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Abstract—Machine and deep learning-based algorithms are
the emerging approaches in addressing prediction problems in
time series. These techniques have been shown to produce more
accurate results than conventional regression-based modeling.
It has been reported that artificial Recurrent Neural Networks
(RNN) with memory, such as Long Short-Term Memory (LSTM),
are superior compared to Autoregressive Integrated Moving
Average (ARIMA) with a large margin. The LSTM-based models
incorporate additional “gates” for the purpose of memorizing
longer sequences of input data. The major question is that
whether the gates incorporated in the LSTM architecture already
offers a good prediction and whether additional training of data
would be necessary to further improve the prediction.

Bidirectional LSTMs (BiLSTMs) enable additional training
by traversing the input data twice (i.e., 1) left-to-right, and 2)
right-to-left). The research question of interest is then whether
BiLSTM, with additional training capability, outperforms regular
unidirectional LSTM. This paper reports a behavioral analysis
and comparison of BiLSTM and LSTM models. The objective
is to explore to what extend additional layers of training of
data would be beneficial to tune the involved parameters. The
results show that additional training of data and thus BiLSTM-
based modeling offers better predictions than regular LSTM-
based models. More specifically, it was observed that BiLSTM
models provide better predictions compared to ARIMA and
LSTM models. It was also observed that BiLSTM models reach
the equilibrium much slower than LSTM-based models.

I. INTRODUCTION

Forecasting is an essential but challenging part of time
series data analysis. The type of time series data along with
the underlying context are the dominant factors effecting
the performance and accuracy of time series data analysis
and forecasting techniques employed. Some other domain-
dependent factors such as seasonality, economic shocks, unex-
pected events, and internal changes to the organization which
are generating the data also affect the prediction.

The conventional time series data analysis techniques often
utilize 1) linear regressions for model fitting, and then 2)
moving average for the prediction purposes. The de facto stan-
dard of such techniques is “Auto-Regressive Integrated Moving
Average”, also known as ARIMA. This linear regression-based
approach has been evolved over the years and accordingly
many variations of this model have been developed such as
SARIMA (or Seasonal ARIMA), and ARIMAX (or ARIMA

with Explanatory Variable). These models perform reasonably
well for short-term forecasts (i.e., the next lag), but their
performance deteriorates severely for long-term predictions.

Machine learning and more notably deep learning-based
approaches are emerging techniques in AI-based data anal-
ysis. These learning and AI-based approaches take the data
analytical processes into another level, in which the models
built are data-driven rather than model-driven. With respect to
the underlying application domain, the best learning model can
be trained. For instance, a convolution-based neural networks
(CNNs) is suitable for problems such as image recognition;
whereas, the recurrent neural networks (RNNs) better fit to
modeling problems such as time series data and analysis.

There are several variations of RNN-based models. Most
of these RNN-based models differ mainly because of their
capabilities in remembering input data. In general, a vanilla
form of RNN does not have the capability of remembering
the past data. In terms of deep learning terminologies, these
models are feed forwarding-based learning mechanisms. A
special type of RNN models is the Long Short-Term Memory
(LSTM) networks, through which the relationships between
the longer input and output data are modeled. These RNN-
based models, called feedback-based models, are capable of
learning from past data, in which several gates into their
network architecture are employed in order to remember the
past data and thus build the prospective model with respect to
the past and current data. Hence, the input data are traversed
only once (i.e., from left (input) to right (output)).

It has been reported that the deep learning-based models
outperform conventional ARIMA-based models in forecasting
time series and in particular for the long term prediction
problems [20]. Even though the performance of LSTM has
been shown to be superior to ARIMA, an interesting question
is whether its performance can be further improved by incor-
porating additional layers of training data into the LSTM.

To investigate whether incorporating additional layers of
training into the architecture of an LSTM improves its pre-
diction, this paper explores the performance of Bidirectional
LSTM (BiLSTM). In an BiLSTM model the given input data
is utilized twice for training (i.e., first from left to right, and
then from right to left). In particular, we would like to perform
a behavioral analysis comparing these two architectures when
training their models. To do so, this paper reports the results of978-1-7281-0858-2/19/$31.00 ©2019 IEEE
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an experiment in which the performance and behavior of these
two RNN-based architectures are compared. In particular, we
are interested in addressing the following research questions:

1) Is the prediction improved when the time series data
are learned from both directions (i.e., past-to-future and
future-to-past)?

2) How different these two architectures (LSTM and BiL-
STM) treat input data?

3) How fast these two architectures reach the equilibrium?
To address these questions, this paper conducts a series of

experiments and reports the results. In particular, this paper
makes the following key contributions:

– Investigate whether additional layers of training improve
prediction in the financial time series context.

– Provide a performance analysis comparing the predic-
tion’s accuracy of the uni-LSTM and its extension, BiL-
STM. The analysis shows that BiLSTM models outper-
form LSTMs by 37.78% reduction in error rates.

– Conduct a behavioral analysis of learning processes in-
volved in training the LSTM and BiLSTM-based models.
According to the results, BiLSTMs train their models
differently than LSTMs by fetching smaller batches of
data for training. It was also observed that, the BiLSTM
models reach the equilibrium slower than uni-LSTMs.

This paper is structured as follows: Section II reviews
the related works. The essential background and mathemat-
ical formulations are given in Section III. The procedure
for experimental setup, data collection, and preparation is
presented in Section IV. Section V presents the pseudo-code
of the developed algorithms. The results of the experiments
are reported through Section VI. Section VII discusses the
performance of the algorithms while factors are controlled.
The conclusion of the paper and the possible future research
directions are provided in Section VIII.

II. RELATED WORKS

Traditional approaches to time series analysis and forecast-
ing are primarily based on Autoregressive Integrated Moving
Average (ARIMA) and its many variations such as Seasonal
ARIMA (SARIMA) and ARIMA with Explanatory variables
(ARIMAX) [6]. These techniques have been used for a long
time in modeling time series problems [1], [2], [17]. While
these moving averaged-based approaches perform reasonably
well, they also suffer from some limitations [8]:

– Since these models are regression-based approaches to
the problem, they are hardly able to model data with
nonlinear relationships between parameters.

– There are some assumptions about data when conducting
statistical tests that need to be held in order to have a
meaningful model (e.g., constant standard deviation).

– They are less accurate for long-term predictions.
Machine and deep learning-based approaches have intro-

duced new avenue to analyze time series data. Krauss et
al. [19] used various forms of forecasting models such as
deep learning, gradient-boosted trees, and random forests to

model S&P 500 constitutes. Krauss et al. also reported that
training neural networks and consequently deep learning-based
algorithms was very difficult. Lee and Yoo [21] introduced an
RNN-based approach to predict stock returns. The idea was to
build portfolios by adjusting the threshold levels of returns by
internal layers of the RNN built. A similar work is performed
by Fischera et al. [9] for financial data prediction.

The most similar papers in which the performance of LSTM
and its bi-directional variation is compared are [7], [18].
Kim and Moon report that Bi-directional Long Short-Term
Memory model based on multivariate time-series data outper-
forms uni-directional LSTM. Cui et al. [7] proposed stacking
bidirectional and unidirectional LSTM networks for predict-
ing network-wide traffic speed. They report that the stacked
architecture outperforms both BiLSTM and uni-LSTMs.

This article is based on the authors previous research work
where the performance of ARIMA-based models with the
LSTM-based models was compared in the context of predict-
ing economics and financial time series and parameter tuning
[20], [26]. The paper takes an additional step in comparing
the performance of three time series modeling standards:
ARIMA, LSTM, and BiLSTM. While traditional prediction
problems (such as building a scheduler [27] and predicting
vulnerabilities in software systems [22]) can benefit largely
from bi-directional training, it is unclear whether learning time
series data, and in particular financial and economic data, from
both sides is beneficial for the purpose of learning. This paper
explores this research problem.

III. BACKGROUND

A. Recurrent Neural Networks

The Recurrent Neural Networks (RNNs) are an extension
of the conventional Feed-Forward neural networks with the
ability of managing variable-length sequence inputs. Unlike
the conventional Feed-Forward neural networks, which are not
generally able to handle sequential inputs and all their inputs
(and outputs) must be independent of each others, the RNNs
models provide some gates to store the previous inputs and
leverage sequential information of the previous inputs. This
special RNNs memory is called recurrent hidden states and
gives the RNNs the ability to predict what input is coming
next in the sequence of input data. In theory, RNNs are
able to leverage previous sequential information for arbitrary
long sequences. In practice, however, due to RNNs’ memory
limitations, the length of the sequential information is limited
to only a few steps back. To give a formal definition of RNNs,
lets assume x = (x1, x2, x3, ...., xT ) represents a sequence of
length T , and ht represents RNN memory at time step t, an
RNN model updates its memory information using:

ht = σ(Wxxt +Whht−1 + bt) (1)

where σ is a nonlinear function (e.g., logistic sigmoid, a
hyperbolic tangent function, or rectified linear unit (ReLU)),
Wx and Wh are weight matrices that are used in deep learning
model, and bt is a constant bias.
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In general, RNNs have multiple types: one input to many
outputs, many inputs to many outputs, and many inputs to one
output. In this work, we only consider RNNs that produce one
output y = (y1, y2, ...., yT ) which is the probability of the next
element of a sequence while its previous inputs are given. The
sequence probability can be decomposed as following:

p(x1, . . . , xT ) = p(x1)p(x2|x1)p(x3|x1, x2)...

p(xT |x1, ..., xT−1)
(2)

in which each conditional probability distribution is modeled:

p(xt|x1, . . . xt−1) = σ(ht) (3)

where ht is calculated using Equation 1.
One of the common problems of RNNs is called ”vanishing

gradients” which happens when the information about the
input or gradient passes thorough a lot of layers, it will vanish
and wash out by the time when it reaches to the end or
beginning layer. This problem makes it hard for RNNs to
capture the long-term dependencies, and as such the training
of RNNs will be extremely challenging. Another problem of
RNNs, which rarely happens, is called “exploding gradients,”
which refers to the cases in which information about the input
or gradient passes thorough a lot of layers, it will accumulate
and result in a very large gradient when it reaches to the end
or beginning layer. This problem makes RNNs hard to train.

Gradient, which is mathematically defined as partial deriva-
tive of output of a function with respect to its inputs, essen-
tially measures how much the output of a function changes
with respect to the changes occurred to its inputs. In the
”vanishing gradients” problem, the RNN training algorithm
assigns smaller values to the weight matrix (i.e., a matrix that
is used in the process of RNN training) and thus the RNN
model stops learning. On the other hand, in the exploding
gradients problem , the training algorithm assigns higher
values to the weight matrix without any reasons. This problem
can be solved by truncating/squashing the gradients [12].

B. Long Short-Term Memory (LSTM) Models

As mentioned earlier, RNNs have difficulties in learning
long-term dependencies. The LSTM-based models are an
extension for RNNs, which are able to address the vanishing
gradient problem in a very clean way. The LSTM models
essentially extend the RNNs’ memory to enable them keep
and learn long-term dependencies of inputs. This memory
extension has the ability of remembering information over a
longer period of time and thus enables reading, writing, and
deleting information from their memories. The LSTM memory
is called a “gated” cell, where the word gate is inspired by
the ability to make the decision of preserving or ignoring
the memory information. An LSTM model captures important
features from inputs and preserves this information over a
long period of time. The decision of deleting or preserving the
information is made based on the weight values assigned to
the information during the training process. Hence, an LSTM
model learns what information worth to preserve or remove.

In general, an LSTM model consists of three gates: forget,
input, and output gates. The forget gate makes the decision of
preserving/removing the existing information, the input gate
specifies the extent to which the new information will be added
into the memory, and the output gate controls whether the
existing value in the cell contributes to the output.

I) Forget Gate. A sigmoid function is usually used for
this gate to make the decision of what information needs
to be removed from the LSTM memory. This decision is
essentially made based on the value of ht−1 and xt. The
output of this gate is ft, a value between 0 and 1, where 0
indicates completely get rid of the learned value, and 1 implies
preserving the whole value. This output is computed as:

ft = σ(Wfh [ht−1],Wfx [xt], bf ) (4)

where bf is a constant and is called the bias value.
II) Input Gate. This gate makes the decision of whether or

not the new information will be added into the LSTM memory.
This gate consists of two layers: 1) a sigmoid layer, and 2) a
“tanh” layer. The sigmoid layer decides which values needs
to be updated, and the tanh layer creates a vector of new
candidate values that will be added into the LSTM memory.
The outputs of these two layers are computed through:

it = σ(Wih [ht−1],Wix [xt], bi) (5)
c˜t = tanh(Wch [ht−1],Wcx [xt], bc) (6)

in which it represents whether the value needs to be updated
or not, and c˜t indicates a vector of new candidate values that
will be added into the LSTM memory. The combination of
these two layers provides an update for the LSTM memory in
which the current value is forgotten using the forget gate layer
through multiplication of the old value (i.e., ct−1) followed by
adding the new candidate value it∗c˜t . The following equation
represents its mathematical equation:

ct = ft ∗ ct−1 + it ∗ c˜t (7)

where ft is the results of the forget gate, which is a value
between 0 and 1 where 0 indicates completely get rid of the
value; whereas, 1 implies completely preserve the value.

III) Output Gate. This gate first uses a sigmoid layer to make
the decision of what part of the LSTM memory contributes
to the output. Then, it performs a non-linear tanh function
to map the values between −1 and 1. Finally, the result is
multiplied by the output of a sigmoid layer. The following
equation represents the formulas to compute the output:

ot = σ(Woh [ht−1],Wox [xt], bo) (8)
ht = ot ∗ tanh(ct) (9)

where ot is the output value, and ht is its representation as a
value between −1 and 1.

C. Deep Bidirectional LSTMs (BiLSTM)

The deep-bidirectional LSTMs [25] are an extension of the
described LSTM models in which two LSTMs are applied
to the input data. In the first round, an LSTM is applied

3287

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 16:04:38 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: The time series data studied.

Stock Observations Total
Train 70% Test 30%

N225.monthly 283 120 403
IXIC.daily 8,216 3,521 11,737
IXIC.weekly 1,700 729 2,429
IXIC.monthly 390 168 558
HSI.monthly 258 110 368
GSPC.daily 11,910 5,105 17,015
GSPC.monthly 568 243 811
DJI.daily 57,543 24,662 82,205
DJI.weekly 1,189 509 1,698
DJI.monthly 274 117 391
IBM.daily 1,762 755 2,517

Total 84,093 36,039 120,132

on the input sequence (i.e., forward layer). In the second
round, the reverse form of the input sequence is fed into the
LSTM model (i.e., backward layer). Applying the LSTM twice
leads to improve learning long-term dependencies and thus
consequently will improve the accuracy of the model [3].

IV. LSTM VS. BILSTM: AN EXPERIMENTAL STUDY

This paper compares the performance of ARIMA, LSTM,
and BiLSTM in the context of predicting financial time series.

A. Data Set

The authors partially reused the previously collected data
[20], in which daily, weekly, and monthly time series of some
stock data for the period of Jan 1985 to Aug 2018 were
extracted from the Yahoo finance Website1. The data included
1) Nikkei 225 index (N225), 2) NASDAQ composite index
(IXIC), 3) Hang Seng Index (HSI), 4) S&P 500 commodity
price index (GSPC), 5) Dow Jones industrial average index
(DJ), and 6) IBM Stock data. The daily IBM stock data were
collected for the period of July 2009 to July 2019.

B. Training and Test Data

The “Adjusted Close” variable was chosen as the only
feature of financial time series to be fed into the ARIMA,
LSTMs and its variation, BiLSTM models. The data set was
divided into training and test where 70% of each data set were
used for training and 30% of each data set was used for testing
the accuracy of models. Table I provides the statistics of the
number of time series’ observations.

C. Assessment Metrics

The “loss” values are typically reported by deep learning
algorithms. Loss technically is a kind of penalty for a poor
prediction. More specifically, the loss value will be zero, if the
model’s prediction is perfect. Hence, the goal is to minimize
the loss values through obtaining a set of weights and biases
that minimizes the loss. In addition to loss, which is utilized
by the deep learning algorithms, researchers often utilize
the Root-Mean-Square-Error (RMSE) to assess the prediction
performances. RMSE measures the differences between actual
and predicated values. The formula for computing RMSE is:

1https://finance.yahoo.com

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (10)

Where N is the total number of observations, yi is the actual
value; whereas, ŷi is the predicated value. The main benefit of
using RMSE is that it penalizes large errors. It also scales the
scores in the same units as the forecast values. Furthermore,
we also used the percentage of reduction in RMSE, as a
measure to assess the improvement that can be calculated as:

%Changes =
New V alue−Original V alue

Original V alue
∗ 100 (11)

V. THE ALGORITHMS

The general “feed-forward” Artificial Neural Networks
(ANN) (Figure 1(a)) allow training the model by traveling
in one direction only without considering any feedback from
the past input data. More specifically, ANN models travel
directly from input (left) to output (right) without taking
into account any feedback from the already trained data
from the past. As a result, the output of any layer does
not affect the training process performed on the same layer
(i.e., no memory). These types of neural networks are useful
for modeling the (linear or non-linear) relationship between
the input and output variables and thus functionally perform
like a regression-based modeling. In other words, through
these networks a functional mapping is performed through
which the input data are mapped to output data. This type of
neural networks is heavily utilized in pattern recognition. The
Convolutional Neural Networks (CNN), and the conventional
and basic auto-encoder networks are typical ANN models.

On the other hand, the Recurrent-based Neural Networks
(RNNs) remember parts of the past data through a method-
ology, called feedback, in which the training takes place
not only from input to output (as feed-forward), but also it
utilizes a loop in the network to preserve some information
and thus functions like a memory (Figure 1(b)). Unlike feed-
forward ANN networks, the feedback-based neural networks
are dynamics and their states change continuously until they
reach the equilibrium status and are thus optimized. The states
remain at the equilibrium status until new inputs are arrived
demanding changes in the equilibrium. The major problem of
a vanilla form of RNNs is that these types of neural networks
cannot preserve and thus does not remember long inputs.

As an extension to RNNs, Long Short-Term Memory
(LSTM) (Figure 1(c)) is introduced to remember long input
data and thus the relationship between the long input data and
output is described in accordance with an additional dimension
(e.g., time or spatial location). An LSTM network remembers
long sequence of data through the utilization of several gates
such as: 1) input gate, 2) forget gate, and 3) output gate.

The deep-bidirectional LSTMs (BiLSTM) networks [25]
are a variation of normal LSTMs (Figure 1(d)), in which the
desired model is trained not only from inputs to outputs, but
also from outputs to inputs. More precisely, given the input
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(a) Feedforward (b) Feedbackward
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(d) BiLSTM

Fig. 1: Various forms of artificial neural networks.

sequence of data, a BiLSTM model first feed input data to an
LSTM model (feedback layer), and then repeat the training via
another LSTM model but on the reverse order of the sequence
of the input data (i.e., Watson-Crick complement [10]). It has
been reported that using BiLSTM models outperforms regular
LSTMs [3]. The algorithm(s) developed for the experiments
reported in this paper are listed in Listing 1. Please note that
the two algorithms (LSTM and BiLSTM) are incorporated into
one, where lines 9 - 12 switch between the two algorithms.
The rolling-based algorithms re-train the models each time a
new observation is fetched (line 26). Hence, once a prediction
is performed and its value is compared with the actual value,
the value is added to the training set (line 26), and the model
is re-trained (line 27).

VI. RESULTS

Table II reports the Rooted Mean Squared Error (RMSE)
achieved by each technique for forecasting the stock data. In
most cases (except IXIC.weekly), a significant reduction in the
magnitude of the RMSE values is observed.

In comparing the LSTM and BiLSTM models, the per-
centage of reductions varies from (−)%77.60 for DJI.daily
to (−)%12.93 for IXIC.daily. On average, the RMSE values
achieved for LSTM and BiLSTM-based models are 39.09
and 20.17, respectively, and thus achieving (−)%37.78 re-
duction on average. With respect to the data, it is apparent
that BiLSTM models outperform regular uni-LSTM models
significantly, with a large margin.

Table II also reports some other results computed for
ARIMA and the percentages of the reductions captured. More

specifically, the average reductions obtained using BiLSTM
over ARIMA is −93.11; whereas, the average percentage of
reduction using LSTM over ARIMA is reported as −88.07.
The results indicate that modeling using BiLSTM instead of
LSTM and ARIMA indeed improves the prediction accuracy.

Listing 1: The developed rolling LSTM/BiLSTM algorithms.
# Rolling LSTM and BiLSTM
Inputs: Time series
Outputs: RMSE of the forecasted data
# Split data into:
# 70\% training and 30\% testing data
1. size ← length(series) * 0.70
2. train ← series[0...size]
3. test ← series[size...length(size)]
# Set the random seed to a fixed value
4. set random.seed(7)
5. set option = "L" (LSTM) or "B" (BiLSTM)

# Fit an LSTM or BiLSTM model to training data
Procedure fit_lstm_Bilstm(train, epoch,

neurons, option)
6. X ← train
7. y ← train - X
8. model = Sequential()
9. if option = ’L’:
10. model.add(LSTM(neurons), stateful=True))
11. else option = ’B’:
12. model.add(Bidirectional(LSTM(neurons,

stateful=True))

13. model.compile(loss=’mean_squared_error’,
optimizer=’adam’)

14.for each i in range(epoch) do
15. model.fit(X, y, epochs=1, shuffle=False)
16. model.reset_states()
17.end for
return model

# Make a one-step forecast
Procedure forecast_lstm(model, X)
18. yhat ← model.predict(X)
return yhat

19. epoch ← 1
20. neurons ← 4
21. predictions ← empty
22. lstm_model = fit_lstm_Bilstm(train,epoch,

neurons, option)
# Forecast the training dataset
23. lstm_model.predict(train)

# Walk-forward validation on the test data
24. for each i in range(length(test)) do
25. # make one-step forecast
26. X ← test[i]
27. yhat ← forecast_lstm(lstm_model, X)
28. # record forecast
29. predictions.append(yhat)
30. expected ← test[i]
31. end for

32. MSE ← mean_squared_error(expected,
predictions)

33. Return (RMSE ← sqrt(MSE))
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TABLE II: RMSEs of ARIMA, LSTM, and BiLSTM models.

RMSE % Reduction
Bi BiLSTM BiLSTM LSTM

Stock ARIMA LSTM LSTM over over over
[20] LSTM ARIMA ARIMA

N225monthly 766.45 102.49 23.13 -77.43 -96.98 -86.66
IXIC.daily 34.61 2.01 1.75 -12.93 -94.94 -94.19
IXIC.weekly 72.53 7.95 11.53 45.03 -84.10 -89.03
IXIC.monthly 135.60 27.05 8.49 -68.61 -93.37 -80.00
HSI.monthly 1,306.95 172.58 121.71 -29.47 -90.68 -86.79
GSPC.daily 14.83 1.74 0.62 -64.36 -95.81 -88.26
GSPC.monthly 55.30 5.74 4.63 -19.33 -91.62 -89.62
DJI.daily 139.85 14.11 3.16 -77.60 -97.77 -89.91
DJI.weekly 287.60 26.61 23.05 -13.37 -91.98 -90.74
DJI.monthly 516.97 69.53 23.69 -65.59 -95.41 -86.50
IBM.daily 1.70 0.22 0.15 -31.18 -91.11 -87.05

Average 302.96 39.09 20.17 -37.78 -93.11 -88.07

To illustrate the forecasts performed by both LSTM and
BiLSTM models, Figures 2(a)-(c) show the forecasts for
the IBM stock estimated by ARIMA, LSTM and BiLSTM,
respectively. Please note that the parts colored in green and
orange (i.e., predicted parts) are overlapping the original values
of test data. As a result, the initial test data are less visible in
the plots.

VII. DISCUSSION

As the results show, BiLSTM models outperforms the
regular unidirectional LSTMs. It seems that BiLSTMs are
able to capture the underlying context better by traversing
inputs data twice (from left to right and then from right
to left). The better performance of BiLSTM compared to
the regular unidirectional LSTM is understandable for certain
types of data such as text parsing and prediction of next
words in the input sentence. However, it was not clear whether
training numerical time series data twice and learning from
the future as well as past would help in better forecasting
of time series, since there might not exist some contexts, as
observable in text parsing. Our results show that BiLSTMs
perform better compared to regular LSTMs even in the context
of forecasting financial time series data. In order to understand
the differences between LSTM and BiLSTM in further details,
there are several interesting questions that we can be posed and
thus empirically address them, and then learn more about the
behavior of these variations of recurrent neural networks and
how they work.

A. Loss vs. Batch Steps (Epoch = 1)

In order to compare the loss values for both LSTM and
BiLSTM models, we ran the developed scripts on our data
and captured the loss values when the learning model fetches
the next batch of data. Figure 3(a)-(b) illustrate the plots for the
IBM sample data when Epoch is set to 1, where the y-axis and
x-axis represent the loss value and batch steps, respectively.

As illustrated in Figure 3(a), the loss value starts at 0.061
and then decreases after fetching the third batch of data for the
unidirectional LSTM where the loss values achieves 0.0256. It
implies that after three rounds of fetching the batches of time
series data, the loss value remains stable until all batches of

(a) IBM (ARIMA): test data.

(b) IBM (LSTM): train and test data.

(c) IBM (BiLSTM): train and test data.

Fig. 2: IBM forecasting using ARIMA, LSTM, and BiLSTM.

data are fetched, where it reaches the loss value of 0.0244 at
its last iteration (i.e., the 42-th iteration).

On the other hand, as shown in 3(b), the loss value starts
at 0.0404, and then, interestingly, its value increases to the
highest value (i.e., 0.0874) on the third round of fetching
batches of data. It then starts to decrease slowly after all the
batches of data are captured and the parameters are trained.
However, unlike the unidirectional LSTM for Epoch = 1, the
BiLSTM model after fetching and learning all the batches of
data never reaches the loss value of the counterpart LSTM
model (i.e., 0.0256). This observation may indicate that the
BiLSTM model needs fetching more training data to reach the
equilibrium in comparison to its unidirectional version (i.e.,
LSTM).

As reported in Table III, the standard deviation calculated
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TABLE III: Descriptive statistics of loss values for the LSTM
and BiLSTM-based models (the IBM stock Data).

Model Min Max SD #Batches
LSTM Epoch = 1 0.014 0.061 0.007 42
BiLSTM Epoch = 1 0.026 0.087 0.012 71
LSTM Epoch = 2(Round 1) 0.013 0.048 0.005 41
BiLSTM Epoch = 2(Round 1) 0.025 0.184 0.02 75
LSTM Epoch = 2(Round 2) 0.01 0.23 0.004 42
BiLSTM Epoch = 2(Round 2) 0.022 0.135 0.013 73

for the loss values achieved for both unidirectional LSTM and
BiLSTM models when Epoch = 1 is 0.007 and 0.012, re-
spectively. This indicates that the unidirectional LSTM model
reaches the equilibrium faster compared to its counterpart,
BiLSTM. The primary reason seems to be directly related to
the training the underlying time series processes (first from
left-to-right and then right-to-left). As a result, the BiLSTM-
based learning model needs to fetch additional data batches to
tune its parameters.

B. Loss vs. Batch Steps (Epoch = 2)

The authors also compared the behavioral training of both
BiLSTM and LSTM when Epoch = 2. Figures 3(c)-(f)
illustrate the changes observed in the loss values after fetching
each batches of data for the IBM data.

First the first rounds of Epoch for both BiLSTM and LSTM
are compared. Figures 3(c)-(d) illustrate the changes in the loss
values for round 1 of training when Epoch = 2. We observe
similar trends that we obtained for Epoch = 1 (Figures 3(a)-
(b)) for both LSTM and BiLSTM models for round 1 of
Epoch = 2. More specifically, in round 1 of Epoch = 2
of the LSTM model, the loss value starts with 0.048 and after
fetching the 3rd batches is starts to be stabilized, where the
loss value is 0.019. Whereas, for BiLSTM, the loss value
starts with 0.184 and then the loss values start to stabilize
after fetching the 8-th batches for BiLSTM, where the loss
value is 0.044.

Table III list the descriptive statistics for both LSTM and
BiLSTM for round 1 of Epoch = 2. As the table reports,
a trend similar to Epoch = 1 is observed for round 1 of
Epoch = 2, a large standard deviation in the calculated loss
values is an indication that BiLSTM requires more data to
optimally tune the parameters.

The most intriguing observation is about the changes of
loss values in round 2 of Epoch = 2. Figures 3(e)-(f)
demonstrate the trends of changes for loss for both LSTM
and BiLSTM. For LSTM, the loss demonstrates a stabilized
trend. The loss value starts with 0.015, remains stable, and
after fetching all the batches of data stays at 0.0237, which
shows an insignificant increase. A closer look at Figure 3(c)
with 3(e) indicates that the LSTM model has already reached
the equilibrium during the first round and during the second
round of Epoch nothing valuable is learned.

On the other hand, the trend for round 2 of BiLSTM for
Epoch = 2 does not exhibit a trend similar as observed
for the LSTM. As Figure 3(f) illustrates, the training model
still keeps continue learning from the data and tuning the
parameters. The loss value starts at 0.135 and then quickly falls

into 0.026 and after a minor fluctuation, it becomes stabilized
after fetching the 9-th batch, where the loss value reaches
0.0295. A comparison of Figures 3(d) and 3(f) indicates that
the BiLSTM model keeps training its parameters after the
second round; whereas, the LSTM model stops learning and
tuning parameters after the first round. The numerical values
and descriptive statistics are reported in Table III, where the
standard deviations for LSTM and BiLSTM are reported as
0.004 and 0.013, respectively. Indicating the training needed
for optimizing the BiLSTM model in comparison to LSTM.

C. Batch Sizes

The last column of Table III reports an interesting phe-
nomenon through which the number of batches, which are
considered for the same data by each training model, is
reported. According to the experimental data, the LSTM model
divided the data into 41 - 42 batches (larger chunks); whereas,
the BiLSTM model divided the same data into 71 - 75 batches
(smaller chunks). A rational to explain this behavior is the
limitation associated with LSTM models in general. Even
though these models are capable of “remembering” sequences
of data, LSTM-based models have limitations in remembering
long sequences. Through a regular LSTM model, since the
input data are traversed only once from left to right, a certain
number of input items can be fed into the training model. On
the other hand, in an BiLSTM model, the training network
needs to train not only the input data from left to right, but
also from right to left. As a result, the length of training data
that can be handled through each batch is almost half of the
amount of data learned through each batch by regular LSTM.

VIII. CONCLUSION AND FUTURE WORK

This paper reported the results of an experiment, through
which the performance and accuracy as well as behavioral
training of ARIMA, unidirectional LSTM (LSTM), and bidi-
rectional LSTM (BiLSTM) models were analyzed and com-
pared. The research question targeted by the experiment was
primarily focusing on whether training of data from an oppo-
site direction (i.e., right to left), in additional to regular form
of training of data (i.e., left to right) had any positive and
significant impact on improving the precision of time series
forecasting. The results showed that the use of additional layer
of training would help in improving the accuracy of forecast
by 37.78% percent on average and thus it is beneficial for
modeling. We also observed an interesting phenomenon when
conducting the behavioral analysis of unidirectional LSTM and
BiLSTM models. We noticed that training based on BiLSTM
is slower and it takes fetching additional batches of data to
reach the equilibrium. This observation indicates that there
are some additional features associated with data that might be
captured by BiLSTM but unidirectional LSTM models are not
capable of exposing them, since the training is only one way
(i.e., from left to right). As a result, this paper recommends
using BiLSTM instead of LSTM for forecasting problem in
time series analysis. This research can be further expanded to
forecasting problems for multivariate and seasonal time series.
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(a) IBM (LSTM) One Epoch - Loss vs. Batching Step (b) IBM (BiLSTM) One Epoch - Loss vs. Batching Step

(c) IBM (LSTM) Two Epochs (Round 1) - Loss vs. Batching Step (d) IBM (BiLSTM) Two Epochs (Round 1) - Loss vs. Batching Step

(e) IBM (LSTM) Two Epochs (Round 2) - Loss vs. Batching Step (f) IBM (BiLSTM) Two Epochs (Round 2) - Loss vs. Batching Step

Fig. 3: Loss vs. Batch steps for LSTM and BiLSTM - IBM stock forecasting.
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