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Abstract— We consider the problem of finding the lowest
order stable rational transfer function that interpolates a set of
given noisy time and frequency domain data points. Our main
result shows that exploiting results from rational interpolation
theory allows for recasting this problem as minimizing the
rank of a matrix constructed from the frequency domain data
(the Loewner matrix) along with the Hankel matrix of time
domain data, subject to a semidefinite constraint that enforces
stability and consistency between the time and frequency
domain data. These results are applied to a practical problem:
identifying a system from noisy measurements of its time and
frequency responses. The proposed method is able to obtain
stable low order models using substantially smaller matrices
than those reported earlier and consequently in a fraction of
the computation time.

I. INTRODUCTION

Many practical problems involve finding the lowest order
stable transfer function that interpolates a set of given time
and frequency data points. Examples include designing low
order (stabilizing) controllers such that the closed loop
system satisfies some given performance specifications and
control oriented identification [1], [2], [3]. Interpolation with
mixed data was addressed in [4], where it was shown that
the problem reduces to a convex semi-definite program, a
result that subsumes the celebrated Nevanlinna-Pick inter-
polation for frequency-domain data and the Carathéodory-
Fejér interpolation for time-domain data as special cases
(see Corollaries 1 and 2 in [2]). Furthermore this result
provided a parameterization of all such interpolants in the
form of a Linear Fractional Transformation (LFT) of a free
contraction Q(z) ∈ H∞. In principle, one could try to use
these additional degrees of freedom to search for minimum
order interpolants. Unfortunately, due to the LFT dependence
on Q, this problem, if posed in the frequency domain, is non-
convex. This fact coupled with the infinite dimensional nature
of Q leads to an exceedingly hard optimization problem.
As an alternative [5] proposed to solve the problem in the
time domain by minimizing the rank of a truncated Hankel
matrix formed by considering the impulse response over a
sufficiently large horizon of all interpolants generated by
Q, obtained by replacing the latter by the corresponding
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Integral Quadratic Constraint (IQC)1. This approach leads to
a convex optimization formulation and has been successfully
used to solve non-trivial problems. However, it suffers from
the need to consider large time-horizons (with the resulting
increase in computational complexity) to guarantee that the
corresponding truncated Hankel matrix is indeed a good
approximation to the actual, infinite dimensional one.

Motivated by these difficulties, in this paper we propose
an alternative approach to stable low order interpolation
with mixed data that exploits the connection between the
order of a rational interpolant and the rank of the associated
Loewner matrix. Our main result shows that minimum order
interpolants can be obtained by minimizing the rank of the
Loewner matrix constructed from the frequency response of
all stable interpolants subject to the generalized interpolation
conditions that guarantee stability and consistency between
the frequency and time domain data. This approach leads to
a substantial computational complexity reduction vis-à-vis
algorithms based only on generalized interpolation. In the
second portion of the paper we apply the proposed inter-
polation framework to the problem of control oriented (or
set-membership) identification from mixed time/frequency
domain data. Unlike the existing (e.g., subspace) techniques,
our approach guarantees stable results and provides hard
bounds on the identification errors. Also, it leads directly
to low order models, as opposed to the existing control
oriented identification methods [3] where the order of the
model is equal to the total number of data points used
in the identification, necessitating a model reduction step
before these models can be used for controller synthesis.
Unfortunately, the resulting reduced order model may no
longer interpolate the experimental data within the noise
level.

The paper is organized as follows. Section II presents
some required background results on generalized interpola-
tion theory and Loewner matrices and formally states the
problem under consideration. Section III contains our main
result, showing that this problem can be reduced to a semi-
definite program by exploiting the tools presented in Section
II, combined with the usual nuclear norm relaxation of rank,
described in section IV. Section V applies the proposed
framework to control oriented identification of a very lightly
damped cantilevered beam. Finally section VI summarizes

1Note that the simpler approach of just minimizing the rank of the Hankel
matrix of the system subject to the constraint that its response interpolates
the given data within the noise level, but without imposing the additional
conditions from [6] cannot guarantee that the resulting system is stable. See
for instance Example 1 in [5]
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our results and points out to directions for further research.

II. PRELIMINARIES

A. Notation

`1 denotes space of absolutely summable sequences. G(z) is
z transform of the sequence g ∈ `1. G(z)

.
=
∑∞
i=0 giz

i; G(z)
is analytic inside D. L∞ is Lebesgue space of complex val-
ued functions bounded on the unit circle, equipped with the
norm ‖G(z)‖∞

.
= ess sup|z|=1|G(z)|. H∞ denotes subspace

of functions in L∞ analytic inside the unit disk D, H∞,ρ
denotes subspace of functions in H∞ analytic inside the
disk of radius ρ > 1, equipped with the norm ‖G(z)‖∞,ρ

.
=

sup|z|<ρ|G(z)| (e.g. exponentially stable systems with a
stability margin of ρ − 1). HK∞,ρ denotes K-ball in H∞,ρ,
e.g. HK∞,ρ

.
= {G ∈ H∞,ρ : ‖G‖∞,ρ≤ K}.

B. Loewner Matrices

Rational functions represent a natural way of describing lin-
ear dynamics in frequency domain. The Lagrange basis offer
numerical computation friendly choice [7] for representing
them. For a polynomial P (z) of order n, the Lagrange basis
is the set `i(z) =

∏n+1
k 6=i (z − zk), i = 1, . . . n + 1. Given

polynomial values pi at n + 1 points zi, the polynomial
written in these bases is P (z) =

∑
i pi`i(z)/`i(zi). A

rational transfer function of order n can therefore be written
as:

G(z) =

∑n+1
i

bi
z−zi∑n+1

i
ai
z−zi

(1)

Given N = 2n+ 1 samples {w(i)} of the function G(z) at
unique points z1, z2, . . . , zN , one can pose the estimation
problem of estimating coefficients ai and bi. If there is
no noise, at the measurement points we have G(z(i)) =
wi = bi/ai. Partition the available measurements into two
groups {zai , wai } and {zbi , wbi} containing n + 1 and n
samples respectively. Use the first set as interpolation nodes
in Equation (1), and evaluate the transfer function at the
measurement points zbi of the second set to get n equations
for G(zbi ). These equations can be arranged in a matrix form:

L(za, zb, wa, wb)a = 0 (2)

where:

L(za, zb, wa, wb) =



wb
1−w

a
1

zb1−za1
wb

1−w
a
2

zb1−za2
. . .

wb
1−w

a
n+1

zb1−zan+1

wb
2−w

a
1

zb2−za1
wb

2−w
a
2

zb2−za2
. . .

wb
2−w

a
n+1

zb2−zan+1

...
...

. . .
...

wb
n−w

a
1

zbn−za1
wb

n−w
a
2

zbn−za2
. . .

wb
n−w

a
n+1

zbn−zan+1


(3)

and a = [a1, a2, . . . , an+1]T is the unknown coefficient
vector. L is a matrix of size n × (n + 1) and is called the
Loewner matrix. This matrix plays a fundamental role in
determining the form of rational interpolant (see [7], [8]).
We note some of the useful properties here:

1) The solution for a lies in the right null space of L.
Given a, bi can be determined by linear least squares.

2) For proper rational functions, the interpolant has a
state space representation of the form G(z) = C(z̄I−
A)−1B, where rank(A) = n. Furthermore, L can be
expressed in state-space terms as L = −OR, where O
is the generalized observability matrix associated with
the samples of the second subset {zb}:

O =


C(z̄b1I −A)−1

C(z̄b2I −A)−1

...
C(z̄bN2

I −A)−1

 (4)

Similarly, R is the generalized reachability matrix
associated with the samples {za}:

R = [(z̄a1I−A)−1B, (z̄a2I−A)−1B, . . . , (z̄aN1
I−A)−1B]

(5)
This is similar to the familiar Hankel matrix composed
of impulse response coefficients which can also be
expressed as HN = ONRN where:

ON =


C
CA

...
CAN−1

 , RN = [B,AB, . . . , AN−1B]

(6)
are the finite observability and reachability matrices
and N represents the number of impulse response
samples. Thus L can be viewed as a frequency domain
counterpart of the HN . The advantage of using L
over HN is that it encapsulates the infinite-horizon
Hankel matrix H∞ while using a matrix of a finite
size. Furthermore, the frequency samples composing L
need not be uniformly spaced allowing significant data
compression; we can pick a higher density of samples
in the frequency bands of high modal density while
using relatively fewer samples elsewhere. In contrast,
HN requires uniform sampling often leading to a large
value of N for accurately capturing the system order
information. Example: Singular values of Hankel and
Loewner matrices: Consider a lightly damped system:
G(z) = z3/(1 + 0.3z + 0.9z2). The frequency grid
[0.1, 0.5, 1, 2, 2.5, 3] Hz and its negative counterpart is
chosen for frequency response computation while the
impulse response is generated for 56 samples. Both
responses are corrupted with 20dB noise. A Hankel
matrix of size 27 and a Loewner matrix of size 6 were
computed for the data. The first 6 singular values of
H56 and L are shown in Figure 1. The singular values
of the Loewner matrix indicate the true order more
clearly than the Hankel matrix.

3) Lowest order interpolant: If the number of samples N
is larger than 2n+1, one can split the dataset into two
subsets such that the Loewner matrix is roughly square,
with each subset containing more than n samples. The
rank of this matrix is equal to the order of (proper)
rational function G(z), as can be verified from the
state space representation. This fact can be utilized to
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Fig. 1. Singular values of Hankel and Loewner matrices. Blue: Hankel
matrix of 56-sample impulse response. Red: Loewner matrix of 12 frequency
points.

determine the order of the system, provided data has no
noise. In presence of noise, a low order interpolant can
be found by minimizing the rank of a sufficiently large
Loewner matrix subject to other constraints imposed
by the modeling requirements.

C. A Generalized Interpolation Framework

Next we recall a result from [4], [2] establishing a necessary
and sufficient condition for the existence of a function in
HK∞,ρ that interpolates a given set of time and frequency
domain points.

Theorem 1: Given Nf frequency–domain data points
(zi, wi), |zi|< ρ, i = 1, . . . , Nf , and Nt impulse response
samples hk, k = 1, . . . , Nt, there exists G ∈ HK∞,ρ that
interpolates the frequency domain data (i.e. G(zi) = wi)
and such that G(z) = h1 +h2z+h3z

2 + · · ·+hNtz
Nt + · · ·

if and only if the following inequality holds:

Z
.
=

[
M−10

1
KX

1
KXT M0

]
� 0

(7)

where

M0 =

[
Q S0R

−2

R−2SH0 R−2

]
, X =

[
W 0
0 T

]

R = diag[1, ρ, ρ2, . . . , ρNt−1]

Q =
[

ρ2

ρ2−zizj

]
ij
, i, j = 1, 2, . . . , Nf (8)

S0 = [zji ]ij , i, j = 1, 2, . . . , Nf

W = diag[w1, w2, . . . , wNf
] (9)

(10)

T =


h1 h2 . . . hNt

0 h1 . . . hNt−1

...
...

. . .
...

0 0 . . . h1

 . (11)

Moreover, if Z is rank deficient, then the interpolant is
unique. When Z � 0, the solution is not unique and all the
interpolants can be written as Linear Fractional Transforma-
tion (LFT) of a free parameter Q(z) ∈ H1

∞,ρ as follows:

F (z) =
T11(z)Q(z) + T12(z)

T21(z)Q(z) + T22(z)
(12)

where the transfer matrices Ti,j depend only on the problem
data (an explicit expression for these matrices can be found
for instance in [9]). In particular, if the free parameter Q(z)
is chosen as a constant, then the model order is less than or
equal to Nf +Nt.

D. Problem Formulation

The interpolation problems of interest in this paper can be
stated as follows:

Problem 1 (Exact minimum order interpolation): Given
Nf frequency–domain data points (zi, wi), |zi|< ρ, i =
1, . . . , Nf , Nt time–domain input-output data points
(ui, yi), i = 1, . . . , Nt, and positive real numbers K, ρ
find the minimum McMillan degree stable transfer function
G(z) ∈ HK∞,ρ that interpolates the given data, or show that
none exists.

For system identification applications, it is of interest to
consider the following “noisy” version of the problem above:

Problem 2 (Noisy minimum order interpolation): Given
(1) Nf frequency–domain data points (zi, wi), |zi|<

ρ, i = 1, . . . , Nf , and Nt time–domain data points
(ui, yi), i = 1, . . . , Nt

(2) positive real numbers K, ρ, εt, εf
find the minimum McMillan degree stable transfer function
G(z) ∈ HK∞,ρ

.
= g1 + g2z + ...gNtz

Nt + .. such that

|yi − (g ∗ u)i| ≤ εt, i = 1, . . . , Nt
|wi −G(zi)| ≤ εf i = 1, . . . , Nf

(13)

where g is the impulse response vector, u the input vector
and ∗ is the convolution operator.

III. MAIN RESULTS

In this section we present the main results of the paper
showing that Problem 1 and 2 can be reduced to minimizing
the rank of a matrix that is affine on the optimization
variables subject to convex semi-definite constraints. This
result will be exploited to relax these problems to a convex
optimization by following the commonly used approach of
replacing rank by a weighted nuclear norm.

Proposition 1: Problem 1 admits a unique solution with
McMillan degree r if and only if:

1) The Nt > 2r + 1 length vector h of real num-
bers hi, i = 1, . . . Nt and Nf ≥ 2(r + 1) pairs
(zi, wi), i = 1, . . . , Nf satisfy (7), where yi =
(h ∗ u)i,

2) The Pick matrix P
.
=

[
Q−1 1

KW
1
KW∗ Q

]
, where Q and

W are defined in (8) and (9), respectively, is rank
deficient
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3) rank [LNf
(zi, wi)] = r and every r × r submatrix of

L is full rank, and
4) rank [HNt(h)] ≤ r,

where LNf
(., .) and HNt

(.) denote the (square) Loewner and
Hankel matrix formed using the frequency and time domain
data respectively.

Proof: (Sufficiency) Since hi and (zi, wi) satisfy (7),
from Theorem 1 there exist a transfer function G ∈ HK∞,ρ
that interpolates the time and frequency domain data points.
Further, since P is rank deficient, G is the only function
in HK∞,ρ that interpolates the given frequency domain data
points (see e.g. Theorem 2.3.4 in [3]). Since the corre-
sponding Hankel matrix has rank at most r, it follows that
deg(G) ≤ r. Finally, from the fact the condition 3) above
implies that there exists a unique function Gr of degree r
that interpolates the given frequency domain data points, it
follows that G = Gr. Necessity follows from the fact that if
Problem 1 admits a solution with McMillan degree r, then
the corresponding Hankel and Loewner matrices have rank r.
Moreover, since by assumption this solution is unique, then
P is rank deficient and all r × r submatrices of L have full
rank.

Next, we use the result above to solve Problem 2.
Proposition 2: Problem 2 admits a unique solution with

McMillan degree r if and only if there exist Nt real num-
bers gi, i = 1, . . . , Nt, and Nf complex numbers ŵi, i =
1, . . . , Nf such that the pairs gi and (zi, ŵi) satisfy the
conditions in Theorem 1 and Proposition 1 and such that

|yi − (g ∗ u)i| ≤ εt, i = 1, . . . , Nt

|wi − ŵi| ≤ εf i = 1, . . . , Nf
(14)

Proof: Follows immediately by noting that, from Propo-
sition 1, there exists a transfer function Gr(z) ∈ HK∞,ρ with
deg(Gr) = r, impulse response coefficients gi and frequency
response ŵi at the frequencies zi. Hence Gr solves Problem
2.

Remark 1: From Proposition 2 it follows that Problem 2
can be recast as a constrained rank minimization of the form:

minimize
z,h

max{rank(L(z, h), rank(H(z, h))}

subject to
feasibility constraints (7)
rank(P) < 2 ∗Nf

(15)

We note the following:
• The role of the feasibility conditions in this context is

to deliver noise-free sequences wi, hi.
• In practice, we found it useful to impose a DC gain

bound on the interpolant as an added constraint in the
formulation of (15).

• Often there are many stable interpolants that satisfy
(7). Hence the search for minimal order interpolant
can be successful without imposing rank deficiency of
the Pick matrix. The stability of the interpolants is not
guaranteed, but in practice is true for the lowest order
model. This is the approach adopted for the practical
example discussed in V.

• In case where we only have the frequency response sam-
ples, the problem reduces to rank minimization of the
Loewner matrix subject to Nevanlinna-Pick feasibility
conditions; in particular, Z � 0 is equivalent to the
(rescaled) Pick matrix P being positive semidefinite:

Pi,j =
1− 1

K2hihj

1− 1
ρ2 zizj

, i, j = 0, 1, . . . , Nf − 1 (16)

In the feasibility conditions of Equations (7), we then
replace M0 with Q and X with W. Also, we drop the
time-domain noise bound.

• Similarly, this procedure also applies when only the
time domain samples are available. We then minimize
the rank of the Loewner matrix, computed over some
suitable frequency grid (for example, 0 to Nyquist,
linearly spaced). In this case, we drop the frequency
response noise bound.

• Note also, in passing, that if we use ρ = 1 and
ignore frequency domain considerations, the classical
Carathéodory-Fejér feasibility conditions are retrieved.

IV. A CONVEX RELAXATION

Since rank minimization is computationally NP-hard, a
convex relaxation of the problem above is obtained by using
an iteratively reweighted trace minimization heuristics [10],
summarized in Algorithm 1.

Algorithm 1 Reweighted ‖.‖∗ based rank minimization
Initialize: k = 0,Wy(0) = I,Wz(0) = I, δo small
repeat

Solve

minX(k),Y(k),Z(k) Trace

[
W

(k)
y Y(k) 0

0 W
(k)
z Z(k)

]

subject to:

[
Y(k) L(k)

LT(k)
Z(k)

]
� 0

L(k) ∈ S

where S is the feasible set in (15).
Decompose L(k) = UDVT .
Set δ ← min[diag(D)] + δ0.
Set W(k+1)

y ←
(
Y(k) + δI

)−1
Set W(k+1)

z ←
(
Z(k) + δI

)−1
Set k ← k + 1.

until a convergence criterion is reached. return L(k)

V. EXAMPLE: LIGHTLY DAMPED CANTILEVER BEAM

Consider a flexible structure in Figure 2. The structure
is a two degree of freedom mass-beam system consisting
of two discrete masses M1 and M2 supported by cantilever
beams, excited by the vibratory motion of a shaker table.
The first mass is connected to the shaker table, which
excites the mechanical system by vibrating up and down,
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Fig. 2. Lightly damped system used to test life extending control.

Fig. 3. Measured data. Top: frequency response magnitude with 0.1 bound.
Bottom: time (step) response with 0.1 bound.

through a flexible pivot. The displacement y1 caused by the
shaker table is measured using a linear variable differential
transformer (LVDT) sensor located at the midpoint of the
mass M1. To obtain the frequency response measurements,
the system was driven by a peak-to-peak 0.5 V sinusoidal
signal, with frequency ranging from 1 to 21 Hz. The time
domain data samples where obtained by a step test. In both
cases the outputs were sampled at 0.0215 seconds.

The accuracy requirement was εt = εf = 0.1. See Figure
2 which shows the acceptable bounds on the measured data
curves. Note that a bound implies that any system within the
shaded region meets the control design requirements. Our
objective is to find a system within this region of the smallest
possible order. Unlike the approach of [5], K and ρ were
treated as tuning parameters adjusted to achieve the accuracy
goals.

Fig. 4. Identification using both time and frequency response data. Top:
singular values (normalized) of the Loewner and Hankel matrices. Middle:
frequency response fit. Bottom: Step response fit. Measured, denoised and
order 7 approximation are shown. K = 125, ρ = 1.0001.

A. Using Both Time- and Frequency-Domain Data

Running the trace minimization heuristics for about 2 iter-
ations yields a Loewner matrix whose singular values are
shown in the top axes of Figure 4. The order chosen was 7
which includes contribution of 3 rather small singular values
which were required to meet the prescribed bounds.

A seventh order system was re-estimated to fit the denoised
frequency response h. The frequency response and the step
response of the resulting model are shown in the middle and
bottom axes of Figure 4, overlaid on their measured and
denoised values. The denoised values are what are delivered
as solution of Problem 2 with no restriction on model order.
The worst case errors for the frequency response and the step
response, after 2 iterations, are 0.07 and 0.11 respectively.
Table V-A compares the accuracy of the proposed method
to those reported in [9] and, more recently, in [5]. SNNAM
refers to the Structured Nuclear Norm ADMM Minimization
method of [5]. The errors are shown for data points at
which the identification was performed. The computation
time is about 10 seconds per iteration for the indicated
sample size, which is orders of magnitude faster than the
SNNAM algorithm, whose computation time depends upon
the impulse response horizon and has been reported to be
greater than 15 minutes for all acceptable horizons.
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Method Number of Model Max Error: Max Error:
Samples Order Time Frequency

`1 [9] 40 3 0.07 2.92
H∞,ρ [9] 39 39 0.39 0.056
Mixed [9] 15+29 19 0.15 0.39

SNNAM [5] 14+35 6 0.03 0.53
Proposed 21+30 7 0.11 0.07

Fig. 5. Identification using frequency response data only. Top: singular
values of the Loewner matrix. Middle: frequency response fit. Bottom: step
response fit.

B. Using Only Frequency-Domain Data

If we only use the frequency response data, a seventh order
system is determined as shown in Figure 5. The worst case
errors for the frequency response and the step response
are 0.09 and 0.11 respectively. The fit to time data is also
generated even though it was not used for estimation.

C. Using Only Time-Domain Data

If we only use the time-domain data, the time and frequency
domain responses of the estimated fourth order system are
shown in Figure 6. The worst case errors for the frequency
response and the time-domain output signal are 2.89 and 0.02
respectively. The time-domain data does not contain enough
excitation to discern the resonance at 17.6 Hz leading to a
poor fit in frequency domain.

VI. CONCLUSIONS

We proposed a method for finding the lowest order in-
terpolant that is consistent with the prior information and
fits the time- and frequency–domain data in the worst case
sense. The method exploits the rank-revealing properties of
a Loewner matrix composed of frequency response samples
to suggest a low order interpolant. This way, our approach

Fig. 6. Identification using time-domain data only. Top: singular values
(normalized) of the Loewner and Hankel matrices. Middle: frequency
response fit. Bottom: Step response fit.

extends the familiar Hankel matrix rank analysis for order
determination to frequency domain data. The interpolant
model was also shown to be stable in case the Pick matrix is
rank deficient. In practice we have found that lowest order
interpolants are often stable even when the Pick matrix is
full rank.
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