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Abstract

This paper introduces a two-stage deep learning-based methodology for clustering time series data. First, a novel tech-
nique is introduced to utilize the characteristics (e.g., volatility) of the given time series data in order to create labels and
thus enable transformation of the problem from an unsupervised into a supervised learning. Second, an autoencoder-
based deep learning model is built to model both known and hidden non-linear features of time series data. The paper
reports a case study in which the selected financial and stock time series data of over 70 stock indices are clustered
into distinct groups using the introduced two-stage procedure. The results show that the proposed methodology is
capable of achieving 87.5% accuracy in clustering and predicting the labels for unseen time series data. The paper also
reports an important finding in which it is observed that the performance of both techniques (i.e., autoencoder and
Kmeans) are comparable. However, there are a few instances of time series data that are classified differently by the
autoencoder-based methodology compared to the Kmeans algorithm. The results may indicate that the proposed deep
learning-based approach is taking into account additional hidden features that might be overlooked by conventional
Kmeans. The finding raises the question whether the explicit features of data should be analyzed for clustering or more
advanced techniques such as deep learning need to be adapted by which hidden features and relationships are explored
for clustering purposes.

Keywords Kmeans clustering - Financial data analysis - Time series clustering - Deep learning - Encoder-decoder -
Unsupervised learning - Supervised learning - Encoder-decoder - Multi-layer perceptron

1 Introduction

An important step prior to performing any detailed data
analysis is to understand the characteristics of a given
data set. There are several statistical techniques that can
help in creating different level of abstractions, each rep-
resenting the data set from different angles. A very basic
and prevalent technique is descriptive statistics such as
mean and standard deviation, which are often utilized by
data analysts in order to grasp the trend and variation of

observations and thus capture a big picture of the data.
These types of metadata can describe and, more specifi-
cally, “featurize” data. Hence, in practice and theory, data
analysis refers to the identification, selection, and analysis
of features of data sets.

A popular approach to conducting data analysis is
through the conventional clustering problem, in which
the given dataset is divided into subgroups. The goal
is to maximize the similarity of the data observations
grouped together; while maximize the dissimilarity of
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the observations clustered in distinct groups. A simple
and typical clustering algorithm (e.g., KMeans) takes as
input a numerical vector representing the original data
and measures the distances between data items using a
simple distance metric (e.g., Euclidean). The assignment
of data observations to different groups is then opti-
mized with respect to the adjustment and optimization,
which is a repetitive process. It is also possible to extend
the basic clustering algorithm to address a more general
multi-objectives problem where more than one feature,
or characteristics, of datasets are taken into account for
clustering.

1.1 The time series clustering (TSC) problem

As a very important and prevalent data type, time series
data are playing a key role in different application domains
such as social and human sciences including psychology,
economics, business, and finance as well as engineering,
quality control, monitoring and security. What makes time
series data unique is the addition of another dimension
to the complexity of data (i.e., time) and thus the eleva-
tion of the complexity involved in performing the analysis.
The high dimensionality and additional complexity intro-
duced by time makes the analysis of such data types very
challenging. Therefore, it raises the concern of whether
conventional data analysis techniques are suitable in
exploring all “possible” features and factors as well as the
causalities of such complex and inter-related data type.
There are fundamentally several challenges associated
with the problem of Time Series Clustering (TSC) including:

(1) Unlabeled data It is hard to identify or automatically
label time series data. As a result, existing clustering
techniques in supervised learning are less applicable.
While there are great benefits associated with unsu-
pervised learning (e.g., no need to know the exact
number of desired clusters), the absence of labels in
time series data would cause overlooking more accu-
rate clustering techniques based on supervised learn-
ing, in which the labels of time series are known. As a
result, it would be computationally more feasible to
predict the cluster labels of time series data.

(2) High dimensionality Due to the inclusion of the time
factor in the analysis besides some other features,
the dimensionality of time series data and thus the
number of features is increasingly high. Hence, it
is of utmost importance to identify salient features
that contribute significantly to the characteristics of
the time series data and at the same time reduce the
effects of nuisances that exhibit themselves as false
features.
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(3) Hidden features The most critical issue is the possibil-
ity of existence of some hidden features that may not
be apparent and thus might be missed when con-
ducting direct data analysis. Examples of such hidden
factors might be exogenous and even some endog-
enous factors in the given data sets. The conventional
data mining and even machine learning techniques
are less effective in capturing these existence but hid-
den features. As a result, more advanced and rigor-
ous methods and techniques are needed to take into
account these possible features when modeling the
clustering solutions.

This paper introduces a novel approach to time series clus-
tering in which the problem is transformed into a super-
vised learning by automatically generating cluster labels
for the time series instances. The cluster labels generated
then are utilized to train a deep learning-based autoen-
coder to learn about the features of each time series
data and thus cluster them with respect to the explored
features.

1.2 General time series clustering approaches

A typical whole time series clustering consists of four
major components: (1) dimensionality reduction, (2) dis-
tance measurement, (3) a clustering algorithm, and (4) a
prototype definition and evaluation. As a special type of
whole time series clustering, in feature-based clustering fea-
tures of interest are extracted and the time series points
are transformed (i.e., mapped) into a set of features. Fea-
ture extraction is used to compress large data sets using
dimensionality reduction. In fact, in the feature-based
clustering raw time series are transformed into a feature
vector of a lower dimension. Then, a conventional clus-
tering algorithm is applied on the lower dimension fea-
ture vector. The extracted features are usually application
dependent, which implies that one set of features that are
useful for an application might not be relevant and useful
for another one. In some studies, other feature selection
methods are performed to further reduce the number
of feature dimensions after feature extraction [1]. As the
notion of shape cannot be precisely defined, dozens of
similarity (i.e., distance) measures have been proposed
[2-5]. In this paper, we also employ similar techniques in
order not only to cluster but also to utilize cluster labels
for further analysis and more specifically for supervised
learning. The time series clustering techniques are gener-
ally classified into six categories:

— Hierarchical In this approach, a hierarchy of clusters is
generated using either agglomerative (i.e., bottom-up)
or divisive (i.e., top—down) approaches. In the agglom-
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erative method, each item is considered as a cluster
and then appropriate clusters are merged together;
whereas, in the divisive approach all the items are
included in one cluster and then the cluster is splitinto
multiple clusters. In hierarchical clustering, once the
hierarchy is generated, it cannot re-adjust with any fur-
ther changes. Therefor, the quality of hierarchical clus-
tering is weak and some other clustering approaches
are leveraged to remedy this issue.

- Partitioning In this approach, k groups of clusters are
generated. One of the most common algorithms of
partitioning clustering is called KMeans (i.e., k-means)
clustering [6], where k clusters are generated and the
mean value of all the elements within a cluster is con-
sidered as a cluster prototype.

- Density-based In this approach, a cluster is defined as
a subspace of dense objects. One of the most com-
mon algorithms of density-based clustering is called
DBSCAN [7], where a cluster is extended if its neighbors
are dense.

— Grid-based In the grid-based clustering, the space is
divided into a finite number of cells, called grids. Then
the clustering is done on the grids. STING [8] and Wave
[9] are two common grid-based clustering algorithms.

— Model-based In this approach, a model is used for each
cluster. Then the best fit of data for the model is discov-
ered. In the model-based clustering approaches, either
statistical approaches or neural network methods can
be used. An example is Self-Organizing Maps (SOM),
which is a model-based clustering approach based on
neural networks [10].

- Multi-step The Multi-step time series clustering refers
to a combination of methods (also called a hybrid
method), which is employed to improve the quality of
cluster representation [11, 12].

1.3 The introduced two-stage time series clustering
approach

This paper introduces a two-stage methodology for time
series clustering. The clustering presented in this paper
is a hybrid approach in which (1) partitioning-based, (2)
model-based, and (3) multi-step time series clustering
techniques are adapted with the goal of improving the
clustering.

The first stage of the methodology targets the problem
of “unlabeled data” in time series. The goal of this stage
is to transform an unsupervised learning problem into a
supervised learning and then be able to perform cluster-
ing and prediction of labels for time series data through
supervised learning techniques. The basic idea is to derive
the prospective cluster labels through utilization of char-
acteristics and features of the given time series. Once the

characteristics and features of time series data are “vector-
ized" (i.e., numerically calculated and represented), a con-
ventional K-means clustering can be applied to cluster the
feature vector data. The generated clusters and the associ-
ated label for each cluster can then be utilized to label the
original time series data enabling the transformation of
the problem to a supervised learning.

The second stage targets the problems of “high dimen-
sionality” and dealing with “hidden features” of time series
data. The proposed approach is to utilize deep learning to
capture and take into account the effects of hidden layers.
Deep learning is capable of optimizing a prediction model
by iteratively learning and modeling new features through
various internal neural networks and the neurons incor-
porated at each layer. To address both problems simulta-
neously, an autoencoder-based deep learning algorithm
is utilized, in which the autoencoder not only takes into
account the hidden features but also preserves the fea-
tures that are salient for computation and prediction.
Through changing the architecture of neural networks,
including the shape of the input data, the number of
internal layers, the number of neurons on each layer, and
the activation and optimization functions it is possible to
enhance the accuracy of the prediction, and more specifi-
cally, the supervised learning-based clustering problems
through deep learning.

1.4 Contributions of the paper
The key contributions of this paper are as follows:

(1) Introduce a two-stage methodology to address the
time series clustering problem. In the first stage, a
methodology is introduced to create cluster labels
and thus enable transforming a unsupervised learn-
ing problem into a supervised learning for time series
data. In the second stage, an autoencoder-based
deep learning algorithm is built to model clustering
time series data.

(2) Demonstrate the performance of the proposed two-
stage methodology through a case study performed
on clustering time series data of over 70 stock indi-
ces. According to the results of the case study, the
proposed two-stage clustering technique achieves an
accuracy of 87.5% in correctly predicting the cluster
labels of time series data.

(3) Compare the clustering results obtained by the con-
ventional KMeans algorithm and the proposed two-
stage methodology. It was observed that there are
some discrepancies between the clustering results
obtained by these two approaches implying that the
deep learning-based approaches take into account
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additional hidden features when clustering time
series data.

1.5 Structure of the paper

This article is organized as follows: Sect. 2 highlights
the key characteristics of time series and in particular
financial time series data. A brief overview of artificial
neural networks is represented in Sect. 3. The general
picture of the two-stage model is presented in Sect. 4.
The encoder-decoder deep learning model is described
in Sect. 5. The introduced algorithms are presented in
Sect. 6. The autoencoder-based model is evaluated and
the results are reported in Sect. 7. Section 8 concludes the
paper and highlights the future research directions.

2 Feature vectors of time series as data
labels

This section first reviews the general characteristics of
time series that can be used as features, and then explores
financial time series and their unique characteristics along
with a short description of the most representative fea-
tures of financial time series data: volatility and return.

2.1 Common general components of time series
data

General time series data are often analyzed with respect
to certain features and components. This section briefly
presents some known features of time series:

- Seasonality Seasonality is a periodical pattern observed
for time series. It is the effects of seasons such as
months or fiscal year on the volatility and the vol-
ume traded within a period of time. For instance, it is
expected that the price of crude oil usually is elevated
in the beginning of cold seasons.

- Cycle Cycle is a dynamic pattern observed over a
period of time (e.g., year). For instance, it is expected
to observe some cyclic behavior during harvesting time
(e.g., cotton harvesting time).

- Trendltis along-term movement in a given time series
without considering time or some other external influ-
ential factors. For instance, it is expected that the num-
ber of individuals, who purchase new Apple product
increases. However, this trend will be slowly disappear-
ing over time if another new or better product intro-
duced into the market.

- lIrregular features These types of components are
unpredictable. These features are often calculated or
retrieved after trend-cycle and seasonal components
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are removed from the time series. The remaining parts
are unpredictable, since they only represent non-cyclic
and the characteristics that are unique to the underly-
ing time series.

These features are the major tools for analyzing general
time series data. More special time series data such as
those related to financial markets have their own unique
features, which are discussed in the following section.

2.2 Common features of financial time series data

The financial time series data can be characterized through
certain features and patterns [13]:

- Dependence There exists a positive autocorrelation in
stock return indices, but this autocorrelation is largely
insignificant.

- Distribution The annual returns follow a normal distri-
bution. Likewise, the security returns are non-station-
ary and also follow a normal distribution with fat tails.

— Heterogeneity The distributions of financial returns are
non-stationary. Moreover, the standard deviation of
returns is not constant over time.

— Non-linearity The models built for time series are mostly
non-linear in mean and variance.

- Scaling Unlike physical objects, there are no constants
or absolute sizes in economics. As a result, there is no
characteristic scale in economics and finance and thus
financial markets demonstrate non-trivial scaling prop-
erties.

- Volatility 1t is the standard deviation of the change in
the values of a financial time series data. Volatility is
often used to demonstrate the risks associated with
stock indices.

- Volume It refers to the level of trading of a stock index
over a given time period in the market. This feature may
have some correlations with calendar and seasonal
effects.

- Calendar effects The seasonal or calendar effects are
periodical anomalies or patterns that are observed in
returns. There are several different types and flavors of
calendar effects such as the weekend effect, the Janu-
ary effect, the holiday effect, and the Monday effect.

- Long memory There is a chance that the stock market’s
returns and volatility exhibit long memory properties
indicating that the observed returns are dependent
over time. The chance highly depends on the type of
the market.

— Chaos This feature exists when a dynamic system exhib-
its some sensitivity to initial conditions and thus reacts
to unpredictable long-term behavior. There exists some
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small evidence of low-dimensional chaos in financial
markets.

The classical data mining techniques and even primitive
machine learning algorithms might not be able to capture
all these features and thus they may generated a model
that might be less accurate. As discussed and presented in
this paper, more advanced techniques such as deep learn-
ing approaches are better well-positioned to model these
features through layers of learning.

2.3 Financial time series feature vector: <volatility,
return>

In finance, volatility, also known as swings, refers to the
degree of variation of a trading price series such as S&P
500 index over time. It is calculated by the standard devi-
ation of logarithmic returns. More specifically, volatility
shows the frequency and severity, in which the market
price of an investment fluctuates. The stock volatility
shows uncertainty of the future of the economic and finan-
cial series. The expectation of the future of economic and
financial behaviors highly contributes in changing the
stock volatility.

For calculating volatility, we first need to provide
returns. The return of a stock in a given time period can
be defined as the natural logarithm of the closing price
(or other series such as opening or adjusting price) at the
end of the period divided by the closing price of the stock
at the end of the previous period. The general equation for
calculating return is as follows:

= Cf
() m

where

- r,is the return of a given stock over the period,

- Inis the natural log function,

- C,isthe closing price at the end of the period, and
- C,_,is the closing price at the end of the last period.

For calculating the volatility, we need to calculate the
standard deviation of the returns. Standard deviation is
the square root of variance, which is the average squared
deviation from the mean as follows:

;
[ 1 2

c=\/——= ) (rh—w (2)
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where

- rqisthe return of a given stock over the period,

- uisthe average of the returns, and
- oisthe square root of variance.

As an example, VIX (Chicago Board Options Exchange Mar-
ket Volatility Index) is a popular measure of the implied
volatility of S&P index options. If there is a wide range of
fluctuations in the prices over short time, it means that
there is high volatility and vice versa. On the other hand,
if the price moves slowly, there is low volatility [14].

The importance of volatility and returns and the trade-
off between these two stock indicators has received tre-
mendous attentions. In practice, investors invest in the
stock markets with an expectation of getting returns,
which in turn involves risks or the volatility of asset returns.
In fact, the trade-off between return and risk is the concep-
tual framework in the asset-pricing models.

There has been a large body of literature on transmis-
sion of stock returns and volatility. Most asset-pricing mod-
els indicate a positive trade-off between expected returns
and volatility. On the other hand, there are some research
studies, in which empirical evidence supports a negative
relationship between returns and volatility [15-17]. For
example, Chung and Chuwonganant [18] found that mar-
ket volatility affects returns through stock liquidity, sug-
gesting that liquidity providers play an important role in
the market-return relationship in the United States. Sen
and Bandhopadhyay [19] evaluated a dynamic return and
volatility spillover from the US stock market into the Indian
stock market. These conflicting results warrant further esti-
mation by using appropriate techniques and algorithms.

The volatility clustering is the main feature of volatil-
ity of asset prices and the volatility shocks can affect the
expectation of volatility in future [19]. The volatility cluster-
ing means the large changes of prices (variance of return)
for a period.

There is a double relationship between volatility and
returns in equity markets. The long run fluctuations of
volatility show risk premiums and therefore it establishes
a positive relation to returns. On the other hand, short run
volatility indicates news effects and shocks to leverage,
and thus produces a negative volatility-return relation.
The leverage effect explains how the volatility rises when
the asset prices reduces. While long run volatility is related
with a higher return, the opposite appears in the short run
volatility.

3 Artificial neural networks: a brief review

There are several different types of deep learning-based
neural networks including convolutional neural networks
(CNN) and recurrent neural networks (RNN). In particular,
the Long Short-Term Memory (LSTM) network architecture
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[20-22] can be of interest for analyzing time series data.
This paper provides a general background related to gen-
eral concept of ANNs and, more specifically, autoencoders.

3.1 Artificial neural network (ANN)

A typical neural network consists of different layers: (1) an
input layer, (2) one or more hidden layers, and (3) an out-
put layer. The nodes or neuron on each layer usually repre-
sent the number of features and thus the dimensionality of
the dataset. The neurons are mapped through some links
called “synapses”to the nodes created in the hidden layers
and then to the output layer. The synapses links are associ-
ated with some weights that represent the significance of
the value hold by every node. The weights help in deci-
sion making in order to decide which feature should be
considered and thus should pass through the next layers.
The weights also demonstrate the strength of the features
to the hidden layer. A neural network is capable of adjust-
ing the weight for each synopsis, a process that is usually
called learning through optimization.

The nodes in the internal layers utilize some activation
functions such as sigmoid or tangent hyperbolic (tanh) on
the weighted sum of inputs and then transform or map
the inputs to the outputs that hold the predicted values.
Once the weights are adjusted, the output layer creates a
vector of probabilities for different outputs and chooses
the one with minimum error rate. In the case of multi-
labels clustering problem, i.e., clustering with more than
two outcomes, a SoftMax function can be utilized, in which
it minimizes the differences between the expected and
predicted values.

The learning process is an iterative task by which the
assignments and weights are repeatedly adjusted to with
the goal of minimizing the errors obtained through the
network training. To find the most optimal values for
errors, the errors are “back propagated” into the network
from the output layer towards the hidden layers. As a
result, the weights are adjusted. The procedure is repeated
several times with the same observations and the weights
are re-adjusted until there is an improvement in the pre-
dicted values and subsequently in the cost. When the cost
function is minimized, the model is trained.

3.2 Encoder-decoder

An autoencoder is a type of neural networks that trans-
forms input data into their output. An autoencoder con-
sists of two parts in this transformation [23]:

(1) The Encoder that transforms the high dimensional
inputs into a smaller set of dimensions while keep-
ing the most important features, and
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(2) The Decoder that uses the reduced set of features to
reconstruct the initial input data.

The output of an encoder, referred to as “latent-space repre-
sentation", is a compressed form of the input data, in which
the most influential and important features are kept. The
output of the encoder is then utilized to reconstruct the
initial input data given to the autoencoder.

From a mathematical point of view, an autoencoder
network is a composition of functions (fg) (x). More spe-
cifically, an encoder is a function f that takes x as input
and maps x into h, or the latent-space representation (i.e.,
h = f(x)). On the other hand, a decoder is a function g that
takes the output of the encoder (i.e., h) and produces r
(i.e.,, r = g(h)). The objective is to make r as close as pos-
sible to x.

The key objective of autoencoders is not just to copy
the input into the output. In fact, through the training of
an autoencoder and transformation of the input into the
output, it is aimed that the produced latent-space repre-
sentation (i.e., h) holds only unique and important prop-
erties and features of the dataset that can be inspected
for further analysis. In order to extract the only important
features of the given dataset in the form of latent-space
representation, a set of constraints can be defined on
the function that generates h so that the resulting com-
pressed form of the dataset has smaller dimensions than
initial dataset x. As a result, the quality of detecting most
salient features of the dataset x heavily depends on the
constraints defined on h. There are different variations of
autoencoders [23]:

(1) Basic autoencoder, in which there are three layers: a)
an input layer of size |x|, b) a hidden layer of size |h|
(i.e., |h] < |x|), and b) an output layer of size|r| (i.e.,
[r] = |x]) where size refers to the number of nodes
incorporated and designed in the underlying layers.

(2) Multilayer autoencoder, in which the number of hid-
den layers is increased to more than one. This type of
autoencoders is useful when additional internal hid-
den layers are required to extract the hidden features
and train the model.

(3) Convolutional autoencoder, in which the input data is
filtered for the goal of extracting only some parts of
it. These types of autoencoders are particularly very
effective in image processing applications and con-
versions from 3-D images into smaller dimensions of
filtered images.

(4) Regularized autoencoder, in which the extraction and
training stages are performed in accordance with
some other factors such as loss functions than solely
based on defining hidden layers.
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3.2.1 The mathematical background of encoder-decoder

In an autoencoder neural network, the network is split into
two segments: the encoder and the decoder.

¢$:X—>F
v :F-> X
by =arg ming,[IX—(@ o GXI?

(Encoder)
(Decoder) 3)

The encoder function ¢ maps the original data X, to a
latent space F of reduced dimensionality. On the other
hand, the decoder function y maps (i.e., reconstruct) the
latent and reduced space F to the output. In our case, the
output is the same as the input data X'. More specifically,
the encoder-decoder pair is trying to reconstruct the
original data and its shape after performing and capturing
some generalized non-linear transformation of the data.

The encoding part of the network can be represented
by the standard neural network function passed through
(1) an activation function o, (2) a bias parameter b, and (3)
the latent dimension z.

z=oc(Wx +b)

In an analogous way, the decoding part of the neural net-
work can be represented similarly, but with different acti-
vation functions, bias, and weight.

X' =o' (Wz+b)

The loss function £ for this combined neural network can
be expressed in terms of these encode and decoder net-
work functions.

Lox") = 1x =x'|1? = |Ix = o' (W (c(Wx + b)) + b)) |?

(4)
Accordingly, this loss function £ will be used to train the
neural network through the standard back propaga-
tion procedure. The goal of the autoencoder is to select
the encoder and decoder functions such that minimal
information are encoded that be can regenerated by the
decoder with minimal loss.

4 A synergic method for time series
clustering

Figures 1 and 2 depict the proposed two-stage method-
ology for time series clustering. The methodology first
enables supervised learning by generating cluster labels
for the given time series data using conventional KMeans
clustering, and then it uses the generated labels for the
purpose of clustering. The steps of the two-stage synergic
methodology are as follows:

(a) Stage I: Label Generation

(1) Capture the characteristics and descriptive meta-
data, as features, and build the feature vectors
< fi,f,, ... f, >for each time series data.

(2) Apply the conventional KMeans clustering on feature
vectors and identify cluster groups.

(3) Utilize the class groups and their identifications (i.e.,
tags) as labels for each time series data.

(4) Provide the time series data, their feature vectors, and
their generated labels to Stage Il and thus transform
an unsupervised learning to a supervised learning
problem.

(b) Stage II: Autoencoder-based Clustering

(1) Build an autoencoder-based deep neural network
with some hidden layers and neurons, i.e., nodes, in
which:

— The number of nodes on the inner most layer rep-
resents the number of clusters,

— The number of nodes on the input layer represents
the feature vector and its size,

— The number of nodes on the output layer repre-
sents a probabilistic value showing the clustering
label for each data set.

(2) Split the constructed “labeled” time series data into
test and train datasets.

(3) Train the autoencoder-based neural network with the
train dataset.

(4) Cluster and predict the labels of the test dataset using
the trained neural network.

The encoding part of the model is responsible for iden-
tifying important features of the time series data. The
encoder then reduces the number of features from the
whole set to the selected and most important features
of the time series data. On the other hand, the decoder
takes the reduced set of important features and tries to
reconstruct the initial values without losing any informa-
tion significantly. The pair of < encoder, decoder > then
will form a mechanism to reduce the dimensionality of the
time series data for the purpose of clustering. In fact, the
encoder and decoder pair only reduces the feature space
and then the selected and reduced features are utilized to
perform clustering.

In the following sections, we provide an in-depth
description of the synergic methodology proposed for
clustering time series data. First, we focus on the archi-
tecture of the designed autoencoder and then provide
in-depth discussion of the algorithms developed.
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Fig. 1 A synergic methodology for time series clustering

5 An encoder-decoder for learning features
of time series data

Figure 3 illustrates the architecture of the
encoder-decoder neural network developed for feature
learning of time series data.

The network includes two layers representing input
x and output r, respectively. The input layer is designed
with two neurons (i.e., nodes) where the neurons in the
input layer represent the volatility and return for each
stockindex (i.e., < Volatility, Return >, the selected features
for our financial case study); Whereas, the output layer is
designed with one neuron, by which a probabilistic value
will be calculated to represent the cluster label.

On the encoding part, there are three internal layers
L1, L2, and L3, each with the number of devised neurons
of 100, 50, and 20, respectively. Since the ultimate goal
of an encoder is to reduce the dimensionality of a given
input, the number of nodes incorporated in these internal
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layers is in descending order implying the reduction of the
features and preserving only those that stand out and are
salient. Note that the explicit features given to the authoe-
ncoder are in the form of < Volatility, Return >. However,
the purpose is to detect and take into account hidden
features that might exist even within volatility and return
when modeling the deep learning-based clustering.
Since an autoencoder is a symmetric neural network,
the number of layers and nodes on each layer of the
decoder should be symmetric with the number of lay-
ers and neurons in the encoder side. As a result, there are
three hidden layers on the decoder side (i.e., L4, L5, and L6)
with the increasing number of nodes of 20, 50, and 100,
respectively, in which an ascending order of the number
of neurons is apparent. The decoder side explicitly recon-
structs the original inputs using the reduced features with
the exact shape for both input and output. The layer h is
exactly where the number of prospective clusters for clus-
tering data is taken into consideration. In our financial case
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Fig.2 The flowchart of the introduced timer series clustering

study, the optimal number of clusters is four (See Sect. 7
for analysis on capturing the optimal number of clustering
using Silhouette value) and thus the number of nodes on
this layer (i.e., h) is also considered four.

As it is apparent from Fig. 3, through the number of
nodes and layers defined for the encoder part, the most
salient features are captured and through the decoder
side, which is symmetric to the encoder side, the exact
shape of the input data is reconstructed. The adjustment
of weights for the internal layers and their nodes are
decided and optimized in a repetitive manner, where the
loss function on the output (i.e., reconstructed input) is
used as a means to measure the accuracy of the clustering.

The activation function incorporated on the layer h is
in the form of a “sigmoid” function. A sigmoid function
is used to predict the probability values, since its values
range between (0 to 1). Once the model is trained on
training set, the model (i.e., the output layer) produces a
“floating” value in the range of [1 — C,C — 1]where Cis the

> Supervised Learning

number of desired clusters (i.e., four in our case study).
A simple application of rounding (i.e., np . rint function
in Python) and absolute (i.e,, np.absolute function in
Python) functions to the output generated by the model
will produce a “positive integer” value between [0, C — 1]
that represent the class label of the underlying stock index
data for which the output has been generated.

6 The algorithms

The introduced autoencoder-based deep learning method-
ology for time series clustering is represented through two
algorithms: (1) Transforming unsupervised data into super-
vised through building feature vectors and characterizing
time series using descriptive metadata (i.e., volatility and
return), and (2) Building an autoencoder-based deep learning
to predict cluster labels of supervised stock data. The stand-
ard form of K means and encoder-decoder based algorithms
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are adapted to solve the time series clustering problem. These
algorithms are well known and they have been implemented
and integrated together for the purpose of addressing the
time series clustering problem. In the following sections, we
describe each algorithm in further details.

6.1 Algorithm 1: Supervised learning
through characterizing time series and utilizing
metadata as labels

Algorithm 1 presents the first stage of the methodology
in which the conventional KMeans clustering algorithm
is used to determine the cluster label for the time series
data. The algorithm utilizes two descriptive concepts to

ety |

Columns

Y

Decoder

Y
ncoder
High
Dimensional
Features
Reduced
Important
Features

characterize financial time series data: (1) volatility, and (2)
return. Therefore, a vector of < volatility, return > for each
array of stock prices captured for each stock index and for
a given period of time will be computed and constructed.

Algorithm 1 takes as inputs (1) a URL to scrap and enu-
merate stock indices, (2) the desired number of clusters for
clustering stock indices, (3) the number of stock indices to
analyze and cluster, and (4) the start date of stock prices.
The algorithm then labels each stock index with respect
to the cluster the underlying stock index belongs to by
utilizing characteristic of time series data (i.e., volatility and
return) and then transforming unsupervised time series
data into supervised data. The first stage of the methodol-
ogy (i.e., Algorithm 1) consists of several part itself.

Algorithm 1: Transforming unsupervised to supervised learning (metadata of time series as labels).

Result: The cluster label for each stock ticker.
initialization and setting;
retrieving online data of the target stock tickers;

build <volatility, returns> vector;
while No. Clusters <= 10 do
apply Kmeans(No. Clusters) on <volatility, r
measure Silhouette value for each clustering;
end
select clustering with the best Silhouette value;

DTS - 7 I R R S

_
]

report the cluster label for each stock ticker;

compute volatility and returns for each stock ticker;

eturns>;

use cluster label for each data point as data label;
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First the setting variables are initialized followed by the
declaration of a few data structures to hold captured data.
The algorithm then proceeds with scrapping the given
URL and listing the stock indices (i.e., tickers) in order to
perform cluster analysis. Once the list of stock tickers is
prepared, the “Adjusted Close” price of each stock index is
retrieved for a given time period (i.e., from the date indi-
cated as input until the present date). For our case study,
we retrieved data for the start date of January 1, 2019 to
April 15, 2019 (the day of running this experiment and
capturing the data).

As the two key characteristic features of time series, the
volatility and return values are computed for each time
series of prices for each stock index and the computed
values along with the stock indices then are preserved in
a data structure.

A series of KMeans-based clustering algorithm with
respect to the number of desired clusters is then built and
the best clustering is identified, with respect to the Sil-
houette value. The captured < volatility, return > are then
given to the clustering model in order to cluster and then
create cluster labels. The labels for each stock index is cre-
ated, representing the cluster they belong to (i.e., 0, 1, 2,
3). The data are then fed to Algorithm 2 to build an autoen-
coder. The codex of the algorithm is given in "Appendix A"
Listing 1 for interested readers.

6.2 Algorithm 2: Predicting cluster labels of time
series data through autoencoder-based deep
learning

The second part of the methodology builds an autoen-
coder-based deep learning for clustering stock indices. The
algorithm takes as inputs: (1) training labeled time series
data, (2) testing unlabeled data, (3) number of clusters (i.e.,
neuron or node) to encode, (4) the shape of the input data
(i.e., 2in our case < volatility, return >, (5) the shape of the
output data (i.e., 1 in our case, a floating value), and (6)
the number of iterations or epochs. The second part of the
algorithm is presented in Algorithm 2.

The algorithm starts with initiating setting variables
including: 1) the number of clusters to project, 2) the num-
ber of batch size to retrieve and feed the autoencoder, 3)
the shape of the input data, which is the number of input
columns entered to the model (< volatility, return >)), 4)
the output shape (i.e., in out case is 1, an output with one
column, which is a floating variable representing the clus-
ter label), 5) the train and test size, and 6) the number of
epochs for iterative training . The algorithm then loads
previously saved data that were captured through Algo-
rithm 1. The loaded data are then split into two data sets
of train (68%) and (33%) for test sets, respectively.

The exact building of the autoencoder starts with
specifying the shape of the input data. In our case, the
shape of the input data is a vector with two columns
< volatility, return >.The creation of different layers of the
autoencoder starts where the input shape is given to build
the x part of the autoencoder model (as specified in Fig. 3).
The input layers of the autoencoder are then built where
the shape of the input is given to the first layer with 100
neurons, and the built first layer and its output is given to
the second with 50 nodes or neurons, and the third with
20 neurons or nodes. The activation function for building
these layers is “relu” which returns a value between (0 to
1). The h part of the autoencoder (Fig. 3) is built where the
number of cluster labels is specified. The activation func-
tion here is “sigmoid.”

The encoding part of the autoencoder and the encod-
ing layers are then built where a decreasing number of
neurons or nodes on each layer indicates filtering impor-
tant features of data and preserving them for further anal-
ysis for the next layer (i.e., feature reduction).

Conversely and in a similar manner, the decoder part
of the autoencoder intends to reconstruct the initial input
data using the encoded data. The first layer of the decoder
takes the output of the “encoder” with 20 neurons. The
additional decoder layers are then built symmetrically with
respect to the layers incorporated for the encoder part
with a similar activation function. Eventually, the r part
of the autoencoder (see Fig. 3) is built, where a floating

Algorithm 2: Deep learning-based encoder-decoder model for predicting cluster labels.)

Result: A clustering model based on an autoencoder-based deep learning.

1 initialize;

2 Splitting labeled time series data into test and train;
3 Build an encoder-decoder architecture model on training data;
4 Predict the label for the test data using the encoder-decoder model;
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variable is estimated to show the cluster label of the input
data < volatility, return >.

The built autoencoder maps the input to the decoded
and reconstructed output and the model itself is built. The
model is then compiled using “adam” optimizer and mean
square error (i.e., MSE) as a metric to assess the precision of
the prediction. The built model is then given the training
data set with a given number of epochs and bath size and
eventually the test data are provided to the model for the
purpose of prediction of their cluster labels. In the end, the
absolute and the round value of the floating output value
is reported as the predicted cluster label. The codex of the
algorithm is given in "Appendix B" Listing 2 for interested
readers.

7 Case study and evaluation

This section reports the results of a case study performed
and thus it evaluates the introduced two-stage synergic
methodology to cluster financial time series data.

7.1 Development platform

The authors implemented the algorithms in Python 2.7.13,
the anaconda version. The deep learning portion of the
algorithms was developed using tensorflow and keras,
the open source Python implementations of deep learn-
ing and neural networks. The experiments were executed
on a MacBook Pro computer with OS X El Capital 10.11.2
operating system with 2.8 GHz Intel Core i7 and 16GB 1600
MHz DDR3.
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7.2 Data collection

The authors collected the indexes and ticker symbols for
70 companies listed by S&P 500. The ticker symbols were
scarped from the URL of the Wiki page of the S&P 500'.
The read_html Python library was used to automatically
scrap and extract the required data from the given Web
page. Once the thicker and symbol of the selected com-
panies are identified, a Python script captured the time
series data and more specifically the “Adjusted Close” for
the selected stock symbol. The adjusted close value data
were captured for the period of January 1, 2019 to April
15,2019 on a daily basis.

7.3 Experimental results

This section reports the results of different analysis per-
formed on the time series data along with the perfor-
mance obtained using the introduced two-stage cluster-
ing methodology.

7.3.1 Detemination of the optimal number of clusters

The determination of the optimal number of clusters is
essential in improving the precision and accuracy of the
proposed methodology. An optimal clustering groups
time series data with respect to an optimization metricand
assigns the best label for each time series data that can
be used in later stages of the algorithms for training and
testing. There are several known methods to determine
the optimal number of clusters that best clusters data with
respect to the optimization metric. The elbow method, the
average Silhouette method, and the gap statistics method
are a few techniques to help finding the optimal number
of clusters.

The authors used the average silhouette method to
decide about the optimal number of clusters. To do so, the
conventional KMeans clustering algorithm with a desired
number of clusters between 2 and 10 was applied to the
feature vector data set. Figure 4 illustrates the obtained
Silhouette value for each clustering with different number
of clusters. Accordingly, the optimal clustering is achieved
when the Silhouette value is maximized.

As Fig. 4 shows the best optimal Silhouette value is pro-
duced when the number of clusters is set to 4 (i.e., Silhou-
ette Value = 0.564). Therefore, the authors set the number
of clusters to 4 for the remaining part of the case study.

! https://en.wikipedia.org/wiki/List_of_S%26P_500_companies
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Table 1 The result of KMeans Cluster“0” Cluster”1” Cluster“2” Cluster“3”
clustering based on four
clusters Index Vol.  Ret. Index Vol. Ret. Index Vol. Ret. Index Vol Ret.
1 ACN 0.179 0909 MMM 0201 0512 ABBV 0254 —0234 AMD 071 1.651
2 ADBE 0.223 0.713  ABT 0.207 0.468 ABMD 0398 0416 ALXN 0298  1.229
3 AES 0.172 0.909  AAP 0.29 0516  ATVI 0.46 0.154 ALGN 0427 1431
4 A 02 0781 AMG 0296 0537 ALK 0259 —0.000 APC 0696  1.402
5 APD 0.162 0.741 AFL 0.109 0328 ABC 0.283  0.07 APTV ~ 0.291 1478
6 AKAM 0.203 0.982 ALB 0333 0317 AMGN 0.209  0.04 ANET 0377 1.634
7 ARE 0.136 0969  ALLE 0.178 0582 ANTM 0338 0.035
8 AMT 0.123 0866 AGN 031 0.299
9 AMP 0.256 1.05 ADS 0317 0612
10 AME 0.181 0.888 LNT 0.137  0.503
11 APH 0208 0978 ALL 0.136  0.65
12 ADI 0.285 1.08 GOOGL 0.223 0557
13 ANSS 0.204 1.036 GOOG 0.225 0.573
14 AON 0254 0766 MO 0278  0.584
15 AOS 0201 0918 AMZN 0.284  0.689
16 APA 0336 1.157  AEE 0.14 0483
17 AlV 0.127 0.708  AAL 0379 0317
18 AAPL 0308 0.894  AEP 0125 0553
19 AMAT 04 0997 AXP 0152 0.571
20 ADSK 0.287 1.076 AIG 0.276  0.617
21 ADP 0.169 0.851 AWK 0.123 06
22 AZO 0202 0866 ADM 0.178 0253
23 AVB 0.102 0.708  ARNC 0.396  0.489
24 AVY 0.186 0.959 AJG 0.157 0439
25 BHGE (BKR) 0.278 0.879 AlZ 0.165  0.258
26 BLL 0.163 0.963 ATO 0.14 0.457
27 BAC 0256 0733 T 0.182 0443
28 BAX 0.152  0.721 BK 0.183 0417
29 BBT (PNC) 0213  0.426
Mean 0.212 0.896 0218  0.484 0314 —0.050 0466  1.470
STD 0.069 0.127 0.081  0.119 0.089  0.200 0.190  0.131

7.4 Building feature vector: capturing descriptive
metadata

The stock market data and their time series can be charac-
terized through two concepts: (1) volatility, and (2) return.
In addition to some other relevant concepts, volatility and
return can be utilized to capture and summarize the trend
and certain behavior of time series. This section describes
how these two characteristics are calculated and used in
the clustering of time series data.

(a) Annualized Stock’s Volatilityz. To calculate annual-
ized stock’s volatility, the standard deviation of the price

2 https://www.fool.com/knowledge-center/how-to-calculate-
annualized-volatility.aspx

should be multiplied by the square root of 252 assuming
that there are 252 trading days in a given year.

(b) Annualized Stock’s Return. The annualized stock’s
return is computable in a similar fashion. However, instead
of standard deviation, the mean value of the prices should
be multiplied by the square root of 252.

7.5 The creation of time series clusters using
KMeans

Once the annualized stock’s volatility and return values are
computed for each stock data, the values will be given to a
conventional KMeans clustering algorithm with a desired
number of clusters identified ealier (i.e., 4). The KMeans
algorithm will group the stock’s data with respect to vola-
tility and return using the “Euclidean” distance measure.
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Fig. 5 KMeans clustering: Cluster “0”

The label of clusters formed by the KMeans algorithm will
be used as the label for each time series data resulting in
the clustering problem of unlabeled data (i.e., unsuper-
vised learning problem) to be transformed into a cluster-
ing problem with labels and thus an instance of a super-
vised learning problem will be created. Table 1 lists the
exact values for volatility and return for each member
along with the mean and standard deviation values of
these features for each cluster.

As Table 1 reports clusters 0, 1, 2, and 3 have 28, 29, 7,
and 6 members, respectively. The mean values for the pair
of < volatility, return > for each cluster 0, 1, 2, and 3 are
< 0.212,0.896 >, < 0.218,0.484 >, < 0.314,-0.050 >, and
< 0.466, 1.470 >, respectively.

To help understanding the results of the KMeans clus-
tering, we visualize the time series data for each mem-
ber along with the range of volatility and return for each
cluster. Figures 5, 6, 7 and 8 illustrate the time series data
clustered together. As the Silhouette analysis indicated the
optimum number of clusters is four, the figures show the
exact time series of members of each cluster for the period
of January 1,2019 and April 15,2019.

Let us take a look at the clusters and the stock indi-
ces grouped together. Figures 9, 10, 11 and 12 illustrate
the range of volatility and return values of the stock
indices that are clustered together. The stock indices
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are clustered with respect to two descriptive variables
< volatility, return >. As a result, the trend of these two
variables is similar to the other stock indices clustered in
the same group. The figures visualize the range of vola-
tility and returns computed for each member of clusters
produces by KMeans clustering for the period of January
1,2019-April 15,2019.

7.6 Tuning parameters of the encoder-decoder

Table 2 lists the number of layers, the output shape (i.e.,
the number of nodes or neurons) of each layer along with
the number of parameters estimated at each layer. This
output is produced by the the neural deep learning mod-
ule within the encoder-decoder module.

As highlighted earlier, the authoencoder takes as input
a feature vector of size 2 on row 1 of the table (i.e., its
shape which is of the form <Volatility, Returns>). It then
propagates the input to the internal layers devised for the
encoder (i.e., row numbers of 2-5 in Table 2) and decoder
(i.e., row numbers 6-9 of Table 2) parts. At the level of
dense_4 (i.e., row number 5 of Table 2) the shape is in the
form of 4, the number of desired clusters. The exact num-
ber of layers and nodes are built in a reverse order by the
decoder and eventually an output shape with one column
(i.e., the predicted label for each time series) is produced.
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The total number of trained parameters is 12, 805, which
implies creating a fully connected network.

We trained the model with different number of repeti-
tions (i.e., epochs) in order to investigate the performance
and influence of estimating the parameter values in fur-
ther details. We trained the model for 1000 epochs. Fig-
ure 13 illustrates the relationship between the number of
epochs and the error rate (i.e., loss). As the figure indicates,
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the loss value is approximately zero when the number of
epochs is greater than 316.

We kept the number of epochs as 1000, even though
316 epochs were sufficient. Once the neural network
model is trained using the training dataset, it is given the
test dataset to predict the time series labels. The predic-
tion is in the form of a numerical floating value that needs
to be rounded to its closest integer value. The closest inte-
ger value for each time series in fact represents the cluster
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Fig. 12 The range of volatility and returns for Cluster “3”

label for the given time series. The computed numerical
output of the program and the rounded with absolute d
values along with the actual label for the test data set are
reported in Table 3.

7.7 Predicting clustering labels
through the encoder-decoder

The total number of data set was 70 (i.e., the time series
data for 70 stock indices were captured), of which 46 time
series data were considered for training the network, and
the remaining data set (i.e., 24) was used for testing the
model. As Table 3 lists, the neural network was able to
predict the cluster label of 21 out of 24 test data correctly
achieving an accuracy of 87.5 in prediction (i.e., the cases
with dark color). Note that the accuracy in here means
matching between the results obtained by the conven-
tional KMeasn and the results achieved by the proposed
two-stage deep learning methodology. The differently
classified stock indices by the deep learning-based meth-
odology are ALXN, APA, and AMZN, which are emphasized
in bold in the table. The results also may indicate that the
deep learning-based approach may take into account
additional /atent features while clustering the given data
sets.

To help realize the results of the autoencoder-based
deep learning time series classification model, we visual-
ize the results. Figures 14, 15, 16 and 17 show the results
of the prediction of cluster’s label for the test set in which
a time series with dark thicker color (i.e., except Cluster
“2") show the miss-classifications performed by the pre-
diction performed by the encoder-decoder module. The
prediction results in three instances of mislabeling colored
in black in the figures.

7.8 KMenas versus deep learning-based clustering

The investigation of why ALXN, APA, and AMLN are clas-
sified differently by the encoder-decoder module reveals
interesting findings. The clustering performed by conven-
tional KMeans clustering and the encoder-decoder mod-
ule areillustrated in Figs. 18 and 19. By referring to Table 1,

Table2 The input and output

shapes along with the number Type Layer (type) Output shape Parameter#
of parameters trained 1 - Input 1 (Input Layer) (None, 2) 0

2 Encoder( Layer 1) dense_1 (Dense) (None, 100) 300

3 Encoder( Layer 2) dense_2 (Dense) (None, 50) 5050

4 Encoder( Layer 3) dense_3 (Dense) (None, 20) 1020

5 Encoder( Layer 4) dense_4 (Dense) (None, 4) 84

6 Decoder( Layer 1) dense_5 (Dense) (None, 20) 100

7 Decoder( Layer 2) dense_6 (Dense) (None, 50) 1050

8 Decoder( Layer 3) dense_7 (Dense) (None, 100) 5100

9 Decoder( Layer 4) dense_8 (Dense) (None, 1) 101

Total trainable parameters 12,805
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Fig. 13 Loss versus epochs
Tafl;le 3 Nl..lmf-.‘rlical prlecli)icrion Index Volatility Returns  Exact output Absolute rounded Actual KMeans Missed
of time series’ cluster labels
Label prediction Prediction d Cluster Labeled
Gl (Predicted label) Label
1 ADS 0.317 0.612 7.2130698e-01 1 1
2 MMM 0.201 0.512 9.9868220e—-01 1 1
3 AAPL 0.308 0.894 —1.8404983e-04 0 0
4 ACN 0.179 0.909 —1.4865603e-03 0. 0
5 ANET 0.377 1.634 3.0150795e+00 3 3
6 ALXN 0.298 1.229 2.4604988e+00 2 3 X
7 AMG 0.296 0.537 9.9893832e-01 1 1
8 AlG 0.276 0.617 8.0927080e-01 1 1
9 AON 0.254 0.766 4.7755931e-03 0 0
10 A 0.200 0.781 2.7296934e-03 0 0
11 AEP 0.125 0.553 9.9907714e-01 1. 1
12 AES 0.172 0.909 —1.5225317e-03 0. 0
13 BK 0.183 0417 9.9732614e-01 1 1
14 ATVI 0.460 0.154 1.9892873e+00 2 2
15 AVB 0.102 0.708 7.7624805e—02 0. 0
16 AAL 0.379 0.317 1.0931786e+00 1 1
17 T 0.182 0.443 9.9788338e-01 1 1
18 AWK 0.123 0.600 9.9946052e-01 1 1
19 ATO 0.140 0.457 9.9807245e-01 1 1
20 APA 0.336 1.157 2.0670881e+00 2 0 X
21 ALB 0.333 0.317 9.9551427e-01 1 1
22 AMT 0.123 0.866 —1.1737701e-03 0 0
23 ADI 0.285 1.085 1.2981926e-01 0 0
24 AMZN 0.284 0.689 3.1280313e-03 0 1 X
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Test Dataset: Prediction of Time Series Data for Cluster "0"
(APA Mislabeled)
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Fig. 14 Prediction of time series data for Cluster “0"
Test Dateset: Prediction of Time Series Data for Cluster "1"
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Fig. 15 Prediction of time series data for Cluster“1”
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Test Data Set: Prediction of time series data for Cluster "2"
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Fig. 16 Prediction of time series data for Cluster “2"
Test Data Set: Prediction of Time Series Data for Cluster "3"
(ALXN Mislabeled)
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Fig. 17 Prediction of time series data for Cluster“3”
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in which the results of KMeans clustering are reported, we
observe that:

— The feature vector of AMZN is < 0.284,0.689 >. A com-
parison of the feature vector for AMZN with those clus-
tered together in Cluster “1” by conventional KMeans
shows that the return value for AMZN is on the upper
bound of the return values clustered in Cluster“1”(i.e.,
it is the max value for the return).

- A similar finding is observable for APA which is clus-
tered by conventional KMeans in Cluster “0” with
< 0.336,1.157 > (Table 1). Similarly, both volatility
and return values calculated for APA are on the upper
bounds of the volatility and return values calculated for
stock indices cluster together in Cluster “0".

- Similarly, the feature vector calculated for ALXN is
< 0.298, 1.229 > which both are on the lower bounds
of the feature vectors for volatility and returns clustered
together in Cluster“2".

The findings indicate that, these three stock indices (i.e.,
ALXN, APA, and AMZN) are on the border line of clusters
(aee Figs. 18 and 19). Even though the figures may imply
that the clustering produced by KMeans has been per-
formed reasonably well, it may also indicate that cluster-
ing performed by the autoencoder might have taken into
account some other hidden factors. Hence, since deep
learning-based approach is discovering and taking into
account more hidden features among these two values
(i.e., volatility and return), the clustering performed by the
autoencoder is actually providing more insights about
these stock indices and their relationships. More precisely,
it might indicate that there might be some other hidden

KMeans Clustering: Volatility vs. Return
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Fig. 18 KMeans Clustering

Autoencoder Clustering: Volatility vs. Return
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Fig. 19 Autoencoder Clustering

features discovered by the autoencoder that are missed
and not formulated by the conventional KMeans cluster-
ing algorithms.

8 Conclusions and future work

This paper introduced a two-stage deep learning-based
approach to address the time series clustering problem.
The time series clustering methodology presented in
this paper first generates labels for time series data using
KMeans clustering. The clustering performed through
the vanilla form of a KMeans algorithm is unsupervised,
in which the labels of the data are unknown. Using the
results produced by the KMeans algorithm, it is possible
to label each cluster and thus enable treating the prob-
lem as a supervised learning problem. Once the cluster
labels are produced, then they are given to an encode-
decoder-based deep learning neural network in order to
build a classifier and thus a clustering model. The most
important advantage of building such a neural network is
that it models hidden features and takes such features into
account when building the prediction model.

Itis important to note that it is possible to apply cluster
analysis directly to the raw time series data and produce
some clusters for the time series data. However, there are
several problems with this approach: (1) it is computation-
ally more expensive to cluster a set of time series directly,
depending on the length of the time series, mainly due
to the curse of dimensionality and cost of computation
required for clustering, (2) Since the entire time series
data are taken into account for clustering, it is possible
to have some noises in the data that may lead us to an
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improper clustering, (3) since the raw time series data are
not labeled, this approach is basically a clustering with-
out knowing the exact number of optimal clusters (unsu-
pervised clustering) and thus the clustering may not be
accurate.

In our work, we have introduced an approach to cre-
ate some labels for the clusters in order to address the
aforementioned problems listed above. The introduced
approach (1) captures a summary of the underlying time
series that explains the variability, volatility, and the trend
of the time series thus ignoring possible noises in the com-
putation. The summary is called feature vector; (2) then the
feature vector is given to an encoder-decoder learning
module to identify latent and also most important fea-
tures from the feature vector, and then further eliminate
the features in the feature vector whose contributions to
the computation is less significant; and (3) use the feature
vector as a label for the time series and thus transform
the problem into supervised clustering where the optimal
number of clusters is determined.

The case study conducted in the context of the finan-
cial time series data shows an accuracy of 87.5% in clus-
tering such data. More importantly, we observed that the
deep learning-based model performs comparatively simi-
lar to the conventional KMeans clustering. However, we
obtained an interesting result. It was observed that some
of the data points were classified differently by these two
approaches (i.e., conventional KMeans and the proposed
encoder-decoder deep learning-based methodology).
This indicates that there might be some hidden features
that the conventional algorithms such as KMeans cannot
capture when clustering data; whereas, the deep learning-
based approaches are able to capture these hidden fea-
tures and thus perform clustering on an augmented set
of features. This observation poses an interesting research
question where the performance of these two approaches
need to be studied.

SN Applied Sciences

A SPRINGER NATURE journal

The application of deep learning approaches to time
series analysis and in particular financial time series data
is in its early stages. Several other classical problems in
time series analysis can be formulated using deep learn-
ing techniques such as shock and anomaly detection,
seasonal effects as well as clustering and prediction at
different levels of abstractions. Neural network-based
techniques such as Long Short Term Memory (LSTM)
[20-22] and their autoencoder-based variations, Genera-
tive Adversarial Networks (GANS), attention networks need
to be further explored for formulating classical problems
in time series clustering and data analysis. There are also
some other machine learning and deep learning-based
techniques that can be applied and their performance can
be investigated such as Random Forest [24]. It is of utmost
importance to conduct several experimental studies with
the objective of comparing the performance of clustering
produced by conventional algorithms and deep learning-
based clustering models. Our results show that conven-
tional clustering techniques take into account explicit fea-
tures; whereas, the advanced deep learning-based models
explore not only explicit but also implicit features when
clustering data points. As a result, it is necessary to inves-
tigate which clustering makes more sense with respect to
the underlying application domains.
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Appendix: Codex listing

A: Transformation of unsupervised learning to supervised learning through using metadata as labels

Algorithm 1 (Transforming Unsupervised Learning to Supervised Learning) :
Description: Transforming Unsupervised Data to Labeled Data and Clustering
Stock Labeled Data Using Optimal KMean Algorithm.
Inputs: 1) URL to scrap, 2) Number of Clusters,

3) Number of Stock Tickers, 4) The Start Date of Collecting Stock Prices
Outputs: The Cluster Label of the Scrapped Stock Tickers

# Setting

1. numpy.random.seed(7) # For reproducibility purpose

2. sp500_URL = ’'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies’ # Web page to scrape
3 no_clusters = 4 # Number of desired clusters obtained through experiments
4 no_tickers = 70 # Number of tickers to scrap and analyze

5 start_date = "01/01/2019" # The start date to scrap tickers data

# Declaring Some Data Frames to Hold Scrapped Data

6. tickers = [] # A data frame to hold the tickers: <ticker>

7. TP_DF = [] # A data frame to hold the scrapped data: <ticker, prices[]>

8 TVR_DF =[] # A data frame to hold: <ticker, volatility, returns>

9 VR_DF [1] # A data frame to hold: <volatility, returns> (used by clustering)

# Scrapping the Web page and tickers
10. sp500_scrapped = read_html (sp500_URL) # using the Panda read_html function
11. tickers = read(sp500_scrapped)

# Retrieve "Adj_Close" from yahoo regarding each ticker

12. for each ticker in tickers[<= no_tickers] do

13. prices = read(ticker, "yahoo", start_date) ["Adj_Close"]
14. TP_DF.append (<ticker, prices[]>);

15. end for

# Sort the records to re-construct based on "ticker" or index
16. TP_DF.sort

# Compute volatility and returns regarding each ticker
17. for each ticker in TP_DF do

18. index = ticker

19. returns = mean (prices) x 252

20. volatility = std(prices) x sqgrt(252)

21. TVR_DF.append (<index, volatility, returns>)

22. end for

# Build VR_DF[] using TVR_DF[]
23. VR_DF = <TVR_DF.volatility, TVR_DF.returns>

# Cluster <returns, volatility> data without ticker using KMean clustering

# Build the clustering model using KMean

24. clusters = KMean (n_clusters = no_clusters)

# Fit the model/predict the cluster labels regarding each data item <ret, vol>
25. predicts = clusters.fit_predict (VR_DF)

# Report the silhouette value using Euclidean distance and identify centroids
26. centers = clusters.cluster_center_

27. score = silhouette_score (VR_DF, predicts, metric = "euclidean")

# Assign the cluster tag regarding each ticker (<index, voly, ret, cluster>)
28. for each ticker in TP_DF do

29. TVR_DF.cluster[index == ticker] = pd.DataFrame (predicts[index == ticker]
30. end for

# Save the data to a file to be used by Algorithm 2: (<ticker, vol, ret, cluster>)
31. TVR_DF.to_csv("/.../k-means-StockData.csv")
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B: Deep leaning-based autoencoder supervised learning for clustering

Listing 2. Deep learning-based (Encoder-Decoder) supervised learning for predicting cluster labels of stock indices
Algorithm 2 (Supervised Learning through Autoencoder-based Deep Learning) :

Description: Building An Autoencoder to Predict Cluster Label of Stock Indices

Inputs: 1) Training labeled set, 2) Testing unlabeled set.

Outputs: An Autoencoder-based Deep Learning Model to Predict Cluster Labels

# Setting

1 seed = 7

2 numpy . random. seed (seed) # For reproducibility purpose

3 no_clusters = 4 # Number of desired clusters (i.e., # of Neurons or Nodes)
4. BatchSize = 1024 # data batch size retrieved by the learner in each iteration
5 InCol = 2 # The shape of the input data used regarding training <vol, ret>

6 OuCol = 1 # The shape of the output data, A floating value

7 TestSize = 0.33 # the percentage of the "test" data of the splitting data

8 noEpochs = 1000 # Number of epochs (learning round) regarding training the model
# Loading labeled data (train and test): (<ticker, volatility, returns, cluster>)
9. TVR_DF = pd.read_csv("/.../k-means-StockData.csv") # Created by Algorithm 1

# Splitting the data set into training and test set
10. x = TVR_DF[<volatility, returns>]
11. vy = TVR_DF[<cluster>]
12. X_train, X_test, y_train, y_test =
train_test_split(x, y, test_size=TestSize, random_state = seed)

=

Alternatively the InCol = TVR_DF.shape[l] command can be used to capture the
# input shape, instead of using the hard coding style regarding InCol.
# InCol = TVR_DF.shape[l]

# Build a tensor shape
13. input_dim = Input (shape = (InCol, ))

# Build the autoencoder
# Build the encoder part that represents the input

14. encoded = Dense (100, activation = "relu") (input_dim)
15. encoded = Dense (50, activation = "relu") (encoded)
16. encoded = Dense (20

(

, activation = "relu") (encoded)

17. encoded = Dense (no_cluster, activation "sigmoid") (encoded)

# Build the decode part that losey reconstruct the input

18. decoded = Dense (20, activation = "relu") (encoded)
19. decoded = Dense (50, activation = "relu") (decoded)

(
20. decoded = Dense (100, activation = "relu") (decoded)
21. decoded = Dense (OuCol) (decoded)

# Map input to its reconstruction
22. autoencoder = Model (input_dim, decoded)

# Compile the autoencoer with proper optimizer and loss function
23. autoencoder.compile (optimizer="adam", loss="mse")

# Train the autoencoder model using training data set
24. train_history = autoencoder.fit (X_train, y_train,
epochs = noEpochs, batch_size = BatchSize)

# Predict the cluster tag of the test data set using the autonecoder model
25. predicts = autoencoder.predict (X_test)

# Report the labels of each stock index in the test data
26. return np.absolute (np.rint (predicts))
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