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Abstract— During major power system disturbances, when 
multiple component outages occur in rapid succession, it becomes 
crucial to quickly identify the transmission interconnections that 
have limited power transfer capability. Understanding the impact 
of an outage on these critical interconnections (called saturated 
cut-sets) is important for enhancing situational awareness and 
taking correct actions. This paper proposes a new graph theoretic 
approach for analyzing whether a contingency will create a 
saturated cut-set in a meshed power network. A novel feature of 
the proposed algorithm is that it lowers the solution time 
significantly making the approach viable for real-time operations. 
It also indicates the minimum amount by which the power 
transfer through the critical interconnections should be reduced 
so that post-contingency saturation does not occur. Robustness of 
the proposed algorithm for enhanced situational awareness is 
demonstrated using the IEEE-118 bus system as well as a 17,000+ 
bus model of the Western Interconnection (WI). Comparisons 
made with different approaches for power system vulnerability 
assessment prove the utility of the proposed scheme for aiding 
power system operations during extreme exigencies. 
 

Index Terms—Graph theory, Network flow, Power system 
disturbances, Power system vulnerability, Saturated cut-set. 

NOMENCLATURE 
𝑐𝑐𝑙𝑙𝐹𝐹𝐹𝐹    Directed weight associated with edge 𝑒𝑒𝑙𝑙  from vertex 𝑣𝑣𝑙𝑙𝐹𝐹  

towards 𝑣𝑣𝑙𝑙𝑇𝑇 in the latent capacity graph (𝒞𝒞).  
𝑐𝑐𝑙𝑙𝑇𝑇𝑇𝑇    Directed weight associated with edge 𝑒𝑒𝑙𝑙  from vertex 𝑣𝑣𝑙𝑙𝑇𝑇 

towards 𝑣𝑣𝑙𝑙𝐹𝐹  in the latent capacity graph (𝒞𝒞). 
𝑪𝑪1  The set of vertices contained in cluster 1. 
𝑪𝑪2 The set of vertices contained in cluster 2. 
𝐶𝐶𝑃𝑃  Maximum extra flow that can be transferred along path 

𝑷𝑷 from a source vertex towards a sink vertex. 
𝐷𝐷𝑙𝑙    Active power withdrawn at a sink vertex 𝑣𝑣𝑙𝑙 ∈ 𝑳𝑳.  
𝑒𝑒𝑙𝑙    𝑙𝑙𝑡𝑡ℎ  edge in the edge set 𝑬𝑬. 
𝑬𝑬    A set containing all edges of the power network.   
𝑓𝑓𝑙𝑙   A directed weight associated with edge 𝑒𝑒𝑙𝑙  from vertex 

𝑣𝑣𝑙𝑙𝐹𝐹  towards vertex 𝑣𝑣𝑙𝑙𝑇𝑇 in the flow graph (ℱ).  
𝑓𝑓𝑙𝑙𝐴𝐴  Flow in edge 𝑒𝑒𝑙𝑙  for the network flow solution 𝐴𝐴. 
𝐹𝐹𝑃𝑃  The flow injected along path 𝑷𝑷. 
𝑮𝑮   A set containing the locations of generator buses. 
𝐼𝐼𝑔𝑔   Active power injected at a source vertex 𝑣𝑣𝑔𝑔 ∈ 𝑮𝑮. 
𝑘𝑘  Total number of edges in cut-set 𝑲𝑲. 
𝑲𝑲   Any cut-set in the power network.  
𝑲𝑲𝑖𝑖   𝑖𝑖𝑡𝑡ℎ  cut-set associated with edge 𝑒𝑒𝑙𝑙 ∈ 𝑬𝑬. 
𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   Limiting critical cut-set for edge 𝑒𝑒𝑙𝑙 ∈ 𝑬𝑬. 

𝑳𝑳   A set containing all the load buses. 
𝑛𝑛   Total number of indirect paths for edge 𝑒𝑒𝑙𝑙 . 
𝑷𝑷  This is a path (sequence of edges) from a source vertex 

to a sink vertex in the graph 𝒢𝒢. 
𝑃𝑃𝐺𝐺1  Total active power generation in cluster 𝑪𝑪1. 
𝑃𝑃𝐺𝐺2 Total active power generation in cluster 𝑪𝑪2. 
𝑃𝑃𝐿𝐿1  Total active power demand in cluster 𝑪𝑪1. 
𝑃𝑃𝐿𝐿2  Total active power demand in cluster 𝑪𝑪2. 
∆𝑃𝑃1  Net active power injection in cluster 𝑪𝑪1. 
∆𝑃𝑃2  Net active power injection in cluster 𝑪𝑪2. 
𝑃𝑃𝐾𝐾   Total active power to be transferred across cut-set 𝑲𝑲. 
𝑟𝑟𝑙𝑙    Rating of edge 𝑒𝑒𝑙𝑙 ∈ 𝑬𝑬.  
𝑅𝑅𝐾𝐾  Total active power transfer capacity of cut-set 𝑲𝑲, 

excluding edge 𝑒𝑒𝑙𝑙 , examined by feasibility test (FT). 
𝑇𝑇𝑙𝑙𝑖𝑖  Transfer margin of the 𝑖𝑖𝑡𝑡ℎ  saturated cut-set, associated 

with edge 𝑒𝑒𝑙𝑙 . 
𝑇𝑇𝑙𝑙  Transfer margin of the limiting critical cut-set 

associated with edge 𝑒𝑒𝑙𝑙 .  
𝑇𝑇𝑇𝑇𝑙𝑙  Total additional active power transfer capability of the 

indirect paths of edge 𝑒𝑒𝑙𝑙 . 
𝑣𝑣𝑔𝑔   A vertex that has a source (or generator). 
𝑣𝑣𝑙𝑙   A vertex that has a sink (or load). 
𝑣𝑣𝑙𝑙𝐹𝐹      The “from vertex” of edge 𝑒𝑒𝑙𝑙 .  
𝑣𝑣𝑙𝑙𝑇𝑇     The “to vertex” of edge 𝑒𝑒𝑙𝑙 .  
𝑽𝑽   A vertex set containing all buses of the power network. 
𝑥𝑥  Total number of cut-sets associated with 𝑒𝑒𝑙𝑙 . 
𝑦𝑦  Total number of saturated cut-sets associated with 𝑒𝑒𝑙𝑙 . 
𝑧𝑧  A variable denoting impedance of a branch. 
𝒢𝒢    An undirected weighted graph of the power network.  
ℱ   A directional flow graph of the power network. 
𝒞𝒞  A bidirectional latent capacity graph of the network. 

I. INTRODUCTION 
NALYSIS of major blackouts has indicated that they 
involve successive outages of power system assets [1]. For 
example, the 1977 New York City blackout was caused 

by the loss of 11 transmission lines in 52 minutes. The Federal 
Electricity Regulatory Commission (FERC) reported that one 
of the causes of the blackout was “the failure to recognize that 
a critical interconnection to the west was effectively 
unavailable” [2]. More recently, the initiating event for the 
2011 U.S. Southwest blackout was the loss of the 500 kV 
Hassayampa-North Gila (H-NG) line, which then triggered a 
sequence of events that resulted in the blackout of San Diego 
[3]. Werho et al. stated that a critical interconnection does not 
necessarily refer to a single line whose status can be monitored 
[4]; i.e., a critical interconnection can consist of multiple lines. 
Therefore, real-time vulnerability assessment for enhanced 
situational awareness of a power system that is suffering from 
multiple outages is a challenging task [5], [6]. 
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The traditional approaches for improving situational 
awareness are based on steady-state contingency analyses 
techniques that solve AC or DC power flows [7]-[11]. These 
techniques cannot detect transient/dynamic stability related 
violations but can identify branch overloads and voltage 
violations. However, power flow-based contingency analysis 
(CA) is not fast enough to perform an exhaustive N-1 real-time 
contingency analysis (RTCA) [7]. Therefore, power utilities 
select a subset of the contingencies for evaluation based on 
some pre-defined criteria [9], [10]. In [11], Huang et al. stated 
that the size of this subset has considerable impact on RTCA 
solution: a large subset is computationally burdensome, while 
a small subset might miss critical scenarios. This can be a 
problem for real-time operations during extreme exigencies 
when multiple outages occur in rapid succession [4].  

For managing extreme event conditions, a variety of 
approaches that can identify vulnerabilities quickly have been 
proposed; these include statistical analyses ([12]-[16]), graph 
theoretic analyses ([4], [17]-[27]), and linear sensitivity-based 
analyses ([28]-[33]). These types of analyses are suitable for 
exhaustive N-1 and potentially N-X evaluations. The proposed 
graph theoretic approach also belongs to this category of 
analyses as it enhances situational awareness for real-time 
operations. A brief overview of these other techniques ([12]-
[33]) that belong to this category is provided below. 

Dobson et al. in [12], [13] obtained statistics of cascading 
line outages from utilities to understand how cascades initiate 
and propagate in the power system. In [14], Rezaei et al. 
estimated the risk of cascading failure with an algorithm called 
random chemistry. In [15], Rahnamay-Naeini et al. performed 
probabilistic analysis to understand the dynamics of cascading 
failures. In [16], Hines et al. proposed an influence graph 
model to capture patterns of cascading failures in power 
systems and validated the model using historical data. Instead 
of relying on prior historical data, which may or may not be 
relevant for the present scenario, the proposed approach 
exploits knowledge of the current network conditions to 
identify the system’s critical interconnections, the loss of which 
might trigger a cascade. 

Graph theoretic approaches have found applications in a 
variety of fields [34]-[36]. Ishizaki et al. summarized the 
applications of graph theory for power systems modeling, 
dynamics, coherency, and control [17]. With regards to 
vulnerability assessment, graph theoretic approaches have 
focused on the topology and structure of the power system [18]-
[27]. In [18], Albert et al. studied the structural vulnerability of 
the North American power grid using a metric called the node 
degree, which refers to the number of lines connected to a bus. 
Use of betweenness indices, which refer to the number of 
shortest paths traversing a given element, were explored in 
[19], [20]. Such purely topological indices do not consider the 
electrical properties of the power network.  

Modified centrality indices were used in [21] and [22] to 
assess the risk of blackouts/brownouts and systemic 
vulnerabilities, respectively. In [23] and [24], different 
statistical measures such as the betweenness indices, node-
degree, and geodesic distance were used as possible 
alternatives to power flow techniques to quantify power system 
vulnerability during N-1 contingencies and cascading failures. 
In [25], Zhu et al. proposed a metric called risk graph to better 

capture the cascade failure vulnerability of the power system. 
Recently, Beyza et al. in [26] investigated the structural 
vulnerability of the power system when successive N-1 
contingencies progressively alter the network structure. These 
global vulnerability metrics (node degree, betweenness 
indices, modified centrality indices, geodesic distance) 
describe the vulnerability of the system by a single number. 
However, such indices do not convey meaningful actionable 
information to an operator who is trying to prevent the system 
from collapsing! This is because these metrics do not consider 
the physical manifestation of a vulnerability – a key issue that 
the proposed research seeks to address.  

In [4], Werho et al. used a graph theory-based network flow 
algorithm to identify the cut-set of minimum size between a 
source-sink pair. A cut-set denotes the set of edges which when 
removed separates the graph into two disjoint islands; the size 
of the cut-set refers to the number of edges present in it. If the 
number of edges contained in the minimum sized cut-set 
progressively decreases, it indicates a structural weakness 
between the selected source-sink pair. In [27], Beiranvand et al. 
presented a novel topological sorting algorithm to screen out 
coherent cut-sets. Coherent cut-sets denote the set of edges that 
partition the network, such that the power flows in the same 
direction through all the edges. However, coherent cut-sets may 
not be the only bottlenecks in a power system, as there may be 
a cut-set in which the power flows are not unidirectional, but a 
single outage limits the power transfer through it.  

Bompard et al. used power transfer distribution factors 
(PTDFs) and transmission line capacities for screening out 
critical contingencies [28], [29]. Line outage distribution 
factors (LODFs) have been used for quickly detecting an island 
formation due to a multiple element contingency [30]. Werho 
et al. used DC power flow based linear sensitivity analysis to 
detect an island formation due to a contingency [31]. In [32], 
[33], contingency screening was done using LODFs. These 
sensitivity indices capture the topological as well as the 
electrical properties of the power system and are useful for 
comparison with the proposed approach (e.g., see Table V). 

The goal of this paper is to investigate if cut-sets will become 
saturated (i.e., cannot transfer the required amount of power) 
due to a would-be outage, irrespective of the direction in which 
power flows through different edges of the cut-set. Such cut-
sets (termed saturated cut-sets henceforth) are the system’s 
critical interconnections as they have limited power transfer 
capability. Essentially, this paper attempts to answer the 
following question: How to quickly make operators aware if a 
new contingency will create saturated cut-sets in a meshed 
power network, after multiple component failures have 
occurred in rapid succession?  

II. THEORETICAL BACKGROUND  

A. Graph theoretic terminologies  
In graph theoretic terminology, a power system can be 

represented by an undirected graph 𝒢𝒢(𝑽𝑽,𝑬𝑬), such that the buses 
are contained in the vertex set 𝑽𝑽 and the transmission lines and 
transformers are contained in the edge set 𝑬𝑬. The generators 
and loads are the sources and sinks, respectively. The set 𝑮𝑮 
consists of all vertices where a source is present and the set 𝑳𝑳 
consists of all vertices where a sink is present. The power 
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injected at a source 𝑣𝑣𝑔𝑔 ∈ 𝑮𝑮 is denoted by 𝐼𝐼𝑔𝑔 and the power 
demand at a sink 𝑣𝑣𝑙𝑙 ∈ 𝑳𝑳 is denoted by 𝐷𝐷𝑙𝑙 . Now, every 
transmission asset (line or transformer) has an associated 
capacity called the asset rating. To account for the asset ratings 
in the undirected graph 𝒢𝒢(𝑽𝑽,𝑬𝑬), every edge 𝑒𝑒𝑙𝑙 ∈ 𝑬𝑬 is associated 
with a weight 𝑟𝑟𝑙𝑙 , where 𝑟𝑟𝑙𝑙  denotes the maximum power that can 
be transferred through edge 𝑒𝑒𝑙𝑙 . From the original graph 
𝒢𝒢(𝑽𝑽,𝑬𝑬), we now create two graphs: the flow graph, ℱ(𝑽𝑽,𝑬𝑬), 
and the latent capacity graph, 𝒞𝒞(𝑽𝑽,𝑬𝑬). The flow graph, 
ℱ(𝑽𝑽,𝑬𝑬), contains information about the power flow through 
different edges of the network. If 𝑓𝑓𝑙𝑙  units of power flows 
through edge 𝑒𝑒𝑙𝑙  from vertex 𝑣𝑣𝑙𝑙𝐹𝐹  towards vertex 𝑣𝑣𝑙𝑙𝑇𝑇, a directed 
weight of 𝑓𝑓𝑙𝑙  is assigned to edge 𝑒𝑒𝑙𝑙  in a direction from 𝑣𝑣𝑙𝑙𝐹𝐹  to 𝑣𝑣𝑙𝑙𝑇𝑇. 
On the other hand, for edge, 𝑒𝑒𝑙𝑙 , the latent capacity graph, 
𝒞𝒞(𝑽𝑽,𝑬𝑬), provides information regarding the extra flow that 
could be transferred from 𝑣𝑣𝑙𝑙𝐹𝐹  to 𝑣𝑣𝑙𝑙𝑇𝑇, and vice-versa. The weights 
associated with the edges of 𝒞𝒞(𝑽𝑽,𝑬𝑬) that provide information 
regarding the bidirectional latent capacities are given by, 

                                      
𝑐𝑐𝑙𝑙𝐹𝐹𝐹𝐹 = 𝑟𝑟𝑙𝑙 − 𝑓𝑓𝑙𝑙
𝑐𝑐𝑙𝑙𝑇𝑇𝑇𝑇 = 𝑟𝑟𝑙𝑙 + 𝑓𝑓𝑙𝑙

�                                   (1) 

where, 𝑐𝑐𝑙𝑙𝐹𝐹𝐹𝐹  is the latent capacity in the direction from 𝑣𝑣𝑙𝑙𝐹𝐹  to 𝑣𝑣𝑙𝑙𝑇𝑇, 
and 𝑐𝑐𝑙𝑙𝑇𝑇𝑇𝑇  is the latent capacity in the direction from 𝑣𝑣𝑙𝑙𝑇𝑇 to 𝑣𝑣𝑙𝑙𝐹𝐹 .  

B. Research scope 
Let an edge 𝑒𝑒𝑙𝑙  (transmission line or transformer) connect 

vertices (buses) 𝑣𝑣𝑙𝑙𝐹𝐹  and 𝑣𝑣𝑙𝑙𝑇𝑇 as shown in Figure 1. Since edge 𝑒𝑒𝑙𝑙  
is a single element that joins vertices 𝑣𝑣𝑙𝑙𝐹𝐹  and 𝑣𝑣𝑙𝑙𝑇𝑇, it is called the 
direct path from vertex (bus) 𝑣𝑣𝑙𝑙𝐹𝐹  to vertex (bus) 𝑣𝑣𝑙𝑙𝑇𝑇. There could 
be many other electrical paths to transfer power from 𝑣𝑣𝑙𝑙𝐹𝐹  to 𝑣𝑣𝑙𝑙𝑇𝑇. 
Any path that contains multiple edges (transmission lines or 
transformers) from 𝑣𝑣𝑙𝑙𝐹𝐹  to 𝑣𝑣𝑙𝑙𝑇𝑇 is an indirect path. Let there be 𝑛𝑛 
indirect paths between vertices (buses) 𝑣𝑣𝑙𝑙𝐹𝐹  and 𝑣𝑣𝑙𝑙𝑇𝑇. If all the 𝑛𝑛 
indirect paths combined do not have the capacity to reroute 𝑓𝑓𝑙𝑙  
units of power that was flowing through the direct path, it 
implies that the loss of edge 𝑒𝑒𝑙𝑙  would inevitably result in post-
contingency overloads. Based on this inference, a graph theory-
based network analysis tool is developed in this paper to 
quickly detect violations of the type where the set of indirect 
paths do not have the extra capacity to carry the power that was 
originally flowing through the direct path. 

 
Figure 1: Network connectivity between two vertices (buses) 

Contrary to traditional CA studies that detect if an outage 
causes an overload on the remaining assets of the system [37], 
the primary goal of this research is to quickly detect if an outage 
overloads any cut-set of the power system. An overloaded or 
saturated cut-set is one which transfers power beyond its 
maximum power transfer capability. Let edges 𝑒𝑒1, 𝑒𝑒2,…, 𝑒𝑒𝑘𝑘  
belong to cut-set 𝑲𝑲. If the power flowing through the different 
edges of cut-set 𝑲𝑲 are 𝑓𝑓1, 𝑓𝑓2,…, 𝑓𝑓𝑘𝑘 , and the ratings of those 
edges are 𝑟𝑟1, 𝑟𝑟2 ,… 𝑟𝑟𝑘𝑘 , then cut-set 𝑲𝑲 will be called a saturated 
cut-set if the following equation holds true: 

                �𝑓𝑓𝑙𝑙

𝑘𝑘

𝑙𝑙=1

> �𝑟𝑟𝑙𝑙

𝑘𝑘

𝑙𝑙=1

 ,∀𝑒𝑒𝑙𝑙 ∈ 𝑲𝑲                                       (2)   

where, ∑ 𝑓𝑓𝑙𝑙𝑘𝑘
𝑙𝑙=1  is the actual power flowing through cut-set 𝑲𝑲 

and ∑ 𝑟𝑟𝑙𝑙𝑘𝑘
𝑙𝑙=1  is the maximum power that can flow through cut-

set 𝑲𝑲 (limited by the ratings of the edges).  
At a given time, let us assume that 𝑃𝑃𝐾𝐾  units of power must 

be transferred through a cut-set, 𝑲𝑲, of a power network. Upon 
the loss of edge, 𝑒𝑒𝑙𝑙 , that belongs to cut-set 𝑲𝑲, if the total power 
transfer capability of the remaining edges of cut-set 𝑲𝑲 is 𝑅𝑅𝐾𝐾 
such that 𝑅𝑅𝐾𝐾 < 𝑃𝑃𝐾𝐾 , it implies that the loss of 𝑒𝑒𝑙𝑙  saturates cut-
set 𝑲𝑲. In such a situation, edge 𝑒𝑒𝑙𝑙  is termed a special asset and 
the cut-set 𝑲𝑲 is said to be saturated by a negative transfer 
margin of 𝑅𝑅𝐾𝐾 − 𝑃𝑃𝐾𝐾  due to the loss of the special asset, 𝑒𝑒𝑙𝑙 .  

Now, let edge 𝑒𝑒𝑙𝑙  be associated with 𝑥𝑥 cut-sets of the network, 
of which 𝑦𝑦 cut-sets (𝑦𝑦 ≤ 𝑥𝑥) become saturated by a negative 
transfer margin when 𝑒𝑒𝑙𝑙  is lost (implying that 𝑦𝑦 cut-sets of the 
network are saturated). As the 𝑦𝑦 cut-sets may be saturated by 
different negative transfer margins, 𝑇𝑇𝑙𝑙𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑦𝑦, the 
objective here is to identify the cut-set that becomes saturated 
by the numerically largest negative transfer margin (i.e., 𝑇𝑇𝑙𝑙 =
max��𝑇𝑇𝑙𝑙𝑖𝑖��;  1 ≤ 𝑖𝑖 ≤ 𝑦𝑦); this cut-set is henceforth referred to as 
the limiting critical cut-set, 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Quickly identifying the 
limiting critical cut-set is important because if appropriate 
preventive control actions are taken so that the limiting critical 
cut-set is no longer saturated, the proposed approach, which is 
very fast, can be repeated multiple times until no limiting 
critical cut-sets are identified. Note that this paper identifies the 
limiting critical cut-sets based on the thermal ratings of the 
different assets and the active power flowing through them 
(power factor is set to unity for the studies done here). 
However, the proposed network analysis tool is generic enough 
to incorporate line ratings obtained from other analyses as well 
(such as, proxy limits based on power system stability criteria).  

III. GRAPH THEORY BASED NETWORK FLOW  
The graph theory-based network flow algorithm is based on 

the following assumptions: (1) power injections are known, and 
(2) losses are negligibly small. Subject to these assumptions, 
the goal is to generate network flows that can help detect if a 
contingency saturates a cut-set. The graph theoretic network 
flow algorithm is based on the principle: utilize the available 
generation of the sources (generators) to satisfy the total 
demand of the sinks (loads), without violating the asset ratings. 
The network flows are obtained using Algorithm I described 
below. At the start of the algorithm, edges in ℱ(𝑽𝑽,𝑬𝑬) do not 
have any weight, while the bidirectional weights of edges in 
𝒞𝒞(𝑽𝑽,𝑬𝑬) are equal to the corresponding asset ratings. 

The graph theory-based network flow algorithm obeys the 
law of conservation of energy, but it relaxes Kirchhoff’s 
voltage law as it does not use impedances directly while 
building the network flows; the impedances are accounted for 
indirectly through the asset ratings. The flow solution is also 
non-unique because depending on the order in which the 
sources and sinks are selected, there could be multiple valid 
flow solutions. However, since the network boundary 
conditions do not change (i.e., instantaneous power injections 
are constant), the power transfer across any cut-set of the 
network is the same for all valid graph-based flow solutions.  
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Algorithm I: Graph theory-based network flow algorithm 
i. Randomly select a source vertex 𝑣𝑣𝑔𝑔 ∈ 𝑮𝑮 and a sink vertex 𝑣𝑣𝑙𝑙 ∈ 𝑳𝑳. 
ii. Search 𝒞𝒞(𝑽𝑽,𝑬𝑬) to traverse the shortest unsaturated path 𝑷𝑷 from 

𝑣𝑣𝑔𝑔 to 𝑣𝑣𝑙𝑙 using breadth first search (BFS) [37]. 
iii. Use 𝒞𝒞 to find the maximum extra flow, 𝐶𝐶𝑃𝑃, that could be 

transferred from 𝑣𝑣𝑔𝑔 to 𝑣𝑣𝑙𝑙 through path 𝑷𝑷. 
iv. Obtain the flow 𝐹𝐹𝑃𝑃  to be injected in ℱ(𝑽𝑽,𝑬𝑬) along path 𝑷𝑷 from 

𝑣𝑣𝑔𝑔 to 𝑣𝑣𝑙𝑙 as 𝐹𝐹𝑃𝑃 = min(𝐼𝐼𝑔𝑔 ,𝐷𝐷𝑙𝑙 ,𝐶𝐶𝑃𝑃).  
v. Update weights of edges in graph ℱ as 𝑓𝑓𝑙𝑙 = 𝑓𝑓𝑙𝑙 + 𝐹𝐹𝑃𝑃 , and in graph 

𝒞𝒞 as per (1), for all the edges that belong to path 𝑷𝑷. 
vi. Update available generation and unsatisfied demand at 𝑣𝑣𝑔𝑔 and 𝑣𝑣𝑙𝑙 

as 𝐼𝐼𝑔𝑔 ∶= 𝐼𝐼𝑔𝑔 − 𝐹𝐹𝑃𝑃  and 𝐷𝐷𝑙𝑙 ∶= 𝐷𝐷𝑙𝑙 − 𝐹𝐹𝑃𝑃 .  
vii. Depending upon the values of 𝐼𝐼𝑔𝑔 and 𝐷𝐷𝑙𝑙, update the source and 

sink vertices in accordance with the following logic: 
a. if 𝐼𝐼𝑔𝑔 ≠ 0 & 𝐷𝐷𝑙𝑙 ≠ 0, the source and sink vertices are not 

changed;  
b. if 𝐼𝐼𝑔𝑔 = 0 & 𝐷𝐷𝑙𝑙 ≠ 0, a new source vertex, 𝑣𝑣𝑔𝑔, is selected from 

𝑮𝑮, keeping the sink vertex, 𝑣𝑣𝑙𝑙, unchanged; 
c. if 𝐼𝐼𝑔𝑔 ≠ 0 & 𝐷𝐷𝑙𝑙 = 0, a new sink vertex, 𝑣𝑣𝑙𝑙, is selected from 𝑳𝑳, 

keeping the source vertex, 𝑣𝑣𝑔𝑔, unchanged. 
viii. Repeat Steps (ii) through (vii) until the total power generation 

satisfies the total power demand.   

Let the network graph 𝒢𝒢(𝑽𝑽,𝑬𝑬) be split into two clusters 𝑪𝑪1 
and 𝑪𝑪2 such that 𝑪𝑪1 ∪ 𝑪𝑪2 = 𝑽𝑽 and 𝑪𝑪1 ∩ 𝑪𝑪2 = ∅. If 𝑃𝑃𝐺𝐺1(𝑃𝑃𝐺𝐺2) and 
𝑃𝑃𝐿𝐿1(𝑃𝑃𝐿𝐿2) be the total generation and total demand in 𝑪𝑪1(𝑪𝑪2), then 
the net generation in 𝑪𝑪1 is given by ∆𝑃𝑃1 = 𝑃𝑃𝐺𝐺1 − 𝑃𝑃𝐿𝐿1, while the 
net generation in 𝑪𝑪2 is given by ∆𝑃𝑃2 = 𝑃𝑃𝐺𝐺2 − 𝑃𝑃𝐿𝐿2. Now, cut-set 
𝑲𝑲 between clusters 𝑪𝑪1 and 𝑪𝑪2 would include only those edges 
whose one end belongs to 𝑪𝑪1 and the other end belongs to 𝑪𝑪2; 
let the number of edges in cut-set 𝑲𝑲 be 𝑘𝑘. Also, let 𝑓𝑓1𝐴𝐴, 𝑓𝑓2𝐴𝐴,…, 
𝑓𝑓𝑘𝑘𝐴𝐴 denote network flows through different edges of cut-set 𝑲𝑲 
for a valid graph-based flow solution 𝐴𝐴, and 𝑓𝑓1𝐵𝐵 , 𝑓𝑓2𝐵𝐵 ,…, 𝑓𝑓𝑘𝑘𝐵𝐵  
denote the network flows through the same edges for a valid 
graph-based flow solution 𝐵𝐵. Then, by the law of conservation 
of energy, total power transfer across cut-set 𝑲𝑲 for each of the 
flow solutions 𝐴𝐴 and 𝐵𝐵 must be equal to ∆𝑃𝑃1 = −∆𝑃𝑃2 , i.e.,  

�𝑓𝑓𝑙𝑙𝐴𝐴
𝑘𝑘

𝑙𝑙=1

= �𝑓𝑓𝑙𝑙𝐵𝐵
𝑘𝑘

𝑙𝑙=1

= ∆𝑃𝑃1 = −∆𝑃𝑃2  ,    ∀𝑒𝑒𝑙𝑙 ∈ 𝑲𝑲                      (3) 

The validity of (3) is illustrated through three different base-
case network flow solutions shown in Figure 2. Cases 1 and 2 
denote two valid flow graphs obtained using graph theory while 
Case 3 depicts a flow graph obtained using a DC power flow 

solution. Table I shows that for the cut-set 𝑲𝑲 ={4-1, 9-2, 9-3}, 
even though the flows through the individual edges of the cut-
set are different, the net power transfer across cut-set 𝑲𝑲 is equal 
to 380.86 MW for all three cases. Note that the flow limit of 
each edge in Figure 2 is 300 MW. 
Table I: Power transfer across cut-set 𝑲𝑲 for three different flow solutions 

of Figure 2 
Edges in K Case 1: 

Flow (MW) 
Case 2: 

Flow (MW) 
Case 3: 

Flow (MW) 
4-1 208 35.86 172.51 
9-2 0 72.86 121.96 
9-3 172.86 272.14 86.39 

Power transfer 380.86 380.86 380.86 

IV. GRAPH THEORY BASED NETWORK ANALYSIS TOOL 
As described in Section II, a transmission line or transformer 

will be considered a special asset if the power flowing through 
it cannot be rerouted via the set of its indirect paths. For each 
such special asset, the graph theory-based network analysis tool 
finds the limiting critical cut-set as described below.   

A. Graph theory-based feasibility test (FT) 
The graph theory-based feasibility test (FT) described in 

Algorithm II below examines all the transmission assets to 
quickly identify the set of special assets and the limiting critical 
cut-set corresponding to each special asset. That is, if 𝑓𝑓𝑙𝑙  units 
of power flows through edge 𝑒𝑒𝑙𝑙  from 𝑣𝑣𝑙𝑙𝐹𝐹  to 𝑣𝑣𝑙𝑙𝑇𝑇, Algorithm II 
will first identify if 𝑒𝑒𝑙𝑙  is a special asset. If 𝑒𝑒𝑙𝑙  does turn out to be 
a special asset, then Algorithm II will identify the associated 
limiting critical cut-set, 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and the power transfer margin 
associated with 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, denoted by 𝑇𝑇𝑙𝑙. 

Although there can be multiple saturated cut-sets associated 
with a special asset, Algorithm II is able to identify the 
limiting critical cut-set because it is the first one to get saturated 
in Step (iv). Consider the system shown in Figure 2 once more. 
When edge 4-1 is examined by the FT, with respect to any of 
the three flow graphs, following observation is made: edge 4-1 
is a special asset as it fails FT, and is associated with a limiting 
critical cut-set containing edges 4-1 and 6-7 (i.e., 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐={4-1,6-
7}) and 𝑇𝑇𝑙𝑙= -35.86 MW. The implication of the above statement 
is explained with the help of Figure 3(a), Figure 3(b), and 
Figure 3(c) which depict the power transfer across cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
for the three different flow graphs of Figure 2. 

 
        (a) Case 1              (b) Case 2              (c) Case 3
Figure 2: Three valid graph theory-based flow graphs for the same system. “G” and “L” denote generation and load respectively; dotted line denotes a cut-set. 
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Algorithm II: Graph theory-based feasibility test (FT)  
i. Define 𝒞𝒞′(𝑽𝑽,𝑬𝑬) = 𝒞𝒞(𝑽𝑽,𝑬𝑬). Remove edge 𝑒𝑒𝑙𝑙  from 𝒞𝒞′. Initialize a 

variable 𝑇𝑇𝐶𝐶𝑙𝑙 to zero (i.e., 𝑇𝑇𝐶𝐶𝑙𝑙 ≔ 0). 
ii. Search 𝒞𝒞′ to obtain the shortest unsaturated path 𝑷𝑷 from 𝑣𝑣𝑙𝑙𝐹𝐹 to 𝑣𝑣𝑙𝑙𝑇𝑇 

using breadth first search (BFS) [37]; path 𝑷𝑷 is considered 
unsaturated if it has capacity to reroute additional flow. 

iii. Find the maximum extra flow, 𝐶𝐶𝑃𝑃, that can be rerouted through 
path 𝑷𝑷 from 𝑣𝑣𝑙𝑙𝐹𝐹 to 𝑣𝑣𝑙𝑙𝑇𝑇 . 

iv. Update 𝑇𝑇𝐶𝐶𝑙𝑙 as 𝑇𝑇𝐶𝐶𝑙𝑙 ≔ 𝑇𝑇𝐶𝐶𝑙𝑙 + 𝐶𝐶𝑃𝑃, and the weights of 𝒞𝒞′ as per (1); 
note that this step saturates path 𝑷𝑷 in 𝒞𝒞′. 

v. Repeat Steps (ii) through (iv) until there exists no unsaturated 
path in 𝒞𝒞′ from 𝑣𝑣𝑙𝑙𝐹𝐹 to 𝑣𝑣𝑙𝑙𝑇𝑇.  

vi. Due to outage of 𝑒𝑒𝑙𝑙 , compute the transfer margin, 𝑇𝑇𝑙𝑙, as: 𝑇𝑇𝑙𝑙 =
𝑇𝑇𝐶𝐶𝑙𝑙 − 𝑓𝑓𝑙𝑙. If 𝑇𝑇𝑙𝑙 for 𝑒𝑒𝑙𝑙  is negative, 𝑒𝑒𝑙𝑙  is a special asset.  

vii. To identify 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , traverse the saturated graph 𝒞𝒞′ from 𝑣𝑣𝑙𝑙𝐹𝐹 to 𝑣𝑣𝑙𝑙𝑇𝑇. 
All the vertices that can be reached from 𝑣𝑣𝑙𝑙𝐹𝐹 without traversing a 
saturated edge are grouped into cluster 𝑪𝑪1. Similarly, the vertices 
that cannot be reached from 𝑣𝑣𝑙𝑙𝐹𝐹 without traversing a saturated 
edge are grouped into cluster 𝑪𝑪2. Cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖  contains the edges 
whose one end is in 𝑪𝑪1 and the other end is in 𝑪𝑪2.  

 
Figure 3: (a) Power transfer across cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for flow graph of Figure 2(a), 
(b) Power transfer across cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for flow graph of Figure 2(b), and (c) 
Power transfer across cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for flow graph of Figure 2(c) 

From Figure 3 it is clear that although the individual flows 
on different edges of the cut-set are different, FT finds that, for 
all three flow graphs, if the edge 4-1 is lost, the cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
will have a power transfer capability shortage of 35.86 MW 
from cluster 𝑪𝑪1 to cluster 𝑪𝑪2. For example, in Figure 3(a), when 
edge 4-1 is lost, the flow in edge 6-7 becomes (208+127.86) 
MW = 335.86 MW, which exceeds its rating (of 300 MW) by 
35.86 MW. In summary, the FT: (a) detects special assets, (b) 
identifies the limiting critical cut-set associated with each 
special asset, and (c) computes the power transfer margin 
across the identified limiting critical cut-set. 
B. Graph theory-based network flow update scheme (UPS) 

During major power system disturbances, multiple outages 
can occur in rapid succession. Therefore, the FT results would 
also change following the outage of an edge. To identify the set 
of special assets following an outage, it is important to first 
update the graph theory-based network flows to account for the 

outage of any edge. The advantage of graph theory-based flows 
is that rerouting of the flow upon the loss of an edge can be 
achieved extremely fast. The technique of updating the flow 
graph ℱ(𝑽𝑽,𝑬𝑬) and latent capacity graph 𝒞𝒞(𝑽𝑽,𝑬𝑬) when edge 𝑒𝑒𝑙𝑙  
suffers an outage is done in accordance with Algorithm III, 
which describes the graph theory-based update scheme (UPS).  
The UPS for the outage of an edge is explained with the help 
of Figure 4. A flow graph obtained from graph theory-based 
network flow algorithm is depicted in Figure 4(a). The update 
of the network flows when the edge 5-6 goes out is shown in 
Figure 4(b). The UPS simply reroutes 25 MW of flow through 
path 5-4-1-6 to create an updated network flow solution. 
Algorithm III: Graph theory-based update scheme (UPS) 
i. Let, the flow to be rerouted be given by 𝐹𝐹 = 𝑓𝑓𝑙𝑙 , where 𝑓𝑓𝑙𝑙 refers 

to the flow through edge 𝑒𝑒𝑙𝑙  from vertex 𝑣𝑣𝑙𝑙𝐹𝐹 to 𝑣𝑣𝑙𝑙𝑇𝑇. 
ii. Remove edge 𝑒𝑒𝑙𝑙  from ℱ(𝑽𝑽,𝑬𝑬) and 𝒞𝒞(𝑽𝑽,𝑬𝑬). 
iii. Search 𝒞𝒞 to obtain the shortest unsaturated path 𝑷𝑷 from 𝑣𝑣𝑙𝑙𝐹𝐹 to 𝑣𝑣𝑙𝑙𝑇𝑇 

using breadth first search (BFS) [37].   
iv. Find the maximum extra power, 𝐶𝐶𝑃𝑃, that can be rerouted through 

path 𝑷𝑷. 
v. If 𝐹𝐹 > 𝐶𝐶𝑃𝑃, inject 𝐶𝐶𝑃𝑃 units of flow through path 𝑷𝑷 and update 𝐹𝐹 as 

𝐹𝐹 ≔ 𝐹𝐹 − 𝐶𝐶𝑃𝑃. If 𝐹𝐹 ≤ 𝐶𝐶𝑃𝑃, inject 𝐹𝐹 units of flow through path 𝑷𝑷 and 
set 𝐹𝐹 ≔ 0. Update the weights of ℱ and 𝒞𝒞 accordingly. 

vi. Repeat Steps (ii) through (v) until 𝐹𝐹 = 0. 

 
Figure 4: (a) A flow graph obtained from graph-based network flow 
algorithm, (b) Update scheme (UPS) of network flow solution for the outage 
of edge 5-6 

C. Shortlisting assets (SA) scheme for feasibility test (FT) 
In the base-case scenario when the flow graph is built for the 

first time all transmission assets would be investigated by the 
FT. However, in the event of the outage of an edge, when UPS 
gives an updated flow graph, it is not necessary to test all the 
assets by the FT once again to identify the special assets. By 
intelligently exploiting the information provided by FT in the 
base-case scenario and using the UPS to reroute the flow for 
the edge that is out, the FT can be performed on only a subset 
of the assets to evaluate the impact of a second contingency. 
This is explained through Figure 5. 

Let it be known from the base-case FT that flow through 
edge 𝑒𝑒𝑚𝑚  can be rerouted through path 𝑷𝑷1, while the loss of edge 
𝑒𝑒𝑙𝑙  alters flow through path 𝑷𝑷2. Then, in Figure 5(a), when 𝑒𝑒𝑙𝑙  
goes out, the flow through 𝑒𝑒𝑙𝑙  is rerouted through 𝑷𝑷2 by UPS. 
Now, as 𝑷𝑷1 and 𝑷𝑷2 do not involve common edges, the rerouting 
of power through 𝑷𝑷2 by UPS does not modify the flows through 
𝑷𝑷1; therefore, FT need not be repeated for 𝑒𝑒𝑚𝑚 . However, if 𝑷𝑷1 
and 𝑷𝑷2 have common edges, as seen in Figure 5(b); i.e., 
rerouting of the flow of 𝑒𝑒𝑙𝑙  affects the flow through 𝑷𝑷1, then 𝑒𝑒𝑚𝑚  
must be examined by FT once again after the outage of 𝑒𝑒𝑙𝑙 . This 
rationale of screening the assets to be examined by FT in the 
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event of an outage is called the shortlisting asset (SA) scheme. 
It will be shown in Section V that the usage of the SA scheme 
significantly reduces the computation time. 

 
Figure 5: (a) Rerouting the flow on edge 𝑒𝑒𝑙𝑙  does not involve any edge of the 
indirect paths of edge 𝑒𝑒𝑚𝑚 , and (b) Rerouting the flow on edge 𝑒𝑒𝑙𝑙  involves some 
edges of the indirect paths of edge 𝑒𝑒𝑚𝑚     

D. Graph-traversal scheme 
The proposed FT and UPS algorithms use BFS [37] scheme 

to traverse the graph. BFS, in comparison to depth first search 
(DFS), has the advantage that it starts at a source vertex and 
explores all the neighboring vertices at present depth before 
moving on to the vertices at the next depth. Once the sink vertex 
is reached the algorithm stops. When BFS is used to traverse 
the graph to reach a sink from a given source, the path traced 
by BFS is already the shortest path (if there was a shorter path, 
BFS would have found it earlier). Both the graph theory-based 
FT and UPS scan through the set of indirect paths associated 
with any edge. However, there could be many indirect paths 
associated with an edge. The unique search properties of FT 
and UPS that facilitates real-time identification of limiting 
critical cut-sets and rerouting of the network flow, respectively, 
are discussed below: 
1) Graph traversal during feasibility test (FT):  

In each iteration of the FT, saturation of an indirect path 
occurs as described in Step (iv) of Algorithm II. This will 
occur within a small number of iterations for a power network 
because many of its edges are common to multiple indirect 
paths. Therefore, the limiting critical cut-set, 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, can be 
identified without requiring the BFS scheme to scan through 
the set of all indirect paths.  
2) Graph theory-based update scheme (UPS): 

Based on the same rationale explained above, for rerouting 
the flow through any edge of the power network, Algorithm 
III will only utilize a small subset of indirect paths. 

Apart from BFS, other commonly used graph search 
methods for finding the shortest path between a source-sink 
pair are Bellman-Ford algorithm [38], and Dijkstra algorithm 
[39]. If |E| denotes the total number of edges, and |V| denotes 
the total number vertices, the time-complexity of the Bellman-
Ford algorithm is O(|E||V|) [40]. The time-complexity of 
Dijkstra algorithm implemented using binary heap is 𝑂𝑂(|𝑬𝑬| +
|𝑽𝑽|𝑙𝑙𝑙𝑙𝑙𝑙|𝑽𝑽|) [41]. Lastly, the time-complexity of the BFS 
algorithm is 𝑂𝑂(|𝑬𝑬| + |𝑽𝑽| [42], which is the best among the 
three shortest-path graph traversal techniques. Therefore, we 
have used the BFS graph traversal scheme to design the 
proposed algorithms (FT and UPS) to determine if 
contingencies create saturated cut-sets. 

V. RESULTS  

A. IEEE 118-bus system 
The utility of the proposed algorithm for enhanced 

situational awareness is explained with a case-study on IEEE-
118 bus system. Due to a hurricane, let the following 
transmission asset outages occur one after another: 15-33, 19-
34, 37-38, 49-66, and 47-69 (marked 𝑂𝑂1 through 𝑂𝑂5 in Figure 
6). From Figure 6 and Table II, following information is 
obtained when the algorithm is applied as outages manifest: 
1) Base-case: In the base-case scenario, the asset 26-30 fails 

the graph theory-based FT and is classified as a special 
asset. The loss of 26-30 would saturate the limiting critical 
cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

0  by a margin of -77 MW, i.e., 𝑇𝑇𝑙𝑙0= -77 MW.  
2) 1st Outage: When 15-33 is lost, no additional special assets 

are identified.  
3) 2nd Outage: When 19-34 is lost, no additional special assets 

are identified. 
4) 3rd Outage: When 37-38 is lost, the asset 42-49 fails the FT 

and is classified as a special asset. The loss of 42-49 would 
saturate the limiting critical cut-set 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

3  by a margin of      
-186 MW, i.e., 𝑇𝑇𝑙𝑙3= -186 MW. 

5) 4th Outage: When 49-66 is lost, no additional special assets 
are identified. 

6) 5th Outage: When 47-69 is lost, the assets 59-56, 63-59, 
63-64, and 64-65 are classified as special assets. The loss 
of these four assets would saturate the limiting critical cut-
sets, 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

5𝑎𝑎 , 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
5𝑏𝑏 , 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

5𝑐𝑐 , and 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
5𝑑𝑑 , by margins of -64, -191, 

-191, and -219 MW, respectively (i.e., 𝑇𝑇𝑙𝑙5𝑎𝑎= -64 MW, 
𝑇𝑇𝑙𝑙5𝑏𝑏= -191 MW, 𝑇𝑇𝑙𝑙5𝑐𝑐= -191 MW, 𝑇𝑇𝑙𝑙5𝑑𝑑= -219 MW). 

The value of the information obtained above can be realized 
by considering the following scenario: after the occurrence of 
the fifth outage, the proposed algorithm would inform the 
power system operator that if any of the four assets identified 
in the last row, second column of Table II is lost next (as the 6th 
outage), the corresponding cut-set identified in the third 
column would be saturated by the margin mentioned in the 
fourth column. If this anticipated overload is to be avoided, the 
operator must preemptively reduce the power flowing through 
the identified cut-set by at least the amount mentioned in the 
last column. Thus, the proposed network analysis tool is an 
enhanced power system connectivity monitoring scheme that 
improves the power system operators’ situational awareness by 
augmenting their visualization in real-time. 

Table II: Identification of limiting critical cut-sets 

Event 
New 

special 
asset 

Limiting critical cut-set 
Transfer 
margin 
(MW) 

Base-case 26-30 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
0 = {26-30,25-27,25-23} 𝑻𝑻𝑙𝑙0=-77 

Outage 1 
(15-33) - - - 

Outage 2 
(19-34) - - - 

Outage 3 
(37-38) 42-49 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

3 = {42-49,44-45} 𝑻𝑻𝑙𝑙3= -186 

Outage 4 
(49-66) - - - 

 
Outage 5 
(47-69) 

59-56 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
5𝑎𝑎 = {59-56,59-54,59-55,69-49} 𝑻𝑻𝑙𝑙5𝑎𝑎= -64 

63-59 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
5𝑏𝑏 = {63-59,61-59,60-59,69-49} 𝑻𝑻𝑙𝑙5𝑏𝑏= -191 

63-64 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
5𝑐𝑐 = {63-64,61-59,60-59,69-49} 𝑻𝑻𝑙𝑙5𝑐𝑐= -191 

64-65 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
5𝑑𝑑 = {64-65,66-62,66-67,69-49} 𝑻𝑻𝑙𝑙5𝑑𝑑= -219 
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Figure 6: Real time identification of limiting critical cut-sets on the IEEE 118-bus test system 

B. 17,941 bus model of Western Interconnection (WI) 
This section presents the results obtained using a 17,941-bus 

model of WI. Sub-section 1) presents some statistics of graph 
theory-based FT and UPS which highlight the computational 
advantage of the proposed technique. Sub-section 2) describes 
how the proposed network analysis scheme provides useful 
information when a sequence of outages occurs in this system. 
1) Computational efficiency of the graph theory-based FT: 

It takes 6 min to run N-1 FT for this system. Conversely, the 
time required to run a single DC power flow is 0.12 s. As there 
are 22,091 transmission assets in the system, time required to 
run a DC power flow for the outage of every asset would 
require solving 22,091 DC power flows, which would 
approximately require 0.12×22,091 s ≅ 44 min. Therefore, for 
this system, performing N-1 FT is approximately 7 times faster 
compared to N-1 DC CA. For a valid comparison, the 
simulations were done on the same computer (Core i7, 3.60 
GHz CPU processor with 16 GB RAM).  

When any edge 𝑒𝑒𝑙𝑙  is examined by the graph theory-based FT, 
the indirect paths of 𝑒𝑒𝑙𝑙  are traversed by BFS. However, the 
saturation of the set of indirect paths may occur after a small 
number of indirect paths are traversed by the graph theory-
based FT. Moreover, since BFS always identifies the shortest 
path from the source to the sink, the number of edges contained 
in an indirect path would be relatively small. For every non-
radial edge of this system, the number of indirect paths required 
to saturate the graph and the maximum number of edges 
contained in an indirect path is computed. The statistics of FT 
is summarized in Figure 7(a) and Figure 7(b). 

 Figure 7(a) plots the histogram for the number of indirect 
paths used by BFS to saturate the latent capacity graph. The 
largest number of indirect paths required was 58. Figure 7(b) 
plots the histogram of maximum number of edges contained in 
an indirect path traced by BFS; the maximum was 111. Thus, 
the histogram plots demonstrate that the graph theory-based FT 
essentially uses a small subgraph to detect the saturation of a 
cut-set; this is the fundamental reason why the graph theory-
based FT is computationally so efficient. 
 

 
Figure 7: (a) Histogram of number of indirect paths traversed by the graph 
theory-based FT, and (b) Histogram of maximum number of edges contained 
in an indirect path 

2) A case study on Western Interconnection (WI): 
This sub-section demonstrates the usefulness and scalability 

of the proposed approach through a N-1-1 event analysis of this 
system. The loss of 500 kV Hassayampa-North Gila (H-NG) 
transmission line was the first event, while the second event 
was the loss of 230/92 kV Coachella Valley transformers. 
Before the analysis was done for the outage of the events, it 
took approximately 0.5 s to build the flow graph and the latent 
capacity graph for the base-case. As mentioned earlier, it takes 
approximately 6 min to run FT on all transmission assets in the 
base-case. Whether events 1 and 2 resulted in any additional 
special asset was investigated as follows:   
Event 1: Once the 500 kV H-NG transmission line was lost, 
graph theory-based UPS took only 0.20 s to reroute the flow to 
obtain a new flow graph. The SA scheme took 0.06 s to identify 
271 edges that were to be examined by FT for this new graph. 
Time required by FT to examine all the 271 edges for an outage 
was 32 s. Among the 271 edges, 4 edges failed FT and were



 
 

8 

Table III: Application of the graph theory-based network analysis in Western Interconnection (WI) 

 

classified as special assets as shown in Table III. For the four 
special assets, the FT found the corresponding limiting  critical 
cut-set, 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; |𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| in Table III denotes the number of edges 
contained in 𝑲𝑲𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Moreover, FT provided information 
regarding the impact of the loss of a special asset on the 
associated limiting critical cut-set. For example, if the 
transmission corridor 936-1192 is lost next, the limiting critical 
cut-set would be saturated by a margin of 441 MW. The total 
time required to perform this network analysis and identify all 
the limiting critical cut-sets after the outage of H-NG was 32.26 
s (i.e., total time taken by UPS, SA, and FT). On the other hand, 
if FT were to be run on all transmission assets (as was done in 
the base-case), the time required would be 6 min. Therefore, 
intelligently performing FT on a shortlisted set of edges 
reduced the computation time from 6 min to 32.26 s. 
Event 2: When 230/92 kV Coachella Valley transformers are 
tripped, the UPS took only 0.06 s to obtain the updated network 
flow solution. Time required by the SA scheme to shortlist the 
edges to be examined by FT was 0.07 s; 82 new edges were 
shortlisted. Time required by FT to examine all the 82 
shortlisted edges was 10 s. Among the 82 edges examined, 10 
edges failed FT and were classified as special assets (see Table 
III). Total time required to identify the set of special assets after 
the outage of Coachella Valley transformers was 10.13 s. 
Conversely, performing a DC CA for all transmission assets 
would have required 44 min, or about 260 times longer than the 
proposed graph theory-based approach. 

VI. DISCUSSIONS 
A. Practical utility of the proposed algorithm 

After the 2011 U.S. Southwest blackout, the FERC [3] 
reported the following finding: “Affected TOPs (transmission 
operators) have limited visibility outside their systems, 
typically monitoring only one external bus. As a result, they 
lack adequate situational awareness of external contingencies 
that could impact their systems. They also may not fully 
understand how internal contingencies could affect SOLs 
(system operating limits) in their neighbors’ systems.” The 
recommendation of FERC to TOPs was to “review their real-
time monitoring tools, such as state estimator and RTCA, to 
ensure that such tools represent critical facilities needed for the 
reliable operation of the BPS (bulk power system)”.  

Now, modeling all “critical facilities” over a large area 
(across different utilities) could significantly increase the 
number of contingencies to be evaluated by RTCA, which 
would then increase the solution time considerably [4], [11]. In 
this regard, the ability of the proposed algorithm to analyze the 

effects of any outage on very large systems and provide 
meaningful quantifiable information in a matter of seconds 
gives it a distinct advantage. Moreover, the special assets 
detected by the FT can be suitable candidates for detailed 
analysis by a more precise CA tool. Thus, the proposed 
research can complement real-time operations by extending an 
operator’s visibility to external contingencies, while alleviating 
the associated computational burdens. 

B. Proposed method is not guaranteed to detect all 
contingencies that result in post-contingency branch overloads 

As per the FT when all the indirect paths do not have 
sufficient capacity to reroute the power flowing through an 
edge, it implies that it would inevitably result in post-
contingency branch overloads. However, the converse is not 
true. This is illustrated using the test system shown in Figure 8, 
and the corresponding flows shown in Figure 9 and Figure 10. 

Figure 9(a) presents a DC power flow solution, when 100 
MW of power is injected at bus 1, and 100 MW is withdrawn 
at bus 2 (Scenario 1). The numbers in non-bold fonts indicate 
flows, while the numbers in bold font denote line ratings. The 
proposed FT algorithm identifies edge 1-2 as a special asset 
because the indirect paths of edge 1-2 do not have sufficient 
capacity to reroute the flow through the direct path, namely, 
edge 1-2. A post-contingency DC power flow shown in Figure 
9(b) validates that such an outage results in overloads along 
Indirect path 1. Figure 10(a) presents a DC power flow 
solution, when 85 MW of power is injected at bus 1, and 85 
MW is withdrawn at bus 2 (Scenario 2). In this scenario, the 
proposed FT algorithm does not identify edge 1-2 as a special 
asset because the set of indirect paths have sufficient capacity 
to reroute the flow of the direct path. However, a post-
contingency DC power flow solution shown in Figure 10(b) 
indicates that the Indirect path 1 is still overloaded, due to lower 
impedance of Indirect path 1 compared to Indirect path 2. 

From this illustration, the following conclusions can be 
drawn: when the set of indirect paths do not have the capacity 
to reroute the power flowing through the direct path (see Figure 
9), no additional information is required to conclude that there 
would be a post-contingency overload. The proposed graph 
theoretic power flow model takes advantage of this observation 
to identify violations quickly. At the same time, the proposed 
approach is not able to capture the overload occurring in Figure 
10. This is because the graph theory-based network flow 
algorithm ignores the effects of impedances when creating the 
flows. Thus, the proposed approach may not detect all possible 
post-contingency branch overloads.   

Events  Time required 
by UPS 

SA for FT FT on shortlisted assets 
 

 
Total time 

 #Edges Time  New special assets |𝑲𝑲𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄| 𝑻𝑻𝑚𝑚 Time  
 

Line outage: 
Hassayampa-

North Gila 
0.20 s 271 0.06 s 

936-1192 57 −441 MW 

32 s (0.20+0.06+
32) =32.26 s 

1192-1217 49 −1258 MW 
2873-2902 18 −419 MW 
2902-2903 21 −309 MW 

Transformer 
outage: 

Coachella Valley 
0.06 s 82 0.07 s 

2416-2488 8 −35.35 MW  

10 s 
(0.06+0.07+

10) = 
10.13 s 

2421-2487 2 −2 MW 
2421-3293 2 −2 MW 
2438-2606 5 −55 MW 
2487-2488 8 −35 MW 
2712-2878 9 −35 MW 



 
 

9 

 
Figure 8: Topology of a sample six-bus power system (branch impedances are 
represented in terms of a variable 𝑧𝑧) 

 
Figure 9: Scenario 1. (a) A DC power flow solution in base-case, and (b) A 
DC power flow solution for the outage of edge 1-2  

 
Figure 10: Scenario 2. (a) A DC power flow solution in base-case, and (b) A 
DC power flow solution for the outage of edge 1-2 

C. Proposed method is guaranteed to detect all contingencies 
that saturate a cut-set 

The discussion presented in Section VI.B reveals that the 
graph theory-based FT is not guaranteed to identify all 
contingencies that create post-contingency branch overloads. 
However, the proposed algorithm does guarantee detection of 
all contingencies that create a saturated cut-set in the network. 
This is explained as follows. Let us examine if the outage of 
edge 𝑒𝑒𝑙𝑙  of Figure 11 would create a saturated cut-set in the 
system using the proposed FT. Edge 𝑒𝑒𝑙𝑙  could be associated with 
multiple cut-sets in the system. With reference to Figure 11 the 
𝑖𝑖𝑡𝑡ℎ  cut-set associated with edge 𝑒𝑒𝑙𝑙  is denoted by 
                        𝑲𝑲𝑖𝑖 = �𝑒𝑒𝑙𝑙 , 𝑒𝑒𝑙𝑙1 , 𝑒𝑒𝑙𝑙2 , … , 𝑒𝑒𝑙𝑙(𝑘𝑘−1)�    for 1 ≤ 𝑖𝑖 ≤  𝑥𝑥  (4) 
where, 𝑘𝑘 is the total number of edges in cut-set 𝑲𝑲𝑖𝑖 , and 𝑥𝑥 is the 
total number of cut-sets associated with edge 𝑒𝑒𝑙𝑙 . When the 
transfer margin, 𝑇𝑇𝑙𝑙, computed by the graph theory-based FT 
(proposed in Section IV.A) is negative it implies that the outage 
of edge 𝑒𝑒𝑙𝑙  saturates at least one cut-set, among the 𝑥𝑥 cut-sets 
that edge 𝑒𝑒𝑙𝑙  is associated with. On the other hand, if the transfer 
margin, 𝑇𝑇𝑙𝑙, computed by the FT is positive, it implies that the 
outage of edge 𝑒𝑒𝑙𝑙  does not saturate any of the 𝑥𝑥 cut-sets that it 
is associated with. Therefore, the graph theory-based FT will 

not miss a single contingency that would create a saturated cut-
set. This is illustrated using the test system shown in Figure 12, 
and the corresponding flows shown in Figure 13 and Figure 14. 

Figure 13 presents a DC power flow solution when the total 
load and generation in the system is 594 MW (Case 1). The FT 
algorithm finds that the outage of 3-4 saturates cut-set 𝑲𝑲2 ={3-
4,3-5,1-5} by 31 MW. To validate this inference, the power 
transfer capability across each of the cut-sets associated with 
edge 3-4 is enumerated from the DC power flow solution. As 
shown in Figure 13, edge 3-4 is associated with four cut-sets: 
𝑲𝑲1,𝑲𝑲2, 𝑲𝑲3,𝑲𝑲4. The power transfer capabilities across the four 
cut-sets of the test system when edge 3-4 is lost are summarized 
in Table IV, where 𝑃𝑃𝐾𝐾 , denotes the total flow that is to be 
transferred across the cut-set, and 𝑅𝑅𝐾𝐾 denotes the total capacity 
of all the edges belonging to the cut-set (excluding edge 3-4 
itself).  It is observed that 𝑃𝑃𝐾𝐾  is greater than 𝑅𝑅𝐾𝐾 only for cut-set 
𝑲𝑲2 by 31 MW.  This verifies that for Case 1, the outage of edge 
3-4 would saturate cut-set 𝑲𝑲2 by 31 MW. 

Figure 14 presents a DC power flow solution when the total 
load and total generation of the system is 486 MW (Case 2). In 
this case, the FT algorithm detects that the indirect paths of 
edge 3-4 have positive transfer margins indicating that they 
have the capacity to carry additional power, if need be. To 
validate this observation, the power transfer capability across 
each cut-set associated with edge 3-4 is enumerated from the 
DC power flow solution (see Table IV). It is observed that 𝑃𝑃𝐾𝐾  
is less than 𝑅𝑅𝐾𝐾 for 𝑲𝑲1, 𝑲𝑲2, 𝑲𝑲3, 𝑲𝑲4. This proves that for Case 2, 
outage of edge 3-4 does not saturate any cut-set that is 
associated with it. 

 
Figure 11: 𝑲𝑲𝑖𝑖  is the 𝑖𝑖𝑡𝑡ℎ cut-set (among 𝑥𝑥 cut-sets) associated with edge 𝑒𝑒𝑙𝑙  that 
separates the network into two disjoint clusters 

 
Figure 12: Topology of a sample five-bus power system (branch impedances 
are represented in terms of a variable 𝑧𝑧) 

Furthermore, note that in Figure 13, the power flowing 
through different edges of the limiting critical cut-set, 𝑲𝑲2={3-
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4,3-5,1-5}, are not in the same direction. This implies that cut-
set 𝑲𝑲2 is not a coherent cut-set (in a coherent cut-set power 
flows in the same direction in all the edges of the cut-set [27]). 
Therefore, such types of critical interconnections cannot be 
detected by the algorithm presented in [27]. It is also important 
to highlight here that enumerating the power transfer capability 
across different cut-sets by a DC power flow solution requires 
previously defining all the cut-sets. On the other hand, the 
graph theory-based FT can investigate the power transfer 
capability of different cut-sets without the cut-sets being pre-
defined. This is a unique advantage of the proposed network 
analysis, because listing all possible cut-sets for a large power 
network containing thousands of buses especially during 
extreme event scenarios is not practically feasible. 

 
Figure 13: Power transfer across four different cut-sets (𝑲𝑲1, 𝑲𝑲2,𝑲𝑲3, 𝑲𝑲4) 
associated with edge 3-4 for Case 1 

 
Figure 14: Power transfer across four different cut-sets (𝑲𝑲1, 𝑲𝑲2,𝑲𝑲3,𝑲𝑲4) 
associated with edge 3-4 for Case 2 

Table IV: Power transfer capacity across different cut-sets associated 
with edge 3-4 

 
Cut-
set 

Case 1 Case 2 
Flow 
 (𝑃𝑃𝐾𝐾) 

Capacity 
(𝑅𝑅𝐾𝐾) 

Flow  
(𝑃𝑃𝐾𝐾) 

Capacity 
 (𝑅𝑅𝐾𝐾) 

𝑲𝑲1 231 MW 250 MW 189 MW 250 MW 
𝑲𝑲2 231 MW 200 MW 189 MW 200 MW 
𝑲𝑲3 594 MW 820 MW 486 MW 820 MW 
𝑲𝑲4 264 MW 820 MW 216 MW 820 MW 

D. Comparison of proposed method with other power system 
vulnerability assessment techniques 

In this sub-section, the output of the proposed algorithm is 
compared with those obtained from two power system 
vulnerability assessment techniques, namely, the metrics 
developed in [28] and [33], both of which can handle 
exhaustive N-1 evaluation. In [28], an extended betweenness 
index (derived from PTDFs and transmission line limits) was 
used to rank different contingencies. In [33], a DC power flow 
based linear sensitivity factor, called line outage impact factor, 
derived from LODFs was used to screen out critical 
contingencies. The analysis was performed on the IEEE 118-
bus system for the same sequence of outages that were 
described in Table II. In order to validate the severity of the 
different contingencies, a cascading failure simulation was run 
in MATCASC [43], a software package linked with 
MATPOWER that facilitates simulation of cascading failures 
for any initiating contingency. The amount of load shed at the 
end of the cascade indicated the severity of the contingency. 
The results of the comparison are shown in Table V. 
Table V: Ranking of contingencies and cascading analysis on IEEE 118-

bus test system 
 

Event 
Cascading Analysis Rank by 

[28]  
Rank by 

[33] New 
contingency 

Load 
shed 

Base-case 26-30 12.20% 20 42 
Outage 1 (15-33) - - - - 
Outage 2 (19-34) - - - - 
Outage 3 (37-38) 42-49 29.87% 16 58 
Outage 4 (49-66) - - - - 
 
Outage 5 (47-69) 

64-65 28.92% 6 167 
63-59 28.26% 8 70 
63-64 28.26% 9 73 
56-59 25.27% 15 119 

Column 2 of Table V shows the contingencies identified by 
MATCASC that result in load shed as the different events 
manifest in the IEEE 118-bus system. The ranking of these 
load-shed-causing-contingencies, obtained by the techniques 
developed in [28] and [33] are provided in Columns 4 and 5, 
respectively. It can be observed from Table V that the 
contingencies that actually result in loss of load were not the 
top ranked contingencies identified by the metrics developed in 
[28] and [33]. For instance, after the fifth outage, if any of the 
four new contingencies identified in Column 2 were to occur 
(as the sixth outage), then it would result in load shedding in 
excess of 25%. However, none of these four high load-shed-
causing-contingencies appeared in the top four ranked 
contingencies of [28] or [33]. On the other hand, all the load-
shed-causing-contingencies were detected as special assets by 
the proposed algorithm (compare Column 2 of Table V with 
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Column 2 of Table II). This shows the usefulness of the 
proposed algorithm in detecting critical contingencies. 

VII. CONCLUSIONS 
This paper presents a new graph theoretic approach for real-

time vulnerability assessment resulting in enhanced situational 
awareness for power system operations. The major 
contributions of this research are as follows: 
1. The most important research finding is that a relaxed 

graph theory-based network analysis tool can evaluate if 
a contingency will create saturated cut-sets in a meshed 
power system. The proposed algorithm finds the cut-set 
which becomes saturated by the largest transfer margin as 
an impact of the outage. The transfer margin indicates the 
minimum amount by which the power transfer through the 
cut-set must be reduced to alleviate the saturation of the 
cut-set and sustain the impact of the outage. 

2. The proposed graph theoretic algorithms (feasibility test, 
update scheme, and shortlisting asset) reduce the 
computational time that is required for providing real-time 
situational awareness. Although the proposed analysis 
may not detect all types of branch overloads, it is 
guaranteed to detect all overloaded cut-sets. Fast detection 
of overloaded cut-sets is important because they represent 
the “seams or fault-lines across which islanding seems 
likely” [27].  

Using the proposed approach, system operators will also 
have better preparedness to address the identified violations, 
long before the set of all possible violations are detected by a 
more detailed network analysis tool. Hence, the proposed 
method can be a useful complementary tool to the existing 
methods of power system vulnerability assessment for real-
time operations.  
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