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ABSTRACT
To develop efficient just-in-time personalised treatments, dynamical models are needed that provide
a description of how an individual responds to treatment. However, available system identification
approaches cannot effectively be applied to most behavioural datasets since, usually, the data collected
is subjected to a large amount of noise and time sampling is not uniform. To be able to circumvent these
issues, in this paper a newmethod is proposed for parsimonious system identification of continuous-time
systems that does not require specially structured data. The developed algorithmprovides an effectiveway
to leverage these ‘non-standard’ datasets to identify continuous time dynamical models that are compati-
ble with a-priori information available on the process. The algorithm developed is tested on data obtained
from a behavioural study on adolescents and violence. The objective is tomodel the temporal dynamics of
the association between violence exposure and mental health symptoms (depression and anxiety) in day-
to-day life among a sample of adolescents at heightened risk for both substance use exposure andproblem
behaviour. The information extracted from individual models of behaviour such as the maximum burden
and the time of fading away of depression/anxiety does differ substantially from person to person. This
information has the potential to be useful to design personalised interventions that would have a better
chance of succeeding.
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1. Introduction

1.1 Motivation

Evaluating and modelling instantaneous changes in human
behaviour is a long-standing problem which, if successfully
addressed, can lead to more effective treatments for social and
behavioural problems. This problem is a difficult one because
of the complex and nonlinear structure of human behaviour
and the characteristics of the data collected. Human behaviour
data that is usually collected is not, in our view, sufficient to
determine a complete and exact model. This being said, ‘sim-
ple’ linear models obtained from such data can give important
clues about individual behaviour and can inform on how to
design an effective personalised treatment regime. Obviously,
a behavioural treatment based on these models is not optimal.
However, give the ‘coarse nature’ of most available treatments
(meaning not many options for intervention), such models can
inmost cases be ‘good enough,’ in the sense that a precisemodel
would not result in a much different treatment (Deshpande,
Nandola, Rivera, & Younger, 2014; Rivera, 2012). At least, it is
possible to design behavioural treatments that are better than
the current state of the art. Furthermore, traditional approaches
to the analysis of such datasets in the social and behavioural
sciences are limited to the use of ‘off the shelf’ statistical tools –
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such as multilevel modelling (MLM) or generalised estimating
equations (GEE). With the assumption that the study group
is a representative sample of the population, the findings are
assumed to be applicable to a large set of individuals, leading
to a ‘one size fits all’ approach to treatment development. How-
ever, more recent methods are able to collect large amounts
of data from individuals. Hence, it is now possible to develop
personalised models of behaviour which can be leveraged by
clinicians to improve the way treatment decisions are made.
For instance, if the model of behaviour for an alcohol user is
known, then the association of exposures (e.g. treatment, vio-
lence) with alcohol use behaviour can be accurately evaluated,
and the best treatment for this specific person can be chosen
among the set of all possible treatments. However, to be able
to determine dynamical models of social and behavioural prob-
lems, one needs to be able to extract information from datasets
that do not conform with the needs of most available system
identification procedures. To illustrate this concept, we used the
following behavioural problem: the association of violence and
depression/anxiety in young adolescents.

1.1.1 Real data implementation
The proposed impulse response estimation method is used to
investigate the association of violence and depression/anxiety in
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young adolescents (miLife study, Odgers & Russell, 2017;
Russell, Wang, & Odgers, 2016). Knowing the level and fading
time of depression and anxiety that is caused by violent events
can give crucial information for personalised intervention
design. In particular, such information can be exploited to
develop efficient individually tailored treatment regimes for
adolescents that are exposed to violence.

As one might expect, the results in this paper reveal that
the different adolescents have different behavioural responses
when exposed to such traumatic events. Therefore individual
response, as modelled by an impulse response to violent events,
can be used to classify the adolescents. In Section 6, the asso-
ciations of violence and depression/anxiety for 45 adolescents
are investigated. In this study, the patients were contacted via
telephone, a method of sampling the individual response that
results in having non-uniformly spaced samples of the levels
of violence and depression. Such non-uniformly sampled data
is not suitable for discrete time system identification methods.
One could use available interpolation basedmethods to approx-
imate missing data. However, as the results in this paper show,
this type of methods often fail if the data is not sampled suffi-
ciently fast. Therefore, to be able to identifymeaningful dynami-
calmodels that are consistentwith non-uniformly sampled data,
one needs a new approach that directly uses this fragmented
data to determine the models.

1.2 Literature review on continuous-time system
identification

Having a temporally dense, uniformly sampled dataset for
dynamical modelling is not an issue if one has a sensor able to
collect evenly sampled data. However, in spite of recent tech-
nological developments, collecting uniformly sampled medi-
cal/behavioural data for some processes is not always possible.
For instance even though collecting uniformly sampled physical
activity datawith a sensor such as a smartphone, fit-bit is feasible
(Ashour et al., 2016), collecting smoking behaviour data such as
the smoked number of cigarettes per day is still not attainable
with a sensor (e.g.Bekiroglu, Lagoa, Murphy, & Lanza, 2016;
Lagoa, Bekiroglu, Lanza, & Murphy, 2014). The challenges that
come from thenature of such behavioural data can be addressed,
however, through the use of continuous time system identifica-
tionmethods. Motivated by these challenges, a computationally
efficient algorithm to the problem of low order continuous time
system identification is proposed.

Classical linear continuous-time system identification algo-
rithms fall into two general categories (Rao&Unbehauen, 2006):
(i) The indirect approach: Initially the discrete time model is
identified with uniformly sampled input/output data
(Yoshimura, Matsubayashi, & Inoue, 2019) and then the iden-
tified model is transformed (e.g. bilinear transformation) to
the continuous time model, see, e.g.(Ohta & Kawai, 2004).
Even though transforming a discrete time model to a con-
tinuous time model is theoretically possible, such process
causes a numerical problem when the sampling rate is high.
Moreover, this type of algorithms requires uniformly sampled
data. (ii) The direct approach: The derivative is approxi-
mated to construct an input-output estimation of a contin-
uous time system from discrete datasets. In other words, a

state variable filter or a causal, stable, realisable linear opera-
tor is employed to approximate the higher order derivatives,
see, e.g.Garnier (2011); Johansson (2009); Mercère, Ouvrard,
Gilson, Garnier (2007); Young (1981). In Garnier (2011), it
is shown that this method could handle non-uniformly sam-
pled data if filtered data can be sampled uniformly. In contrast
to the direct approach, our method only uses the available
non-uniformly sampled data without any filtering or derivative
estimation. This data is directly used to identify the impulse
response of the continuous-time system. In addition to these
works, ARMAmodel estimation from irregular sampled data is
presented in Chen, Agüero, Gilson, Garnier, and Liu (2017). In
this approach, initial state is assumed to have a normal distribu-
tion to estimate continuous time system models. Our method
does not need this type of assumption. We directly estimate
the impulse response of continuous time system from irregu-
larly sampled data. Also, the methods proposed in Yuz, Alfaro,
Agüero, and Goodwin (2011) and Banbura, Giannone, Mod-
ugno, and Reichlin (2010) require fast-sampled data that is not
the case for the proposed method. This is also not the case in
most of the behavioural problems.

Furthermore, most of the results available on parsimo-
nious model identification are for discrete time models (see,
e.g. Bühlmann & Van De Geer, 2011; Godoy, Agüero, Car-
vajal, Goodwin, & Yuz, 2014; Yilmaz, Bekiroglu, Lagoa,
& Sznaier, 2017 and references therein). Recently published
book (Bühlmann&VanDeGeer, 2011) also presentmany lasso-
based statistical modelling methods where the model coeffi-
cients are sparsified. In the proposed work, the number of
exponentials used in the impulse response (i.e. order of the
model) are sparsified. We are directly enforcing parsimonious
dynamical model. Moreover, low order continuous time model
identification research is still limited in the literature. Recently
a study addressed the same problem for continuous time sys-
tem if the data is sampled uniformly (Yue, Thunberg, Ljung,
& Goncalves, 2016). In contrast to Yue et al. (2016), this article
introduces an algorithm to address this problemwithout having
limitations on uniform sampling. The preliminary versions of
some of the ideas in this paper have appeared in the conference
paper (Bekiroglu, Lagoa, Lanza, & Sznaier, 2017). Additional
results in here include an analysis of the optimal sampling rate
of the proposed algorithm, the extension of the basic algorithm
to handle initial conditions, not trivial because of the non-
uniformly sampled data. Finally a real data-set miLife study is
analysed with the proposed method (Odgers & Russell, 2017;
Russell et al., 2016).

1.3 Contributions

The main contributions of the paper can be summarised as

(i) Relaxation of an NP-hard low-order continuous time sys-
tem identification algorithm using atomic norm concept is
introduced.

(ii) Randomised Frank–Wolfe algorithm for the discrete-time
system in Yilmaz et al. (2017) is modified to solve the
relaxed continuous time system identification problem.

(iii) The method is tested on an miLife study to evaluate how
adolescents are affected by violence. Based on this 45
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patients’ data, it is shown that each person might have dif-
ferent level of depression or anxiety for violence. However,
we should note that this method should be tested on a
richer data set to make a more concrete result.

1.4 The sequel

The model specification and system identification problem
for zero and non-zero initial condition cases, correspond-
ing assumptions and optimisation problems are introduced in
Section 2. Then the convex relaxation of continuous time par-
simonious system identification problem is given in Section 3.
What follows is the randomised Frank–Wolfe algorithm to solve
this relaxed problem in Section 4. Finally, paper endswith exam-
ples in Sections 5 and 6, and concluding remarks in Section 7.

2. Methods

2.1 Model specification

Assuming the initial condition is equal to zero and the observa-
tions are corrupted by bounded noise, output of a single input
single output (SISO) linear time invariant (LTI) continuous time
system � can be represented as

y(ti) =
∫ ti

0
CeA(ti−τ)Bu(τ ) dτ + ε(ti), (1)

where A ∈ R
n×n, B ∈ R

n×1 and C ∈ R
1×n represent state,

input and output matrices respectively. Also u represents the
input signal, and y(ti) is output at time ti corrupted by some
bounded noise ε (e.g. ‖ε‖2 ≤ �max). The non-uniform sam-
pling instants ti are collected in the following vector:

t = {t0, t1, t2, . . . , tm}, where t0 < t1 < t2 < · · · < tm.

Remark 1: The sequence of times ti above can be any strictly
increasing sequence. No assumptions on the sampling times,
like ti commensurate, are made.

2.2 System identification problem

In this section, we start by assuming that the initial condi-
tions are zero and define the system identification problem for
strictly proper SISO LTI systems. Note that this problem is
later extended the non-zero initial conditions case. We start
by stating the assumptions that are made on the system and
signals.

(A.1) Convolution of any exponential with input signal u (con-
tinuous time) can be computed in closed form and/or
numerically.

Example 1: If the transfer function (closed-form description)
of input signalU(s) is known, then the output y(ti) could be cal-
culatedwith the inverse Laplace transformof thismultiplication
y(ti) = L −1(G(s)U(s)). For the step response of U(s) = 1/s
and transfer functionG(s) = 1/(s− p), time response of output

is simply

y(ti) = L −1
(
1
s

1
s− p

)
= epti − 1

p
,

where p is a pole and L −1 is the inverse Laplace transform.

Note that this assumption is a reasonable one for medical/
behavioural processes since most of the inputs in these applica-
tions are modelled as combinations of impulses or steps which
satisfy the assumption above.

(A.2) The system to be identified does not have repeated
poles.1

(A.3) The initial conditions are assumed to be zero.

Remark 2 ((Discussion on Input Assumption)): Given the
fact that the main objective is to identify the model of the sys-
tem from sparse non-uniformly sampled noisy data, we need
(i) to have complete knowledge of the input applied and (ii) to
be able to do elementary calculations with this input signal. The
assumption above allows for fast and precise computation of the
quantities involved in the proposed algorithm.

Problem 1: Considering an SISO LTI continuous-time sys-
tem � and assume that

• the poles of the system to be identified belong to a com-
pact set Sρ = {p ∈ C or p ∈ R : −ρ < Re(p) < 0 and−
π/Ts < Im(p) < π/Ts} (a rectangular region in left-half
plane) (Figure 1),

• input signal u(t) and output noisy measurements y(ti) are
available, and

• the measurement noise ε is bounded (e.g.‖ε‖2 ≤ �).

Then the problem is to identify the lowest order model �̃

that is the estimation of true plant � while explaining available
input–output data within the given bound on estimation error.

Remark 3 ((On the set Sρ)): The poles of the system � are
assumed to belong to the compact set Sρ that contains only sta-
ble poles but not necessarily asymptotically stable poles. This
set can be defined based on a-priori information on bounds on
the time constant of the system. We should remark that this set
is only one possible choice. Other types of a-priori information
on the system (such as bounds on overshoot, rise-time, etc .)
can be used to determine the ‘right’ set Sρ for the specific sys-
tem identification problem to be solved. The only restriction is
that it should be compact. In principle, the proposed approach
can also be used for the identification of unstable plants but we
have found that exponential growth of the impulse response can
lead to numerical problems.

2.2.1 Optimisation for Problem thm1
The impulse response of any finite dimensional proper LTI sys-
tem (1) with non-repeated poles in the compact set Sρ can be
represented as linear combination of the impulse responses of
first-order systems (sum of exponentials) by using partial frac-
tion expansion. Therefore, the system identification Problem 1
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can be formulated as follows:

min
cp∈C,p∈Sρ

cardinality{cp : cp �= 0} (2a)

s.t.
m∑
i=0

⎡
⎣∑
p∈Sρ

[cpept ∗ u(t)]
∣∣∣
t=ti
− y(ti)

⎤
⎦
2

≤ �max,

(2b)

cp∗ = c∗p , (2c)

where while the objective function minimises the number of
non-zero elements of vector cp (minimum number of poles or
exponentials), the constraint imposes fidelity to the data col-
lected. The constraint in (2b) enforces a real valued impulse
response. Note that the number of exponential used to estimate
the impulse response is equal to the system order. Therefore
minimising the vector cp is equal to minimising the order of
linear dynamical systems.

2.2.2 Extension of Problem thm1 to non-zero initial
condition
In this section, Problem 1 and its optimisation problem formu-
lation is extended for non-zero initial condition case.

Problem 2: Considering the scenario in Problem 1, the prob-
lem is again to identify the lowest order model �̃ when initial
conditions are not necessarily zero.

In this case, output of the system can be represented as

y(ti) = CeAtix0 +
∫ ti

0
CeA(ti−τ)Bu(τ )dτ + ε(ti), (3)

where x0 ∈ R
n×1 is the vector of initial conditions. As before,

the response of the system can be represented as a finite sum of
exponentials, i.e.

CeAtix0 =
n∑
j=1

cicpj e
pjti : pj ∈ Sρ , cicpj ∈ C,

where cicpj = C(j)x0(j)

CeAtiB =
n∑
j=1

cupje
pjti : pj ∈ Sρ , cupj ∈ C,

where cupj = C(j)B(j) and C(j) is the jth element of the row
vector C and B(j) is the jth element of the column vector B.

Remark 4: Note that the same sparsity pattern must be
enforced in C and CB in order to have the same poles in both
initial condition and input responses. This is later implemented
using the concept of block sparsity.

2.2.3 Optimisation for Problem thm2
Non-zero initial conditions case can be formulated as

min
cicp , cup∈C, cp∈R, p∈Sρ

cardinality{cp : cp �= 0} (4a)

s.t.
m∑
i=0

⎡
⎣∑
p∈Sρ

{
cicp e

pt +
[
cupe

pt ∗ u(t)
]} ∣∣∣

t=ti

− y(ti)

⎤
⎦
2

≤ �max (4b)

max{|cicp |, |cup |} ≤ cp for all p ∈ Sρ (4c)

cup∗ = c∗p
u and cicp∗ = c∗p

ic. (4d)

Similar to Problem (2a), while the objective is to minimise the
cardinality of vector cp, the constraint (4b) imposes a certain
fidelity for a given bound on noise and the constraint in (4c)
enforces a block sparsity on vectors cicpj , c

u
pj (having same sparsity

pattern – Remark 4) that imposes the use of the same poles for
initial condition and impulse responses of the system.

This optimisation problem gives the most parsimonious
model under the given constraints. However, there is no avail-
able method in the literature to solve this non-convex optimi-
sation problem since cardinality minimisation is an NP-hard
problem (Donoho, 2006). Furthermore there are infinitelymany
poles in the admissible pole set Sρ . Therefore, we introduce a
convex relaxation of the optimisation problems (2a) and (4a)
that can be efficiently solved. Before closing the section, one
should note that the response of ept is complex value if p /∈ R.
This might result in a complex valued cp. To easily address the
fact that impulse responses are real and eliminate the complex
part from the calculations, in the next sections we propose a
new set of atomic impulse responses to be used in the identifi-
cation algorithm. These include elementary impulse responses
from both first- and second-order systems.

3. Convex relaxation

To relax the NP-hard optimisation problems (2a) and (4a), a
suitable atomic normminimisation problem is introduced. As a
first step of this atomic normminimisation problem, atomic sets
of elementary impulse and input responses for zero and nonzero
initial conditions are defined.

3.1 Set of elementary impulse responses

As a first step towards a convex relaxation of the parsimonious
system identification problem defined in the previous section,
we introduce a set of elementary impulse responses that will
later be used to define an atomic norm minimisation problem.
Even though the impulse response of first-order systems utilised
in (2a) can in principle be used, the impulse response of these
first-order systems has an imaginary part when Im(p) �= 0. This
results in numerical problems when trying to approximate the
solution of the optimisation problems (2a) or (4a). To address
this issue, we propose the following set of real valued elementary
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impulse responses

I1 = {±α1
p(e

pti + ep
∗ti) : p ∈ Sρ and p ∈ C}

I2 = {±α2
p(−jepti + jep

∗ti) : p ∈ Sρ and p ∈ C}
I3 = {±α3

p(e
pti) : p ∈ Sρ and p ∈ R},

(5)

where real numbers αp’s are scaling factors. Selecting the right
scaling is extremely important whenworkingwith convex relax-
ations of cardinality functions, as it has been widely mentioned
in the literature on sparsity. However, choosing the ‘right’ scal-
ing factors is still an open question. Since the scaling factors
for discrete time systems introduced in Shah, Bhaskar, Tang,
and Recht (2012) and Yilmaz et al. (2017) have shown to gener-
ically perform well, we have adapted them for the continuous
time problem addressed in this paper. More precisely, we use

	 = Re(βp)− βa − Re
(
e2pe2tmp∗βp

)+ |ep|2N+2βa

1− |ep|2

α1
p =

√
2
(
Re(β2

p )+ β2
a
)+ 2

√
2	

(|βp|2 − β2
a
)−1

α2
p =

√
2
(
β2
a − Re(β2

p )
)+ 2

√
2	

(|βp|2 − β2
a
)−1

αp = (1− e2p)/(1− ep(2tm+2)),

(6)

where

βp = 1− e2tmp

1− e2p
and βa = 1− |ep|2tm

1− |ep|2
and tm is the time that the final sample is obtained. Further-
more in order to deal with the numerical problems, the terms
e2p and |ep|2 are slightly perturbed when they are equal to 1
to improve numerical stability. Finally, the set of elementary
impulse responses is defined as

I = I1 ∪ I2 ∪ I3.

3.2 Atom set

3.2.1 Atom set for zero initial conditions
The atomic sets for proposed method can now be defined. The
set of atoms is actually a collection of the responses of elemen-
tary systems, defined in (5), to the input at the sample time ti.
Linear combination of the responses of these elementary sys-
tems will form the system’s output as seen in (1). More precisely,
the atom set for zero initial conditions is defined as

A .= {a ∈ R
m+1 :

a = [(u ∗ h)(t0) (u ∗ h)(t1) · · · (u ∗ h)(tm)]T , h ∈ I}, (7)

where (u ∗ h)(ti) is the value of the convolution of u and h at
time ti. Furthermore, given Assumption A.1, the elements of
the setA are easily computable. Therefore, we can define a map
between the elements ofA and I in closed form.

Definition 1: K : A→ I and satisfies

h = K(a) if a = (h ∗ u)(ti−1) for all i = 1, 2, . . . ,m+ 1. (8)

3.2.2 Atom set for non-zero initial condition
In the case of non-zero initial conditions, the response of the
system is the sum of the initial condition and input responses.
As it is explained in Section 2.2.3 and (4a), the initial condition
and input responses share the same poles. This can be enforced
by using block sparsity as explained in Remark 4. However,
even though the initial condition and input responses are the
response of same poles, the sign andmagnitude can be different.
This issue can be addressed by having different sign combina-
tions of pole response. Therefore the set of atoms for non-zero
initial condition case is slightly different from the set in (7).
More precisely, it is of the form

Ā .= {a ∈ R
m+1 :

aic = [ȟic(t0)ȟic(t1) · · · ȟic(tm)]T ,

au = [(u ∗ ȟu)(t0)(u ∗ ȟu)(t1) · · · (u ∗ ȟu)(tm)]T

where ȟic ∈ ±h, ȟu ∈ ±h and h ∈ I
a = [aic au]T}. (9)

Again one can define a mapping between the elements of Ā and
I in closed form.

Definition 2: K̄ : Ā→ I and satisfies

h = K̄(a) if a = [ȟic(ti−1)(u ∗ ȟu)(ti−1)]T
for all i = 1, 2, . . . ,m+ 1.

3.3 Convex relaxation of optimisation problem in (eqn2a)

Given the discussion in Section 2.2.1 and the definition of the
atom setA, the time domain response of any LTI system whose
poles are in Sρ can be approximated as

y = [y(t0) y(t1) · · · y(tm)]T ≈
∑
a∈A

caa,

where equality holds in noise free case and if the system does
not have repeated poles. Hence the problem of low order system
identification from non-uniformly sampled time domain data
can be formulated as finding estimated system input response

ỹ =
∑
a∈A

caa (10)

and corresponding impulse response

g =
∑
a∈A

caK(a)

such that distance between the estimated ỹ and the collected
output data y is less than a given bound (e.g. ‖y − ỹ‖2 ≤ �max),
and the number of elements of A that are used in the expres-
sions (10) is the lowest possible one. Finally to obtain a convex
relaxation of (2a), the following atomic norm is considered

‖ỹ‖A .=
{
inf

∑
a∈A
|ca| : ỹ =

∑
a∈A

caa, ca ∈ R

}
. (11)

Given this atomic norm definition and non-uniformly sam-
pled outputs y = [y(t0)y(t1) · · · y(tm)]T , a convex relaxation
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of (2a) is

min
ỹ

1
2
‖y − ỹ‖22

s.t. ‖ỹ‖A ≤ τ

ỹ =
∑
a∈A

caa,

(12)

where τ is a bound on the atomic norm of output of the system.2

3.4 Convex relaxation of (eqn4a)

In this section, the atomic norm minimisation problem is
extended for non-zero initial condition case with the help of set
Ā in (9). Given the following vector:

ca = [cic cu],

the output of an LTI system for nonzero initial condition case
can be represented as

ỹ =
∑
a∈Ā

caa =
∑

a=[aicau]T∈Ā
(cicaic + cuau)

and corresponding impulse response is

g =
∑
a∈Ā

caK̄(a).

Similar to the problem (4a), this atomic norm definition
enforces a block sparsity on vector ca. Given this definition, the
following atomic norm is defined.

‖ỹ‖Ā
.=

⎧⎨
⎩inf

∑
a∈Ā
‖ca‖∞ : ỹ =

∑
a∈Ā

caa

=
∑

a=[aic au]T∈Ā
(cicaic + cuau), cic, cu ∈ R

⎫⎬
⎭ .

Now a convex relaxation of (4a) is

min
ỹ

1
2
‖y − ỹ‖22

s.t. ‖ỹ‖Ā ≤ τ

ỹ =
∑
a∈Ā

caa.

(13)

In the next section, an algorithm to solve these relaxed prob-
lems is given. Although the problem above is a convex problem,
it is a challenging one since, to the best of our knowledge, there
is no closed-form expression for the atomic norm used. This
is, in part, a consequence of the fact that the atomic set con-
sidered is uncountable. There are two main approaches in the
literature to this class of problems: (i) grid the atom set and use
this as a way to approximate the atomic norm (Shah et al., 2012)
or (ii) use a randomised version of the classical Frank–Wolfe
algorithm (Jaggi, 2013; Yilmaz et al., 2017). The main drawback
of the first approach is that, to have good approximations, the

grid has to be ‘very dense’ leading to complex high dimensional
optimisation problems. Hence, in the next section, we pro-
vide a modification of the randomised Frank–Wolfe algorithm
especially suited for the continuous time parsimonious system
identification problem considered in this paper.

4. System identification algorithm

Optimisation Problems (12) and (13) are particular cases of
a convex problem with an atomic norm constraint and a
Frank–Wolfe type algorithm can be used to solve it (Jaggi, 2013).
However, the classical Frank–Wolfe algorithm cannot be
directly applied to the problems described in this paper because
of the following reasons: (i) the atomic norm used in our formu-
lation, to the best of our knowledge, does not have a computable
closed form and (ii) optimisation Problem (12) or (13) provides
a non-uniformly sampled estimate of the response of the system
which is not suitable for continuous time system identification.

Note that the available measurements are sampled non-
uniformly, and the optimisation problem directly uses these
measurements to solve the proposed optimisation problem
given in (12) or (13). If a classical version of the Frank–Wolfe
algorithm is used, the estimated response obtained would be a
non-uniformly sampled one that provides a trade-off between
sparsity and fitting error. However, this non-uniformly sam-
pled response cannot be directly used in available algorithms to
calculate the continuous-time system parameters. These algo-
rithms need uniformly sampled data.

To address these limitations, we propose a modified version
of the randomised Frank–Wolfe algorithm. The first concern
is already addressed by introducing a randomised search that
has a convergent feasible estimate without having to compute
the value of the atomic norm at each iteration. In addition,
to address the second concern that is explained in previous
paragraph, two variables are simultaneously updated at each
iteration k. These two variables are

• Estimation of system’s output at the (non-uniform) sample
times t0, t1, . . . , tm which is denoted by ỹk.

• Uniformly sampled system’s impulse response estimation is
denoted by g̃k

.= [g̃k(0) g̃k(Ts) g̃k(2Ts) · · · g̃k(NTs)], where
Ts is sampling period.

As it is explained in the previous section, the atoms used for
computing estimate ỹk can be easily used to calculate a vector of
uniform samples of the impulse response of the system, suitable
for model identification. Even though the sample times of the
data collected can be arbitrary, the sampling interval Ts used in
the definition of g̃k should satisfy some criteria to avoid aliasing,
i.e. to uniquely recover the impulse response estimation g̃k(t)
from its samples g̃k(nTs),Ts needs to be small enough. However,
since the definition of the set Sρ implies that all the poles of the
p system to be identified satisfy

−π/Ts ≤ Im(p) ≤ π/Ts,

and by using classical results on sampling, it can be shown that
a sample period of Ts is enough to recover the impulse response
from its samples.
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Finally, once one has an estimation of the impulse response
at evenly sampled times, [g̃k(0) g̃k(Ts) ḡk(2Ts) · · · g̃k(NTs)], the
transfer function of the continuous time system can be effort-
lessly identified by using standard algorithms, provided that one
has enough number of samples N.

Remark 5 ((On g̃k(t))): Instead of introducing the additional
variable g̃k(t), we could alternatively keep track of the atoms
being used to approximate the response ỹk and periodically
eliminate those with negligible coefficients. We opted to use the
extra variable g̃k(t) since it leads to a simple algorithmwhich has
been shown to have very good performance in the experiments
that we have conducted.

Algorithm 1Modified Randomised Frank- -Wolfe Algorithm
Input:
→ Bound on atomic norm τ

→ ỹinitial ← τa0 for arbitrary a0 ∈ A and g̃initial ← τ g̃0
where g̃0 = τ [h0(0) h0(Ts) · · · h0(NTs)]T , h0 = K(a0)
→Measurement y and its sampled time.

1: for k = 0,1,2,3,... do
2: Randomly pick uniformly pk ∈ Sρ .
3: LetA(pk) be set of all atoms with a pole at pk.
4: ak← argmina∈A(pk)〈∇f (ỹk),±a〉 � ak ∈ A
5: hk← K(ak) � hk ∈ I
6: αk← argminα∈[0,1]f (ỹk + α[τak − ỹk])
7: ỹk+1← ỹk + αk[τak − ỹk]
8: g̃k+1← g̃k + αk{τ [hk(0) hk(Ts) · · · hk(NTs)]T − ḡk}
9: end for

Output:
→ Uniformly sampled g̃ and non-uniformly sampled sys-
tem’s output estimation ỹ

Next the proposed modification version of Frank–Wolfe
algorithm is presented. Note that the convergence rate of
the randomised Frank of algorithm is already proven in Yil-
maz et al. (2017). Since the randomisation step in the pro-
vided algorithm is same with the one in Yilmaz et al. (2017),
Algorithm 1 has same convergence rate.

Remark 6: In this algorithm, atomic set A and mapping K in
Definition 1 are used since zero initial conditionswere assumed.
To address the case with arbitrary initial conditions, just replace
the atomic setA and mappingK by Ā and K̄ respectively.

The randomised Frank–Wolfe Algorithm 1 is computation-
ally very efficient since:

• the iterations in the algorithmonly entail inner productswith
ỹ and a and the computation of the gradient with respect
to ỹ, a computational burden proportional to the number of
sampling timesm,

• the estimate of the impulse response ḡk does not play any role
in any of the computations except by being updated once the
atom ak is chosen,

• the computation of the value of the output of the map K in
step 5 is trivial since we know the pole(s) of ak.

Remark 7: To identify the continuous time system model,
length of the uniformly sampled impulse response signal needs
only to be long enough to contain all needed information.3Thus
only a sufficient number of samples for this impulse response
signal need to be stored in thememory for system identification,
not the whole time interval spanned by available data.

Next, details on each of the steps of the algorithm are given.

Inputs: A randomly picked pole in Sρ is scaled by τ

and then used to initialise an output response ỹinitial and
impulse response g̃0.
Step 2 A pole is randomly picked in given set Sρ .
Step 3 The corresponding atom for sampled pole pk is
calculated using the atomic set (7).
Step 4 Then the steepest descent direction is searched for
calculated atom. In other words, inner product of the gra-
dient vector (∇f (ỹk) = (ỹk − y) for (12)) with randomly
chosen±a is calculated, and the optimumatom ak is identi-
fied. In here we need to highlight the following fact to show
why this algorithm is computationally very efficient.

Remark 8: The algorithm only uses the non-uniformly sam-
pled output y and its approximation ỹk in these steps. The
uniformly sampled atom ak does not play a role in the calcu-
lations.

Step 5 Using mapping K, the hk ∈ I at iteration k is calcu-
lated based on the pole of ak in step 5.
Step 6 Calculating the optimum step size α ∈ [0, 1] needs a
second-order polynomial minimisation, where the closed-
form formula for the optimum α∗ is

α∗ = max(0,min(αu, 1)) where

αu = (ỹk − y)T(τak − ỹk)
(τak − ỹk)T(τak − ỹk)

.
(14)

Step 7 Current non-uniformly sampled ỹ is updated.
Step 8 Uniformly sampled impulse response g̃ is updated.

As a final step for proposedmethod, one of the available Ho’s
algorithm (or subspace methods) can be employed to obtain a
state space realisation of the system from estimated uniformly
sampled impulse response g̃.

5. Academic examples

In this section, academic examples are provided to illustrate the
performance of the proposed method and benchmark compar-
ison. An artificially generated example is first studied in detail.
Then, the interpolation ability of the method on a sparsely
and non-uniformly sampled data is compared with the bench-
marks. Finally estimation and sparsification performance of the
method is evaluated based on 200 different simulations for step
and impulse responses.
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Figure 1. Set Sρ .

5.1 Combination of step response example

The performance of the proposed method is illustrated with
an academic example. In this example, a randomly generated
system (0.4802s+ 0.09276)/(s2 + 0.3863s+ 7.6628) is excited
with the input given in Figure 2. Then the output is con-
taminated with Gaussian noise N (0, 0.035×max(y)) and the
measurements used for impulse response estimation are ran-
dom non-uniform samples of this noisy output. The signal to
noise ratio is calculated by using Matlab SNR function and it is
7.86. To evaluate the performance of the method, the true, mea-
surement and estimated output of the system and its impulse
response estimation for the given input is depicted in Figure 3.
In addition, the variance accounted for (VAF) is calculated
as a metric for both estimated output and estimated impulse
response. The formula for the VAF is

VAF =
(
1− var(ytrue − yest)

var(ytrue)

)
∗ 100,

where var represent variance. VAF of output is 98.7 and VAF
of impulse response is 99.5 for this specific example. The run-
ning time of Algorithm 1 is 2.78 s. The sampling rate for impulse
response is set at 0.01. In this example, we found the bound on
atomic norm τ = 2.4 by trial and error. Because of the atomic
normdefinition, there is a trade of betweennoise andparsimony
of the system. If one decreases the value of τ , the resulting fitting
error is larger (objective of the optimisation problem in (13))
but a lower dimensional system is obtained (a system with a
fewer number of poles). If one increases the value of τ , more
complex systems are allowed resulting in a better fitting error
with a system of higher order. There is no known systematic way
for selecting τ , therefore this needs further research. Finally, we
choose ρ = 4 for this simulation and Ts = 0.01 s.

5.1.1 Effect of τ selection
The effect of τ is investigated under the same conditions that we
used for combination of step response example and the problem
was solved for τ ∈ [0.1, 0.2, 0.3, . . . 5]. The error between true

Figure 2. Combination of Steps – Treatment.

Figure 3. Measurement versus uniformly sampled estimation of output and
Impulse response estimation.

impulse response and estimated impulse response is measured
with ‖gtrue − g̃‖2/‖gtrue‖2. Also we used 1/(

∑
i>n σ(i)/σ (1))

as a sparsity measure where σ(i) is the normalised singular
values vector of the Hankel matrix of the estimated impulse
response. Figure 4 depicts the influence of τ in the results
obtained.

5.2 Benchmark comparison performance on interpolation

5.2.1 Interpolation
Non-uniformly sampled step response of (0.5867s+ 0.14116)/
(s2 + 0.4829s+ 11.92) for 20 s with 25 sampled data is con-
taminated with Gaussian noise N (0, 0.008×max(y)). The τ
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Figure 4. Effect of τ value on impulse response estimation and sparsity.

is again chosen as τ = 2.93 by trial and error. Different types
of interpolation methods are available in MATLAB toolboxes.
However, most of the methods in toolboxes such as misdata
function assume commensurate measurement times and the
missing measurements are treated as NaN. This is not the case
in problems involving behavioural data since variables are not
sampled uniformly. MATLAB has some functions to deal with
such types of data. In this example, the functions resample and
interp1 are employed. In these functions, even though the user
can specify interpolation method such as spline, the function
itself can select best method for given data. Therefore we leave
functions resample and interp1 to choose best method to inter-
polate given data. Note that if the interpolation works well,
one of the indirect method introduced in introduction can be
employed for continuous time system identification. The results
of resample and interp1, and proposed method are given in
Figure 5.

5.2.2 Direct approach – CONSTID
In this section, same example is tested with amature continuous
time system identification toolbox CONSTID (Garnier, Wang,
& Young, n.d., Chapter 9) that can handle non-uniformly data
directly. In this toolbox, there are five different functions which
are LSSVF (LS-based state-variable filter (SVF) method for CT
ARXmodels), IVSVF (IV-based SVFmethod for CTARXmod-
els), COE (non-linear optimisation method for CT hybrid OE
models), SRIVC (optimal instrumental variable method for CT
hybridOEmodels) and SIDGPMF (subspace-based generalised
Poisson moment functionals method for CT). Even though
some of the functions has some limitations, four of them are
tested in this comparison. For instance, as it is stated in Gar-
nier et al. (n.d., Chapter 9) lssvf is very vulnerable to noisy data.
Therefore, ivsvf is advised for noisy data. However, ivsvf and coe
require the cut-off frequency of the SVF. Finally, the srivc is sug-
gested to overcome these drawbacks. For this specific example,
we start with 25 sampled data, and CONSTID fails because of
inadequate data. Then we gradually increased the amount of
sampled data from 25 to 50. Even though it identify a system

Figure 5. Interpolation from resample and interp1 and proposed method.

Figure 6. CONSTID identification result.

when we have 50 data, it far from the true impulse response
(see Figure 6). Note that after trying a few cut-off frequency, the
cut-off frequency for lssvf, ivsvf and coe is chosen as 0.4.

Even though the available methods fail to identify a system
that interpolates the given data, the proposed method success-
fully identified the impulse response of the system from a noisy
and very sparsely sampled dataset. In our method, the poles are
chosen in the set S2.

5.3 Average performance

In this section, the performance of themethod for non-zero ini-
tial condition is analysed based on 200 different experiments
for both step response and impulse response. In these experi-
ments, the random stable systems are picked in the set Sρ while
ρ ranging from 1 to 6. Additionally the order of these random
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Table 1. Experiment statistics.

Estimation error Sparsity measure

Min Avr Max Min Avr Max

Step response 0.015 0.503 1.648 0.000 0.389 2.786
Impulse response 0.0089 1.383 32.882 0.000 0.384 3.284

systems is also randomly picked between 2 and 8. In each simu-
lation, the data length was picked between 10 and 60 randomly.
Finally the output of this system is corrupted by additive noise
N (0, 0.005×max(y)). Then findings are outlined in Table 1. In
this table, estimation error is defined as

‖gtrue − g̃‖2/‖gtrue‖2.
Normalised singular values vector of Hankel matrix of the esti-
mated impulse response, i.e.

∑
i>n σ(i)/σ (1), is used as sparsity

measure, where n is the LTI system order. Note that this mea-
sure is identically 0 for true impulse response.We have chosen τ

equal to the true atomic norm of the system to be identified, for
consistency across all simulations. Note that if the true system
is known, then τ can be easily calculated by using partial frac-
tion expansion. Therefore, the true bound on the atomic norm
for the proposed method for Algorithm 1 is provided for each
simulation.

6. miLife study results

In this section, the performance of the proposed method is
evaluated based on a real adolescents depression/anxiety data.

6.1 Study andmeasurements

Ecological momentary assessment (EMA) data from the miL-
ife Study is analysed in this paper. The miLife Study used EMA
via mobile phones to track daily experiences, symptoms and
behaviours of young adolescents (N = 151) at heightened risk
for both exposure to violence andmental health problems. Ado-
lescents were, on average, 13 years of age (with ages ranging
from 11 to 15 years, SD = 0.91). The sample was 48% female
and ethnically diverse (57.3% Caucasian, 23.3% Hispanic, 4.0%
African-American, 4.7%NativeAmerican, 4.0%Asian and 6.7%
Other). One in three families in the sample ‘occasionally’ or
‘often’ had difficulty paying for food or other necessities, 40%
reported difficulties paying for bills and 8% reported that they
were currently receiving government services or assistance.
Parental reports were collected for 93% of the adolescents in the
sample (n = 141). Adolescents from low socioeconomic status
neighbourhoodswere recruited via a brief telephone screen (full
details regarding recruitment are provided elsewhere: Odgers
& Russell, 2017; Russell et al., 2016). Adolescents with three
or more risk factors reported by the parent (i.e. behavioural
difficulties, inattention or hyperactivity or early initiation of
substances, or a parent with a substance use problem) were
invited to participate in the study. Parents provided consent and
the adolescents provided assent.

Depression and anxiety symptoms were measured three
times daily using EMA. Adolescents reported on the presence
(yes/no) of five depressive (e.g. I feel hopeless, like nothingmat-
ters) and four anxiety symptoms (e.g. I amworried). The sum of

these symptoms was taken at each assessment. Violence expo-
sure was measured in the evening each day. Adolescents were
asked whether they witnessed people fighting: (a) at home, (b)
in school, (c) in their neighbourhoods or (d) somewhere else
(e.g. ‘Did you see people fighting in your home today?’ Yes/No).
If exposure was reported in any context, violence exposure was
coded 1 for the day, 0 if not. Violence exposure occurred on 9.7%
of the over 4300 study days.

To use the proposed approach in a behavioural treatment
setting, we first need to determine which variables should be
treated as inputs and which ones should be considered as out-
puts. Since the behavioural problems are more abstract than the
mechanical/electrical systems, we use some of the results avail-
able in the literature to guide us in this process. The literature on
adolescent stress studies shows that adolescents exposed to vio-
lence from different sources such as in their families, communi-
ties and schools are at increased risk for depression and anxiety
(Fowler, Tompsett, Braciszewski, Jacques-Tiura, & Baltes, 2009;
Guerra, Rowell Huesmann, & Spindler, 2003; Odgers & Rus-
sell, 2017). Therefore, to investigate the association between
violence and adolescent depression or anxiety, depression or
anxiety is assumed to be an output for our LTI, SISO system
while violence is assumed to be input of the system.

6.2 Data processing

Total 151 adolescents were tracked for 38 days using EMA.
First 8 days is used for baseline analysis. In our analysis, we
only include adolescents who reported witnessing violence at
least twice during the 30-day EMA period, because adolescents
who were exposed to only one violent incident may not provide
enough information for us to determine, with any reliability,
how much the system is perturbed by violence. As a result of
this simple filtering, we only modelled 45 adolescents out of
151 adolescents in the study. In addition, some of the people
eliminated did not have enough information (number of depres-
sion/anxiety measurements) to derive a meaningful dynamical
model. Among adolescents with sufficient data, we modelled
the output variable (i.e.depression or anxiety, y in Equation (1))
for which we had the largest number of measurements. There-
fore, two groups of adolescents are analysed: those for whom
wemodelled depression ( referred to hereafter as thedepression
group, 20 adolescents) and those forwhomwemodelled anxiety
(anxiety group, 25 adolescents). Violence measurements were
assumed to be a binary input (u in Equation (1)) for our model
such that the measurement is 1 if the violence occurred and 0
otherwise. In system theory language, we are randomly perturb-
ing system with an impulse while the initial conditions are not
equal to zero. In other words, output is a response of series of
impulses while the initial conditions are not zero at the time of
input applied.

6.3 Adolescents classification

The model characteristics obtained for each of the 45 adoles-
cents are summarised in Tables 2 and 3. The information in
Tables 2 and 3 can be used to classify the adolescents based
on the time course of affective reactivity to violence exposure.
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Table 2. Patients model specifications of depression group.

Adolescent Peak value
Settling time

(hours) # Violence
# Depression
(anxiety)

1 0.285 0.66 3 16
2 0.4055 0.77 2 14
3 1.4872 1.14 3 11
4 0.5792 0.93 4 35
5 1.4069 1.21 20 27
6 0.3002 2.24 2 32
7 0.8926 1.07 20 31
8 1.2451 1.07 3 28
9 0.7902 1 3 15
10 0.3476 0.79 2 31
11 1.3287 1.2 8 34
12 1.905 1.23 2 35
13 0.2005 0.51 8 29
14 1.5631 1.94 11 41
15 0.2898 0.7 3 21
16 0.2242 1.54 9 36
17 1.9026 1.18 2 30
18 0.496 0.8 2 52
19 0.4037 0.79 10 35
20 1.7531 1.31 3 31

In Table 2, for instance, we highlight the one (total 8 adoles-
cents) who has a settling time (final value of impulse response
+0.05) less than 1 h. Also 13 adolescents in anxiety group show
similar characteristics (see highlighted adolescents in Table 3).
This shows that the coupling of violence exposure with anxi-
ety for this group of adolescents is fading faster than the others.
This information could be used by clinicians to manipulate the
intensity of the treatment. Alternatively one can use to classify
these adolescents based on the impulse response peak value. For
instance, eight adolescents in depression group and seven ado-
lescents in anxiety group show much higher initial depression
or anxiety against the violence. This information suggests the
possibility that these adolescents might need a more aggressive
treatment strategy to minimise the impact of violence expo-
sures, although causal inferences cannot be drawn due to the
observational nature of the data collection.

6.4 Personal treatment

In addition to this classification approach, clinicians might find
the identifiedmodels useful for the development of personalised
treatments (e.g. using model predictive control, as in Bekiroglu
et al., 2016). However, the data set used only concerned 45 sub-
jects. Therefore, although promising preliminary results were
obtained, the proposed work should be tested on larger data
sets and see if these preliminary results can be extended to
larger populations. We should note that an approach based on
individual behavioural models is a paradigm shift from how
data analysis and treatment design is done is most of current
behavioural studies. The fact that, in many situations, we can
now collect large amounts of individual data, means that a
personalised approach to analysis and treatment design is fea-
sible. This contrasts with ‘classical approaches’ where the lack
of intensive longitudinal data meant that it was only possi-
ble to obtain population models and treatments could only be
determined based on that.

Table 3. Patients model specifications of anxiety group.

Adolescent Peak value
Settling time

(hours) # Violence
# Depression
(anxiety)

1 0.3789 0.53 3 15
2 0.9896 1 12 32
3 0.7137 1.1 13 44
4 0.7585 1.07 9 31
5 0.8220 1.05 5 31
6 0.1185 0.75 9 37
7 1.4548 1.11 3 37
8 0.1677 0.56 3 33
9 0.6643 1 6 33
10 1.7162 1.44 12 28
11 1.9484 1.24 2 14
12 0.5342 0.86 3 30
13 1.2803 1.61 2 18
14 1.256 11.11 15 35
15 0.1372 0.45 5 31
16 0.1903 0.77 3 33
17 0.6378 0.88 3 35
18 0.4625 0.78 2 22
19 0.4676 0.78 2 35
20 0.3031 1.24 7 31
21 0.7016 0.87 7 27
22 0.1924 0.66 4 28
23 0.0606 0.68 7 30
24 1.4270 1.5 13 29
25 1.2581 0.65 15 33

7. Conclusion

A new parsimonious continuous time system identification
algorithm for non-uniformly sampled datasets is developed for
miLife study to analyse the association between violence and
an adolescent’s depression and anxiety. We show that some of
the application areas such as behavioural treatment design prob-
lem requires a model despite non-uniformly sampled data and
nonlinearity to improve the performance of processes. For that
reason, we propose a method that can use non-uniformly sam-
pled data directly to provide a parsimonious estimate of the
impulse response of a continuous time system. To develop this
method, an atomic norm approach is utilised. We show that
the proposed method provides a systematic way of estimating
a person based model for medical/behavioural problem. The
performance of the proposed method is tested on miLife study
and our findings show that reactions to the violence can differ
from person to person. These findings reveal new insights for
behavioural/social sciences to develop new micro-scale treat-
ment design for each patient. In terms of system theory, future
work should investigate an on-line sparse continuous time sys-
tem identification algorithm to improve the performance of
adaptive treatment algorithms. Furthermore, a systemic way
needs to be investigated for true τ search.

Notation

Scalars are denoted by lower case letters (e.g. x), vector-valued
signals by lowercase boldface letters (e.g. x ∈ Lp), where Lp,
0 ≤ p ≤ ∞ denotes the usual Lp space with the norm ‖.‖p,
transpose of the vector is denoted as xT , the jth element of vector
is denoted as x(j), the real numbers by R, the complex numbers
by C, the integers by Z and the exponential for each element of
vector x by ex. For a signal x, x(ti) denotes the value of the signal
at time ti. The matrices are presented by bold capital letter (e.g.
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X). For a complex number p ∈ C, Re(p) denotes the real part
of p and Im(p) denotes the imaginary part of p. Also p∗ repre-
sents the complex conjugate of complex number p. ep represents
the exponential of complex number p. For a closed rectangle in
left-half plane inC is denoted by Sρ = {p ∈ C or p ∈ R : −ρ <

Re(p) < 0 and − π/Ts < Im(p) < π/Ts} where Ts is sampling
interval. conv(S) represents the convex hull of the set S. Further-
more the convolution of the signals g and u is denoted by g ∗ u.
The inverse Laplace transform is denoted by L −1.

Notes

1. Note that repeated poles might be approximated with non-repeated
poles with an arbitrary perturbation (Van Dooren, Gallivan,
& Absil, 2010).

2. If the true system is known, then τ can be easily calculated by using
partial fraction expansion. Since the transfer function of an LTI sys-
tem can be represented as a linear sum of the element of the set in (5)
then absolute sum (‖.‖�1 ) of the weight of each element in this partial
expansion will be the bound on the inf

∑
a∈A |ca| in equation (11).

3. Since the set Sρ contains only the stable poles but not necessarily
asymptotically stable poles, the stable poles converge to zero. There-
fore instead of calculating the tail of impulse response with bunch of
zeros on the tail of impulse response, one can cut the tail to identify the
coefficients of the model.
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