2019 IEEE Conference on Control Technology and Applications (CCTA)

Hong Kong, China, August 19-21, 2019
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Abstract—In this paper we propose a data-driven fault de-
tection framework for semi-supervised scenarios where labeled
training data from the system under consideration (the ‘“tar-
get”) is imbalanced (e.g. only relatively few labels are available
from one of the classes), but data from a related system (the
“source”) is readily available. An example of this situation is
when a generic simulator is available, but needs to be tuned on a
case-by-case basis to match the parameters of the actual system.
The goal of this paper is to work with the statistical distribution
of the data without necessitating system identification. Our
main result shows that if the source and target domain are
related by a linear transformation (a common assumption in
domain adaptation), the problem of designing a classifier that
minimizes a miss-classification loss over the joint source and
target domains reduces to a convex optimization subject to
a single (non-convex) equality constraint. This second-order
equality constraint can be recast as a rank-1 optimization
problem, where the rank constraint can be efficiently handled
through a reweighted nuclear norm surrogate. These results
are illustrated with a practical application: fault detection in
additive manufacturing (industrial 3D printing). The proposed
method is able to exploit simulation data (source domain) to
substantially outperform classifiers tuned using only data from
a single domain.

I. INTRODUCTION

Successful use of cyber-physical systems (CPS) in critical
applications hinges on the ability to detect and isolate faults.
Traditionally, fault detection methods can be divided into
two types: (i) model based and (ii) data-driven approaches
[21]. Model Based rely on a model of the system to identify
anomalous outputs (for instance by designing a filter whose
output is small under nominal conditions and large in the
presence of faults [24]). While this class of methods has
proven to be very successful, their dependence on models
can prevent their use in many CPS applications, such as 3D
printing, that rely on complex processes where models are a-
priori unknown and must be estimated and validated through
a computationally expensive identification step. As an alter-
native, data-driven methods, rooted in Machine Learning
ideas, exploit the statistical properties of the data to detect
anomalies (e.g. data points whose probability of originating
from a non-faulty system is low). An extensive survey on
existing approaches from the machine learning community
can be found in [14]. Additional recent contributions include
[15] and [16] which use sum-of-squares methods to derive
a statistical model for error detection, and [13] which uses
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moments to determine the presence of an error using on-
line sensor readings. These methods are computationally
attractive as they avoid explicitly identifying the plant, and
the process of training often reduces to a convex optimiza-
tion problem. However, designing a data-driven classifier
typically requires a large amount of labeled training data.
This requirement can be problematic in situations where
generating this data can be costly or may require operating
the plant in unsafe conditions.

To circumvent these difficulties, we propose a new ap-
proach to fault detection for scenarios where labeled training
data from the actual system under consideration is highly
imbalanced (labels from one class are scarce), but labeled
data from a related system is readily available. Examples
of this situation include cases where extensive experiments
can be performed on a prototype of the plant, or where a
generic simulator is available but tuning is needed to match
each actual system. Under the assumption that the statistical
distributions of the data generated by the surrogate and
actual systems can be mapped by a linear (or a composition
of polynomial and linear) transformation, our main result
shows that this transformation and an optimal classifier
can be found by solving a convex optimization problem
subject to a single non-convex norm equality constraint.
Further, efficient solutions to this problem, with optimality
certificates, can be found by first recasting it into a rank-
constrained optimization, which in turn can be relaxed to
a convex optimization by using nuclear norm proxies. This
technique is illustrated in the problem of fault-detection in
a 3D printer, using a combination of data generated by a
simulator (source) and data from an actual printer (target).

The main contributions of the paper are:

+ A new domain-adaptation based framework for semi-
supervised fault detection in cyberphysical systems,
specifically tailored to scenarios where only a small
amount of labeled faulty data generated by the actual
plant is available

o Theoretical results showing that the problem above can
be reduced to a convex optimization subject to a single
norm equality type constraint. Moreover, this problem
can be relaxed to an efficient convex optimization, with
optimality certificates.

« Application of these results to the problem of detecting
faults in additive manufacturing.

The paper is organized as follows. In section II we
introduce the notation used in this paper, together with
some required background results in domain adaptation and



soft-margin support vector machines (SVMs). In section
IIT we precisely state the problem under consideration and
show that the design of an SVM classifier that minimizes a
misclassification measure over all the available data reduces
to a convex optimization problem. Section IV applies these
results to a practical non-trivial problem, fault detection in
additive manufacturing. Finally, section V summarizes our
results and points out to directions for further research.

II. PRELIMINARIES

In this section we introduce the notation used in the
paper and some background results on domain adaptation
and support vector machines (SVM) based classification.

A. Notation
M
M(i:i4+m,j:j+n)

matrix with elements M;;
(m+1)x (n+1) submatrix of
M with M;; in its upper left
corner

M’ transpose of matrix M

[IM]]. nuclear norm of M

IM||7 Frobenious norm of M
o:(M) 1 singular value of M
M>0 M is positive semi-definite
|- cardinality of the set .%
loss(M, b) total hinge loss parametrized

over a matrix and a scalar

B. Domain Adaptation and Covariance Alignment

Domain adaptation (DA) is a set of statistical methods that
leverage labeled data from one domain - source - to perform
a task (such as inference) in a related domain - target - where
few labeled data points are available. Briefly, the underlying
idea is to reduce the performance degradation of models
designed using data from a single domain by minimizing the
statistical gap between domains. Roughly, DA methods can
be partitioned into unsupervised (those that use only labels
from the source domain), and semi-supervised which take
advantage of a few labeled samples from the target domain to
increase performance as compared to unsupervised learning.
Some common approaches to the adaptation problem are
distance minimization [10], [11], [8], subspace mapping [12],
[71, [6], [9] and correlation alignment [5], [6]. Among these
methods, [5], [12], [9] and [7] are unsupervised methods
while the rest can be extended to semi-supervised learning.

The approach that we pursue in this paper is inspired by
[5], where the authors propose to solve domain adaptation
problems by finding a linear transformation that minimizes
the distance between X, and X;, the covariances of the source
and target data, respectively. Under the assumption that the
source and target data are related by a linear transformation
A (that is x, = Ax;), this leads to the following optimization
problem:

X = Ax; —» %, = AL AT =¥/

min|[Z; — %[} = min||[ALAT — |7 (1)
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It can be easily seen that all the solutions to the problem
above are of the form

1 =1
A=3Ux7 st. U'u=U0U" =1 (2)

where the unitary matrix U is a free parameter. In the absence
of additional information about the target labels, the original
formulation in [5] simply selects U = I, which intuitively
can be interpreted as whitening the source data with its
covariance and recoloring it with the target’s covariance. In
contrast, in this paper we will consider a semi-supervised
scenario where a few target labels are provided and use the
additional degrees of freedom provided by U to optimize
classification performance. The advantages of this approach
are illustrated in Fig. 1 with a simple two class case, where
the source and target domains are linearly related but have
different covariances as shown in Fig. 1(a) and Fig. 1(b). Fig.
1(c) shows the results of using a classifier trained with source
data points transformed using standard covariance alignment
(e.g taking U =1 in (2)). As illustrated there, this classifier
performs poorly on the target domain (see Fig. 1(b)). On the
other hand, using the additional degrees of freedom provided
by U, leads to virtually perfect classification (Fig. 1(d)).

C. Soft Margin SVM Classifiers

SVMs are supervised binary classifiers which categorize
test examples according to which side of a given hyperplane
they fall. In the case of linearly separable data, so called hard
margin SVMs learn a hyperplane lying halfway between the
two parallel hyperplanes supporting the two categories of
training data. If the data is not necessarily linearly separable,
as in many real world problems, the following soft margin
formulation [22], [23] is widely used: given training samples
x; €R", i=1,...,1, and labels y € R’ where y; € {1,—1},
find a hyperplane with normal w and offset b to minimize
the following cost.
min leW +C Zl: &
wb.e 2 et '
subject to y;(w/ ¢(x;) +b) > 1 —¢
§>0,i=1,..,1

3)

Here ¢(x;) maps the data vectors to a higher dimensional
space where the data is (close to) linearly separable, result-
ing in a nonlinear classifier. For linear SVMs, ¢(x;) = x;.
Here C > 0 is an hyperparameter determining the trade-
off between classification accuracy and size of margin. If
C is large enough so that the regularization term 1||w||? is
negligible, then the soft margin formulation above behaves
like a hard margin classifier. Since the dimension of the
vector w depends on the dimension of the data vectors, in
cases where this dimension is high, a dual formulation of
(3) is used [25]. However, this formulation cannot directly
be used in conjunction with the DA proposed here.

III. SEMI-SUPERVISED DOMAIN ADAPTATION FOR
FAULT DETECTION AND CLASSIFICATION

The goal of this paper is to develop an efficient fault
detection algorithm for cyber-physical systems operating in



Target Domain

Source Domain

o class class1
class2
* mean

covariance

class2-labeled

mean

covariance
.

b A b b LA o 2 v ow & oo

H A b A 4 o 4N ow & oo

i

(b)

-6 -4 -2 0 2 4

Teirget domain (only a few
labels from the second class
are known)

(a) Source domain ground truth

Fig. 1.

class2-unlabeled

Transforming source samples by whitening-recoloring map Transforming source samples by our mapping

class1
class2

class1

class2

* mean
covariance
decision surface

* mean
—— covariance
decision surface

b b & % Ao am e s
b b b b Ao . n e s e

Classifier obtained usiﬁg ’
the proposed method
(semi-supervised)

-4 -2 0 2 4
Classifier obtained by
conventional covariance
alignment (unsupervised)

© (d

A toy example: The goal is to classify target data (b) using source information (a) and labeled target samples. Note that only a few samples from

the second class are available. Covariance alignment performs poorly ((c) vs (b)) while the proposed method has almost perfect performance ((d) vs (b)).

scenarios where there is imbalanced labeled training data
generated by the actual plant under consideration, but where
training data from a related system is readily available. An
example of this situation are cases where reasonably high-
fidelity simulations of the CPS under consideration are avail-
able, but need to be tuned on a case-by-case basis to match
the parameters of the actual system. Rather than performing
a costly non-linear identification of the system, the approach
proposed here works directly with the statistical distribution
of the data, by designing a classifier that leverages both the
labels from the actual system (the “target” domain) and those
obtained from the simulator (in this case the “source”).

A. Design of a Domain-Adapted Classifier

In this paper, we will use as classifiers the well known
soft margin SVMs described in section II-C. This choice is
motivated by the fact that, in addition to their proven success,
training of these classifiers reduces to a convex optimization
problem that, as we show in the sequel, can be modified
to handle the semi-supervised scenario of interest here. Note
that in principle, this choice assumes that the different classes
are linearly separable. However, more complex cases can be
handled by simply lifting the data to a higher dimensional
space using kernel methods. As briefly discussed in section
V, a similar idea can be used to extend the domain adaptation
based approach presented here to non-linearly separable
classes.

In the sequel we consider for simplicity two-class sce-
narios (e.g. faulty/non-faulty CPS), but the approach can be
easily generalized to the multi-class case by a straightforward
modification of the objective function. In this context, the
problem of interest here can be formally stated as:

Problem 1: Given

(1) source (Zy) and target (%;) training data sets, with

covariances X, and X,
(ii) labeled subsets Zy; C £ and Z;; C Z;, with N, =
| 251l Ny = | Z14], Ny > Ny
find a transformation A : source — target and a SVM based
classifier that minimizes the classification loss function over
the joint labeled data set 2; =AZ;U Z;,.
Using the primal hinge loss formulation of linear SVMs
described in section II-C leads to the following explicit
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expression for minimizing the total loss over Z;:

Ny
(w*,b*,U") = arginén CZ max(0,1 —ys (W Axy; +b))
w,b, i=1

N, 1
+ Y €y max(0,1 — Y, (W%, j+b)) + 3 Iwli3
j=1

1 _1
subject to U'U =Tand A = X2Ux; 2
4)

where X ;,X;,Vs; and y,; denote the elements of Z;; and
Z:; and the corresponding labels, respectively. Since the
target training set is unbalanced in terms of faulty and
nominal class samples, a different value of the hyper pa-
rameter C, = {C;,C_} is chosen for each class, with a
higher penalty for the faulty class. Note that the optimization
problem above is a convex optimization problem over the
Stiefel manifold defined by UTU = I. However, since the
objective function is non-differentiable, standard manifold
optimization techniques (e.g. curvilinear gradient descent,
Riemannian trust-region) [18] are not directly applicable.
In principle this difficulty can be circumvented by using
alternative formulations where the objective is smooth, but
this entails introducing an additional variable and an as-
sociated inequality constraint for each data point in (4),
substantially increasing the computational complexity. As
an alternative, in this paper we will exploit the fact that
(4) is a semi-algebraic optimization problem [17] that can
be efficiently solved using moments based techniques. We
begin by rewriting (4) in terms of fewer variables, subject to
a single (non-convex) norm constraint. Define

1
7= (57)w

(5)
Z, = UTZ,
Rewriting (4) in terms of these new variables leads to:
Ny 1
min L(z,,2;,b) = CY max(0,1—y,i(z] L5 *x;;+b))
Zs 2, =1
& Ty 3 U ryi (6)
+ Z Cy max(0,1—y; j(z; £, *X, j+b))+ 2 Yoz

j=1
subject to |23 = ||z |3



where we exploit the fact that UTU =1 <= |z5 = ||z|3.

Since the objective function in (6) is semi-algebraic and
the constraint is polynomial, in principle a sequence of
convex relaxations whose solution is guaranteed to converge
to the optimal can be obtained by proceeding as in [17].
While this approach works well for small size problems, it
quickly becomes intractable due to the combinatorial growth
of the number of variables as the order of the relaxation
increases. As an alternative, in this paper we propose to
reformulate (6) as a rank-constrained optimization that in
turn can be relaxed to a convex optimization by using the
nuclear norm surrogate for rank.

Theorem 1: Problem (6) is equivalent to the following
rank-constrained optimization:

loss(M,b) =C Yy b
brlr\}[m oss( Zmax — s, (m! Xs i+b))
N -1 1
+ Z Cy max(0,1—y, ;(m!'x, 2X17j+b)) + om % Ty 'm,
j=1

subject to
My =1
ntl 2n+1
ZMZI - Z M]]

Jj=n+2
rank(M) = 1

(7N

where mg =M(1,2:n+1) and m;, =M(1,n+2:2n+1).

Proof: Denote by z;,z/,b] and M*,b} the solutions
to (6) and (7) respectively. Define v/’ = [1 z:" z'] and
M = vv’". By construction, loss(M, b}) = L(z},z},b}) and M
is a feasible solution of (7). Hence

loss(M*,b%) < loss(M,b}) = L(z},z; ,b})

Since the optimal solution M* to (7) has rank 1 and M}, =
1, M can be factored as M* = vv/ with v=[1 mT]T. Let
2Z,=m(1:n) and 2 =m(n+ 1 :2n). By construction (Z,%)
are feasible for (6) and

L(zg,2/,b7) < L(Zs,%,b3) =

Hence L(z},z;,b}) = loss(M*,b3). [ |
Remark 1: Recall that an n x n symmetric matrix has

"<"+1) distinct entries. Thus, M in (6) involves (2n+1)(n+

1) varlables since its first row is [1 Zg z,] On the

other hand, in the original formulation (4) the first row

of M is given by [I w vec(U)|, and hence M has

w degrees of freedom. Thus, (6) leads to

substantial computational complexity reduction in scenarios
where 7 is not small, that is x has a large number of features.

loss(M*, b3)

B. A Convex Relaxation

In principle, (7) is generically NP-hard, due to the rank
constraint. A tractable convex relaxation can be obtained by
replacing rank by its convex envelope, the nuclear norm [19],
leading to Algorithm 1 outlined below. Briefly, the main
idea here is to seek rank 1 solutions to (7) by minimizing
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the nuclear norm of M (using the re-weighted heuristic
proposed in [19]), subject to the constraint loss(M,b) <
u. The algorithm can then be used to perform a simple
line search on u to find the lowest value that yields rank
1 solutions!. Alternatively, u can be easily tuned on the
validation set provided by the label-rich source domain.

Algorithm 1 Domain Adaptive SVM Training

Input: Source: source domain data, Target: target domain
data, u: upper bound on loss, Maxit: maximum number
of iterations, d: Space dimension

: Xsr < PCA4(Source) , Target < PCA;(Target)

X:r : Few target samples as training instances

X;; : The rest of the target samples as testing instances

2 Xy cov(Xy UXyy) , Xy < cov(Xyy)

Initialization : W = X241 1)x (2d+1)

R

5. for i =1 to Maxit do
6:  minimize J(M) = Trace(W -M)
subject to:
M(1,1)=1
M*>0
loss(M,b) < 1
T My = T, My
7 if rank(M)=1 then
8: break
9: else
10: 0, + second singular value of M
11: W=M+ocI)"!
12:  end if
13: end for
14: return M, b
15: b; + b, w; <from elements of M

Output: (w;,b;): SVM parameters

C. Further Computational Complexity Reduction

Further computational reduction can be achieved by not-
ing that only the elements in the first row and column
of M and its diagonal appear explicitly in (7), while the
other elements are only needed to guarantee that M =
0 (block-arrow sparsity pattern). Moreover, from Theorem

1.5 in [20], there exists a rank 1 positive semi-definite
completion of M iff rank(M;) = 1,i = 1,..2n, where M; =
1 M 1i . . .

. Thus, a computationally attractive alternative
My M

to Algorithm 1 can be obtained by replacing the objective
with J;(M;) = Y. Trace(W;M;) and the constraint M > 0 with
M; = 0, i = 1,..2n. Note that this formulation has only 6n
variables, compared to (2n+1)(n+1) in (7). Since the
computational complexity of interior point methods scales
as (number of variables)®, the reduction is substantial, even
for moderately sized feature vectors.

'A lower bound on g can be found by simply solving (7) without the
rank constraint.
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Fig. 2. Ink-jet 3-D Printing System. Printer builds parts in layers by
ejecting droplets from a nozzle onto a moving substrate. Each ejected layer
of droplets is cured and the resulting height profile is measured.

IV. APPLICATION: FAULT DETECTION IN ADDITIVE
MANUFACTURING

In this section we illustrate the advantages of the proposed
framework on a non trivial problem: fault detection on a
layer-to-layer ink-jet 3-D printer. These printers (shown in
Fig. 2) build the desired parts by depositing droplets on
locations determined by the input layer droplet map [1], [2],
[3], [4]. Printers typically have an open-loop control scheme
assuming constant droplet density, and corrections are made
by refining layers after deposition. Uncertainty in the build-
ing process (such as droplet spread and thermal differences)
cause uneven height profiles and inhibit development of a
reliable purely physics-based model relating the input droplet
map and the output. As a result, physics-based simulators
are not exact and fault detection algorithms designed using
simulation data alone are not reliable. We show that domain
adaptation can leverage a small amount of real data, together
with simulations, to substantially improve the performance of
data-driven fault detection algorithms. Using simulated train-
ing data obviates the need for generating the various kinds
of faults necessary for diagnostics, which may necessitate
operating under hazardous conditions that will generally de-
grade or destroy existing machines. This study focuses on the
abnormal condition of a clogged printing nozzle. We aim to
achieve early termination of printing when a clogged nozzle
is detected on a layer using a fault detector designed using
simulator data (source domain) adapted to the real printer
(target). In the sequel, we consider two different experiments.
In the first one, in order to explore fault detection accuracy
of our method on a fairly large testing data set, we conduct
our experiments on two different simulators. The simulators
were developed using the graph-based model presented in
[3]. Since both simulators produce faulty and nominal output
layers that are statistically different from each other (see Fig.
3), we will treat one of these simulators as a surrogate for
a real printer. In the second experiment we use one of these
simulators together with nominal and faulty data generated
by an actual ink-jet printer, where the number of faulty data
points is substantially smaller than the one corresponding to
nominal conditions.
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(a) Input Layer (b) Nominal Printing (c) Clogged Nozzle

(d) Nominal Printing  (e) Clogged Nozzle

Fig. 3. Height Profile of a Data Point on Two Different Simulator Domains:
(b), (c) correspond to Siml; (d), (e) correspond to Sim?2.

A. Simulator-to-Simulator Adaptation

In this experiment, we have 2048 data points (output
layers) from each simulator. While all label information is
available in the source domain (Sim1), we assume that label
information from the target domain is imbalanced: Only 5%
of the faulty data labels are available in the second simulator.
For experiments, 2/3 of label-rich class samples are used
during training along with few labeled data from the faulty
class, and the rest is used for testing. In principle, each data
point x € R*_ corresponding to a vectorized 64x64 output
layer profile. However, the high amount of redundancy in
the data (due to the geometric constraints of the process)
allows for reducing the data to dimension as low as 20
using PCA, without significant performance decrease. Table I
shows classifier’s performance using three different metrics:
precision = tptTpfp’ recall = t;’, and F1 = 2%‘%, where
p=(number of actual faults), tp=(number of actual faults
found by the algorithm), and fp=(non-faulty data mislabeled
as a fault). We compared our results against the baseline
of a regular linear SVM trained on the source domain. Its
performance on the source domain validation set (Siml)
and on the target test set (no adaptation case - NA) are
given to illustrate the performance degradation caused by
the difference in statistical properties across domains. In the
third rows, performance of a linear SVM trained only on
labeled target samples is given (Tgt). Finally, in the fourth
rows, we report the performance of SVM with adaptation
(WA). As shown there, accuracy of a regular SVM trained
only on the source domain decreases with respect to all three
metrics when it performs on the target. Training the classifier
only on the target domain also results poorly - half of the
faults cannot be recalled - since the number of data points
available for training is not enough for a good generalization.
On the other hand, the SVM-WA proposed here outperforms
both baseline systems in terms of recall and f1-score metrics.

B. Simulator-to-Printer Adaptation

In this section we tested our algorithm in a more chal-
lenging real setting. Using Siml as the source domain, we
use actual prints as the target domain data points. We have



497 nominal and 21 faulty data points available from the
actual ink-jet 3D printer. Note that these faults are not only
from clogged nozzle condition as we are simulating on Sim1
domain but from different abnormal cases that may occur
during building (slanted base, omitted droplets, sparse/close
spacing). We synthesized simulation outputs by using the
same set of input maps used for real printing. We used 10
randomly picked faulty prints for training, and the rest is for
testing. As shown in Table I, the non-adapted classifier is
not able to detect any faults and results in a zero recall rate,
while the domain adapted algorithm proposed here correctly
recalls 9 of 11 faulty real printing layers even though fault
types except clogged nozzle aren’t available from Sim1. This
is because our algorithm leverages nominal data points of the
real printer, so the relation between domains can be linearly
approximated by a mapping between nominal classes.

TABLE I
FAULT DETECTION RESULTS (SOURCE-TO-TARGET)

[ SimI-to-Sim2 SimI-to-Printer
F1Score Siml | 0.9052 Siml | 0.8876
F1Score Sim2 (NA) | 0.8712 | Printer (NA) NaN
F1Score Sim2 (Tgt) | 0.6671 Printer (Tgt) | 0.4706
Fl1Score Sim2 (WA) | 0.9535 | Printer (WA) | 0.7826
Precision Siml | 0.8767 Siml | 0.8721
Precision ~ Sim2 (NA) | 0.8804 | Printer (NA) NaN
Precision ~ Sim2 (Tgt) | 0.9919 | Printer (Tgt) | 0.6667
Precision  Sim2 (WA) | 0.9374 | Printer (WA) | 0.7500
Recall SimI | 0.9357 SimI | 0.9036
Recall Sim2 (NA) | 0.8623 | Printer (NA) 0.00
Recall Sim2 (Tgt) | 0.5026 Printer (Tgt) | 0.3636
Recall Sim2 (WA) | 0.9702 | Printer (WA) | 0.8182

V. CONCLUSIONS

In this paper we presented a domain-adaptation based
technique capable of leveraging a small amount of labeled
data generated by the real system together with data gen-
erated by an untuned simulator. Our main result showed
that an SVM based classifier capable of exploiting data
from both the source and target domain can be obtained
by solving an optimization problem subject to a single non-
convex constraint. Further, this problem can be relaxed to
a convex optimization and efficiently solved. These results
were illustrated using as an example detection of a clogged
nozzle on an ink-jet 3D printer, where the proposed method
outperforms classifiers designed using only source or target
data.

In principle, since we used a linear SVM, the results
presented in the paper apply only to the case where the
nominal and faulty data are linearly separable. Results pre-
sented here can be trivially extended to polynomial kernel
SVMs (where the data is polynomially lifted to a space where
the classes are linearly separable) by simply considering the
lifting x — v(x), where the elements of v(x) are monomials
of the form x* = x{"x3?...x% and applying Algorithm 1 to
the Veronese mapped v(x). Work currently in progress seeks
to develop a computationally efficient implementations of
Algorithm 1 allowing for applying the proposed technique
to large data sets in scenarios where the dimension of the
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feature vector is not small and cannot be easily reduced
without performance loss.
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