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Abstract— During major power system disturbances, when
multiple component outages occur in rapid succession, it becomes
crucial to quickly identify the transmission interconnections that
have limited power transfer capability. Understanding the impact
of an outage on these critical interconnections (called saturated
cut-sets) is important for enhancing situational awareness and
taking correct actions. This paper proposes a new graph theoretic
approach for analyzing whether a contingency will create a
saturated cut-set in a meshed power network. A novel feature of
the proposed algorithm is that it lowers the solution time
significantly making the approach viable for real-time operations.
It also indicates the minimum amount by which the power
transfer through the critical interconnections should be reduced
so that post-contingency saturation does not occur. Robustness of
the proposed algorithm for enhanced situational awareness is
demonstrated using the IEEE-118 bus system as well as a 17,000+
bus model of the Western Interconnection (WI). Comparisons
made with different approaches for power system vulnerability
assessment prove the utility of the proposed scheme for aiding
power system operations during extreme exigencies.

Index Terms—Graph theory, Network flow, Power system
disturbances, Power system vulnerability, Saturated cut-set.

NOMENCLATURE

cfT  Directed weight associated with edge e, from vertex v;’
towards v/ in the latent capacity graph (C).

cF Directed weight associated with edge e, from vertex v/
towards v{ in the latent capacity graph (C).

C, The set of vertices contained in cluster 1.

C, The set of vertices contained in cluster 2.

Cp Maximum extra flow that can be transferred along path
P from a source vertex towards a sink vertex.

D, Active power withdrawn at a sink vertex v; € L.

e [*" edge in the edge set E.

E A set containing all edges of the power network.

fi A directed weight associated with edge e; from vertex

v} towards vertex v/ in the flow graph (F).
A Flow in edge e, for the network flow solution A.
Fp The flow injected along path P.
G A set containing the locations of generator buses.
Iy Active power injected at a source vertex v, € G.
k Total number of edges in cut-set K.
K Any cut-set in the power network.
K; it cut-set associated with edge e; € E.
K.,.;; Limiting critical cut-set for edge e; € E.
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L A set containing all the load buses.

n Total number of indirect paths for edge e;.

P This is a path (sequence of edges) from a source vertex
to a sink vertex in the graph G.

P} Total active power generation in cluster C;.

P? Total active power generation in cluster C,.

P! Total active power demand in cluster C;.

P? Total active power demand in cluster C,.

AP!  Net active power injection in cluster C;.

Net active power injection in cluster C,.

Py Total active power to be transferred across cut-set K.
7 Rating of edge e; € E.

Ry Total active power transfer capacity of cut-set K,
excluding edge e;, examined by feasibility test (FT).

T} Transfer margin of the i*" saturated cut-set, associated
with edge e;.
T, Transfer margin of the limiting critical cut-set

associated with edge e;.
TC, Total additional active power transfer capability of the
indirect paths of edge e;.
Vg A vertex that has a source (or generator).
v, A vertex that has a sink (or load).
The “from vertex” of edge e;.
The “to vertex” of edge e;.
A vertex set containing all buses of the power network.
Total number of cut-sets associated with e;.
Total number of saturated cut-sets associated with e;.
A variable denoting impedance of a branch.
An undirected weighted graph of the power network.
A directional flow graph of the power network.
A bidirectional latent capacity graph of the network.
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I. INTRODUCTION

NALYSIS of major blackouts has indicated that they

involve successive outages of power system assets [1]. For

example, the 1977 New York City blackout was caused
by the loss of 11 transmission lines in 52 minutes. The Federal
Electricity Regulatory Commission (FERC) reported that one
of the causes of the blackout was “the failure to recognize that
a critical interconnection to the west was effectively
unavailable” [2]. More recently, the initiating event for the
2011 U.S. Southwest blackout was the loss of the 500 kV
Hassayampa-North Gila (H-NG) line, which then triggered a
sequence of events that resulted in the blackout of San Diego
[3]. Werho et al. stated that a critical interconnection does not
necessarily refer to a single line whose status can be monitored
[41; i.e., a critical interconnection can consist of multiple lines.
Therefore, real-time vulnerability assessment for enhanced
situational awareness of a power system that is suffering from
multiple outages is a challenging task [5], [6].
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The traditional approaches for improving situational
awareness are based on steady-state contingency analyses
techniques that solve AC or DC power flows [7]-[11]. These
techniques cannot detect transient/dynamic stability related
violations but can identify branch overloads and voltage
violations. However, power flow-based contingency analysis
(CA) is not fast enough to perform an exhaustive N-1 real-time
contingency analysis (RTCA) [7]. Therefore, power utilities
select a subset of the contingencies for evaluation based on
some pre-defined criteria [9], [10]. In [11], Huang et al. stated
that the size of this subset has considerable impact on RTCA
solution: a large subset is computationally burdensome, while
a small subset might miss critical scenarios. This can be a
problem for real-time operations during extreme exigencies
when multiple outages occur in rapid succession [4].

For managing extreme event conditions, a variety of
approaches that can identify vulnerabilities quickly have been
proposed; these include statistical analyses ([12]-[16]), graph
theoretic analyses ([4], [17]-[27]), and linear sensitivity-based
analyses ([28]-[33]). These types of analyses are suitable for
exhaustive N-1 and potentially N-X evaluations. The proposed
graph theoretic approach also belongs to this category of
analyses as it enhances situational awareness for real-time
operations. A brief overview of these other techniques ([12]-
[33]) that belong to this category is provided below.

Dobson et al. in [12], [13] obtained statistics of cascading
line outages from utilities to understand how cascades initiate
and propagate in the power system. In [14], Rezaei et al.
estimated the risk of cascading failure with an algorithm called
random chemistry. In [15], Rahnamay-Naeini et al. performed
probabilistic analysis to understand the dynamics of cascading
failures. In [16], Hines et al. proposed an influence graph
model to capture patterns of cascading failures in power
systems and validated the model using historical data. Instead
of relying on prior historical data, which may or may not be
relevant for the present scenario, the proposed approach
exploits knowledge of the current network conditions to
identify the system’s critical interconnections, the loss of which
might trigger a cascade.

Graph theoretic approaches have found applications in a
variety of fields [34]-[36]. Ishizaki et al. summarized the
applications of graph theory for power systems modeling,
dynamics, coherency, and control [17]. With regards to
vulnerability assessment, graph theoretic approaches have
focused on the topology and structure of the power system [18]-
[27]. In [18], Albert et al. studied the structural vulnerability of
the North American power grid using a metric called the node
degree, which refers to the number of lines connected to a bus.
Use of betweenness indices, which refer to the number of
shortest paths traversing a given element, were explored in
[19], [20]. Such purely topological indices do not consider the
electrical properties of the power network.

Modified centrality indices were used in [21] and [22] to
assess the risk of blackouts/brownouts and systemic
vulnerabilities, respectively. In [23] and [24], different
statistical measures such as the betweenness indices, node-
degree, and geodesic distance were used as possible
alternatives to power flow techniques to quantify power system
vulnerability during N-1 contingencies and cascading failures.
In [25], Zhu et al. proposed a metric called risk graph to better
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capture the cascade failure vulnerability of the power system.
Recently, Beyza et al. in [26] investigated the structural
vulnerability of the power system when successive N-1
contingencies progressively alter the network structure. These
global vulnerability metrics (node degree, betweenness
indices, modified centrality indices, geodesic distance)
describe the vulnerability of the system by a single number.
However, such indices do not convey meaningful actionable
information to an operator who is trying to prevent the system
from collapsing! This is because these metrics do not consider
the physical manifestation of a vulnerability — a key issue that
the proposed research seeks to address.

In [4], Werho et al. used a graph theory-based network flow
algorithm to identify the cut-set of minimum size between a
source-sink pair. A cut-set denotes the set of edges which when
removed separates the graph into two disjoint islands; the size
of the cut-set refers to the number of edges present in it. If the
number of edges contained in the minimum sized cut-set
progressively decreases, it indicates a structural weakness
between the selected source-sink pair. In [27], Beiranvand et al.
presented a novel topological sorting algorithm to screen out
coherent cut-sets. Coherent cut-sets denote the set of edges that
partition the network, such that the power flows in the same
direction through all the edges. However, coherent cut-sets may
not be the only bottlenecks in a power system, as there may be
a cut-set in which the power flows are not unidirectional, but a
single outage limits the power transfer through it.

Bompard et al. used power transfer distribution factors
(PTDFs) and transmission line capacities for screening out
critical contingencies [28], [29]. Line outage distribution
factors (LODFs) have been used for quickly detecting an island
formation due to a multiple element contingency [30]. Werho
et al. used DC power flow based linear sensitivity analysis to
detect an island formation due to a contingency [31]. In [32],
[33], contingency screening was done using LODFs. These
sensitivity indices capture the topological as well as the
electrical properties of the power system and are useful for
comparison with the proposed approach (e.g., see Table V).

The goal of this paper is to investigate if cut-sets will become
saturated (i.e., cannot transfer the required amount of power)
due to a would-be outage, irrespective of the direction in which
power flows through different edges of the cut-set. Such cut-
sets (termed saturated cut-sets henceforth) are the system’s
critical interconnections as they have limited power transfer
capability. Essentially, this paper attempts to answer the
following question: How to quickly make operators aware if a
new contingency will create saturated cut-sets in a meshed
power network, after multiple component failures have
occurred in rapid succession?

II. THEORETICAL BACKGROUND

A. Graph theoretic terminologies

In graph theoretic terminology, a power system can be
represented by an undirected graph G (V, E), such that the buses
are contained in the vertex set V and the transmission lines and
transformers are contained in the edge set E. The generators
and loads are the sources and sinks, respectively. The set G
consists of all vertices where a source is present and the set L
consists of all vertices where a sink is present. The power



injected at a source v, € G is denoted by I, and the power
demand at a sink v; € L is denoted by D,. Now, every
transmission asset (line or transformer) has an associated
capacity called the asset rating. To account for the asset ratings
in the undirected graph G(V, E), every edge e, € E is associated
with a weight r;, where r; denotes the maximum power that can
be transferred through edge e;,. From the original graph
G(V,E), we now create two graphs: the flow graph, F(V,E),
and the latent capacity graph, C(V,E). The flow graph,
F(V,E), contains information about the power flow through
different edges of the network. If f; units of power flows
through edge e, from vertex v/ towards vertex v/, a directed
weight of f; is assigned to edge e, in a direction from v{ to v/.
On the other hand, for edge, e;, the latent capacity graph,
C(V,E), provides information regarding the extra flow that
could be transferred from v{ to v/, and vice-versa. The weights
associated with the edges of C(V, E) that provide information
regarding the bidirectional latent capacities are given by,
o =n- fz}
o =nt+fi

where, ¢fT is the latent capacity in the direction from v/ to v],
and ¢ is the latent capacity in the direction from v/ to vf.

B. Research scope

Let an edge e; (transmission line or transformer) connect
vertices (buses) vf and v/ as shown in Figure 1. Since edge e,
is a single element that joins vertices v/ and v}, it is called the
direct path from vertex (bus) vf to vertex (bus) v. There could
be many other electrical paths to transfer power from v/ to v/.
Any path that contains multiple edges (transmission lines or
transformers) from v{ to v/ is an indirect path. Let there be n
indirect paths between vertices (buses) v and v]. If all the n
indirect paths combined do not have the capacity to reroute f;
units of power that was flowing through the direct path, it
implies that the loss of edge e; would inevitably result in post-
contingency overloads. Based on this inference, a graph theory-
based network analysis tool is developed in this paper to
quickly detect violations of the type where the set of indirect
paths do not have the extra capacity to carry the power that was
originally flowing through the direct path.
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Figure 1: Network connectivity between two vertices (buses)

Contrary to traditional CA studies that detect if an outage
causes an overload on the remaining assets of the system [37],
the primary goal of this research is to quickly detect if an outage
overloads any cut-set of the power system. An overloaded or
saturated cut-set is one which transfers power beyond its
maximum power transfer capability. Let edges e;, e,,..., e
belong to cut-set K. If the power flowing through the different
edges of cut-set K are f;, f,..., fi, and the ratings of those
edges are 1y, 13,... I}, then cut-set K will be called a saturated
cut-set if the following equation holds true:
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where, ¥ . f; is the actual power flowing through cut-set K
and Y¥_, ; is the maximum power that can flow through cut-
set K (limited by the ratings of the edges).

At a given time, let us assume that P, units of power must
be transferred through a cut-set, K, of a power network. Upon
the loss of edge, e;, that belongs to cut-set K, if the total power
transfer capability of the remaining edges of cut-set K is Ry
such that R, < Py, it implies that the loss of e; saturates cut-
set K. In such a situation, edge e, is termed a special asset and
the cut-set K is said to be saturated by a negative transfer
margin of R — Py due to the loss of the special asset, e;.

Now, let edge e, be associated with x cut-sets of the network,
of which y cut-sets (y < x) become saturated by a negative
transfer margin when e; is lost (implying that y cut-sets of the
network are saturated). As the y cut-sets may be saturated by
different negative transfer margins, T/, 1<i<vy, the
objective here is to identify the cut-set that becomes saturated
by the numerically largest negative transfer margin (i.e., T} =
max(|Tli|); 1 < i < y); this cut-set is henceforth referred to as
the limiting critical cut-set, K_,;;. Quickly identifying the
limiting critical cut-set is important because if appropriate
preventive control actions are taken so that the limiting critical
cut-set is no longer saturated, the proposed approach, which is
very fast, can be repeated multiple times until no limiting
critical cut-sets are identified. Note that this paper identifies the
limiting critical cut-sets based on the thermal ratings of the
different assets and the active power flowing through them
(power factor is set to unity for the studies done here).
However, the proposed network analysis tool is generic enough
to incorporate line ratings obtained from other analyses as well
(such as, proxy limits based on power system stability criteria).

III. GRAPH THEORY BASED NETWORK FLOW

The graph theory-based network flow algorithm is based on
the following assumptions: (1) power injections are known, and
(2) losses are negligibly small. Subject to these assumptions,
the goal is to generate network flows that can help detect if a
contingency saturates a cut-set. The graph theoretic network
flow algorithm is based on the principle: utilize the available
generation of the sources (generators) to satisfy the total
demand of the sinks (loads), without violating the asset ratings.
The network flows are obtained using Algorithm I described
below. At the start of the algorithm, edges in F(V, E) do not
have any weight, while the bidirectional weights of edges in
C(V,E) are equal to the corresponding asset ratings.

The graph theory-based network flow algorithm obeys the
law of conservation of energy, but it relaxes Kirchhoff’s
voltage law as it does not use impedances directly while
building the network flows; the impedances are accounted for
indirectly through the asset ratings. The flow solution is also
non-unique because depending on the order in which the
sources and sinks are selected, there could be multiple valid
flow solutions. However, since the network boundary
conditions do not change (i.e., instantancous power injections
are constant), the power transfer across any cut-set of the
network is the same for all valid graph-based flow solutions.



Algorithm I: Graph theory-based network flow algorithm

i.  Randomly select a source vertex v, € G and a sink vertex v; € L.

ii. Search C(V, E) to traverse the shortest unsaturated path P from
V4 to v, using breadth first search (BFS) [37].

ili. Use C to find the maximum extra flow, Cp, that could be
transferred from v to v, through path P.

iv. Obtain the flow Fp to be injected in F(V, E) along path P from
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solution. Table I shows that for the cut-set K ={4-1, 9-2, 9-3},
even though the flows through the individual edges of the cut-
set are different, the net power transfer across cut-set K is equal
to 380.86 MW for all three cases. Note that the flow limit of
each edge in Figure 2 is 300 MW.

Table I: Power transfer across cut-set K for three different flow solutions

vy to vy as Fp = min(ly, Dy, Cp).

v. Update weights of edges in graph F as f; =

fi + Fp,and in graph

C as per (1), for all the edges that belong to path P.

vi. Update available generation and unsatisfied demand at v, and v,
asly:=1I;—Fpand Dy :=D; — Fp.
vii. Depending upon the values of I; and D;, update the source and
sink vertices in accordance with the following logic:
a. if Iy #0 & D; # 0, the source and sink vertices are not
changed;
b. ifl; =0 & D; # 0, a new source vertex, Vg, is selected from
G, keeping the sink vertex, v;, unchanged,
c. ifly # 0 & D; = 0, a new sink vertex, v, is selected from L,
keeping the source vertex, v,, unchanged.
viii. Repeat Steps (ii) through (vii) until the total power generation
satisfies the total power demand.

Let the network graph G(V, E) be split into two clusters C,
and C, such that C; U C, = V and C, N C, = @. If P}(P2) and
P1(P?) be the total generation and total demand in C,(C,), then
the net generation in C, is given by AP, = P} — P}, while the
net generation in C, is given by AP, = P? — PZ. Now, cut-set
K between clusters €; and C, would include only those edges
whose one end belongs to C; and the other end belongs to C,;
let the number of edges in cut-set K be k. Also, let fi4, fA,...,
f;& denote network flows through different edges of cut-set K
for a valid graph-based flow solution A, and f£, f2,..., fiE
denote the network flows through the same edges for a valid
graph-based flow solution B. Then, by the law of conservation
of energy, total power transfer across cut-set K for each of the
ﬂow solutions A and B must be equal to AP, = —AP,, i.e.,

Zf, Zf, — AP, = —AP,, Ve €K 3)

The Vahdlty of (3) is illustrated through three different base-
case network flow solutions shown in Figure 2. Cases 1 and 2
denote two valid flow graphs obtained using graph theory while
Case 3 depicts a flow graph obtained using a DC power flow

90 65

l
191.14, 238.71

(a) Case 1

21215 191.14,

238.71
(b) Case 2

of Figure 2
Edges in K Case 1: Case 2: Case 3:
Flow (MW) Flow (MW) Flow (MW)
4-1 208 35.86 172.51
9-2 0 72.86 121.96
9-3 172.86 272.14 86.39
Power transfer 380.86 380.86 380.86

IV. GRAPH THEORY BASED NETWORK ANALYSIS TOOL

As described in Section II, a transmission line or transformer
will be considered a special asset if the power flowing through
it cannot be rerouted via the set of its indirect paths. For each
such special asset, the graph theory-based network analysis tool
finds the limiting critical cut-set as described below.

A. Graph theory-based feasibility test (FT)

The graph theory-based feasibility test (FT) described in
Algorithm II below examines all the transmission assets to
quickly identify the set of special assets and the limiting critical
cut-set corresponding to each special asset. That is, if f; units
of power flows through edge e, from vf to v, Algorithm II
will first identify if e; is a special asset. If e; does turn out to be
a special asset, then Algorithm II will identify the associated
limiting critical cut-set, K.,;;, and the power transfer margin
associated with K ,;;, denoted by T;.

Although there can be multiple saturated cut-sets associated
with a special asset, Algorithm II is able to identify the
limiting critical cut-set because it is the first one to get saturated
in Step (iv). Consider the system shown in Figure 2 once more.
When edge 4-1 is examined by the FT, with respect to any of
the three flow graphs, following observation is made: edge 4-1
is a special asset as it fails FT, and is associated with a limiting
critical cut-set containing edges 4-1 and 6-7 (i.e., K .;;={4-1,6-
7})and T)=-35.86 MW. The implication of the above statement
is explained with the help of Figure 3(a), Figure 3(b), and
Figure 3(c) which depict the power transfer across cut-set K,.;;
for the three different flow graphs of Figure 2.

238.71 212.15

(c) Case 3

212.15

Figure 2: Three valid graph theory-based flow graphs for the same system. “G” and “L” denote generation and load respectively; dotted line denotes a cut-set.



Algorithm II: Graph theory-based feasibility test (FT)

i.  Define C'(V,E) = C(V, E). Remove edge e; from C'. Initialize a
variable TC; to zero (i.e., TC; = 0).

ii. Search C’ to obtain the shortest unsaturated path P from v/ to v
using breadth first search (BFS) [37]; path P is considered
unsaturated if it has capacity to reroute additional flow.

iii. Find the maximum extra flow, Cp, that can be rerouted through
path P from v{ to v .

iv. Update TCyas TC; := TC; + Cp, and the weights of C' as per (1);
note that this step saturates path P in C'.

v. Repeat Steps (ii) through (iv) until there exists no unsaturated
path in ¢’ from v to v].

vi. Due to outage of e;, compute the transfer margin, T;, as: T; =

TC, — f;. If T, for e, is negative, ¢; is a special asset.

To identify K, traverse the saturated graph €’ from v/ to v/.

All the vertices that can be reached from v[ without traversing a

saturated edge are grouped into cluster C;. Similarly, the vertices

that cannot be reached from v without traversing a saturated
edge are grouped into cluster C,. Cut-set K ,.;; contains the edges

whose one end is in €; and the other end is in C,.

vii.

K i p={4-1,6-7}

Cluster €= Cluster C,=

(4,6,5,10} () 208 MW (, {1,2,3,7,8,9}
Net 127.86 MW Net
generation = @ O demand =
335.86 MW @) 335.86 MW

K ri={4-1,6-7}

Cluster €= Cluster C,=

{4,6,5,10} 35.86 MW {1,2,3,7,8,9}
Net 300 MW Net
generation = demand =
335.86 MW (b) 335.86 MW

K rie=14-1,6-7}

Cluster €=
{4,6,5,10}

Cluster C,=
17251MW {7y {1,2,3,7,8,9)

Net 163.35 MW Net
generation = demand =
335.86 MW

335.86 MW
(¢)  Asset ratings = 300 MW

Figure 3: (a) Power transfer across cut-set K,;; for flow graph of Figure 2(a),
(b) Power transfer across cut-set K, for flow graph of Figure 2(b), and (c)
Power transfer across cut-set K, for flow graph of Figure 2(c)

From Figure 3 it is clear that although the individual flows
on different edges of the cut-set are different, FT finds that, for
all three flow graphs, if the edge 4-1 is lost, the cut-set K_,;;
will have a power transfer capability shortage of 35.86 MW
from cluster C, to cluster C,. For example, in Figure 3(a), when
edge 4-1 is lost, the flow in edge 6-7 becomes (208+127.86)
MW = 335.86 MW, which exceeds its rating (of 300 MW) by
35.86 MW. In summary, the FT: (a) detects special assets, (b)
identifies the limiting critical cut-set associated with each
special asset, and (c) computes the power transfer margin
across the identified limiting critical cut-set.

B.  Graph theory-based network flow update scheme (UPS)

During major power system disturbances, multiple outages
can occur in rapid succession. Therefore, the FT results would
also change following the outage of an edge. To identify the set
of special assets following an outage, it is important to first
update the graph theory-based network flows to account for the

outage of any edge. The advantage of graph theory-based flows
is that rerouting of the flow upon the loss of an edge can be
achieved extremely fast. The technique of updating the flow
graph F(V, E) and latent capacity graph C(V, E) when edge ¢,
suffers an outage is done in accordance with Algorithm III,
which describes the graph theory-based update scheme (UPS).
The UPS for the outage of an edge is explained with the help
of Figure 4. A flow graph obtained from graph theory-based
network flow algorithm is depicted in Figure 4(a). The update
of the network flows when the edge 5-6 goes out is shown in
Figure 4(b). The UPS simply reroutes 25 MW of flow through
path 5-4-1-6 to create an updated network flow solution.

Algorithm III: Graph theory-based update scheme (UPS)

i.  Let, the flow to be rerouted be given by F fl, where f; refers
to the flow through edge e, from vertex v{ to v;.

ii. Remove edge ¢; from F(V,E) and C(V, E).

iii. Search C to obtain the shortest unsaturated path P from v{ to v
using breadth first search (BFS) [37].

iv. Find the maximum extra power, Cp, that can be rerouted through
path P.

v. IfF > Cp,inject Cp units of flow through path P and update F as
F :=F — Cp.If F < Cp, inject F units of flow through path P and
set F := 0. Update the weights of F and C accordingly.

vi. Repeat Steps (ii) through (v) until F = 0.

* f denotes graph based flows 75 MW
* R denotes asset ratings

100 MW (a)

Figure 4: (a) A flow graph obtained from graph-based network flow
algorithm, (b) Update scheme (UPS) of network flow solution for the outage
of edge 5-6

C. Shortlisting assets (SA) scheme for feasibility test (FT)

In the base-case scenario when the flow graph is built for the
first time all transmission assets would be investigated by the
FT. However, in the event of the outage of an edge, when UPS
gives an updated flow graph, it is not necessary to test all the
assets by the FT once again to identify the special assets. By
intelligently exploiting the information provided by FT in the
base-case scenario and using the UPS to reroute the flow for
the edge that is out, the FT can be performed on only a subset
of the assets to evaluate the impact of a second contingency.
This is explained through Figure 5.

Let it be known from the base-case FT that flow through
edge e, can be rerouted through path P, , while the loss of edge
e, alters flow through path P,. Then, in Figure 5(a), when ¢,
goes out, the flow through e, is rerouted through P, by UPS.
Now, as P, and P, do not involve common edges, the rerouting
of power through P, by UPS does not modify the flows through
P,; therefore, FT need not be repeated for e,,,. However, if P,
and P, have common edges, as seen in Figure 5(b); i.e.,
rerouting of the flow of e; affects the flow through P, thene,,
must be examined by FT once again after the outage of e;. This
rationale of screening the assets to be examined by FT in the



event of an outage is called the shortlisting asset (SA) scheme.
It will be shown in Section V that the usage of the SA scheme
significantly reduces the computation time.

- Update of
- network flow

o

€

/ /“Path Py\ Y\
,// Update of x
/" network flow ps

o "o

(@ ®)
Figure 5: (a) Rerouting the flow on edge e, does not involve any edge of the
indirect paths of edge e,,, and (b) Rerouting the flow on edge e, involves some
edges of the indirect paths of edge e,,

D. Graph-traversal scheme

The proposed FT and UPS algorithms use BFS [37] scheme
to traverse the graph. BFS, in comparison to depth first search
(DFS), has the advantage that it starts at a source vertex and
explores all the neighboring vertices at present depth before
moving on to the vertices at the next depth. Once the sink vertex
is reached the algorithm stops. When BFS is used to traverse
the graph to reach a sink from a given source, the path traced
by BFS is already the shortest path (if there was a shorter path,
BFS would have found it earlier). Both the graph theory-based
FT and UPS scan through the set of indirect paths associated
with any edge. However, there could be many indirect paths
associated with an edge. The unique search properties of FT
and UPS that facilitates real-time identification of limiting
critical cut-sets and rerouting of the network flow, respectively,
are discussed below:

1) Graph traversal during feasibility test (FT):

In each iteration of the FT, saturation of an indirect path
occurs as described in Step (iv) of Algorithm II. This will
occur within a small number of iterations for a power network
because many of its edges are common to multiple indirect
paths. Therefore, the limiting critical cut-set, K,;;, can be
identified without requiring the BFS scheme to scan through
the set of all indirect paths.

2)  Graph theory-based update scheme (UPS):

Based on the same rationale explained above, for rerouting
the flow through any edge of the power network, Algorithm
III will only utilize a small subset of indirect paths.

Apart from BFS, other commonly used graph search
methods for finding the shortest path between a source-sink
pair are Bellman-Ford algorithm [38], and Dijkstra algorithm
[39]. If |E| denotes the total number of edges, and |V| denotes
the total number vertices, the time-complexity of the Bellman-
Ford algorithm is O(|E|V|) [40]. The time-complexity of
Dijkstra algorithm implemented using binary heap is O (|E| +
[Vilog|V|) [41]. Lastly, the time-complexity of the BFS
algorithm is O(|E| + |V| [42], which is the best among the
three shortest-path graph traversal techniques. Therefore, we
have used the BFS graph traversal scheme to design the
proposed algorithms (FT and UPS) to determine if
contingencies create saturated cut-sets.

V. RESULTS

A. IEEFE 118-bus system

The utility of the proposed algorithm for enhanced
situational awareness is explained with a case-study on IEEE-
118 bus system. Due to a hurricane, let the following
transmission asset outages occur one after another: 15-33, 19-
34, 37-38, 49-66, and 47-69 (marked O; through Os in Figure
6). From Figure 6 and Table II, following information is
obtained when the algorithm is applied as outages manifest:

1) Base-case: In the base-case scenario, the asset 26-30 fails
the graph theory-based FT and is classified as a special
asset. The loss of 26-30 would saturate the limiting critical
cut-set K., by a margin of -77 MW, i.e., T\°= -77 MW.

2) I Outage: When 15-33 is lost, no additional special assets
are identified.

3) 2" Qutage: When 19-34 is lost, no additional special assets
are identified.

4) 3" Outage: When 37-38 is lost, the asset 42-49 fails the FT
and is classified as a special asset. The loss of 42-49 would
saturate the limiting critical cut-set K2, by a margin of
-186 MW, i.e., T;*>= -186 MW.

5) 4" Outage: When 49-66 is lost, no additional special assets
are identified.

6) 5" Outage: When 47-69 is lost, the assets 59-56, 63-59,
63-64, and 64-65 are classified as special assets. The loss
of these four assets would saturate the limiting critical cut-
sets, K5%,, K52, K5¢,,, and K5%,, by margins of -64,-191,
-191, and -219 MW, respectively (i.e., T,°*= -64 MW,
T5b=-191 MW, T,°°= -191 MW, T;*4= -219 MW).

The value of the information obtained above can be realized
by considering the following scenario: after the occurrence of
the fifth outage, the proposed algorithm would inform the
power system operator that if any of the four assets identified
in the last row, second column of Table II is lost next (as the 6"
outage), the corresponding cut-set identified in the third
column would be saturated by the margin mentioned in the
fourth column. If this anticipated overload is to be avoided, the
operator must preemptively reduce the power flowing through
the identified cut-set by at least the amount mentioned in the
last column. Thus, the proposed network analysis tool is an
enhanced power system connectivity monitoring scheme that
improves the power system operators’ situational awareness by
augmenting their visualization in real-time.

Table II: Identification of limiting critical cut-sets

New Transfer
Event special Limiting critical cut-set margin
asset MW)
Base-case | 26-30 | KO, = {26-30,25-27,25-23} T9=77
Outage 1
(15-33) B N
Outage 2
(19-34) - -
%1;*}%;)3 4249 | K3, (42-49,44-45) T3=-186
Outage 4
(49-66) B N
59-56 | K5% = {59-56,59-54,59-55,69-49} T;%= -64
63-59 Kf‘f,-,: {63-59,61-59,60-59,69-49} T;b=-191
outage S 63764 | Ko<, = (63-6461-59.60-39.69-49} | T5°=-191
(47-69) crit= 1 ) , ) } i
64-65 Kf‘f,-,: {64-65,66-62,66-67,69-49} T;%=-219
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Figure 6: Real time identification of limiting critical cut-sets on the IEEE 118-bus test system

B. 17,941 bus model of Western Interconnection (WI)

This section presents the results obtained using a 17,941-bus
model of WI. Sub-section 1) presents some statistics of graph
theory-based FT and UPS which highlight the computational
advantage of the proposed technique. Sub-section 2) describes
how the proposed network analysis scheme provides useful
information when a sequence of outages occurs in this system.

1) Computational efficiency of the graph theory-based FT:

It takes 6 min to run N-1 FT for this system. Conversely, the
time required to run a single DC power flow is 0.12 s. As there
are 22,091 transmission assets in the system, time required to
run a DC power flow for the outage of every asset would
require solving 22,091 DC power flows, which would
approximately require 0.12x22,091 s = 44 min. Therefore, for
this system, performing N-1 FT is approximately 7 times faster
compared to N-1 DC CA. For a valid comparison, the
simulations were done on the same computer (Core i7, 3.60
GHz CPU processor with 16 GB RAM).

When any edge e, is examined by the graph theory-based FT,
the indirect paths of e; are traversed by BFS. However, the
saturation of the set of indirect paths may occur after a small
number of indirect paths are traversed by the graph theory-
based FT. Moreover, since BFS always identifies the shortest
path from the source to the sink, the number of edges contained
in an indirect path would be relatively small. For every non-
radial edge of this system, the number of indirect paths required
to saturate the graph and the maximum number of edges
contained in an indirect path is computed. The statistics of FT
is summarized in Figure 7(a) and Figure 7(b).

Figure 7(a) plots the histogram for the number of indirect
paths used by BFS to saturate the latent capacity graph. The
largest number of indirect paths required was 58. Figure 7(b)
plots the histogram of maximum number of edges contained in
an indirect path traced by BFS; the maximum was 111. Thus,
the histogram plots demonstrate that the graph theory-based FT
essentially uses a small subgraph to detect the saturation of a
cut-set; this is the fundamental reason why the graph theory-
based FT is computationally so efficient.
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Figure 7: (a) Histogram of number of indirect paths traversed by the graph
theory-based FT, and (b) Histogram of maximum number of edges contained
in an indirect path

2) A case study on Western Interconnection (WI):

This sub-section demonstrates the usefulness and scalability

of the proposed approach through a N-1-1 event analysis of this
system. The loss of 500 kV Hassayampa-North Gila (H-NG)
transmission line was the first event, while the second event
was the loss of 230/92 kV Coachella Valley transformers.
Before the analysis was done for the outage of the events, it
took approximately 0.5 s to build the flow graph and the latent
capacity graph for the base-case. As mentioned earlier, it takes
approximately 6 min to run FT on all transmission assets in the
base-case. Whether events 1 and 2 resulted in any additional
special asset was investigated as follows:
Event I: Once the 500 kV H-NG transmission line was lost,
graph theory-based UPS took only 0.20 s to reroute the flow to
obtain a new flow graph. The SA scheme took 0.06 s to identify
271 edges that were to be examined by FT for this new graph.
Time required by FT to examine all the 271 edges for an outage
was 32 s. Among the 271 edges, 4 edges failed FT and were



Table II1: Application of the graph theory-based network analysis in Western Interconnection (WI)

Events Time required SA for FT FT on shortlisted assets Total fime
by UPS #Edges Time New special assets |K criel T, Time
Line outage 936-1192 57 —441 MW
utage:
1192-1217 49 —1258 MW (0.20+0.06+
Hassayampa— 0.20s 271 0.06 s 28732902 13 419 MW 32s 32)=32.26's
North Gila
2902-2903 21 —309 MW
2416-2488 8 —35.35 MW
2421-2487 2 -2 MW
Transformer 24213293 5 IMW (0.06+0.07+
outage: 0.06 s 82 0.07 s 24382606 5 55 MW 10s 10) =
Coachella Valley . 10.13 s
2487-2488 8 —-35 MW
2712-2878 9 —-35 MW

classified as special assets as shown in Table III. For the four
special assets, the FT found the corresponding limiting critical
cut-set, K.;;; | K¢ | in Table III denotes the number of edges
contained in K. Moreover, FT provided information
regarding the impact of the loss of a special asset on the
associated limiting critical cut-set. For example, if the
transmission corridor 936-1192 is lost next, the limiting critical
cut-set would be saturated by a margin of 441 MW. The total
time required to perform this network analysis and identify all
the limiting critical cut-sets after the outage of H-NG was 32.26
s (i.e., total time taken by UPS, SA, and FT). On the other hand,
if FT were to be run on all transmission assets (as was done in
the base-case), the time required would be 6 min. Therefore,
intelligently performing FT on a shortlisted set of edges
reduced the computation time from 6 min to 32.26 s.

Event 2: When 230/92 kV Coachella Valley transformers are
tripped, the UPS took only 0.06 s to obtain the updated network
flow solution. Time required by the SA scheme to shortlist the
edges to be examined by FT was 0.07 s; 82 new edges were
shortlisted. Time required by FT to examine all the 82
shortlisted edges was 10 s. Among the 82 edges examined, 10
edges failed FT and were classified as special assets (see Table
III). Total time required to identify the set of special assets after
the outage of Coachella Valley transformers was 10.13 s.
Conversely, performing a DC CA for all transmission assets
would have required 44 min, or about 260 times longer than the
proposed graph theory-based approach.

VI. DISCUSSIONS

A. Practical utility of the proposed algorithm

After the 2011 U.S. Southwest blackout, the FERC [3]
reported the following finding: “Affected TOPs (transmission
operators) have limited visibility outside their systems,
typically monitoring only one external bus. As a result, they
lack adequate situational awareness of external contingencies
that could impact their systems. They also may not fully
understand how internal contingencies could affect SOLs
(system operating limits) in their neighbors’ systems.” The
recommendation of FERC to TOPs was to “review their real-
time monitoring tools, such as state estimator and RTCA, to
ensure that such tools represent critical facilities needed for the
reliable operation of the BPS (bulk power system)”.

Now, modeling all “critical facilities” over a large area
(across different utilities) could significantly increase the
number of contingencies to be evaluated by RTCA, which
would then increase the solution time considerably [4], [11]. In
this regard, the ability of the proposed algorithm to analyze the

effects of any outage on very large systems and provide
meaningful quantifiable information in a matter of seconds
gives it a distinct advantage. Moreover, the special assets
detected by the FT can be suitable candidates for detailed
analysis by a more precise CA tool. Thus, the proposed
research can complement real-time operations by extending an
operator’s visibility to external contingencies, while alleviating
the associated computational burdens.

B. Proposed method is not guaranteed to detect all
contingencies that result in post-contingency branch overloads

As per the FT when all the indirect paths do not have
sufficient capacity to reroute the power flowing through an
edge, it implies that it would inevitably result in post-
contingency branch overloads. However, the converse is not
true. This is illustrated using the test system shown in Figure 8,
and the corresponding flows shown in Figure 9 and Figure 10.

Figure 9(a) presents a DC power flow solution, when 100
MW of power is injected at bus 1, and 100 MW is withdrawn
at bus 2 (Scenario 1). The numbers in non-bold fonts indicate
flows, while the numbers in bold font denote line ratings. The
proposed FT algorithm identifies edge 1-2 as a special asset
because the indirect paths of edge 1-2 do not have sufficient
capacity to reroute the flow through the direct path, namely,
edge 1-2. A post-contingency DC power flow shown in Figure
9(b) validates that such an outage results in overloads along
Indirect path 1. Figure 10(a) presents a DC power flow
solution, when 85 MW of power is injected at bus 1, and 85
MW is withdrawn at bus 2 (Scenario 2). In this scenario, the
proposed FT algorithm does not identify edge 1-2 as a special
asset because the set of indirect paths have sufficient capacity
to reroute the flow of the direct path. However, a post-
contingency DC power flow solution shown in Figure 10(b)
indicates that the Indirect path 1 is still overloaded, due to lower
impedance of Indirect path 1 compared to Indirect path 2.

From this illustration, the following conclusions can be
drawn: when the set of indirect paths do not have the capacity
to reroute the power flowing through the direct path (see Figure
9), no additional information is required to conclude that there
would be a post-contingency overload. The proposed graph
theoretic power flow model takes advantage of this observation
to identify violations quickly. At the same time, the proposed
approach is not able to capture the overload occurring in Figure
10. This is because the graph theory-based network flow
algorithm ignores the effects of impedances when creating the
flows. Thus, the proposed approach may not detect all possible
post-contingency branch overloads.
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Figure 8: Topology of a sample six-bus power system (branch impedances are
represented in terms of a variable z)
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Figure 9: Scenario 1. (a) A DC power flow solution in base-case, and (b) A
DC power flow solution for the outage of edge 1-2
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Figure 10: Scenario 2. (a) A DC power flow solution in base-case, and (b) A
DC power flow solution for the outage of edge 1-2

C. Proposed method is guaranteed to detect all contingencies
that saturate a cut-set

The discussion presented in Section VI.B reveals that the
graph theory-based FT is not guaranteed to identify all
contingencies that create post-contingency branch overloads.
However, the proposed algorithm does guarantee detection of
all contingencies that create a saturated cut-set in the network.
This is explained as follows. Let us examine if the outage of
edge e; of Figure 11 would create a saturated cut-set in the
system using the proposed FT. Edge e; could be associated with
multiple cut-sets in the system. With reference to Figure 11 the
i*" cut-set associated with edge e; is denoted by

K, = {el,ell,elz, ...,el(k_l)} for1<i< x (4)
where, k is the total number of edges in cut-set K;, and x is the
total number of cut-sets associated with edge e;. When the
transfer margin, T;, computed by the graph theory-based FT
(proposed in Section IV.A) is negative it implies that the outage
of edge e; saturates at least one cut-set, among the x cut-sets
that edge e, is associated with. On the other hand, if the transfer
margin, T;, computed by the FT is positive, it implies that the
outage of edge e; does not saturate any of the x cut-sets that it
is associated with. Therefore, the graph theory-based FT will
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not miss a single contingency that would create a saturated cut-
set. This is illustrated using the test system shown in Figure 12,
and the corresponding flows shown in Figure 13 and Figure 14.

Figure 13 presents a DC power flow solution when the total
load and generation in the system is 594 MW (Case 1). The FT
algorithm finds that the outage of 3-4 saturates cut-set K, ={3-
4,3-5,1-5} by 31 MW. To validate this inference, the power
transfer capability across each of the cut-sets associated with
edge 3-4 is enumerated from the DC power flow solution. As
shown in Figure 13, edge 3-4 is associated with four cut-sets:
K, .K,, K, ,K,. The power transfer capabilities across the four
cut-sets of the test system when edge 3-4 is lost are summarized
in Table IV, where Py, denotes the total flow that is to be
transferred across the cut-set, and Ry denotes the total capacity
of all the edges belonging to the cut-set (excluding edge 3-4
itself). Itis observed that Py is greater than Ry only for cut-set
K, by 31 MW. This verifies that for Case 1, the outage of edge
3-4 would saturate cut-set K, by 31 MW.

Figure 14 presents a DC power flow solution when the total
load and total generation of the system is 486 MW (Case 2). In
this case, the FT algorithm detects that the indirect paths of
edge 3-4 have positive transfer margins indicating that they
have the capacity to carry additional power, if need be. To
validate this observation, the power transfer capability across
each cut-set associated with edge 3-4 is enumerated from the
DC power flow solution (see Table IV). It is observed that P,
is less than Ry for K, K,, K5, K,. This proves that for Case 2,
outage of edge 3-4 does not saturate any cut-set that is
associated with it.

|
|
{\ﬁ Cluster C,
|
|

Figure 11: K; is the i*" cut-set (among x cut-sets) associated with edge e, that
separates the network into two disjoint clusters
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Figure 12: Topology of a sample five-bus power system (branch impedances
are represented in terms of a variable z)

Furthermore, note that in Figure 13, the power flowing
through different edges of the limiting critical cut-set, K,={3-



4,3-5,1-5}, are not in the same direction. This implies that cut-
set K, is not a coherent cut-set (in a coherent cut-set power
flows in the same direction in all the edges of the cut-set [27]).
Therefore, such types of critical interconnections cannot be
detected by the algorithm presented in [27]. It is also important
to highlight here that enumerating the power transfer capability
across different cut-sets by a DC power flow solution requires
previously defining all the cut-sets. On the other hand, the
graph theory-based FT can investigate the power transfer
capability of different cut-sets without the cut-sets being pre-
defined. This is a unique advantage of the proposed network
analysis, because listing all possible cut-sets for a large power
network containing thousands of buses especially during
extreme event scenarios is not practically feasible.

Figure 13: Power transfer across four different cut-sets (K, K,,K;, K,)
associated with edge 3-4 for Case 1

Figure 14: Power transfer across four different cut-sets (K, K,,K5,K,)
associated with edge 3-4 for Case 2
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Table IV: Power transfer capacity across different cut-sets associated
with edge 3-4

Case 1 Case 2
Cut- Flow Capacity Flow Capacity
set (Pg) (Rg) (Pg) (Rg)
K, 231 MW 250 MW 189 MW 250 MW
K, 231 MW 200 MW 189 MW 200 MW
K, 594 MW 820 MW 486 MW 820 MW
K, 264 MW 820 MW 216 MW 820 MW

D. Comparison of proposed method with other power system
vulnerability assessment techniques

In this sub-section, the output of the proposed algorithm is
compared with those obtained from two power system
vulnerability assessment techniques, namely, the metrics
developed in [28] and [33], both of which can handle
exhaustive N-1 evaluation. In [28], an extended betweenness
index (derived from PTDFs and transmission line limits) was
used to rank different contingencies. In [33], a DC power flow
based linear sensitivity factor, called line outage impact factor,
derived from LODFs was used to screen out critical
contingencies. The analysis was performed on the IEEE 118-
bus system for the same sequence of outages that were
described in Table II. In order to validate the severity of the
different contingencies, a cascading failure simulation was run
in MATCASC [43], a software package linked with
MATPOWER that facilitates simulation of cascading failures
for any initiating contingency. The amount of load shed at the
end of the cascade indicated the severity of the contingency.
The results of the comparison are shown in Table V.

Table V: Ranking of contingencies and cascading analysis on IEEE 118-
bus test system

Cascading Analysis Rank by | Rank by
Event New Load 28] [33]
contingency shed

Base-case 26-30 12.20% 20 42
Outage 1 (15-33) - - - -
Outage 2 (19-34) - - - -
Outage 3 (37-38) 42-49 29.87% 16 58
Outage 4 (49-66) - - - -

64-65 28.92% 6 167

Outage 5 (47-69) 63-59 28.26% 8 70
63-64 28.26% 9 73

56-59 25.27% 15 119

Column 2 of Table V shows the contingencies identified by
MATCASC that result in load shed as the different events
manifest in the IEEE 118-bus system. The ranking of these
load-shed-causing-contingencies, obtained by the techniques
developed in [28] and [33] are provided in Columns 4 and 5,
respectively. It can be observed from Table V that the
contingencies that actually result in loss of load were not the
top ranked contingencies identified by the metrics developed in
[28] and [33]. For instance, after the fifth outage, if any of the
four new contingencies identified in Column 2 were to occur
(as the sixth outage), then it would result in load shedding in
excess of 25%. However, none of these four high load-shed-
causing-contingencies appeared in the top four ranked
contingencies of [28] or [33]. On the other hand, all the load-
shed-causing-contingencies were detected as special assets by
the proposed algorithm (compare Column 2 of Table V with



Column 2 of Table II). This shows the usefulness of the
proposed algorithm in detecting critical contingencies.

VII. CONCLUSIONS

This paper presents a new graph theoretic approach for real-
time vulnerability assessment resulting in enhanced situational
awareness for power system operations. The major
contributions of this research are as follows:

1. The most important research finding is that a relaxed
graph theory-based network analysis tool can evaluate if
a contingency will create saturated cut-sets in a meshed
power system. The proposed algorithm finds the cut-set
which becomes saturated by the largest transfer margin as
an impact of the outage. The transfer margin indicates the
minimum amount by which the power transfer through the
cut-set must be reduced to alleviate the saturation of the
cut-set and sustain the impact of the outage.

2. The proposed graph theoretic algorithms (feasibility test,
update scheme, and shortlisting asset) reduce the
computational time that is required for providing real-time
situational awareness. Although the proposed analysis
may not detect all types of branch overloads, it is
guaranteed to detect all overloaded cut-sets. Fast detection
of overloaded cut-sets is important because they represent
the “seams or fault-lines across which islanding seems
likely” [27].

Using the proposed approach, system operators will also
have better preparedness to address the identified violations,
long before the set of all possible violations are detected by a
more detailed network analysis tool. Hence, the proposed
method can be a useful complementary tool to the existing
methods of power system vulnerability assessment for real-
time operations.
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