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Computationally Efficient Spatio-Temporal Dynamic
Texture Recognition for Volatile Organic Compound
(VOC) Leakage Detection in Industrial Plants

Diaa Badawi

Abstract—In this article, we present a computationally efficient
algorithm to detect Volatile Organic Compounds (VOC) leaking
out of components used in chemical processes in petrochemical re-
fineries and chemical plants. A leaking VOC plume from a damaged
component appears as a dynamic dark cloud in infrared videos.
We describe a two-stage deep neural network structure, taking
advantage of both spatial and temporal structure of the dynamic
texture regions created by the leaking VOC plume. We first detect
moving pixels which are darker then their neighboring pixels. We
extract one-dimensional (1-D) signals representing the temporal
history of such pixels from video and feed the 1-D signals to a 1-D
convolutional neural network. If those pixels are near the edge of
a VOC plume, their 1-D temporal signals exhibit high-frequency
behavior. The neural network generates high probability estimates
for such pixels. If 1-D neural network generates high confidence
values, final decision is reached using a deep convolutional neural
network (CNN) which processes image frames. The overall struc-
ture is computationally efficient because the spatio-temporal CNN
does not process all of the image frames of the captured video.
Experimental results are presented.

Index Terms—VOC plume detection, IR video, CNN, time-series.

I. INTRODUCTION

HE US Environmental Protection Agency (EPA) estimates

that more than 70,000 tons of Volatile Organic Compounds
(VOC) are emitted from leaking equipment, such as valves,
pumps, and connectors, at petroleum refineries and and chemical
manufacturing facilities annually [1]. Some types of VOCs such
as acetaldehyde, benzene, formaldehyde, methylene chloride,
naphthalene, toluene, and xylene are Volatile Hazardous Air
Pollutants (VHAPs), which cause cancer, birth defects and
reproductive effects. VOCs also contribute to the formation of
ozone, which is a major source of smog, and one of the main
causes of respiratory diseases in urban areas and areas close to
refineries and chemical plants [2].
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Fig. 1. Toluene absorbance as a function of the wavelength in infrared range.
The scale of the wavelengths (z-axis) is in micrometers. The plot is downloaded
from [3].

Most VOCs absorb infrared light in Medium Wave Infrared
(MWIR) or Long Wave Infrared (LWIR) bands. For example,
toluene absorbs infrared (IR) light in both MWIR and LWIR
bands as shown in Fig. 1.

As aresulta MWIR or LWIR thermal camera can image leak-
ing VOC plumes from a faulty component [4]-[6]. In Fig. 2(a),
an image frame from a thermal camera is shown. The leaking
VOC region is darker than neighboring regions because the
VOC absorbs IR light. As a result, MWIR and LWIR thermal
cameras make VOC leaks visible which are normally invisible
with a regular camera as shown in Fig. 2(b). In Fig. 3(a) and
(b) two image frames containing VOC leaks are shown. In these
image frames it is not possible to identify the leak by examining
the location of the leak. However, leak locations can be easily
spotted when we watch the video clips. This is because VOCleak
regions are not stationary in the thermal IR video. They move
in an erratic manner due to wind and/or other factors. This is
demonstrated by the frame sequence shown in Fig. 4. Therefore,
a computer vision algorithm should use both the spatial and
temporal information to detect VOC leak regions. The VOC gas
leak detection problem in infrared video is similar to related
to wildfire smoke detection problem [5], [7]-[13]. Smoke and
flames are also dynamic textures in the video [14]-[19]. Ideally,
a neural network taking a cube of video data should be trained
for VOC leakage detection. However, such an approach would
not be computationally efficient and it would not be possible to
implement such a system in real-time.

In this paper, we design two types of neural networks for VOC
detection. We implement the neural networks in two stages one
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(b)
Fig. 2. Example IR thermal image (a) and a corresponding ordinary camera

image (b) for the same scene. As we can see, the VOC leak is not visible in the
case of visible light image. Images (a) and (b) are taken from [20].
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Fig.3. Example IR-thermal frames of VOC leaks. As we can see, it is not easy
to figure out the VOC leak from a single image frame.

after another by taking advantage of both spatial and temporal
structure of the dynamic texture created by the leaking VOC
plume. We first detect moving pixels which are darker then
some of their neighboring pixels. These pixels may be at the
boundary of a VOC plume. We extract one-dimensional (1-D)
signals representing the temporal (history) signals of such pixels
from video and feed these 1-D signals to the neural network. If
those pixels are near the edge of a VOC plume their 1-D temporal
signals exhibit high-frequency behavior because VOC clouds
exhibit erratic movements similar to ordinary smoke. A typical
1-D signal corresponding to a pixel at the edges (or near the
edges) of a VOC plume is shown in Fig. 5. On the other hand
regular background pixels have pretty stationary behaviors as
shown in Fig. 6 and motion patterns of ordinary moving objects
are different from the VOC gas leak pixels shown in Fig. 5. The

Fig. 4.

Example IR-thermal frame sequence of VOC leaks.
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Fig.5. Time-series data of three pixels in VOC leakage regions in IR video.
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Fig. 6. Time-series data of three pixels in thermal IR video. The time-series
shown in blue corresponds to a moving object.

neural network is trained in such a way that it generates high
probability estimates for such pixels. If the 1-D neural network
generates high confidence values, we feed the corresponding
video frame to a deep convolutional neural network (CNN).
The final decision is reached using the CNN which processes
image frames. The overall structure is computationally efficient
because the CNN does not process all of the image frames of the
captured video. It only processes data after a suspicious activity
is detected by the 1-D neural network which processes temporal
history of dark pixels.

The organization of the paper is as follows. In Section II-A we
present the 1-D neural network analyzing the temporal history
of a pixel. In Section II-B we present the spatio-temporal 2-D
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Fig. 7.

neural network. In Section II-C, we present the energy-efficient
additive-correlation based spatio-temporal neural network. In
Section III we present our experimental results for the different
algorithms. Finally, we present our conclusion and discussion.

II. COMPUTATIONALLY EFFICIENT SPATIO-TEMPORAL
VIDEO ANALYSIS FRAMEWORK

As pointed out above, plumes of VOC leaks appear as dark
regions in a white-hot mode thermal IR video (VOC leaks
appear as bright regions in black-hot mode). Such regions do
not have a stationary shape over time. They expand and move
in an erratic manner. Similar to flame and smoke detection in
regular video [10], [12], [21]-[27] VOC leakage in IR video
can be determined using spatio-temporal analysis. Deep neural
networks have demonstrated their abilities in complex pattern
recognition tasks. However, they are computationally demand-
ing and may not be a practical solution to be used on ordinary
low-cost computers for real-time applications. For this purpose,
we develop a computationally efficient framework consisting
of two components in cascade. The first component is computa-
tionally efficient and can be used for real-time monitoring, while
the latter is more computationally demanding and is invoked by
the first sub-system only when needed.

In details, the system first samples IR video and feeds those
samples of 1-D time-series signals of pixels of possible VOC
regions to a 1-D neural network. Afterwards, the system quan-
tifies the likelihood of VOC leakage from the results obtained
by the 1-D neural network. If the confidence of having VOC
leak exceeds a certain threshold, it feeds corresponding image
frames to the second component, which is a spatio-temporal
convolutional neural network as shown in Fig. 7.

In these settings, the task of continuous monitoring is assigned
to the relatively efficient 1-D neural network instead of an ordi-
nary 2-D CNN. In order to see the computational saving, one can
compare the computational complexity of convolution carried

1-D Classifier

Samples
Predictions

Likelihood
Score
Calculation

Block diagram of our proposed system. “Th™ stands for threshold.

out in 1-D vs 2-D CNN. For an input of size N x N x D, and
a filter of size k x k x D, the realization of a single 2-D feature
map has a computational complexity O(N x N x k x k x D).
On the other hand, the realization of a single 1-D feature map
with an input size M x D and a filter size of [ x D has a
computational complexity of O(M x [ x D). Therefore, aslong
as M < N2 and I < k2, the 1-D based convolution is more
efficient. As a matter of fact, we have M' << N2 in our system,
thus the computational saving of the 1-D neural network is
€normous.

A. One-Dimensional Temporal Analysis
of Dark Moving Pixels in IR Video

The first step of our VOC leak detection method is to identify
dark moving regions in IR video. We do not use a threshold
for dark region detection because the background level affects
the average value of the VOC leak region. We process a given
image frame in small windows and identify the minimum or
local minima. After this step we construct 1-D temporal signals
corresponding to such pixels in IR video.

In other words, we extract 1-D temporal records from the
original spatio-temporal (video) data. We process these 1-D
history signals separately using a neural network in order to
identify whether these history signals are part of a VOC leakage
scene or not. As shown in Fig. 5, if the pixel is at the boundary
or near the boundary of a VOC leak region, it will exhibit an
erratic (high-frequency) behavior over time. On the other hand,
if the pixel is from an ordinary object absorbing IR light or a cold
place, it will be stationary and exhibit low-frequency behavior
most of the time as shown in Fig. 6.

The motivation behind using simple temporal 1-D signals
instead of the entire video data is to greatly reduce the computa-
tional complexity of the detection algorithm. This approach also
works if the IR camera is slowly moving, zooming or panning.
Since we only process a relatively few number of 1-D temporal
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TABLE I
ARCHITECTURE OF THE 1-D CONVOLUTIONAL NEURAL NETWORK USED IN
TEMPORAL SIGNAL CLASSIFICATION

Layer | Specification
Input Layer input size: 160 x 1
Conv Layer 32 5 x 1 filters, strides=2

applied
64 3 x 32 filters, no strides
down-sampling by 2
applied
128 3 x 64 filters, no strides
down-sampling by 2
applied

Batch-norm Layer

Conv Layer
Max-pooling Layer
Batch-norm Layer

Conv Layer
Max-pooling Layer
Batch-norm Layer

Global Average-pooling | output size: 128

Dense Layer output size: 128
Batch-normalization Layer applied
Output Layer output size: 1

(soft prediction)

pixel signals per image frame, processing 1-D time-series data
is much more efficient than processing a single image or image
frames.

We tried two classifiers of the 1-D temporal data. The first
is a regular 1-D convolutional neural network. The second
is an LSTM-based classifier. Our input is a single temporal
time-series history signal generated by a moving dark pixel
of the IR camera and the output is a binary prediction value
predicting whether this specific time-series signal comes from a
VOC leakage region or not.

In our settings, we read temporal signals of size 160 at a
frame rate of 25 fps, which roughly corresponds to 6.4 seconds
from IR videos with spatial dimensions of 224 x 224. The time
span of 6.4 seconds is sufficient for any gas leakage to have
a noticeable spread-out across the scene as shown in Fig. 5.
Therefore, we expect that a sufficient number of time history
signals to have time-varying intensity values informative of
VOC leakage. Therefore, if our 1-D neural network is trained to
perform a binary classification task to distinguish VOC leakages
from other events based on time-series signals, we expect it to
be able to recognize any potential leakage from other moving
objects in the IR video. The architecture of the CNN used is
given in Table L.

Since our decision will be based on the collective prediction
results of the 1-D time-series signals, we devise a confidence
score that quantifies our confidence as to whether the scene
contains VOC leaks or not. In this regard, let x € R0 rep-
resent the input signal, which is a vector of length 160, and let
D(z) € {0, 1} be the hard decision made by the 1-D convolu-
tional classifier, where “0” corresponds to predicting ordinary
temporal signals, and “1” corresponds to predicting that the
time-series signal is from a VOC leak region in IR video. Let N
be the number of sample trajectories extracted from the entire
spatio-temporal video data. The VOC-leak confidence score is

defined as follows:

YN I(D(z:) =1)
L= 1 N

where I(.) is the indicator function and x; is the i-th signal. In
other words, if there are enough time-series signals identified
as positive class (VOC leak), the VOC-leak confidence score
L will be high. On the other hand, if the sampled time-series
signals do not contain any leakage, the score will be low. In case
the confidence score L exceeds a certain threshold, the system
recognizes a suspicious event, and then invokes the deep neural
network that analyzes spatial data in order to verify the entire
scene.

The architecture of the 1-D convolutional neural network is
summarized in Table L.

ey

B. Two-Dimensional (2-D) Spatio-Temporal Analysis Network

As mentioned earlier, we also utilize the image-based deep
convolutional network whenever the VOC confidence score L
exceeds a certain threshold.

Thanks to the 1-D network, we need to feed only a relatively
few consecutive frames to the image-based deep CNN. In other
words, we do not need to process the entire stream captured
by the surveillance camera. The input fed to the 2D CNN is
3-D spatio-temporal images, where the first two dimensions
correspond to the height and width, and the last dimension
corresponds to the number of successive temporal frames. The
reason for feeding spatio-temporal images rather that signle
frames is two-fold: First, in some VOC leak scenes, the leakage
is very weak and barely discernible by the human eye from
a single frame. Therefore, we may run the risk of having the
network recognizing the background scene (e.g. pipelines) as a
scene belonging to the VOCleak class. Secondly, we incorporate
temporal frames in order to ensure that the network does not over
fit the non-VOC scenes, but learn to classify the image frames
using both spatial and temporal information. The architecture of
our network is shown in Table II.

In this study, we used a regular CNN, a recurrent LSTM
and a novel energy efficient network which performs only one
multiplication per convolution operation.

C. Additive-Correlation Based Spatio-Temporal
Neural Network

In this subsection we review an energy efficient neural net-
work which can be used in mobile systems or cameras. We
implemented a neural network, which we call the Additive
Neural Network (AddNet). The AddNet was first introduced
in [28], [29] and it performs what we call Additive-Correlations
(AC) in its neurons. The additive-correlation is based on the
following arithmetic operation:

z @ w := sgn(zw)(|z| + |w]) @

where x and w are two real-valued scalars, sgn(.) is the signum
function. We extend the scalar definition to the case of real
vectors in order to construct a dot product like operation. Let x
and w € R9. We define the additive-correlation of two vectors
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TABLE II
ARCHITECTURE OF THE 2-DIMENSIONAL SPATIO-TEMPORAL NEURAL

NETWORK AND THE AddNet. “N™ REFERS TO THE NUMBER OF SUCCESSIVE
FRAMES FED TO THE CNN (TEMPORAL DEPTH DOMAIN). THROUGHOUT OUR

EXPERIMENTS, WE SET N TO 3,4 AND 5

Layer

Specification

Input Layer
Conv Layer
Batch-norm Layer

input size: 112 x 112 x N
64 5 x 5 filters, strides=2
applied

Conv Layer
Max-pooling Layer
Batch-norm Layer

128 3 x 3 filters, no strides
pooling size: 2
applied

Conv Layer
Max-pooling Layer

256 3 x 3 filters, no strides
pooling size: 2

Global Average-pooling
Batch-norm Layer

output size: 256
applied

Dense Layer
Batch-norm Layer

output size: 256
applied

output size: 1

Output Layer (soft prediction)

as follows:

d
x®w =Y sgn(zw)(|z| + w;]) &)

i=1

where each entry of the above equation has the same sign of
regular multiplication. As a result, whenever ; and w; have the
same sign they positively contribute to the AC. On the other
hand, if they have different signs they negatively contribute to
the AC as in regular correlation operation between the two input
vectors. The above operation avoids the use of multiplication
operation which consumes significant amount of energy in many
mobile systems. It is straightforward to show that Eq. (3) can be
also expressed as follows:

d
XOW= Z sgn(z;)w; + ;sgn(w;) )
i=1

As the regular dot product induces the £2 norm, the AC operation
induces a scaled version of the #; norm as follows:

d
x@x = sgn(eari)(lail + o) =2l )

i=1

For convenience, we define the corresponding matrix-vector
operation as follows: let the vector x € R% and the matrix
W € R™W_ We then define the matrix-vector AC operation
as follows:

y=Woex=x®ow, xX®wz ... x®dww|T (6

where w; is the i®® column of W fori=1, 2, ..., W and
y € RW is the resulting vector.

In regular neural networks, a dense feed-forwarding pass can
be expressed as follows:

y = ¢(W'x+Db) (7

where x € R is the input vector, W € R%*¥ is the weights
matrix, b € R¥ is the bias vector and ¢(.) is the element-wise
nonlinear activation. In AddNet, replace the matrix-vector mul-
tiplication in feed-forwarding by the operation defined in Eq.
(6). Furthermore, we introduce a normalization vector a € R¥
so as to control the range of the responses of the term W & z.
We express the feed-forwarding pass of a dense layer as follows:

y=d¢(@ae(Wax+b)) (8)

where © represents the element-wise product between the vector
W and the vector a € R Realizing the element-wise product
between a and W @ x + b is inexpensive because we only
carry out d multiplications compared to K x d multiplication
operations in the case of WZx. We can construct AddNet
convolutional layers in a straightforward manner by substituting
each convolution (dot product) operation with the equivalent
AC operation. AddNet is more energy efficient than regular
neural networks because it performs only one multiplication per
“convolution” operation.

In our experiments, we used the architecture described in
Table I1, i.e., the same as in the case of our regular convolutional
network used in analyzing IR video frames.

III. DATA SET AND EXPERIMENTAL RESULTS

We compiled a data set of hundreds of frames and a data set of
thousands of time-series pixel history signals from 29 publicly
available IR thermal videos and 12 videos that we recorded using
a low resolution bolometer type IR camera. We used these data
sets to train the two components of the systems and evaluate
their recognition capabilities separately and jointly. It is worth
mentioning that some videos contain more than one scene of
interest. For information about the data sources, the reader may
refer to Appendix A.

A. One-Dimensional (1-D) Data Set

We gathered a time-series data set of 15,000 pixel history
signals from 6 normal IR videos, and 7 IR videos that contain
VOC leaks in order to create a binary-class data set for training
the 1-D classifier. In order to obtain an accurate data set, we
carefully extracted the temporal data from VOC leakage regions
from the 7 video clips containing VOC leaks. On the other hand,
we randomly extracted 1-D signals from different locations in
6 normal video clips. This is to ensure our normal data cover
different motion and intensity patterns. One can also select
one pixel out of each 8 by 8 block or 16 by 16 block of the
relatively dark regions of the video clip. IR cameras produce
Discrete Cosine Transform (DCT) compressed data. Therefore
it is also possible to use the DC value of each 8 by 8 or 16 by
16 image blocks. Example time-series signals corresponding to
pixels in VOC leaks and ordinary pixels are shown in Fig. 5 and
6, respectively.
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TABLE III
RESULTS OF THE CONFIDENCE SCORE OVER DIFFERENT SCENES. THE MEAN SCORES AND THE STANDARD DEVIATIONS ARE ESTIMATED
FrOM 10 DIFFERENT TRIALS

CNN LSTM

Scene ID Scene Contains leak? | Confidence Score || Confidence Score

Description (Y/N) mean |  std. mean |  std.
Scene 1 wildlife No 0.01 0.01 0.22 0.04
Scene 2 wildlife No 0.02 0.02 0.23 0.04
Scene 3 wildlife No 0.11 0.05 0.21 0.06
Scene 4 wildlife No 0.16 0.08 0.20 0.06
Scene 5 road No 0.05 0.04 0.23 0.05
Scene 6 road No 0.03 0.01 0.31 0.08
Scene 7 road No 0.02 0.01 0.18 0.05
Worst-Case Score (for VOC negative videos) | 0.16 I 0.31
Scene 8 pipe leak Yes 0.42 0.1 0.71 0.09
Scene 9 pipe leak Yes 0.41 0.08 0.40 0.08
Scene 10 jet engine Yes 0.54 0.09 0.57 0.08
Scene 11 chimneys Yes 0.36 0.13 0.50 0.07
Scene 12 | pipe gas leak Yes 0.37 0.1 0.35 0.08
Scene 13 | natural gas leak Yes 0.85 0.06 0.47 0.09
Scene 14 | natural gas leak Yes 0.26 0.11 0.47 0.07
Scene 15 chimneys Yes 0.49 0.11 0.38 0.07
Scene 16 VOC leak Yes 0.34 0.08 0.72 0.08
Scene 17 VOC leak Yes 0.71 0.07 0.76 0.09
Scene 18 chimneys Yes 0.37 0.07 0.68 0.07
Scene 19 | natural gas leak Yes 0.62 0.12 0.64 0.08
Worst-Case Score (for VOC positive videos) | 0.26 || 0.35

In a bid to enforce classification invariance to background
intensity levels, we augmented our training data set by adding
a constant value to the recorded signals while training. Since
the 1-D temporal signals are pixel intensities, their values are
bounded between 0-255. In this case, we used DC levels from
0-255 and made sure that the signal values are bounded below
by 0 and bounded above by 255, respectively.

We also implemented an LSTM based classifier. Similar to the
1-D CNN case, we used time-series signals of length 160. The
architecture is an LSTM layer, which has 20 cells that read the
input signals. The output size of the LSTM layer is 20. We then
feed the output vector to a dense linear layer, which serves as
our output layer. The input to each LSTM cell is a feature vector
extracted from a segment of the original temporal signal of length
16. The segments corresponding to adjacent LSTM cells overlap
by 50%. The features fed to each cell are the magnitudes of the
DFT of 16-sample long time-series segments. The reason for
using DFT instead of time-series data segments is to achieve
translation invariance.

We reserved 20% of the aforementioned 1-D data set to use
it for early-stopping validation purposes. We trained our 1-D
neural network for 5 epochs using Adam Optimizer. We were
able to achieve 98% accuracy over the validation data set.

In order to establish a VOC-leak confidence score threshold
as defined in Eq. (1), we carried out stochastic inference over
another validation data set of video scenes. This data set is

obtained from 19 video scenes (Scene 1-20 as in Table III
and Table V),' each of which contains successive frames of
a spatial size of 224. The videos have significantly different
resolutions and scales because they were obtained using different
IR cameras. We have 7 videos that do not contain VOC leaks.
The remaining 12 videos contain scenes in which there are VOC
leaks. The VOC-leak videos have different scenarios and vary
greatly in the VOC gas eruption location and the scale. These
videos are different from those used initially to train the 1-D
classifier. In each trial, we sampled 40 1-D temporal signals
randomly from each video and calculated the VOC confidence
score defined in Eq. (1). We repeated the process 10 times
for each video. We report the average score and the standard
deviation of the confidence score for the different scenes in
Table II. Example IR image frames of the two classes are shown
in Fig. 8 and Fig. 9, respectively.

As we can see from Table III the VOC confidence scores
of temporal signals obtained from ordinary scenes are signifi-
cantly lower than those of VOC-leak scenes, with the highest
confidence score being 0.16 for the 1-D CNN as shown in
the 4-th column of Table III. On the other hand, the lowest
confidence score for VOC leaks is 0.26. When the input 1-D

lFor information about the data sources, see Table IX in the fol-
lowing link [Online]. Available: https://github.com/Diaa0/Volatile-Organic-
Compound- VOC-Leakage-Detection/blob/master/VOC_leak_appendix.pdf
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_

Fig.8. Example IR image frames containing VOC leaks.

Fig. 9.
neural networks.

Example ordinary image frames from IR videos used in training the

signals come from VOC leaks, the lowest score is 0.26. We can
set the threshold for the confidence score defined in Eq. (1) as
0.16. All the other scores of video scenes 1-7 are much lower
than 0.16. Example 1-D signals and some intermediate layers
are shown in Fig. 10.

On the other hand, the LSTM-based classifier does not pro-
duce as good results as the CNN-based classifier does. The
confidence scores of positive videos are consistently higher
compared to negative (no-leakage) videos. We can still set a
threshold separating the two classes in our data set. However, the
score margin between the two classes is small when compared to
that of the CNN-based classification (0.35-0.31 vs 0.26-0.16).
This suggests that the LSTM-based classifier has a higher chance
of producing more false alarms in comparison with the CNN
based classifier.

We also subtracted the mean values of 1-D signals before
feeding them to CNN (column 6 of Table IIT). This strategy also
produced good results except for one video clip (Scene 4).

B. IR Video Dataset for 2-D Spatio-Temporal Processing

We extracted infrared image frames from 17 publicly available
videos, which account for 48 different scenes, and constructed a
training data set for the spatial classifier stage. For validation,
we utilized the data set we used earlier for establishing the con-
fidence score for the 1-D classifier as mentioned in Section ITI-A
(Scene 1-20).

We used entire frames and we tried different temporal depths.
In particular, we set our temporal depth to 3, 4 and 5 image
frames, respectively. In our data set we normalized the image
input size to 112 x 112. We gathered a total of 8,400 frames
of VOC scenes and 10,246 frames of ordinary scenes for our
training data set. As for the validation data set, we used the
data set that we test upon the 1-D neural network as detailed in
Section III-A.

In order to enhance the capabilities of the network to detect
VOCs, we randomly rotated the frames in the spatial domain
during training so that the network is exposed to the textures in all
different locations. This mitigates the risk of having the classifier
over-fit the background scenes. Furthermore, We employed the
early stopping criterion based on the recognition rates of the
validation data set. Our validation dataset consists of 7 normal
scenes and 12 VOC-leakage scenes. This is the same dataset we
used for test the 1-D temporal signals. It should be noted that
both training and validation sets are disjoint. We implemented an
ordinary 2-D convolutional neural network and an AddNet, both
of which have the architecture shown in Table II. We investigated
3, 4 and 5 consecutive image frames for the temporal depth
of the input. We used Adam optimizer with a learning rate of
10—*. We used Tensorflow-Keras in our implementation. We
compared our method with a regular smoke detection algorithm
that we developed with Mobilenet-V2 [30]. We utilized transfer
learning using Mobilenet-V2 due to the relatively small data
set size. We trained (fine-tune) only the last dense layers while
keeping the weights of the convolutional layers intact. Our VOC
image frame recognition results over the validation data set were
91-95% for regular networks with different number of input
frames (3—5) and 93% for AddNet. We were able to identify
the events of VOC leak in all of the videos. Smoke detection
algorithm developed using Mobilenet-V2 did not produce as
good results as our algorithms.

We also tested the neural networks over a set of videos
we gathered using a bolometer type FLIR IR camera. These
12 videos contain butane leakage.> We report the results per
video/scene in Table IV and Table V. Images generated by low
cost bolometer IR cameras are corrupted by noise as shown in
Fig. 11.

As it can be seen from Table IV and V, the true positive
rates are high in the case of CNN and AddNet, in contrast to
Mobilenet-V2, which misses out more VOC-positive videos.
This can be attributed to the fact that the earlier layers in
Mobilenet-V2, which are used for feature extraction and are

2See Table X in Appendix A for details about the data sources.

3These videos are available on YouTube given the following link
[Online]. Available: https://www.youtube.com/playlist?list=PL9_9ATqpfzwPc
HBnq2UdxHI96aSVgVTF-
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Intermediate feature maps for 4 different example time-series signals. The signals in blue are the input signals and the signals in green and red are four

different features maps from the second convolutional layer. Example (a) is taken from a VOC-positive video and classified as VOC-positive. Example (b) is taken
from a VOC-positive video and classified as VOC-negative. Example (c) is taken from a normal (VOC negative video) and classified as negative, whereas Example
(d) is taken from a VOC negative video and classified erroneously as VOC-positive. Each feature signal has a length of 35 samples and is scaled to match the length

of the original signal (160 samples) for demonstration purposes.

Fig. 11. Anexample of thermal image obtained by a low-cost bolometer-type
IR camera. The darker region corresponds to butane leakage.

not trained during fine-tuning, were originally optimized using
a dataset, namely ImageNet, which is radically different from
IR-thermal images. Furthermore, despite the fact that AddNet
and CNN do suffer from false positive rates in some videos as
demonstrated in Table V, what matters the most is not missing

out any VOC-positive leak. It should be pointed out that we use
image analysis to verify the results of 1-D network which detects
all the VOC leaks in our validation data set. Two feature maps
corresponding to the same filter from the first convolutional lay-
ers are shown in Fig. 13 for a VOC leakage example and anormal
example. As it can be seen from Fig. 13, feature maps have high
response in the regions of darker areas. This is expected since
the gas leak will generate dark spots in white-hot mode thermal
IR video. Nevertheless, we can see that the response is zero for
the animal appearing in the negative example as in Fig. 13(a).
We can interpret this feature extraction process to be sensitive
to darker areas, while not responsive to other patterns.
Furthermore, in order to verify that we have a small false
negative rate, we extracted successive frames from each video.
The total number of videos is 80. All of these frames have VOC
leaks. The videos were obtained from The Oil & Gas Threat Map
website [20], [6]. We tested our spatio-temporal neural networks
over these frames and we could recognize VOC gas leaks in 77
out of 80 scenes in the case of a regular 2-D spatio-temporal
network. In the case of AddNet, we were able to recognize 78 out
of 80 scenes, i.e., AddNet and the regular convolutional neural
networks are on par with their event based recognition results.
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TABLE IV
TRUE POSITIVE RATES OVER BUTANE-POSITIVE IR-THERMAL VIDEOS WE
GATHERED USING A Low RESOLUTION BOLOMETER-TYPE IR CAMERA. THE
ABBREVIATION “FRM.” REFERS TO THE NUMBER OF INPUT CHANNELS

(FRAMES) OF THE 2D CNN
Video # of True Positive Rate (%)
ID Frames CNN Add- | Mob-
3frm. | 4 frm. | 5 frm. | Net | NetV2
104414 101 100.0 60.5 722 98.6 56.3
104703 56 84.0 82.0 65.6 | 70.7 27.6
103421 104 22.7 20.3 100.0 0.0 0.0
104741 95 100.0 80.2 100.0 | 100.0 0.0
103934 103 100.0 | 100.0 | 100.0 | 98.2 3.0
104903 100 39 70.6 100.0 | 100.0 | 93.0
104955 97 100.0 98.9 100.0 | 100.0 | 100.0
104255 99 100.0 | 100.0 | 100.0 | 100.0 | 30.2
103732 78 100.0 | 80.0 | 100.0 | 100.0 | 10.0
104534 88 100.0 | 100.0 | 100.0 | 100.0 0.0
103236 113 74.8 20.2 10.1 2.6 67.8
103126 97 100.0 | 945 | 100.0 | 100.0 | 100.0
Total | 1131 | 81.1 | 748 | 866 | 793 | 42.1

Fig. 12.

Example image frames from various videos that we used in testing our
deep neural networks. All the frames except the bottom-left frame are correctly
recognized by the CNN and AddNet.

As for the missed scenes, we notice that the VOC leak is very
dim. This is probably because the camera is placed too far away
from the VOC leak sources. We show some example IR image
frames in Fig. 12. We also note that bolometer type low-cost IR
cameras are not as reliable as regular LWIR or MWIR cameras
due to the noisy nature of bolometer images.

C. Joint Performance Evaluation and Discussion

We tested the entire VOC detection system over a data set
consisting of 7normal and 5 VOC-positive scenes extracted from
9 videos.* The recognition results are reported in Table VI. As
one can see from Table VI, the 1D CNN classifier with zero-
mean input (CNN 0) recognizes all the VOC leaks in positive
video clips. However, it produces false alarms in aerial Scene 26

“4For information about the data sources see Table IX in the following link [On-
line]. Available: https://github.com/Diaa0/Volatile-Organic-Compound-VOC-
Leakage-Detection/blob/master/VOC_leak_appendix.pdf

(b)

Fig. 13. Example feature maps of the first convolutional layer for two exam-
ples: (a) A wildlife scene with no VOC and (b) a scene with VOC gas leak. The
values are re-scaled for demonstration purposes.

Fig. 14. Example image from Scene 27 (pump gas leak).

(aerial scene) and the wildlife scene 27. The 2-D spatio-temporal
network with 3 or 5 image inputs can correct the false-alarm in
Scene 26 as shown in the 6-th row of Table VL.

The 1-D network without mean subtraction (CNN 1) recog-
nizes all the VOC-leaks except the gas-pump (scene 28) and
produces a false alarm in the Scene 27. The gas pump leak is
relatively faint compared to other VOC leak video clips. An
example frame from Scene 27 is shown in Fig. 14. The 2-D
spatio-temporal network recognizes the leak in more than 80%
of the image frames of the IR video consisting of 177 frames.

The 2D spatio-temporal networks with 3, 4 or 5 inputs recog-
nize the VOC leaks in all the video clips. They have a low recog-
nition rate in Scene 29 but it is enough to recognize the VOC
leak even once to alert the security officer who will be verifying
the results of the 2-D spatio-temporal system. The 2D network
with 3 or 5 images produces a false alarm only in Scene 27.

D. Computational Efficiency of AddNet

We did time analysis over inference passes for a regular CNN
and AddNet on a PC equipped with a CPU of type Intel Core
I7-7700HQ. We measured the inference time for mini-batches of
different sizes. The averaged results are presented in Table VIL
As it can be seen from Table VII, computational efficiency of
AddNet is not significant in the case of a single-example batch.
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Scene

Contains

TABLE V

# Frames

CNN
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Scene ID Description leak? 3 frames | 4 frames | 5 frames AddNet | MobileNet-V2

|| False Positive Rate (%)
Scene 1 wildlife No 48 0.0 0.0 0.0 0.0 41.7
Scene 2 wildlife No 48 0.0 0.0 0.0 0.0 14.6
Scene 3 wildlife No 48 0.0 0.0 0.0 100.0 0.0
Scene 4 wildlife No 82 7.2 0.0 0.0 1.2 7.3
Scene 5 road No 143 26.6 55.2 11.8 0.0 11.9
Scene 6 road No 485 4.1 0.0 0.0 0.0 24
Scene 7 road No 67 28.4 0.0 0.0 0.0 9.0

Total | - | - ] 91 | 83 | 86 | 18 | 53 | 7.4

I True Positive Rate (%)
Scene 8 pipe leak Yes 157 95.6 80.2 62.3 80.3 87.3
Scene 9 pipe leak Yes 289 99.7 100.0 91.9 91.0 82.0
Scene 10 jet engine Yes 51 60.8 100.0 38.2 100.0 314
Scene 11 chimneys Yes 72 100.0 100.0 100.0 100.0 100.0
Scene 12 | pipe gas leak Yes 156 100.0 100.0 100.0 545 94.9
Scene 13 | natural gas leak Yes 48 100.0 100.0 100.0 100.0 100.0
Scene 14 | natural gas leak Yes 58 100.0 49.1 100.0 12.7 100.0
Scene 15 chimneys Yes 50 98.0 0.0 100.0 100.0 100.0
Scene 16 VOC leak Yes 41 100.0 100.0 100.0 0.0 100.0
Scene 17 VOC leak Yes 629 75.8 100.0 99.8 92.9 43
Scene 18 chimneys Yes 406 100.0 99.7 100.0 69.7 554
Scene 19 | natural gas leak Yes 3544 99.4 100.0 93.2 98.9 97.7
Scene 20 | natural gas leak Yes 528 41.5 96.8 100.0 100.0 0.0

Total | - |- | 6029 || 916 | 977 | 941 | 929 | 75.0
TABLE VI
THE PERFORMANCE RESULTS OF THE SPATIO-TEMPORAL VOC DETECTION SYSTEM OVER A TEST DATA SET
Scene ID Scene Contains | # of frames || confidence Score (1D) | VOC Recognition rates (2D CNN)
Description leak? CNN1| CNNO | 3 frames | 4 frames | 5 frames

Scene 21 building No 417 0.08 0.0 0.0 0.0 0.0
Scene 22 | pedestrians No 237 0.14 0.04 0.0 0.0 0.0
Scene 23 | pedestrians No 507 0.08 0.05 0.0 16.9 0.0
Scene 24 building No 717 0.08 0.07 0.0 0.0 0.0
Scene 25 | aerial scene No 230 0.06 0.04 0.0 10.0.0 0.0
Scene 26 | aerial scene No 117 0.11 0.41 0.0 89.0 0.0
Scene 27 wildlife No 148 0.25 0.23 89.0 87.8 87.5
Scene 28 gas pump Yes 177 0.10 0.57 88.0 90.0 85.1
Scene 29 oil well Yes 177 0.27 0.44 12.4 13.6 18.2
Scene 30 | pipe gas leak Yes 177 0.18 0.47 100.0 100.0 100.0
Scene 31 | pipe gas leak Yes 217 0.19 0.26 325 100.0 100.0
Scene 32 | pipe gas leak Yes 207 0.19 0.40 99.5 97.2 98.0

However, AddNet was able to process batches of 3 images faster
than CNN by 5% in a regular PC. It can achieve 15% efficiency
when the batch size increases to 20 images. Cameras output
compressed video and decoders generate batches of image
frames in practice. The time saving results that we achieved

using AddNet gives more room for processing mini batches
of spatio-temporal frames in order to increase the recognition
capacity of the system. Energy efficiency of AddNet depends
on the type of the processor that is being used in video analysis
but it is related to the computational time savings.
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TABLE VII
EXECUTION TIME RESULTS OF CNN AND AddNet MINI-BATCH INFERENCE
FOR DIFFERENT MINI-BATCH SIZES

Mini-Batch CNN AddNet
Size Average (ms) Average (ms) Saving Rate
1 2532 2.489 1.70%
3 1.175 1.106 5.88%
5 1.147 1.051 8.37%
10 1.074 0.968 9.87%
20 0.994 0.839 15.59%

IV. CONCLUSION

In this paper, we presented a computationally efficient VOC
gas leak detection method, which is based on two neural net-
works connected in series. The first neural network analyzes the
time-series data generated by some of the moving dark pixels of
the thermal IR camera. If such pixels exhibit an erratic behavior
it is possible that the scene may contain a dark cloud-like region
due to a VOC gas leak. In such cases, three or more consecutive
frames of the video are fed to the 2D spatio-temporal neural
network. The overall system has reached high recognition rates
in our dataset.

The VOC-leak detection structure that we propose is scalable
in the sense that one can use only 1D temporal history signals, if
the processor of the IR camera is a simple one such as the Rasp-
berry PI or Arduino. If more processing power is available, the
2D spatio-temporal network can be also used for more reliable
VOC-leak detection results. The spatio-temporal network will
verify the results of the 1D temporal neural network.

We also used a novel neural network, AddNet, which is
based on what we call the "additive-correlation” operation. The
AddNet can be used in mobile applications including drones
because it is more energy-efficient than corresponding regular
neural networks. Recognition results of the AddNet is slightly
inferior to the regular deep 2-D convolutional neural network.
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