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Abstract

Despite the advances in Human Activity Recognition, the
ability to exploit the dynamics of human body motion in
videos has yet to be achieved. In numerous recent works, re-
searchers have used appearance and motion as independent
inputs to infer the action that is taking place in a specific
video. In this paper, we highlight that while using a novel
representation of human body motion, we can benefit from
appearance and motion simultaneously. As a result, bet-
ter performance of action recognition can be achieved. We
start with a pose estimator to extract the location and heat-
map of body joints in each frame. We use a dynamic encoder
to generate a fixed size representation from these body joint
heat-maps. Our experimental results show that training a
convolutional neural network with the dynamic motion rep-
resentation outperforms state-of-the-art action recognition
models. By modeling distinguishable activities as distinct
dynamical systems and with the help of two stream net-
works, we obtain the best performance on HMDB, JHMDB,
UCF-101, and AVA datasets.

1. Introduction

In recent years, the computer vision community has
made significant progress in the field of action recognition
and localization, thanks to large real-world human action
datasets. In addition to many advancements, datasets such
as UCF101 [32], HMBDS51 [52], Kinetics [30], Moments in
Time [40], Something Something [16], Charades [47, 48],
HACS [72], DALY [62], YouTube-8M [1], Human 3.6M
[8, 24], Hollywood [39], NTU [45], UCF-Sports [51, 42],
and AVA [17] have led this task to a more challenging and
realistic problem. Also, challenges like THUMOS [23, 15]
and ActivityNet [13] have significantly contributed to the
advancement of different tasks in video analysis.
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Figure 1. Human body pose encapsulates useful information to
recognize the human action. Given a video, we extract pose heat-
map sequences and encode them with a dynamic based model to
achieve a comprehensive video representation for action classifi-
cation.

The early deep learning based approaches addressing
video classification primarily employed end-to-end sequen-
tial Convolutional Neural Networks (CNNs) in concate-
nation with Recurrent Neural Networks (RNNs), in order
to first capture appearance-based representations for action
prediction [11].

RNNs and Long-Short-Term Memory Networks
(LSTMs) have appeared to perform well in text-related
tasks such as speech recognition, language modeling,
translation, and image captioning [20, 27]. However,
their use for action recognition has yet to show significant
improvements. CNNs are very successful dealing with still
images in tasks such as image classification [31] and object
detection and segmentation [36], but there is a lot of room
to work on a sequence of images (frames) when processing
video clips.

Newer approaches have demonstrated the importance of
incorporating motion information to CNNs, by introducing
a two-stream architecture [49, 60] that trains networks in

546



parallel for separate streams of still RBG images and stacks
of optical flow. Two-stream architectures are indeed benefi-
cial for video action recognition, since some activities could
be captured uniquely based on the appearance of the still
images and their context (for example swimming and bas-
ketball), whereas others might have divergent presentations
but similar dynamic cues (as in speaking and listening).

Nevertheless, very deep convolutional networks do not
exploit the dynamical structure present in both appearance-
based and motion-based feature maps by assuming a priori
that these representations will fall into very deep model dis-
tributions.

Adding information other than raw RGB frames can be a
great help to the task of activity recognition, as some of the
datasets [17] include audio as an additional modality to the
video sequences. Another example using different modali-
ties in action datasets is the addition of 2D/3D coordinates
of human body joints [30, 25, 44].

The goal of this paper is to incorporate dynamical infor-
mation from each pixel in the video, to better capture human
body motion for the task of activity recognition. Figure 1
shows an overview of the proposed method. The motion of
the human body is represented as a function of time, which
is mapped into a latent space, providing complimentary in-
formation for recognizing the activities.

Our work makes the following contributions:

e A novel dynamic encoder model that captures the tem-
poral information of body joint movements and pro-
duces a video level representation.

e Extensive experiments on using the dynamic motion
representation, called DynaMotion, and feeding them
to a CNN for the task of human action classification.

e We achieve the best performance on several action
recognition benchmark datasets by combining the
dynamic representation with appearance and motion
streams.

The paper is organized as follows: in section 2 we re-
view the most recent works and categorize them in terms
of type of their approach, while section 3 speaks about the
core idea of dynamic encoding and provides background
details. Section 4 shows how we implement the proposed
method. Finally, in section 5 we extensively study the Dy-
naMotion model and its varieties, evaluating recognition ac-
curacy and comparing with state-of-the-art methods on the
UCF101, JHMDB and HMDBS51 datasets, as well as AVA
in case of action localization.

2. Related work

Activity recognition aims to recognize common human
activities in real life settings. Datasets such as UCF101

and HMDB51, collected to help this field, provide real-
istic videos of different persons, performing different ac-
tions in controlled settings. In the following, we catego-
rize recent works for the task of activity recognition us-
ing four main approaches: 1) Combining multiple modal-
ities, such as raw RGB frames, optical flow, and audio
[66, 21, 70, 73] 2) Spatio-temporal convolutions and 3D
convolutions [65, 59, 22, 35, 50, 64], 3) Recurrent models
and Long Short-Term Memory based methods [33, 38], and
finally, 4) Video Representation methods, such as [4].

Using multiple modalities: Kalogeiton et al. [28] in-
troduced an Action Tubelet detector, which produces a se-
quence of bounding boxes with scores, where they used
the SSD detector to extract a set of anchor cuboids. An-
other work [55] used a network based on bottleneck mod-
ules, where each module has two sparse coding layers with
wide and slim dictionaries. [43] looked at the problem of
spatio-temporal localization and classification of concurrent
actions, using color images, optical flow, and motion detec-
tion scores, where they construct action tubes by solving
two energy maximization problems with dynamic program-
ming.

The work of [60] proposed a temporal segment network
(based on the idea of long-range temporal structure model-
ing) for video-based action recognition where they combine
a sparse temporal sampling strategy and video-level super-
vision. [46] focused on attention based modeling to find
out the salient portions while capturing the long-term de-
pendencies.

Spatio-temporal and 3D CNNs: A recent work [53]
showed the importance of aggregation of temporal and spa-
tial streams for the task of action recognition by distillation.

Wang et al. [61] proposed a pyramid network for spatial
and temporal feature fusion.

3D-convolution over short video clips - typically just a
few seconds - learn motion features from raw frames im-
plicitly and then aggregate predictions at the video level.
Karpathy et al. [29] demonstrated that their network is just
marginally better than single frame baseline, which indi-
cates learning motion features is difficult. In view of this,
Simonyan et al. [49] directly incorporated motion informa-
tion from optical flow, but only sampled up to 10 consec-
utive frames at inference time. The disadvantage of such
local approaches is that each frame/clip may contain only
a small part of the full videos information, resulting in a
network that performs no better than the naive approach of
classifying individual frames.

RNN and LSTM based models: Initial proposals
based on deep architectures for video recognition consisted
of a feature extraction block at the frame level through se-
quential CNNs, followed by a recurrent network, such that
they were jointly trained to simultaneously learn tempo-
ral dynamics and convolutional perceptual representations
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[11]. Several recent works have been inspired by this proce-
dure, such as [67], in which spatio-temporal CNN features
are extracted from video clips sliced with a fixed length
so that sequential appearance and dynamic information are
learned through a LSTM. In contrast, other proposed ap-
proaches are not trained end-to-end and use Bag of Words or
dominant motion as pre-computed feature descriptors, fol-
lowed by a LSTM-RNN [3].

Recent work by Yue-Hei Ng [68] considered several dif-
ferent ways to aggregate strong CNN image features over
long periods of a video (tens of seconds) including feature
pooling and recurrent neural networks.

In contrast, the Long Short Term Memory (LSTM) [11]
uses memory cells to store, modify, and access internal
state, allowing it to better discover long-range temporal re-
lationships.

Another approach [68] incorporated five stacked layers
of LSTMs after CNNs for temporal information extraction
(The CNN outputs are passed upwards to the LSTM lay-
ers and forward through time). They also analyze different
convolutional temporal feature pooling to better design a
CNN for this task. A recent work in action recognition [58]
improved dense trajectories by explicitly estimating camera
motion which results in a better video representation for ac-
tion recognition. They matched feature points for different
frames by SURF descriptors and dense optical flow.

Video Representation: Another work on video rep-
resentation for action recognition is the work of [5] where
they produced a single RGB image per video by rank pool-
ing on its raw image pixels. Dynamic images are used to
summarize actions and motions happening in a video by
temporal pooling as a layer in CNN. Another work [18]
built a fully convolutional feed-forward auto-encoder to
learn both the local features and the classifiers as an end-
to-end learning framework. The auto-encoder learned the
regularity dynamics in long-duration videos and can be use-
ful for identifying irregularity in the videos (abnormal event
detection). Also the low level motion features were learned
using a fully convolutional auto-encoder.

Our proposed method can be also categorized as a video
representation model. In this work we benefit from one of
the state-of-the-art methods in object detection and instance
segmentation, Mask R-CNN [19], which also provides key-
point estimation for a variety of objects. We approach the
problem of human activity recognition by estimating human
body pose (using Mask R-CNN to detect person, as one
class of object, along with its key-points and heat-maps).
This method efficiently detects multiple objects (in our case,
persons) in an image, while estimating human pose simul-
taneously, allowing us to further exploit the human body
dynamics from video frames.

3. Dynamic Motion Representation

In this section, we present our video representation
model, DynaMotion, to encode the human body motion. We
start with the heat-map extraction in section 3.1 and then
describe the dynamical encoder model in 3.2. Finally, we
show the best performing method as a three-streams net-
work consisting of RGB, optical flow, as well as the pro-
posed DynaMotion representation as parallel streams.

3.1. Body Joint Extraction and Heat-maps

Recent advances in 2D and 3D pose estimation make it
easy to obtain the coordinates of human body joints (and
other objects’ key-points) [6, 19]. One can also extract mid-
level features and heat-maps from the networks trained on
datasets with pose annotations. Heat-maps can be inter-
preted as an approximation to the probability of having a
body joint at each pixel. Here, we use the Mask R-CNN
[19] for extracting the joint heat-maps for action recogni-
tion, in addition to the person bounding boxes as part of
our model for action localization. We chose this model be-
cause it detects multiple objects and their key-points (in our
case, human body and joints) in a given image, provides
a mask for each object, and it is robust against occlusion.
In particular, we use the person bounding boxes and the
joint heat-maps from a pre-trained Mask R-CNN on COCO
dataset [34]. Detailed experiments and discussion on why
heat-maps are useful are provided in our ablation study, part
5.2.

We pass each frame through Mask R-CNN and extract
the heat-map for each key-point. The model extracts 17
body joints (5 for head and 3 for each of the 4 limbs), re-
sulting in an output with 18 channels: one heat-map for each
joint plus one channel for background. We then stack these
channels on top of each other to have a combined heat-map
for all the body joints. The spatial resolution of the heat-
map is lower than the original frame, which we up-sample
to a fixed size of 64 x 64. In the implementation details, we
denote the size of the heat-map after re-scaling by W x H.
The value for each pixel in the pose heat-map is between
0 and 1, representing the probability of the corresponding
pixel belonging to a specific body joint. In the following,
we propose an efficient approach for encoding the temporal
evolution of these heat-maps as an input to our network.

3.2. Affine Invariant Dynamic Motion Encoding

In [71] Zhang et al. modeled the motion of 3D hu-
man joints with linear time invariant systems and showed
that this representation can be successfully used for activity
recognition. Furthermore, in [2] Ayazoglu et al. showed that
all affine 2D projections of a 3D motion trajectory modeled
by a linear auto-regressive dynamical model can be repre-
sented using the same linear dynamical model. This sug-
gests capturing the dynamics of the heat-map of the joints
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to exploit viewpoint invariance. Thus, we propose to cap-
ture the dynamic information of the joints using the recently
proposed DYAN [37] dynamics-based encoder-decoder net-
work. DYAN was proposed in the context of video frame
prediction, but can be applied to any temporal sequence,
provided that it can be approximated by the output of a lin-
ear system and hence can be applied here. We chose this en-
coder because it uses very few parameters, it is easy to train
and has shown excellent predictive performance, but more
importantly, because the model exploits the affine viewpoint
invariance described above.

During unsupervised training, DYAN learns a structured
dictionary D of size T' x N to encode input sequences y1.7
of length T" using a set of N dynamic-based atoms. These
atoms (columns of D) are the impulse responses of low or-
der (first and second order) linear time invariant systems,
which are parameterized by the magnitude p; and phase ®;
of their poles p; = p;e?®i:

1 O |
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Then, the encoding of a sequence y;.7 is given by a very
sparse vector of coefficients c that selects and weighs the
atoms in the dictionary. The vector c is found by solving an
sparsification problem:

o1
min §||Z/1:T — Dell5 + Acllx

where the first term seeks a good fitting of the input data
while the second term penalizes higher order systems. That
is, the encoding seeks to explain the input data using as few
as possible poles, i.e. as the output of the “simplest” linear
system that fits well the input data, where “complexity” of
the system is measured by the number of its poles (For more
details please refer to DYAN [37]). Note that the vector ¢
has dimension NV, i.e. the number of atoms, regardless of
the length of the input, and as mentioned above, it should
be sparse.

3.3. Appearance and Dynamics Aggregation

We use the encoding method mentioned above to obtain
a fixed size video clip representation for each input video.
By training a convolutional neural network on top of the
dynamic encoded video representation, the model is able
to learn the dictionary D. Therefore, we can classify the
action happening in a sequence of frames, given the vector
of coefficients c selecting the set of atoms for each class of
actions. This information focuses on the motion of the actor
and it is complimentary to the context information coming

from the original frames and their optical flow (as parallel
RGB and OF streams). We use a pre-trained state-of-the-
art model, called I3D [7], and fine-tune it for each dataset
in the experiments. Finally, we aggregate the information
coming from each stream to obtain the classification score
for a given video clip. More details on how to merge scores
coming from each of these three streams are provided in
section 4.2.

4. Implementation Details

In this section we start in 4.1 with a description on how
to incorporate the dynamical atom-based encoder with pose
heat-maps in order to classify actions. Then, in section 4.2
we explain the network architecture for our dynamic based
encoder followed by some implementation details.

4.1. Dynamic Encoding

We start by processing each frame of the input video
with the Mask R-CNN model and exporting the heat-map
for body joints as well as person bounding boxes. The rest
of the DynaMotion method uses the person crop in order to
avoid the background impact on the performance and com-
putational cost. We stack 18 channels of the resulting heat-
maps in a singe channel and then flatten a set of 7" consec-
utive W x H heat-maps into W HT x 1 vectors. Then, we
feed these vectors into a DYAN encoder layer [37]. The out-
put of the dynamic encoder layer is a set of sparse W H vec-
tors of dimension IV x 1, which we reshapeto W x H x N
features. Thus, the encoder produces a feature vector of the
same spacial size of the input (W x H) with N channels
(number of atoms). This layer is followed by a shallow net-
work described in 4.2 that gives a classification score for a
given video. Following [37], we define the number of atoms
N to be 161 (we initialize the dictionary D with 40 poles
in the first quadrant, within a ring around a unit circle, and
their 3 mirror images in the other quadrants, plus a fixed
pole at p = 1 to represent constant inputs). The overall ar-
chitecture learns the dictionary D, i.e. the set of poles of the
encoder layer, by minimizing a loss function that penalizes
the classification error for the actions.

4.2. Network Architecture

We studied a variety of networks to train on top of the
dynamic motion representation and observed that using a
shallow network with six convolutional layers and one fully
connected layer we can achieve the best results. Thus,
the resulting architecture is a shallow network compared
against to standard CNNs. We find that given the texture
of our dynamic motion representation, the network does not
need to be deep and can be easily trained from scratch (no
pre-training). The input to the first convolution layer is the
output of our encoder, which is of size W x H x N. Figure 2
shows a sketch of the architecture of our proposed network.
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Figure 2. DynaMotion Representation Network.

The network consists of one encoding layer followed by
three blocks, each block with two convolutions. The filter
size for all convolution layers is 3, while the stride for the
first convolution layer in each block is 2 and the second
convolution in each block has stride of 1. In each block, the
spacial resolution of the input is reduced, while the number
of channels is doubled (first block with 128 channels and
last block with 512 channels). We use batch normalization
after each convolution layer followed by a ReLU. After the
third block, we insert an average pooling layer, followed
by a fully connected layer and softmax classifier to get the
action class score. This score will be later on merged with
the scores coming from the RGB and OF streams (from I3D
model), resulting in a single score per frame (the merging is
done by averaging the scores).

5. Ablation Study

In this section, we report extensive results evaluating the
performance of action classification and localization while
using the proposed dynamic motion representation on four
datasets. We start by introducing the datasets used in these
experiments in section 5.1, then provide the details for our
dynamic encoder model and its network parameters in sec-
tions 5.2 and 5.3, respectively. In order to understand the
effectiveness of our model, we provide experimental results
showing the impact of using our network in section 5.4. Fi-
nally, section 5.5 shows the comparison of our best model
against the state of the art on three main datasets for activity
recognition and one dataset for action localization.

5.1. Datasets

For the task of activity recognition we use three main
datasets (HMDB51, UCF101, and JHMDB) to examine our
model’s ability to learn dynamics of human body motion in
different scenarios. We also use our model for the task of
action localization on the AVA dataset.

HMDBS51 [32] is a dataset consisting of 51 classes of ac-
tions with a minimum of 101 clips per class. This dataset
has 6,849 video clips in total, from movies and YouTube,
that come with pre-computed features such as HoG and
STIP. We only use the video files for training our models.

Joints information for 21 classes of HMDBS51 has been
provided in the JHMDB dataset [25]. This dataset includes
puppet optical flow and mask as well as joint position per
frame for 928 videos. Labels for these videos are in the form
of one action class per clip. There is also a meta label per
clip, e.g. number of people, view point, etc. Therefore, one
can use the pose annotations of this dataset to train a model
for activity recognition using pose in a supervised manner.

The UCF-101 dataset [52] has 101 action categories
in three splits (about 13K video clips in total). Same as
HMDB, there is one label per video clip.

AVA The Atomic Visual Actions [17] dataset consists of
80 action classes, 430 video clips in total (divided in 235
for training, 64 for validation, and 131 for testing). This
dataset has localized action labels in space and time, in total
1.58M labels, as well as bounding boxes around the person
involved in an action. We use version 2.1 of AVA dataset in
our work.

5.2. Encoding Pose

We used the encoder layer of DYAN [37] to extract the
dynamic motion representations and feed them to the CNN.
Using the code provided by the authors, we set the number
of poles to 40 and time horizon (number of input frames)
to T' = 30. As explained above, the underlying assump-
tion is that human activities can be modeled as low order
dynamical models, and the method learns how many atoms
(i.e the order of the system) and which ones to choose from
the pool of atoms. For more details please refer to part 3.2
of DYAN paper [37]. We tested using the dynamic encoder
on both joint locations (coordinates) as well as joint heat-
maps (as two different input types). Table 1 shows the use
of heat-maps versus joint location (coordinates) as the input
data type to our encoder. Our experiments show that our
model performs best using heat-maps, as they convey more
information per pixel.

We also trained a 3D convolution based type of network,
C3D [56], on top of the heat-maps (instead of encoded heat-
map, as in DynaMotion) to show the effectiveness of encod-
ing dynamics with our model. As shown in the third row of
table 1, our network outperforms the C3D network, even
though both networks use temporal evolutions of pose heat-
maps as their input.

5.3. Dynamic Motion CNN

In this section we study the parameters of the DynaMo-
tion network and the impact of augmentation for training
purposes. We examined our network using shallow archi-
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Method JHMDB-GT JHMDB HMDB UCFI101
DynaMotion with heat-maps 69.7 % 602% 491%  63.5%
DynaMotion with joint coordinates 63.8 % 534% 403% 529%
C3D [56] with heat-maps 57.7 % 373% 315% 44.0%

Table 1. Mean classification accuracy using DynaMotion with
heat-maps, DynaMotion with joint coordinates, and C3D with
heat-maps.

’ Augmentation \ JHMDB HMDB UCFI101 ‘
flip (right to left) | 60.2% 49.1%  63.5%
no augmentation | 514 % 463% 61.9%

Table 2. Accuracy with and without data augmentation for three
different datasets.

‘ Method ‘ JHMDB-GT JHMDB HMDB UCFI101 ‘
DynaMotion 69.7 % 602% 49.1% 63.5%
C3D [56] 56.4 % 564% 51.5% 82.1%
C3D [56] + DynaMotion 71.3 % 694% 653% 934 %
R(2+1)D [57] 79.2 % 792% T719% 951 %
R(2+1)D [57] + DynaMotion 86.2 % 85.7% 826% 963 %
13D [7] 87.0 % 87.0% 82.1% 977 %
13D [7] + DynaMotion 89.2 % 872% 842% 98.4 %

Table 3. Mean classification accuracy for split 1 using combina-
tion of DynaMotion with state-of-the-art two-stream networks and
spatio-temporal convolutions methods.

tectures as well as deeper networks, but the best accuracy
was obtained with the six layers CNN on top of DYAN’s
encoder. We trained our model for 100 epochs for each
dataset.

Based on our experiments, augmenting the data by flip-
ping frames (right to left) helps increasing the mean clas-
sification accuracy. Table 2 shows the data augmentation
impact on mean classification accuracy for split one of the
JHMDB, HMDB51, and UCF101 datasets. The impact of
data augmentation for UCF101 dataset is about 2%, while
it increases the accuracy for JHMDB by almost 10%. The
accuracy gain in the case of HMDBS5I1 is about 3%. This
makes sense since it is smaller than UCF101 and larger than
JHMDB in terms of data size. Based on this observation, we
augmented all datasets for our experiments.

5.4. Impact of the DynaMotion Representation

In order to understand the importance of using a dynamic
motion representation, we compared results with and with-
out the dynamic motion encoding. For this set of experi-
ments we used C3D [56], R(2+1)D [57], and I3D [7] net-
works to combine with our dynamic motion network. We
used split 1 of HMDB51, JHMDB, and UCF101 in order to
evaluate the advantage of using the proposed DynaMotion
representation.

Table 3 shows the mean classification accuracy to verify
whether the DynaMotion representation is useful and com-
plimentary to two stream networks as well as 3D convolu-

tional networks. In this table, JHMDB-GT is the case where
we use the ground truth puppet pose annotation to train our
network instead of using Mask R-CNN to estimate the pose
for each frame. The 2D annotation from JHMDB includes
the x, y coordinates of each joint (15 in total) which we used
to synthetically generate the pose similar to [19] joint heat-
map for training. As in table 3 using the ground truth joint
shows almost 9% improvements for our DynaMotion repre-
sentation (first row).

The rest of the rows compare the impact of our video
level representation on existing multi-stream networks as
well as 3D convolutions (the original models do not use
pose for training, therefore their accuracy for both JHMDB
and JHMDB-GT is the same). For the purpose of this com-
parison, we fine-tuned C3D, R(2+1)D, and I3D for each
dataset and then merged their scores with the scores com-
ing from our model (the merging was done by averaging the
scores coming from each stream and DynaMotion). Based
on this table, the gain in accuracy as a result of adding Dy-
naMotion is about 10% for the case of C3D, and up to 7%
for R(2+1)D. While using the more recent model, 13D [7],
we observed a slight improvement for each dataset (up to
2%), since 13D was pre-trained on Kinetics [30] which is a
richer dataset. Based on these results, we conclude that Dy-
naMotion brings complimentary information to the existing
3D convolutions and two-stream networks, and has higher
impact on models with less training data.

5.5. Comparison with State-of-the-art

In this section we compare our results with the state-of-
the-art in activity recognition models. Table 4 shows our
results comparing to state-of-the-art methods on all splits
of the three datasets (JHMDB, HMDB, and UCF101). For
this experiments, we used our best model (with data aug-
mentation and in combination with I3D), based on our pre-
vious experiments described above. We outperform all ex-
isting models (comparing to their best results using dif-
ferent modalities), including the models that benefit from
pose [10, 75]. For JHMDB we outperform the PoTion rep-
resentation model by almost 2%. On HMDB we report
84.2%, which is an improvement of almost 3% comparing
to SVMP+I3D [59]. We also outperform the mean accu-
racy on UCF101 by a small margin (some results are shown
in Figure 4 for a few randomly selected videos). Some of
the models reported in this table were pre-trained on dif-
ferent datasets (Kinetics [7], Sports-1M [56]) using differ-
ent modalities of input data, therefore the comparison might
not be entirely fair. Overall, we outperform state-of-the-art
models in human action recognition for JHMDB, HMDB,
and UCF101. As shown in Figure 3, our model increases the
per-class accuracy for most of the JHMDB classes, com-
plementing the information coming from RGB and OF to
further increase the classification accuracy with the help of
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Method \ JHMDB HMDB UCFI101
CNN-+hid6 [69] - - 79.3 %
FV+IDT [41] - - 84.8 %
PoseFlow [70] - 51.74 % -

MiCT [74] - 63.8 % 88.9 %
P-CNN [9] - 72.2 % -

Chained 3D-CNN [75] | 76.1 % 69.7 % 91.1 %
Attention Cluster [38] - 69.2 % 94.6 %
CoViAR+OF [63] - 70.2 % 94.9 %
TVNet [12] - 72.6 % 95.4 %
OFF [54] - 74.2 % 96.0 %
R(2+1)D [57] - 78.7 % 97.3 %
13D [7] - 80.7 % 98.0 %
13D + PoTion [10] 85.5 % 80.9 % 98.2 %
SVMP+I3D [59] - 81.3 % -

DynaMotion + I3D 87.3 % 84.2 % 98.4 %

Table 4. Mean per-class accuracy for JHMDB, HMDBS1 and
UCF101 (averaged over 3 splits) in comparison with state-of-the-
art.

body pose (for example in the case of golf, clap and jump,
where the pose is well-defined).

We also compared our model for the task of action local-
ization (ActivityNet challenge [66], task B). For this pur-
pose, we used the bounding boxes extracted from Mask
R-CNN model to localize subjects and used our DynaMo-
tion representation for the cropped frames. Table 5 shows
our performance in comparison with state-of-the-art on the
AVA dataset [17]. We report mean average precision (mAP)
of 25.8% for the validation set of AVA (for IoU=0.5).
For this experiment, we used our best model results (Dy-
naMotion+I3D) on action classification with localization re-
sults coming from Mask R-CNN [19] (as person detection
bounding boxes). We used a time horizon of 7' = 30 for
this experiment, having 30 frames of video as input to our
DynaMotion network.

Discussion Overall, the gain in mean accuracy for the
task of action recognition shows the significant impact of
our DynaMotion representation. As seen in table 3, bene-
fiting from pose and the dynamic representation adds to the
power of action classification for all models, depicting the
role of human body motion in addition to the context infor-
mation coming from RGB and Optical Flow streams. As
expected, our model performs better when the activity in-
volves a more clear human body motion, such as jump or
sit. For the classes in which the difference in human motion
is negligible, our model performance is lower and therefore
appearance of the subject and the context of the video has a
bigger impact than pose.

Golf

Run

Clap

Jump

Wave

Catch
Climb Stairs
Pour

Sit

Stand

Walk

Brush Hair
Pick

Pullup

Swing Baseball
Throw

Shoot Ball

Kick Ball

Shoot Bow

Push

Shoot Gun
-7% -3.5% 0% 3.5% 7% 10.5% 14%

Figure 3. Accuracy improvements (per-class) for JHMDB split 1
using DynaMotion with I3D.

Skiing
ace: 0:9888

Figure 4. Action recognition results on UCF101 sample videos.

6. Conclusion

In this work we introduced Dynamic Motion Representa-
tion (DynaMotion) to encode human body motion in video
clips. Using this novel video representation model, we are
able to train a shallow network to classify human actions
in videos. We showed that our DynaMotion representa-
tion leads to the state-of-the-art performance on UCF101,
HMDB, JHMDB, and AVA datasets. As a future work, end-
to-end training of the joint heat-map estimation and Dy-
naMotion network is desired in order to study the impact
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’ Model \

Modalities

mAP@IoU0.5 |

AVA baseline [17]
Girthar et al. [14]+JFT
RTPR [33]

YH Tech [66]

Jiang et al. [26]

Ours

RGB+Flow
RGB
RGB+Flow
RGB+Flow
RGB+Flow
RGB+Flow+Pose

18.4 %
22.8 %
223 %
22.2 %
25.6 %
25.8 %

(12]

[13]

Table 5. Per frame mean average precision for AVA validation set,
using loU=0.5

of different body joints in specific action classes.
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