Toward automated fact-checking: Detecting
check-worthy factual claims by claimbuster. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1803-1812.
ACM, 2017.

Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Josue
Caraballo, Damian Jimenez, Siddhant Gawsane, Shohedul
Hasan, Minumol Joseph, Aaditya Kulkarni, Anil Kumar
Nayak, et al. Claimbuster: the first-ever end-to-end
fact-checking system. PVLDB, 10(12):1945-1948, 2017.
Naeemul Hassan, Chengkai Li, and Mark Tremayne.
Detecting check-worthy factual claims in presidential
debates. In Proceedings of the 24th acm international on
conference on information and knowledge management,
pages 1835-1838. ACM, 2015.

951

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

Naeemul Hassan, Afroza Sultana, You Wu, Gensheng
Zhang, Chengkai Li, Jun Yang, and Cong Yu. Data in, fact
out: automated monitoring of facts by factwatcher. PVLDB,
7(13):1557-1560, 2014.

Yunyao Li, Ishan Chaudhuri, Huahai Yang, Satinder Singh,
and HV Jagadish. Danalix: a domain-adaptive natural
language interface for querying xml. In Proceedings of the
2007 ACM SIGMOD international conference on
Management of data, pages 1165-1168. ACM, 2007.
Yunyao Li, Huahai Yang, and HV Jagadish. Constructing a
generic natural language interface for an xml database. In
International Conference on Extending Database
Technology, pages 737-754. Springer, 2006.

Philip A Bernstein and Laura M Haas. Information
integration in the enterprise. Communications of the ACM,
51(9):72-79, 2008.

AnHai Doan, Alon Halevy, and Zachary Ives. Principles of
data integration. Elsevier, 2012.

Sachin Pawar, Girish K Palshikar, and Pushpak
Bhattacharyya. Relation extraction: A survey. arXiv preprint
arXiv:1712.05191, 2017.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Murphy, Thomas Strohmann, Shaohua Sun,
and Wei Zhang. Knowledge vault: A web-scale approach to
probabilistic knowledge fusion. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 601-610. ACM, 2014.
Ralph Grishman. Information extraction. I[EEFE Intelligent
Systems, 30(5):8-15, 2015.

Rebecca C Steorts, Rob Hall, and Stephen E Fienberg. A
bayesian approach to graphical record linkage and
deduplication. Journal of the American Statistical
Association, 111(516):1660-1672, 2016.

Amr Magdy and Nayer Wanas. Web-based statistical fact
checking of textual documents. In Proceedings of the 2nd
international workshop on Search and mining
user-generated contents, pages 103—-110. ACM, 2010.
Yasser Altowim, Dmitri V Kalashnikov, and Sharad
Mehrotra. Progressive approach to relational entity
resolution. PVLDB, 7(11):999-1010, 2014.

Diego Esteves, Aniketh Janardhan Reddy, Piyush Chawla,
and Jens Lehmann. Belittling the source: Trustworthiness
indicators to obfuscate fake news on the web. arXiv preprint
arXiv:1809.00494, 2018.

Xin Luna Dong, Evgeniy Gabrilovich, Kevin Murphy, Van
Dang, Wilko Horn, Camillo Lugaresi, Shaohua Sun, and Wei
Zhang. Knowledge-based trust: Estimating the
trustworthiness of web sources. PVLDB, 8(9):938-949,
2015.

Gary D Bond, Rebecka D Holman, Jamie-Ann L Eggert,
Lassiter F Speller, Olivia N Garcia, Sasha C Mejia,

Kohlby W Mcinnes, Eleny C Ceniceros, and Rebecca
Rustige. lyin’ted,crooked hillary, and deceptive donald:
Language of lies in the 2016 us presidential debates. Applied
Cognitive Psychology, 31(6):668-677, 2017.

Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and Nathan
Hodas. Separating facts from fiction: Linguistic models to
classify suspicious and trusted news posts on twitter. In
Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Papers),
pages 647-653, 2017.

Martin Potthast, Johannes Kiesel, Kevin Reinartz, Janek

www.skepticalscience.com/cherrypicking-guide.html
www.transtats.bts.gov/DL_SelectFields.asp?

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Bevendorff, and Benno Stein. A stylometric inquiry into
hyperpartisan and fake news. arXiv preprint
arXiv:1702.05638, 2017.

Dina Pisarevskaya. Deception detection in news reports in
the russian language: Lexics and discourse. In Proceedings
of the 2017 EMNLP Workshop: Natural Language
Processing meets Journalism, pages 74-79, 2017.

Jing Ma, Wei Gao, and Kam-Fai Wong. Rumor detection on
twitter with tree-structured recursive neural networks. In
Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pages 1980-1989, 2018.

Ke Wu, Song Yang, and Kenny Q Zhu. False rumors
detection on sina weibo by propagation structures. In 2015
IEEE 31st international conference on data engineering,
pages 651-662. IEEE, 2015.

Soroush Vosoughi, Deb Roy, and Sinan Aral. The spread of
true and false news online. Science, 359(6380):1146-1151,
2018.

Zhiwei Jin, Juan Cao, Yongdong Zhang, and Jiebo Luo.
News verification by exploiting conflicting social viewpoints
in microblogs. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

Manish Gupta, Peixiang Zhao, and Jiawei Han. Evaluating
event credibility on twitter. In Proceedings of the 2012 SIAM
International Conference on Data Mining, pages 153—-164.
SIAM, 2012.

Jiawei Zhang, Limeng Cui, Yanjie Fu, and Fisher B Gouza.
Fake news detection with deep diffusive network model.
arXiv preprint arXiv:1805.08751, 2018.

Kai Shu, Suhang Wang, and Huan Liu. Exploiting
tri-relationship for fake news detection. arXiv preprint
arXiv:1712.07709, 2017.

Xinyi Zhou and Reza Zafarani. Fake news: A survey of
research, detection methods, and opportunities. arXiv
preprint arXiv:1812.00315, 2018.

Charu C Aggarwal. Managing and mining uncertain data,
volume 35. Springer Science & Business Media, 2010.
Ravi Jampani, Fei Xu, Mingxi Wu, Luis Perez, Chris
Jermaine, and Peter J Haas. The monte carlo database
system: Stochastic analysis close to the data. ACM
Transactions on Database Systems (TODS), 36(3):18, 2011.
Nilesh N Dalvi, Christopher Ré, and Dan Suciu.
Probabilistic databases: diamonds in the dirt. Commun.
ACM, 52(7):86-94, 2009.

Abolfazl Asudeh, HV Jagadish, Gerome Miklau, and Julia
Stoyanovich. On obtaining stable rankings. PVLDB,
12(3):237-250, 2018.

Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and
Gautam Das. Designing fair ranking schemes. In
Proceedings of the 2019 International Conference on
Management of Data, pages 1259-1276. ACM, 2019.
Yifan Guan, Abolfazl Asudeh, Pranav Mayuram,

HV Jagadish, Julia Stoyanovich, Gerome Miklau, and
Gautam Das. Mithraranking: A system for responsible
ranking design. In Proceedings of the 2019 International
Conference on Management of Data, pages 1913-1916.
ACM, 2019.

952

[50] Surajit Chaudhuri. Generalization and a framework for query
modification. In [1990] Proceedings. Sixth International
Conference on Data Engineering, pages 138—145. IEEE,
1990.

[51] Jia-Ling Koh, Kuang-Ting Chiang, and I-Chih Chiu. The
strategies for supporting query specialization and query
generalization in social tagging systems. In International
Conference on Database Systems for Advanced Applications,
pages 164-178. Springer, 2013.

[52] S-Y Huh, K-H Moon, and Heeseok Lee. A data abstraction
approach for query relaxation. Information and Software
Technology, 42(6):407-418, 2000.

[53] Christian S Jensen and Richard Snodgrass. Temporal
specialization and generalization. IEEE Transactions on
Knowledge and Data Engineering, 6(6):954-974, 1994.

[54] You Wu, Junyang Gao, Pankaj K Agarwal, and Jun Yang.
Finding diverse, high-value representatives on a surface of
answers. PVLDB, 10(7):793-804, 2017.

[55] Louis Jacobson. The age of cherry-picking.
web.archive.org/web/20180715230354/http://www.politifa-
ct.com/truth-o-meter/article/2018/feb/05/age-cherry-
picking/,

5 Feb. 2018.

[56] Louis Jacobson. Donald trump tweet on 50% approval
cherry-picks polling data.
web.archive.org/web/20190626042240/https://www.politifa-
ct.com/truth-o-meter/statements/2017/jun/19/donald-
trump/donald-trump-tweet-50-approval-cherry-picks-pollin/,
19 June 2017.

[57] Louis Jacobson. Donald trump: Black income,
unemployment 'worse now than just about ever’.
web.archive.org/web/20191101151207/https://www.politifact
.com/truth-o-meter/statements/2015/aug/02/donald-
trump/donald-trump-black-income-unemployment-worse-
now-j/,

2 Aug. 2015.

[58] Louis Jacobson. No, donald trump’s poll numbers do not
beat lincoln, all other GOP presidents.
web.archive.org/web/20191204110810/https://www.politifact
.com/truth-o-meter/statements/2018/jul/30/donald-trump
/has-donald-trump-had-highest-poll-numbers-any-gop-,

30 July 2018.

[59] Louis Jacobson. Donald trump is partly correct in response
to jay-z about black unemployment.
web.archive.org/web/20191030053546/https://www.politifa-
ct.com/truth-o-meter/statements/2018/jan/30/donald-
trump/donald-trump-partly-correct-rejoinder-jay-z/,

30 Jan. 2018.

[60] Joan Lowy. Fact check: Trump wrongly claims credit for
lack of commercial airline crash deaths.
web.archive.org/web/20190918010302/https://www.chic
agotribune.com/nation-world/ct-trump-airline-safety-fact-
check-20180102-story.html,

2 Jan. 2018.

[61] Yufei Tao. Massively parallel entity matching with linear
classification in low dimensional space. In 21st International
Conference on Database Theory (ICDT 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

https://web.archive.org/web/20180715230354/http://www.politifact.com/truth-o-meter/article/2018/feb/05/age-cherry-picking/
https://web.archive.org/web/20180715230354/http://www.politifact.com/truth-o-meter/article/2018/feb/05/age-cherry-picking/
https://web.archive.org/web/20180715230354/http://www.politifact.com/truth-o-meter/article/2018/feb/05/age-cherry-picking/
http://web.archive.org/web/20190626042240/https://www.politifact.com/truth-o-meter/statements/2017/jun/19/donald-trump/donald-trump-tweet-50-approval-cherry-picks-pollin/
http://web.archive.org/web/20190626042240/https://www.politifact.com/truth-o-meter/statements/2017/jun/19/donald-trump/donald-trump-tweet-50-approval-cherry-picks-pollin/
http://web.archive.org/web/20190626042240/https://www.politifact.com/truth-o-meter/statements/2017/jun/19/donald-trump/donald-trump-tweet-50-approval-cherry-picks-pollin/
http://web.archive.org/web/20191101151207/https://www.politifact.com/truth-o-meter/statements/2015/aug/02/donald-trump/donald-trump-black-income-unemployment-worse-now-j/
http://web.archive.org/web/20191101151207/https://www.politifact.com/truth-o-meter/statements/2015/aug/02/donald-trump/donald-trump-black-income-unemployment-worse-now-j/
http://web.archive.org/web/20191101151207/https://www.politifact.com/truth-o-meter/statements/2015/aug/02/donald-trump/donald-trump-black-income-unemployment-worse-now-j/
http://web.archive.org/web/20191101151207/https://www.politifact.com/truth-o-meter/statements/2015/aug/02/donald-trump/donald-trump-black-income-unemployment-worse-now-j/
http://web.archive.org/web/20191204110810/https://www.politifact.com/truth-o-meter/statements/2018/jul/30/donald-trump/has-donald-trump-had-highest-poll-numbers-any-gop-/
http://web.archive.org/web/20191204110810/https://www.politifact.com/truth-o-meter/statements/2018/jul/30/donald-trump/has-donald-trump-had-highest-poll-numbers-any-gop-/
http://web.archive.org/web/20191204110810/https://www.politifact.com/truth-o-meter/statements/2018/jul/30/donald-trump/has-donald-trump-had-highest-poll-numbers-any-gop-/
http://web.archive.org/web/20191030053546/https://www.politifact.com/truth-o-meter/statements/2018/jan/30/donald-trump/donald-trump-partly-correct-rejoinder-jay-z/
http://web.archive.org/web/20191030053546/https://www.politifact.com/truth-o-meter/statements/2018/jan/30/donald-trump/donald-trump-partly-correct-rejoinder-jay-z/
http://web.archive.org/web/20191030053546/https://www.politifact.com/truth-o-meter/statements/2018/jan/30/donald-trump/donald-trump-partly-correct-rejoinder-jay-z/
http://web.archive.org/web/20190918010302/https://www.chicagotribune.com/nation-world/ct-trump-airline-safety-fact-check-20180102-story.html
http://web.archive.org/web/20190918010302/https://www.chicagotribune.com/nation-world/ct-trump-airline-safety-fact-check-20180102-story.html
http://web.archive.org/web/20190918010302/https://www.chicagotribune.com/nation-world/ct-trump-airline-safety-fact-check-20180102-story.html

	Introduction
	Preliminaries
	Data Model
	Trendline Statement
	Support Model
	Problem Formulation

	Unconstrained Trendlines
	Baseline algorithm
	Efficient exact algorithm

	constrained Trendlines
	Randomized Algorithm
	Pair sampling
	Point sampling, a practical solution
	Algorithm Development
	Variance Analysis

	Most Supported Statement
	Experiments
	Experiments setup
	Proof of concept – Northern Hemisphere's Temperature
	Performance evaluation
	Unconstrained Trendlines
	Constrained Trendlines
	Randomized Algorithms
	Most Supported Statement

	Related Work
	Discussions
	Conclusion
	References

