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Abstract
This paper introduces a two-stage deep learning-based methodology for clustering time series data. First, a novel tech-
nique is introduced to utilize the characteristics (e.g., volatility) of the given time series data in order to create labels and 
thus enable transformation of the problem from an unsupervised into a supervised learning. Second, an autoencoder-
based deep learning model is built to model both known and hidden non-linear features of time series data. The paper 
reports a case study in which the selected financial and stock time series data of over 70 stock indices are clustered 
into distinct groups using the introduced two-stage procedure. The results show that the proposed methodology is 
capable of achieving 87.5% accuracy in clustering and predicting the labels for unseen time series data. The paper also 
reports an important finding in which it is observed that the performance of both techniques (i.e., autoencoder and 
Kmeans) are comparable. However, there are a few instances of time series data that are classified differently by the 
autoencoder-based methodology compared to the Kmeans algorithm. The results may indicate that the proposed deep 
learning-based approach is taking into account additional hidden features that might be overlooked by conventional 
Kmeans. The finding raises the question whether the explicit features of data should be analyzed for clustering or more 
advanced techniques such as deep learning need to be adapted by which hidden features and relationships are explored 
for clustering purposes.

Keywords  Kmeans clustering · Financial data analysis · Time series clustering · Deep learning · Encoder–decoder · 
Unsupervised learning · Supervised learning · Encoder–decoder · Multi-layer perceptron

1  Introduction

An important step prior to performing any detailed data 
analysis is to understand the characteristics of a given 
data set. There are several statistical techniques that can 
help in creating different level of abstractions, each rep-
resenting the data set from different angles. A very basic 
and prevalent technique is descriptive statistics such as 
mean and standard deviation, which are often utilized by 
data analysts in order to grasp the trend and variation of 

observations and thus capture a big picture of the data. 
These types of metadata can describe and, more specifi-
cally, “featurize” data. Hence, in practice and theory, data 
analysis refers to the identification, selection, and analysis 
of features of data sets.

A popular approach to conducting data analysis is 
through the conventional clustering problem, in which 
the given dataset is divided into subgroups. The goal 
is to maximize the similarity of the data observations 
grouped together; while maximize the dissimilarity of 
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the observations clustered in distinct groups. A simple 
and typical clustering algorithm (e.g., KMeans) takes as 
input a numerical vector representing the original data 
and measures the distances between data items using a 
simple distance metric (e.g., Euclidean). The assignment 
of data observations to different groups is then opti-
mized with respect to the adjustment and optimization, 
which is a repetitive process. It is also possible to extend 
the basic clustering algorithm to address a more general 
multi-objectives problem where more than one feature, 
or characteristics, of datasets are taken into account for 
clustering.

1.1 � The time series clustering (TSC) problem

As a very important and prevalent data type, time series 
data are playing a key role in different application domains 
such as social and human sciences including psychology, 
economics, business, and finance as well as engineering, 
quality control, monitoring and security. What makes time 
series data unique is the addition of another dimension 
to the complexity of data (i.e., time) and thus the eleva-
tion of the complexity involved in performing the analysis. 
The high dimensionality and additional complexity intro-
duced by time makes the analysis of such data types very 
challenging. Therefore, it raises the concern of whether 
conventional data analysis techniques are suitable in 
exploring all “possible” features and factors as well as the 
causalities of such complex and inter-related data type. 
There are fundamentally several challenges associated 
with the problem of Time Series Clustering (TSC) including: 

(1)	 Unlabeled data It is hard to identify or automatically 
label time series data. As a result, existing clustering 
techniques in supervised learning are less applicable. 
While there are great benefits associated with unsu-
pervised learning (e.g., no need to know the exact 
number of desired clusters), the absence of labels in 
time series data would cause overlooking more accu-
rate clustering techniques based on supervised learn-
ing, in which the labels of time series are known. As a 
result, it would be computationally more feasible to 
predict the cluster labels of time series data.

(2)	 High dimensionality Due to the inclusion of the time 
factor in the analysis besides some other features, 
the dimensionality of time series data and thus the 
number of features is increasingly high. Hence, it 
is of utmost importance to identify salient features 
that contribute significantly to the characteristics of 
the time series data and at the same time reduce the 
effects of nuisances that exhibit themselves as false 
features.

(3)	 Hidden features The most critical issue is the possibil-
ity of existence of some hidden features that may not 
be apparent and thus might be missed when con-
ducting direct data analysis. Examples of such hidden 
factors might be exogenous and even some endog-
enous factors in the given data sets. The conventional 
data mining and even machine learning techniques 
are less effective in capturing these existence but hid-
den features. As a result, more advanced and rigor-
ous methods and techniques are needed to take into 
account these possible features when modeling the 
clustering solutions.

This paper introduces a novel approach to time series clus-
tering in which the problem is transformed into a super-
vised learning by automatically generating cluster labels 
for the time series instances. The cluster labels generated 
then are utilized to train a deep learning-based autoen-
coder to learn about the features of each time series 
data and thus cluster them with respect to the explored 
features.

1.2 � General time series clustering approaches

A typical whole time series clustering consists of four 
major components: (1) dimensionality reduction, (2) dis-
tance measurement, (3) a clustering algorithm, and (4) a 
prototype definition and evaluation. As a special type of 
whole time series clustering, in feature-based clustering fea-
tures of interest are extracted and the time series points 
are transformed (i.e., mapped) into a set of features. Fea-
ture extraction is used to compress large data sets using 
dimensionality reduction. In fact, in the feature-based 
clustering raw time series are transformed into a feature 
vector of a lower dimension. Then, a conventional clus-
tering algorithm is applied on the lower dimension fea-
ture vector. The extracted features are usually application 
dependent, which implies that one set of features that are 
useful for an application might not be relevant and useful 
for another one. In some studies, other feature selection 
methods are performed to further reduce the number 
of feature dimensions after feature extraction [1]. As the 
notion of shape cannot be precisely defined, dozens of 
similarity (i.e., distance) measures have been proposed 
[2–5]. In this paper, we also employ similar techniques in 
order not only to cluster but also to utilize cluster labels 
for further analysis and more specifically for supervised 
learning. The time series clustering techniques are gener-
ally classified into six categories:

–	 Hierarchical In this approach, a hierarchy of clusters is 
generated using either agglomerative (i.e., bottom–up) 
or divisive (i.e., top–down) approaches. In the agglom-
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erative method, each item is considered as a cluster 
and then appropriate clusters are merged together; 
whereas, in the divisive approach all the items are 
included in one cluster and then the cluster is split into 
multiple clusters. In hierarchical clustering, once the 
hierarchy is generated, it cannot re-adjust with any fur-
ther changes. Therefor, the quality of hierarchical clus-
tering is weak and some other clustering approaches 
are leveraged to remedy this issue.

–	 Partitioning In this approach, k groups of clusters are 
generated. One of the most common algorithms of 
partitioning clustering is called KMeans (i.e., k-means) 
clustering [6], where k clusters are generated and the 
mean value of all the elements within a cluster is con-
sidered as a cluster prototype.

–	 Density-based In this approach, a cluster is defined as 
a subspace of dense objects. One of the most com-
mon algorithms of density-based clustering is called 
DBSCAN [7], where a cluster is extended if its neighbors 
are dense.

–	 Grid-based In the grid-based clustering, the space is 
divided into a finite number of cells, called grids. Then 
the clustering is done on the grids. STING [8] and Wave 
[9] are two common grid-based clustering algorithms.

–	 Model-based In this approach, a model is used for each 
cluster. Then the best fit of data for the model is discov-
ered. In the model-based clustering approaches, either 
statistical approaches or neural network methods can 
be used. An example is Self-Organizing Maps (SOM), 
which is a model-based clustering approach based on 
neural networks [10].

–	 Multi-step The Multi-step time series clustering refers 
to a combination of methods (also called a hybrid 
method), which is employed to improve the quality of 
cluster representation [11, 12].

1.3 � The introduced two‑stage time series clustering 
approach

This paper introduces a two-stage methodology for time 
series clustering. The clustering presented in this paper 
is a hybrid approach in which (1) partitioning-based, (2) 
model-based, and (3) multi-step time series clustering 
techniques are adapted with the goal of improving the 
clustering.

The first stage of the methodology targets the problem 
of “unlabeled data” in time series. The goal of this stage 
is to transform an unsupervised learning problem into a 
supervised learning and then be able to perform cluster-
ing and prediction of labels for time series data through 
supervised learning techniques. The basic idea is to derive 
the prospective cluster labels through utilization of char-
acteristics and features of the given time series. Once the 

characteristics and features of time series data are “vector-
ized” (i.e., numerically calculated and represented), a con-
ventional K-means clustering can be applied to cluster the 
feature vector data. The generated clusters and the associ-
ated label for each cluster can then be utilized to label the 
original time series data enabling the transformation of 
the problem to a supervised learning.

The second stage targets the problems of “high dimen-
sionality” and dealing with “hidden features” of time series 
data. The proposed approach is to utilize deep learning to 
capture and take into account the effects of hidden layers. 
Deep learning is capable of optimizing a prediction model 
by iteratively learning and modeling new features through 
various internal neural networks and the neurons incor-
porated at each layer. To address both problems simulta-
neously, an autoencoder-based deep learning algorithm 
is utilized, in which the autoencoder not only takes into 
account the hidden features but also preserves the fea-
tures that are salient for computation and prediction. 
Through changing the architecture of neural networks, 
including the shape of the input data, the number of 
internal layers, the number of neurons on each layer, and 
the activation and optimization functions it is possible to 
enhance the accuracy of the prediction, and more specifi-
cally, the supervised learning-based clustering problems 
through deep learning.

1.4 � Contributions of the paper

The key contributions of this paper are as follows: 

(1)	 Introduce a two-stage methodology to address the 
time series clustering problem. In the first stage, a 
methodology is introduced to create cluster labels 
and thus enable transforming a unsupervised learn-
ing problem into a supervised learning for time series 
data. In the second stage, an autoencoder-based 
deep learning algorithm is built to model clustering 
time series data.

(2)	 Demonstrate the performance of the proposed two-
stage methodology through a case study performed 
on clustering time series data of over 70 stock indi-
ces. According to the results of the case study, the 
proposed two-stage clustering technique achieves an 
accuracy of 87.5% in correctly predicting the cluster 
labels of time series data.

(3)	 Compare the clustering results obtained by the con-
ventional KMeans algorithm and the proposed two-
stage methodology. It was observed that there are 
some discrepancies between the clustering results 
obtained by these two approaches implying that the 
deep learning-based approaches take into account 
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additional hidden features when clustering time 
series data.

1.5 � Structure of the paper

This article is organized as follows: Sect.  2 highlights 
the key characteristics of time series and in particular 
financial time series data. A brief overview of artificial 
neural networks is represented in Sect. 3. The general 
picture of the two-stage model is presented in Sect. 4. 
The encoder–decoder deep learning model is described 
in Sect. 5. The introduced algorithms are presented in 
Sect. 6. The autoencoder-based model is evaluated and 
the results are reported in Sect. 7. Section 8 concludes the 
paper and highlights the future research directions.

2 � Feature vectors of time series as data 
labels

This section first reviews the general characteristics of 
time series that can be used as features, and then explores 
financial time series and their unique characteristics along 
with a short description of the most representative fea-
tures of financial time series data: volatility and return.

2.1 � Common general components of time series 
data

General time series data are often analyzed with respect 
to certain features and components. This section briefly 
presents some known features of time series:

–	 Seasonality Seasonality is a periodical pattern observed 
for time series. It is the effects of seasons such as 
months or fiscal year on the volatility and the vol-
ume traded within a period of time. For instance, it is 
expected that the price of crude oil usually is elevated 
in the beginning of cold seasons.

–	 Cycle Cycle is a dynamic pattern observed over a 
period of time (e.g., year). For instance, it is expected 
to observe some cyclic behavior during harvesting time 
(e.g., cotton harvesting time).

–	 Trend It is a long-term movement in a given time series 
without considering time or some other external influ-
ential factors. For instance, it is expected that the num-
ber of individuals, who purchase new Apple product 
increases. However, this trend will be slowly disappear-
ing over time if another new or better product intro-
duced into the market.

–	 Irregular features These types of components are 
unpredictable. These features are often calculated or 
retrieved after trend-cycle and seasonal components 

are removed from the time series. The remaining parts 
are unpredictable, since they only represent non-cyclic 
and the characteristics that are unique to the underly-
ing time series.

These features are the major tools for analyzing general 
time series data. More special time series data such as 
those related to financial markets have their own unique 
features, which are discussed in the following section.

2.2 � Common features of financial time series data

The financial time series data can be characterized through 
certain features and patterns [13]:

–	 Dependence There exists a positive autocorrelation in 
stock return indices, but this autocorrelation is largely 
insignificant.

–	 Distribution The annual returns follow a normal distri-
bution. Likewise, the security returns are non-station-
ary and also follow a normal distribution with fat tails.

–	 Heterogeneity The distributions of financial returns are 
non-stationary. Moreover, the standard deviation of 
returns is not constant over time.

–	 Non-linearity The models built for time series are mostly 
non-linear in mean and variance.

–	 Scaling Unlike physical objects, there are no constants 
or absolute sizes in economics. As a result, there is no 
characteristic scale in economics and finance and thus 
financial markets demonstrate non-trivial scaling prop-
erties.

–	 Volatility It is the standard deviation of the change in 
the values of a financial time series data. Volatility is 
often used to demonstrate the risks associated with 
stock indices.

–	 Volume It refers to the level of trading of a stock index 
over a given time period in the market. This feature may 
have some correlations with calendar and seasonal 
effects.

–	 Calendar effects The seasonal or calendar effects are 
periodical anomalies or patterns that are observed in 
returns. There are several different types and flavors of 
calendar effects such as the weekend effect, the Janu-
ary effect, the holiday effect, and the Monday effect.

–	 Long memory There is a chance that the stock market’s 
returns and volatility exhibit long memory properties 
indicating that the observed returns are dependent 
over time. The chance highly depends on the type of 
the market.

–	 Chaos This feature exists when a dynamic system exhib-
its some sensitivity to initial conditions and thus reacts 
to unpredictable long-term behavior. There exists some 
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small evidence of low-dimensional chaos in financial 
markets.

The classical data mining techniques and even primitive 
machine learning algorithms might not be able to capture 
all these features and thus they may generated a model 
that might be less accurate. As discussed and presented in 
this paper, more advanced techniques such as deep learn-
ing approaches are better well-positioned to model these 
features through layers of learning.

2.3 � Financial time series feature vector: <volatility, 
return>

In finance, volatility, also known as swings, refers to the 
degree of variation of a trading price series such as S&P 
500 index over time. It is calculated by the standard devi-
ation of logarithmic returns. More specifically, volatility 
shows the frequency and severity, in which the market 
price of an investment fluctuates. The stock volatility 
shows uncertainty of the future of the economic and finan-
cial series. The expectation of the future of economic and 
financial behaviors highly contributes in changing the 
stock volatility.

For calculating volatility, we first need to provide 
returns. The return of a stock in a given time period can 
be defined as the natural logarithm of the closing price 
(or other series such as opening or adjusting price) at the 
end of the period divided by the closing price of the stock 
at the end of the previous period. The general equation for 
calculating return is as follows:

where

–	 rt is the return of a given stock over the period,
–	 ln is the natural log function,
–	 Ct is the closing price at the end of the period, and
–	 Ct−1 is the closing price at the end of the last period.

For calculating the volatility, we need to calculate the 
standard deviation of the returns. Standard deviation is 
the square root of variance, which is the average squared 
deviation from the mean as follows:

where

–	 rt is the return of a given stock over the period,

(1)rt = ln

(
Ct

Ct−1

)

(2)� =

√
1

T − 1

T∑

t=1

(rt − �)2

–	 � is the average of the returns, and
–	 � is the square root of variance.

As an example, VIX (Chicago Board Options Exchange Mar-
ket Volatility Index) is a popular measure of the implied 
volatility of S&P index options. If there is a wide range of 
fluctuations in the prices over short time, it means that 
there is high volatility and vice versa. On the other hand, 
if the price moves slowly, there is low volatility [14].

The importance of volatility and returns and the trade-
off between these two stock indicators has received tre-
mendous attentions. In practice, investors invest in the 
stock markets with an expectation of getting returns, 
which in turn involves risks or the volatility of asset returns. 
In fact, the trade-off between return and risk is the concep-
tual framework in the asset-pricing models.

There has been a large body of literature on transmis-
sion of stock returns and volatility. Most asset-pricing mod-
els indicate a positive trade-off between expected returns 
and volatility. On the other hand, there are some research 
studies, in which empirical evidence supports a negative 
relationship between returns and volatility [15–17]. For 
example, Chung and Chuwonganant [18] found that mar-
ket volatility affects returns through stock liquidity, sug-
gesting that liquidity providers play an important role in 
the market–return relationship in the United States. Sen 
and Bandhopadhyay [19] evaluated a dynamic return and 
volatility spillover from the US stock market into the Indian 
stock market. These conflicting results warrant further esti-
mation by using appropriate techniques and algorithms.

The volatility clustering is the main feature of volatil-
ity of asset prices and the volatility shocks can affect the 
expectation of volatility in future [19]. The volatility cluster-
ing means the large changes of prices (variance of return) 
for a period.

There is a double relationship between volatility and 
returns in equity markets. The long run fluctuations of 
volatility show risk premiums and therefore it establishes 
a positive relation to returns. On the other hand, short run 
volatility indicates news effects and shocks to leverage, 
and thus produces a negative volatility-return relation. 
The leverage effect explains how the volatility rises when 
the asset prices reduces. While long run volatility is related 
with a higher return, the opposite appears in the short run 
volatility.

3 � Artificial neural networks: a brief review

There are several different types of deep learning-based 
neural networks including convolutional neural networks 
(CNN) and recurrent neural networks (RNN). In particular, 
the Long Short-Term Memory (LSTM) network architecture 
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[20–22] can be of interest for analyzing time series data. 
This paper provides a general background related to gen-
eral concept of ANNs and, more specifically, autoencoders.

3.1 � Artificial neural network (ANN)

A typical neural network consists of different layers: (1) an 
input layer, (2) one or more hidden layers, and (3) an out-
put layer. The nodes or neuron on each layer usually repre-
sent the number of features and thus the dimensionality of 
the dataset. The neurons are mapped through some links 
called “synapses” to the nodes created in the hidden layers 
and then to the output layer. The synapses links are associ-
ated with some weights that represent the significance of 
the value hold by every node. The weights help in deci-
sion making in order to decide which feature should be 
considered and thus should pass through the next layers. 
The weights also demonstrate the strength of the features 
to the hidden layer. A neural network is capable of adjust-
ing the weight for each synopsis, a process that is usually 
called learning through optimization.

The nodes in the internal layers utilize some activation 
functions such as sigmoid or tangent hyperbolic (tanh) on 
the weighted sum of inputs and then transform or map 
the inputs to the outputs that hold the predicted values. 
Once the weights are adjusted, the output layer creates a 
vector of probabilities for different outputs and chooses 
the one with minimum error rate. In the case of multi-
labels clustering problem, i.e., clustering with more than 
two outcomes, a SoftMax function can be utilized, in which 
it minimizes the differences between the expected and 
predicted values.

The learning process is an iterative task by which the 
assignments and weights are repeatedly adjusted to with 
the goal of minimizing the errors obtained through the 
network training. To find the most optimal values for 
errors, the errors are “back propagated” into the network 
from the output layer towards the hidden layers. As a 
result, the weights are adjusted. The procedure is repeated 
several times with the same observations and the weights 
are re-adjusted until there is an improvement in the pre-
dicted values and subsequently in the cost. When the cost 
function is minimized, the model is trained.

3.2 � Encoder–decoder

An autoencoder is a type of neural networks that trans-
forms input data into their output. An autoencoder con-
sists of two parts in this transformation [23]: 

(1)	 The Encoder that transforms the high dimensional 
inputs into a smaller set of dimensions while keep-
ing the most important features, and

(2)	 The Decoder that uses the reduced set of features to 
reconstruct the initial input data.

The output of an encoder, referred to as “latent-space repre-
sentation”, is a compressed form of the input data, in which 
the most influential and important features are kept. The 
output of the encoder is then utilized to reconstruct the 
initial input data given to the autoencoder.

From a mathematical point of view, an autoencoder 
network is a composition of functions (fg) (x). More spe-
cifically, an encoder is a function f that takes x as input 
and maps x into h, or the latent-space representation (i.e., 
h = f (x) ). On the other hand, a decoder is a function g that 
takes the output of the encoder (i.e., h) and produces r 
(i.e., r = g(h) ). The objective is to make r as close as pos-
sible to x.

The key objective of autoencoders is not just to copy 
the input into the output. In fact, through the training of 
an autoencoder and transformation of the input into the 
output, it is aimed that the produced latent-space repre-
sentation (i.e., h) holds only unique and important prop-
erties and features of the dataset that can be inspected 
for further analysis. In order to extract the only important 
features of the given dataset in the form of latent-space 
representation, a set of constraints can be defined on 
the function that generates h so that the resulting com-
pressed form of the dataset has smaller dimensions than 
initial dataset x. As a result, the quality of detecting most 
salient features of the dataset x heavily depends on the 
constraints defined on h. There are different variations of 
autoencoders [23]: 

(1)	 Basic autoencoder, in which there are three layers: a) 
an input layer of size |x| , b) a hidden layer of size |h| 
(i.e., |h| < |x| ), and b) an output layer of size |r| (i.e., 
|r| = |x| ) where size refers to the number of nodes 
incorporated and designed in the underlying layers.

(2)	 Multilayer autoencoder, in which the number of hid-
den layers is increased to more than one. This type of 
autoencoders is useful when additional internal hid-
den layers are required to extract the hidden features 
and train the model.

(3)	 Convolutional autoencoder, in which the input data is 
filtered for the goal of extracting only some parts of 
it. These types of autoencoders are particularly very 
effective in image processing applications and con-
versions from 3-D images into smaller dimensions of 
filtered images.

(4)	 Regularized autoencoder, in which the extraction and 
training stages are performed in accordance with 
some other factors such as loss functions than solely 
based on defining hidden layers.
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3.2.1 � The mathematical background of encoder–decoder

In an autoencoder neural network, the network is split into 
two segments: the encoder and the decoder.

The encoder function � maps the original data X  , to a 
latent space F  of reduced dimensionality. On the other 
hand, the decoder function � maps (i.e., reconstruct) the 
latent and reduced space F  to the output. In our case, the 
output is the same as the input data X  . More specifically, 
the encoder–decoder pair is trying to reconstruct the 
original data and its shape after performing and capturing 
some generalized non-linear transformation of the data.

The encoding part of the network can be represented 
by the standard neural network function passed through 
(1) an activation function � , (2) a bias parameter b, and (3) 
the latent dimension z.

In an analogous way, the decoding part of the neural net-
work can be represented similarly, but with different acti-
vation functions, bias, and weight.

The loss function L for this combined neural network can 
be expressed in terms of these encode and decoder net-
work functions.

Accordingly, this loss function L will be used to train the 
neural network through the standard back propaga-
tion procedure. The goal of the autoencoder is to select 
the encoder and decoder functions such that minimal 
information are encoded that be can regenerated by the 
decoder with minimal loss.

4 � A synergic method for time series 
clustering

Figures 1 and 2 depict the proposed two-stage method-
ology for time series clustering. The methodology first 
enables supervised learning by generating cluster labels 
for the given time series data using conventional KMeans 
clustering, and then it uses the generated labels for the 
purpose of clustering. The steps of the two-stage synergic 
methodology are as follows:

(3)

� ∶ X → F (Encoder)

� ∶ F → X (Decoder)

�,� = arg min�,� ||X − (� o �)X ||2

z = �(Wx + b)

x� = ��(W �z + b�)

(4)
L(x, x�) = ||x − x�||2 = ||x − ��(W �(�(Wx + b)) + b�)||2

(a) Stage I: Label Generation

(1)	 Capture the characteristics and descriptive meta-
data, as features, and build the feature vectors 
< f1, f2, ..., fn > for each time series data.

(2)	 Apply the conventional KMeans clustering on feature 
vectors and identify cluster groups.

(3)	 Utilize the class groups and their identifications (i.e., 
tags) as labels for each time series data.

(4)	 Provide the time series data, their feature vectors, and 
their generated labels to Stage II and thus transform 
an unsupervised learning to a supervised learning 
problem.

(b) Stage II: Autoencoder-based Clustering

(1)	 Build an autoencoder-based deep neural network 
with some hidden layers and neurons, i.e., nodes, in 
which:

–	 The number of nodes on the inner most layer rep-
resents the number of clusters,

–	 The number of nodes on the input layer represents 
the feature vector and its size,

–	 The number of nodes on the output layer repre-
sents a probabilistic value showing the clustering 
label for each data set.

(2)	 Split the constructed “labeled” time series data into 
test and train datasets.

(3)	 Train the autoencoder-based neural network with the 
train dataset.

(4)	 Cluster and predict the labels of the test dataset using 
the trained neural network.

The encoding part of the model is responsible for iden-
tifying important features of the time series data. The 
encoder then reduces the number of features from the 
whole set to the selected and most important features 
of the time series data. On the other hand, the decoder 
takes the reduced set of important features and tries to 
reconstruct the initial values without losing any informa-
tion significantly. The pair of < encoder, decoder > then 
will form a mechanism to reduce the dimensionality of the 
time series data for the purpose of clustering. In fact, the 
encoder and decoder pair only reduces the feature space 
and then the selected and reduced features are utilized to 
perform clustering.

In the following sections, we provide an in-depth 
description of the synergic methodology proposed for 
clustering time series data. First, we focus on the archi-
tecture of the designed autoencoder and then provide 
in-depth discussion of the algorithms developed.
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5 � An encoder–decoder for learning features 
of time series data

Figure  3 i l lustrates  the architec ture of  the 
encoder–decoder neural network developed for feature 
learning of time series data.

The network includes two layers representing input 
x and output r, respectively. The input layer is designed 
with two neurons (i.e., nodes) where the neurons in the 
input layer represent the volatility and return for each 
stock index (i.e., < Volatility, Return > , the selected features 
for our financial case study); Whereas, the output layer is 
designed with one neuron, by which a probabilistic value 
will be calculated to represent the cluster label.

On the encoding part, there are three internal layers 
L1, L2, and L3, each with the number of devised neurons 
of 100, 50, and 20, respectively. Since the ultimate goal 
of an encoder is to reduce the dimensionality of a given 
input, the number of nodes incorporated in these internal 

layers is in descending order implying the reduction of the 
features and preserving only those that stand out and are 
salient. Note that the explicit features given to the authoe-
ncoder are in the form of < Volatility, Return > . However, 
the purpose is to detect and take into account hidden 
features that might exist even within volatility and return 
when modeling the deep learning-based clustering.

Since an autoencoder is a symmetric neural network, 
the number of layers and nodes on each layer of the 
decoder should be symmetric with the number of lay-
ers and neurons in the encoder side. As a result, there are 
three hidden layers on the decoder side (i.e., L4, L5, and L6) 
with the increasing number of nodes of 20, 50, and 100, 
respectively, in which an ascending order of the number 
of neurons is apparent. The decoder side explicitly recon-
structs the original inputs using the reduced features with 
the exact shape for both input and output. The layer h is 
exactly where the number of prospective clusters for clus-
tering data is taken into consideration. In our financial case 

Fig. 1   A synergic methodology for time series clustering
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study, the optimal number of clusters is four (See Sect. 7 
for analysis on capturing the optimal number of clustering 
using Silhouette value) and thus the number of nodes on 
this layer (i.e., h) is also considered four.

As it is apparent from Fig. 3, through the number of 
nodes and layers defined for the encoder part, the most 
salient features are captured and through the decoder 
side, which is symmetric to the encoder side, the exact 
shape of the input data is reconstructed. The adjustment 
of weights for the internal layers and their nodes are 
decided and optimized in a repetitive manner, where the 
loss function on the output (i.e., reconstructed input) is 
used as a means to measure the accuracy of the clustering.

The activation function incorporated on the layer h is 
in the form of a “sigmoid” function. A sigmoid function 
is used to predict the probability values, since its values 
range between (0 to 1). Once the model is trained on 
training set, the model (i.e., the output layer) produces a 
“floating” value in the range of [1 − C ,C − 1] where C is the 

number of desired clusters (i.e., four in our case study). 
A simple application of rounding (i.e., np.rint function 
in Python) and absolute (i.e., np.absolute function in 
Python) functions to the output generated by the model 
will produce a “positive integer” value between [0,C − 1] 
that represent the class label of the underlying stock index 
data for which the output has been generated.

6 � The algorithms

The introduced autoencoder-based deep learning method-
ology for time series clustering is represented through two 
algorithms: (1) Transforming unsupervised data into super-
vised through building feature vectors and characterizing 
time series using descriptive metadata (i.e., volatility and 
return), and (2) Building an autoencoder-based deep learning 
to predict cluster labels of supervised stock data. The stand-
ard form of K means and encoder–decoder based algorithms 

Fig. 2   The flowchart of the introduced timer series clustering
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are adapted to solve the time series clustering problem. These 
algorithms are well known and they have been implemented 
and integrated together for the purpose of addressing the 
time series clustering problem. In the following sections, we 
describe each algorithm in further details.

6.1 � Algorithm 1: Supervised learning 
through characterizing time series and utilizing 
metadata as labels

Algorithm 1 presents the first stage of the methodology 
in which the conventional KMeans clustering algorithm 
is used to determine the cluster label for the time series 
data. The algorithm utilizes two descriptive concepts to 

characterize financial time series data: (1) volatility, and (2) 
return. Therefore, a vector of < volatility, return > for each 
array of stock prices captured for each stock index and for 
a given period of time will be computed and constructed.

Algorithm 1 takes as inputs (1) a URL to scrap and enu-
merate stock indices, (2) the desired number of clusters for 
clustering stock indices, (3) the number of stock indices to 
analyze and cluster, and (4) the start date of stock prices. 
The algorithm then labels each stock index with respect 
to the cluster the underlying stock index belongs to by 
utilizing characteristic of time series data (i.e., volatility and 
return) and then transforming unsupervised time series 
data into supervised data. The first stage of the methodol-
ogy (i.e., Algorithm 1) consists of several part itself.

Fig. 3   The designed encoder–
decoder architecture
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First the setting variables are initialized followed by the 
declaration of a few data structures to hold captured data. 
The algorithm then proceeds with scrapping the given 
URL and listing the stock indices (i.e., tickers) in order to 
perform cluster analysis. Once the list of stock tickers is 
prepared, the “Adjusted Close” price of each stock index is 
retrieved for a given time period (i.e., from the date indi-
cated as input until the present date). For our case study, 
we retrieved data for the start date of January 1, 2019 to 
April 15, 2019 (the day of running this experiment and 
capturing the data).

As the two key characteristic features of time series, the 
volatility and return values are computed for each time 
series of prices for each stock index and the computed 
values along with the stock indices then are preserved in 
a data structure.

A series of KMeans-based clustering algorithm with 
respect to the number of desired clusters is then built and 
the best clustering is identified, with respect to the Sil-
houette value. The captured < volatility, return > are then 
given to the clustering model in order to cluster and then 
create cluster labels. The labels for each stock index is cre-
ated, representing the cluster they belong to (i.e., 0, 1, 2, 
3). The data are then fed to Algorithm 2 to build an autoen-
coder. The codex of the algorithm is given in "Appendix A" 
Listing 1 for interested readers.

6.2 � Algorithm 2: Predicting cluster labels of time 
series data through autoencoder‑based deep 
learning

The second part of the methodology builds an autoen-
coder-based deep learning for clustering stock indices. The 
algorithm takes as inputs: (1) training labeled time series 
data, (2) testing unlabeled data, (3) number of clusters (i.e., 
neuron or node) to encode, (4) the shape of the input data 
(i.e., 2 in our case < volatility, return > , (5) the shape of the 
output data (i.e., 1 in our case, a floating value), and (6) 
the number of iterations or epochs. The second part of the 
algorithm is presented in Algorithm 2.

The algorithm starts with initiating setting variables 
including: 1) the number of clusters to project, 2) the num-
ber of batch size to retrieve and feed the autoencoder, 3) 
the shape of the input data, which is the number of input 
columns entered to the model ( < volatility, return >)), 4) 
the output shape (i.e., in out case is 1, an output with one 
column, which is a floating variable representing the clus-
ter label), 5) the train and test size, and 6) the number of 
epochs for iterative training . The algorithm then loads 
previously saved data that were captured through Algo-
rithm 1. The loaded data are then split into two data sets 
of train ( 68% ) and ( 33% ) for test sets, respectively.

The exact building of the autoencoder starts with 
specifying the shape of the input data. In our case, the 
shape of the input data is a vector with two columns 
< volatility, return > . The creation of different layers of the 
autoencoder starts where the input shape is given to build 
the x part of the autoencoder model (as specified in Fig. 3). 
The input layers of the autoencoder are then built where 
the shape of the input is given to the first layer with 100 
neurons, and the built first layer and its output is given to 
the second with 50 nodes or neurons, and the third with 
20 neurons or nodes. The activation function for building 
these layers is “relu” which returns a value between (0 to 
1). The h part of the autoencoder (Fig. 3) is built where the 
number of cluster labels is specified. The activation func-
tion here is “sigmoid.”

The encoding part of the autoencoder and the encod-
ing layers are then built where a decreasing number of 
neurons or nodes on each layer indicates filtering impor-
tant features of data and preserving them for further anal-
ysis for the next layer (i.e., feature reduction).

Conversely and in a similar manner, the decoder part 
of the autoencoder intends to reconstruct the initial input 
data using the encoded data. The first layer of the decoder 
takes the output of the “encoder” with 20 neurons. The 
additional decoder layers are then built symmetrically with 
respect to the layers incorporated for the encoder part 
with a similar activation function. Eventually, the r part 
of the autoencoder (see Fig. 3) is built, where a floating 
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variable is estimated to show the cluster label of the input 
data < volatility, return >.

The built autoencoder maps the input to the decoded 
and reconstructed output and the model itself is built. The 
model is then compiled using “adam” optimizer and mean 
square error (i.e., MSE) as a metric to assess the precision of 
the prediction. The built model is then given the training 
data set with a given number of epochs and bath size and 
eventually the test data are provided to the model for the 
purpose of prediction of their cluster labels. In the end, the 
absolute and the round value of the floating output value 
is reported as the predicted cluster label. The codex of the 
algorithm is given in "Appendix B" Listing 2 for interested 
readers.

7 � Case study and evaluation

This section reports the results of a case study performed 
and thus it evaluates the introduced two-stage synergic 
methodology to cluster financial time series data.

7.1 � Development platform

The authors implemented the algorithms in Python 2.7.13, 
the anaconda version. The deep learning portion of the 
algorithms was developed using tensorflow and keras, 
the open source Python implementations of deep learn-
ing and neural networks. The experiments were executed 
on a MacBook Pro computer with OS X El Capital 10.11.2 
operating system with 2.8 GHz Intel Core i7 and 16GB 1600 
MHz DDR3.

7.2 � Data collection

The authors collected the indexes and ticker symbols for 
70 companies listed by S&P 500. The ticker symbols were 
scarped from the URL of the Wiki page of the S&P 5001. 
The read_html Python library was used to automatically 
scrap and extract the required data from the given Web 
page. Once the thicker and symbol of the selected com-
panies are identified, a Python script captured the time 
series data and more specifically the “Adjusted Close” for 
the selected stock symbol. The adjusted close value data 
were captured for the period of January 1, 2019 to April 
15, 2019 on a daily basis.

7.3 � Experimental results

This section reports the results of different analysis per-
formed on the time series data along with the perfor-
mance obtained using the introduced two-stage cluster-
ing methodology.

7.3.1 � Detemination of the optimal number of clusters

The determination of the optimal number of clusters is 
essential in improving the precision and accuracy of the 
proposed methodology. An optimal clustering groups 
time series data with respect to an optimization metric and 
assigns the best label for each time series data that can 
be used in later stages of the algorithms for training and 
testing. There are several known methods to determine 
the optimal number of clusters that best clusters data with 
respect to the optimization metric. The elbow method, the 
average Silhouette method, and the gap statistics method 
are a few techniques to help finding the optimal number 
of clusters.

The authors used the average silhouette method to 
decide about the optimal number of clusters. To do so, the 
conventional KMeans clustering algorithm with a desired 
number of clusters between 2 and 10 was applied to the 
feature vector data set. Figure 4 illustrates the obtained 
Silhouette value for each clustering with different number 
of clusters. Accordingly, the optimal clustering is achieved 
when the Silhouette value is maximized.

As Fig. 4 shows the best optimal Silhouette value is pro-
duced when the number of clusters is set to 4 (i.e., Silhou-
ette Value = 0.564 ). Therefore, the authors set the number 
of clusters to 4 for the remaining part of the case study.

Fig. 4   Optimal number of clusters

1  https​://en.wikip​edia.org/wiki/List_of_S%26P_500_compa​nies

https://en.wikipedia.org/wiki/List_of_S%26P_500_companies
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7.4 � Building feature vector: capturing descriptive 
metadata

The stock market data and their time series can be charac-
terized through two concepts: (1) volatility, and (2) return. 
In addition to some other relevant concepts, volatility and 
return can be utilized to capture and summarize the trend 
and certain behavior of time series. This section describes 
how these two characteristics are calculated and used in 
the clustering of time series data.

(a) Annualized Stock’s Volatility2. To calculate annual-
ized stock’s volatility, the standard deviation of the price 

should be multiplied by the square root of 252 assuming 
that there are 252 trading days in a given year.

(b) Annualized Stock’s Return. The annualized stock’s 
return is computable in a similar fashion. However, instead 
of standard deviation, the mean value of the prices should 
be multiplied by the square root of 252.

7.5 � The creation of time series clusters using 
KMeans

Once the annualized stock’s volatility and return values are 
computed for each stock data, the values will be given to a 
conventional KMeans clustering algorithm with a desired 
number of clusters identified ealier (i.e., 4). The KMeans 
algorithm will group the stock’s data with respect to vola-
tility and return using the “Euclidean” distance measure. 

Table 1   The result of KMeans 
clustering based on four 
clusters

Cluster “0” Cluster “1” Cluster “2” Cluster “3”

Index Vol. Ret. Index Vol. Ret. Index Vol. Ret. Index Vol. Ret.

1 ACN 0.179 0.909 MMM 0.201 0.512 ABBV 0.254 −0.234 AMD 0.71 1.651

2 ADBE 0.223 0.713 ABT 0.207 0.468 ABMD 0.398 −0.416 ALXN 0.298 1.229

3 AES 0.172 0.909 AAP 0.29 0.516 ATVI 0.46 0.154 ALGN 0.427 1.431

4 A 0.2 0.781 AMG 0.296 0.537 ALK 0.259 −0.000 APC 0.696 1.402

5 APD 0.162 0.741 AFL 0.109 0.328 ABC 0.283 0.07 APTV 0.291 1.478

6 AKAM 0.203 0.982 ALB 0.333 0.317 AMGN 0.209 0.04 ANET 0.377 1.634

7 ARE 0.136 0.969 ALLE 0.178 0.582 ANTM 0.338 0.035

8 AMT 0.123 0.866 AGN 0.31 0.299

9 AMP 0.256 1.05 ADS 0.317 0.612

10 AME 0.181 0.888 LNT 0.137 0.503

11 APH 0.208 0.978 ALL 0.136 0.65

12 ADI 0.285 1.08 GOOGL 0.223 0.557

13 ANSS 0.204 1.036 GOOG 0.225 0.573

14 AON 0.254 0.766 MO 0.278 0.584

15 AOS 0.201 0.918 AMZN 0.284 0.689

16 APA 0.336 1.157 AEE 0.14 0.483

17 AIV 0.127 0.708 AAL 0.379 0.317

18 AAPL 0.308 0.894 AEP 0.125 0.553

19 AMAT 0.4 0.997 AXP 0.152 0.571

20 ADSK 0.287 1.076 AIG 0.276 0.617

21 ADP 0.169 0.851 AWK 0.123 0.6

22 AZO 0.202 0.866 ADM 0.178 0.253

23 AVB 0.102 0.708 ARNC 0.396 0.489

24 AVY 0.186 0.959 AJG 0.157 0.439

25 BHGE (BKR) 0.278 0.879 AIZ 0.165 0.258

26 BLL 0.163 0.963 ATO 0.14 0.457

27 BAC 0.256 0.733 T 0.182 0.443

28 BAX 0.152 0.721 BK 0.183 0.417

29 BBT (PNC) 0.213 0.426

Mean 0.212 0.896 0.218 0.484 0.314 −0.050 0.466 1.470

STD 0.069 0.127 0.081 0.119 0.089 0.200 0.190 0.131

2  https​://www.fool.com/knowl​edge-cente​r/how-to-calcu​late-
annua​lized​-volat​ility​.aspx

https://www.fool.com/knowledge-center/how-to-calculate-annualized-volatility.aspx
https://www.fool.com/knowledge-center/how-to-calculate-annualized-volatility.aspx
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The label of clusters formed by the KMeans algorithm will 
be used as the label for each time series data resulting in 
the clustering problem of unlabeled data (i.e., unsuper-
vised learning problem) to be transformed into a cluster-
ing problem with labels and thus an instance of a super-
vised learning problem will be created. Table 1 lists the 
exact values for volatility and return for each member 
along with the mean and standard deviation values of 
these features for each cluster.

As Table 1 reports clusters 0, 1, 2, and 3 have 28, 29, 7, 
and 6 members, respectively. The mean values for the pair 
of < volatility, return > for each cluster 0, 1, 2, and 3 are 
< 0.212, 0.896 > , < 0.218, 0.484 > , < 0.314,−0.050 > , and 
< 0.466, 1.470 > , respectively.

To help understanding the results of the KMeans clus-
tering, we visualize the time series data for each mem-
ber along with the range of volatility and return for each 
cluster. Figures 5, 6, 7 and 8 illustrate the time series data 
clustered together. As the Silhouette analysis indicated the 
optimum number of clusters is four, the figures show the 
exact time series of members of each cluster for the period 
of January 1, 2019 and April 15, 2019.   

Let us take a look at the clusters and the stock indi-
ces grouped together. Figures 9, 10, 11 and 12 illustrate 
the range of volatility and return values of the stock 
indices that are clustered together. The stock indices 

are clustered with respect to two descriptive variables 
< volatility, return > . As a result, the trend of these two 
variables is similar to the other stock indices clustered in 
the same group. The figures visualize the range of vola-
tility and returns computed for each member of clusters 
produces by KMeans clustering for the period of January 
1, 2019–April 15, 2019.

7.6 � Tuning parameters of the encoder–decoder

Table 2 lists the number of layers, the output shape (i.e., 
the number of nodes or neurons) of each layer along with 
the number of parameters estimated at each layer. This 
output is produced by the the neural deep learning mod-
ule within the encoder–decoder module.

As highlighted earlier, the authoencoder takes as input 
a feature vector of size 2 on row 1 of the table (i.e., its 
shape which is of the form <Volatility, Returns>). It then 
propagates the input to the internal layers devised for the 
encoder (i.e., row numbers of 2–5 in Table 2) and decoder 
(i.e., row numbers 6–9 of Table 2) parts. At the level of 
dense_4 (i.e., row number 5 of Table 2) the shape is in the 
form of 4, the number of desired clusters. The exact num-
ber of layers and nodes are built in a reverse order by the 
decoder and eventually an output shape with one column 
(i.e., the predicted label for each time series) is produced. 

Fig. 5   KMeans clustering: Cluster “0”
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Fig. 6   KMeans clustering: Cluster “1”

Fig. 7   KMeans clustering: Cluster “2”
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The total number of trained parameters is 12, 805, which 
implies creating a fully connected network.

We trained the model with different number of repeti-
tions (i.e., epochs) in order to investigate the performance 
and influence of estimating the parameter values in fur-
ther details. We trained the model for 1000 epochs. Fig-
ure 13 illustrates the relationship between the number of 
epochs and the error rate (i.e., loss). As the figure indicates, 

the loss value is approximately zero when the number of 
epochs is greater than 316.

We kept the number of epochs as 1000, even though 
316 epochs were sufficient. Once the neural network 
model is trained using the training dataset, it is given the 
test dataset to predict the time series labels. The predic-
tion is in the form of a numerical floating value that needs 
to be rounded to its closest integer value. The closest inte-
ger value for each time series in fact represents the cluster 

Fig. 8   KMeans clustering: Cluster “3”

Fig. 9   The range of volatility and returns for Cluster “0” Fig. 10   The range of volatility and returns for Cluster “1”
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label for the given time series. The computed numerical 
output of the program and the rounded with absolute d 
values along with the actual label for the test data set are 
reported in Table 3.

7.7 � Predicting clustering labels 
through the encoder–decoder

The total number of data set was 70 (i.e., the time series 
data for 70 stock indices were captured), of which 46 time 
series data were considered for training the network, and 
the remaining data set (i.e., 24) was used for testing the 
model. As Table 3 lists, the neural network was able to 
predict the cluster label of 21 out of 24 test data correctly 
achieving an accuracy of 87.5 in prediction (i.e., the cases 
with dark color). Note that the accuracy in here means 
matching between the results obtained by the conven-
tional KMeasn and the results achieved by the proposed 
two-stage deep learning methodology. The differently 
classified stock indices by the deep learning-based meth-
odology are ALXN, APA, and AMZN, which are emphasized 
in bold in the table. The results also may indicate that the 
deep learning-based approach may take into account 
additional latent features while clustering the given data 
sets.

To help realize the results of the autoencoder-based 
deep learning time series classification model, we visual-
ize the results. Figures 14, 15, 16 and 17 show the results 
of the prediction of cluster’s label for the test set in which 
a time series with dark thicker color (i.e., except Cluster 
“2”) show the miss-classifications performed by the pre-
diction performed by the encoder–decoder module. The 
prediction results in three instances of mislabeling colored 
in black in the figures.   

7.8 � KMenas versus deep learning‑based clustering

The investigation of why ALXN, APA, and AMLN are clas-
sified differently by the encoder–decoder module reveals 
interesting findings. The clustering performed by conven-
tional KMeans clustering and the encoder–decoder mod-
ule are illustrated in Figs. 18 and 19. By referring to Table 1, 

Fig. 11   The range of volatility and returns for Cluster “2”

Fig. 12   The range of volatility and returns for Cluster “3”

Table 2   The input and output 
shapes along with the number 
of parameters trained

Type Layer (type) Output shape Parameter#

1 – Input 1 (Input Layer) (None, 2) 0
2 Encoder( Layer 1) dense_1 (Dense) (None, 100) 300
3 Encoder( Layer 2) dense_2 (Dense) (None, 50) 5050
4 Encoder( Layer 3) dense_3 (Dense) (None, 20) 1020
5 Encoder( Layer 4) dense_4 (Dense) (None, 4) 84
6 Decoder( Layer 1) dense_5 (Dense) (None, 20) 100
7 Decoder( Layer 2) dense_6 (Dense) (None, 50) 1050
8 Decoder( Layer 3) dense_7 (Dense) (None, 100) 5100
9 Decoder( Layer 4) dense_8 (Dense) (None, 1) 101
Total trainable parameters 12,805
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Fig. 13   Loss versus epochs

Table 3   Numerical prediction 
of time series’ cluster labels

Index Volatility Returns Exact output Absolute rounded Actual KMeans Missed

Label prediction Prediction d Cluster Labeled

(r) (Predicted label) Label

1 ADS 0.317 0.612 7.2130698e−01 1. 1

2 MMM 0.201 0.512 9.9868220e−01 1. 1

3 AAPL 0.308 0.894 −1.8404983e−04 0. 0

4 ACN 0.179 0.909 −1.4865603e−03 0. 0

5 ANET 0.377 1.634 3.0150795e+00 3. 3

6 ALXN 0.298 1.229 2.4604988e+00 2. 3 X

7 AMG 0.296 0.537 9.9893832e−01 1. 1

8 AIG 0.276 0.617 8.0927080e−01 1. 1

9 AON 0.254 0.766 4.7755931e−03 0. 0

10 A 0.200 0.781 2.7296934e−03 0. 0

11 AEP 0.125 0.553 9.9907714e−01 1. 1

12 AES 0.172 0.909 −1.5225317e−03 0. 0

13 BK 0.183 0.417 9.9732614e−01 1. 1

14 ATVI 0.460 0.154 1.9892873e+00 2. 2

15 AVB 0.102 0.708 7.7624805e−02 0. 0

16 AAL 0.379 0.317 1.0931786e+00 1. 1

17 T 0.182 0.443 9.9788338e−01 1. 1

18 AWK 0.123 0.600 9.9946052e−01 1. 1

19 ATO 0.140 0.457 9.9807245e−01 1. 1

20 APA 0.336 1.157 2.0670881e+00 2. 0 X

21 ALB 0.333 0.317 9.9551427e−01 1. 1

22 AMT 0.123 0.866 −1.1737701e−03 0. 0

23 ADI 0.285 1.085 1.2981926e−01 0. 0

24 AMZN 0.284 0.689 3.1280313e-03 0. 1 X
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Fig. 14   Prediction of time series data for Cluster “0”

Fig. 15   Prediction of time series data for Cluster “1”



Vol:.(1234567890)

Research Article	 SN Applied Sciences           (2020) 2:937  | https://doi.org/10.1007/s42452-020-2584-8

Fig. 16   Prediction of time series data for Cluster “2”

Fig. 17   Prediction of time series data for Cluster “3”
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in which the results of KMeans clustering are reported, we 
observe that:

–	 The feature vector of AMZN is < 0.284, 0.689 > . A com-
parison of the feature vector for AMZN with those clus-
tered together in Cluster “1” by conventional KMeans 
shows that the return value for AMZN is on the upper 
bound of the return values clustered in Cluster “1” (i.e., 
it is the max value for the return).

–	 A similar finding is observable for APA which is clus-
tered by conventional KMeans in Cluster “0” with 
< 0.336, 1.157 > (Table  1). Similarly, both volatility 
and return values calculated for APA are on the upper 
bounds of the volatility and return values calculated for 
stock indices cluster together in Cluster “0”.

–	 Similarly, the feature vector calculated for ALXN is 
< 0.298, 1.229 > which both are on the lower bounds 
of the feature vectors for volatility and returns clustered 
together in Cluster “2”.

The findings indicate that, these three stock indices (i.e., 
ALXN, APA, and AMZN) are on the border line of clusters 
(aee Figs. 18 and 19). Even though the figures may imply 
that the clustering produced by KMeans has been per-
formed reasonably well, it may also indicate that cluster-
ing performed by the autoencoder might have taken into 
account some other hidden factors. Hence, since deep 
learning-based approach is discovering and taking into 
account more hidden features among these two values 
(i.e., volatility and return), the clustering performed by the 
autoencoder is actually providing more insights about 
these stock indices and their relationships. More precisely, 
it might indicate that there might be some other hidden 

features discovered by the autoencoder that are missed 
and not formulated by the conventional KMeans cluster-
ing algorithms.

 

8 � Conclusions and future work

This paper introduced a two-stage deep learning-based 
approach to address the time series clustering problem. 
The time series clustering methodology presented in 
this paper first generates labels for time series data using 
KMeans clustering. The clustering performed through 
the vanilla form of a KMeans algorithm is unsupervised, 
in which the labels of the data are unknown. Using the 
results produced by the KMeans algorithm, it is possible 
to label each cluster and thus enable treating the prob-
lem as a supervised learning problem. Once the cluster 
labels are produced, then they are given to an encode-
decoder-based deep learning neural network in order to 
build a classifier and thus a clustering model. The most 
important advantage of building such a neural network is 
that it models hidden features and takes such features into 
account when building the prediction model.

It is important to note that it is possible to apply cluster 
analysis directly to the raw time series data and produce 
some clusters for the time series data. However, there are 
several problems with this approach: (1) it is computation-
ally more expensive to cluster a set of time series directly, 
depending on the length of the time series, mainly due 
to the curse of dimensionality and cost of computation 
required for clustering, (2) Since the entire time series 
data are taken into account for clustering, it is possible 
to have some noises in the data that may lead us to an Fig. 18   KMeans Clustering

Fig. 19   Autoencoder Clustering
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improper clustering, (3) since the raw time series data are 
not labeled, this approach is basically a clustering with-
out knowing the exact number of optimal clusters (unsu-
pervised clustering) and thus the clustering may not be 
accurate.

In our work, we have introduced an approach to cre-
ate some labels for the clusters in order to address the 
aforementioned problems listed above. The introduced 
approach (1) captures a summary of the underlying time 
series that explains the variability, volatility, and the trend 
of the time series thus ignoring possible noises in the com-
putation. The summary is called feature vector; (2) then the 
feature vector is given to an encoder–decoder learning 
module to identify latent and also most important fea-
tures from the feature vector, and then further eliminate 
the features in the feature vector whose contributions to 
the computation is less significant; and (3) use the feature 
vector as a label for the time series and thus transform 
the problem into supervised clustering where the optimal 
number of clusters is determined.

The case study conducted in the context of the finan-
cial time series data shows an accuracy of 87.5% in clus-
tering such data. More importantly, we observed that the 
deep learning-based model performs comparatively simi-
lar to the conventional KMeans clustering. However, we 
obtained an interesting result. It was observed that some 
of the data points were classified differently by these two 
approaches (i.e., conventional KMeans and the proposed 
encoder–decoder deep learning-based methodology). 
This indicates that there might be some hidden features 
that the conventional algorithms such as KMeans cannot 
capture when clustering data; whereas, the deep learning-
based approaches are able to capture these hidden fea-
tures and thus perform clustering on an augmented set 
of features. This observation poses an interesting research 
question where the performance of these two approaches 
need to be studied.

The application of deep learning approaches to time 
series analysis and in particular financial time series data 
is in its early stages. Several other classical problems in 
time series analysis can be formulated using deep learn-
ing techniques such as shock and anomaly detection, 
seasonal effects as well as clustering and prediction at 
different levels of abstractions. Neural network-based 
techniques such as Long Short Term Memory (LSTM) 
[20–22] and their autoencoder-based variations, Genera-
tive Adversarial Networks (GANS), attention networks need 
to be further explored for formulating classical problems 
in time series clustering and data analysis. There are also 
some other machine learning and deep learning-based 
techniques that can be applied and their performance can 
be investigated such as Random Forest [24]. It is of utmost 
importance to conduct several experimental studies with 
the objective of comparing the performance of clustering 
produced by conventional algorithms and deep learning-
based clustering models. Our results show that conven-
tional clustering techniques take into account explicit fea-
tures; whereas, the advanced deep learning-based models 
explore not only explicit but also implicit features when 
clustering data points. As a result, it is necessary to inves-
tigate which clustering makes more sense with respect to 
the underlying application domains.
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Appendix: Codex listing

A: Transformation of unsupervised learning to supervised learning through using metadata as labels
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B: Deep leaning‑based autoencoder supervised learning for clustering
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