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Abstract

Classification problems are commonly seen in practice. In this paper, we aim to develop clas-

sifiers that can enjoy great interpretability as linear classifiers, and at the same time have model

flexibility as nonlinear classifiers. We propose convex bidirectional large margin classifiers to fill

the gap between linear and general nonlinear classifiers for high dimensional data. Our method

provides a new data visualization tool for classification of high dimensional data. The obtained

bilinear projection structure makes the proposed classifier very interpretable. Additional shrink-

age to approximate variable selection is also considered. Through analysis of simulated and real

data in high dimensional settings, our method is shown to have superior prediction performance

and interpretability when there are potential subpopulations in the data. The computer code of

the proposed method is available as supplemental materials.
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1 Introduction

Classification is a typical supervised learning problem in machine learning and statistics. For clas-

sification, one needs to identify a decision rule based on a training dataset which consists of input

variables and their corresponding class labels. Once the rule is obtained, a classification rule can

predict the label for a new instance using information of the input variables. Many classification

algorithm or methods can be viewed as large margin classifiers (Hastie et al., 2001). This ranges
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from classical ones such as perceptron algorithm and logistic regression, to modern machine learn-

ing techniques such as Boosting (Freund and Schapire (1997), Freund et al. (1999); Schapire et al.

(1998)) and the Support Vector Machine (SVM; Vapnik (1998)). For an overview of large margin

classifiers, one can refer to Bartlett et al. (2003); Liu et al. (2011).

The development of classification methods mainly focuses on two aspects: One is to find a

classification rule which can correctly identify the true class, that is a rule with high classification

accuracy; The other is to get an interpretable or meaningful model, for example, whether we can

recognize important features and understand their contributions to the classifier.

Using a linear combination of the variables, linear classifiers are one of the most widely used

classification tools. Training and testing procedures for linear classifiers are relatively efficient

compared with nonlinear ones, especially in high dimensional spaces. Moreover, due to the simple

linear form, the corresponding interpretation can be straightforward. Despite its simplicity, however,

a linear classifier may fail to handle classification problems with nonlinear boundaries and thus the

prediction performance can be suboptimal.

To overcome linearly nonseparable data in the input feature space and get more accurate results,

linear classifiers can be extended to nonlinear ones by mapping variables into higher dimensional

feature spaces. A well known technique is the kernel trick used in the SVM to capture the nonlinear

patterns of the data. In general, nonlinear classifiers are more flexible than linear ones and it can

achieve better prediction performance when the underlying true classification boundary is nonlin-

ear. However, compared with linear ones, nonlinear classifiers in general do not provide intuitive

interpretation about the difference between classes based on the input variables. For example, it

can be hard to explain the effect of each input variable for a nonlinear classifier. In addition, its

training and testing procedures may not be as efficient as linear ones, especially for high dimensional

problems, and the model is more likely to overfit due to the use of multiple tuning parameters.

Our proposed work is motivated by the limitations of both linear and nonlinear classifiers. Our

goal is to design a classifier with interpretability similar to linear ones, but with much more flexibility.

In the literature, there exists some work on simplifying nonlinear classifiers such as Bach (2009); Lin

et al. (2006); Bertsimas et al. (2012). However, most of them focus on variable selection on nonlinear

classifiers. Huang et al. (2012) proposed to use multiple linear functions to achieve the goal, but

the corresponding computation is nonconvex. In this paper, we propose the Convex Bilinear large

margin Classifier (CBC), which maintains the great interpretability of linear classifiers and also

keeps accurate prediction performance especially when sub-group structures exist in the data.
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An important characteristic of our proposed CBC method is that it can be computed through

convex optimization, and meanwhile automatically provide a new way to visualize high dimensional

data. The CBC method can construct an effective low dimensional subspace for classification of data

with subpopulation structures via bilinear projection. Unlike unsupervised learning, the CBC makes

use of both input variables and label information to construct a low dimensional space to retain

most informative structure in the data for classification. Comparison with the principal component

analysis (PCA) shows that our CBC method can be also used as an useful visualization tool for

high dimensional classification problems.

In order to further enhance the interpretability of our approach, we implement an additional one-

step shrinkage for our CBC method to approximate variable selection. In particular, we propose a

weighted CBC method by using the weighted l2 penalty to shrink variables and achieve approximate

sparsity with efficient computation for the projection. In this way, we can not only identify a low

dimensional subspace for high dimensional data, but also discriminate the most important features

that contribute to the projection. This further strengthens the interpretability of our proposed

methods.

The rest of this article is organized as follows. In Section 2, we introduce our CBC method and

its related properties. In Section 3, we discuss the variable selection procedure for the CBC method.

In Section 4, the computational algorithm is provided. In Section 5, we compare our method with

related work via simulation studies and a real data application. We conclude this paper with some

discussion in Section 6.

2 Bilinear Large Margin Classification Framework

In supervised learning, we are given a set of training data {(xi, yi) : i = 1, 2, · · · , n}, where xi ∈ Rp

represents a p dimensional input vector including the intercept and yi is an output label. We consider

the standard binary classification problem with yi ∈ {1,−1}. One important goal of classification

is to find a classifier from the training data, so that one can predict the class label y for any given

new instance x.

In this article, we mainly focus on large-margin classifiers. Specifically, a margin-based classifier

tries to obtain a function f(x), mapping from Rp to R, and use sign(f(x)) as the classification

rule. According to the classification rule, yf(x) decides the classification result on the point (x, y).

Correct classification happens if and only if yf(x) > 0. The quantity yf(x) is usually referred as

3



−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

yf

lo
ss

logistic loss
hinge loss
huber loss
adaboost loss

Figure 1: A plot of different loss functions, including the hinge loss, logistic binomial deviance loss,

exponential loss for AdaBoost and Huber loss. The horizontal axis represents the margin yf .

the functional margin and used for many large-margin classification techniques.

It is well known that many large-margin classifiers can be fit into the regularization framework

of loss + penalty. The loss term controls the model fitting of the data and the regularization term

is used to prevent overfitting. In general, the regularization formulation of binary large-margin

classification can be expressed as follows:

min
f∈F

1

n

n∑
i=1

L(yif(xi)) + τJ(f), (1)

where F refers to some function class, L is a loss function on the margin yf(x), J(f) is the reg-

ularization term and τ is a non-negative tuning parameter to balance the two terms. A natural

choice of the loss function in (1) is the 0-1 loss with L = 1(yf(x) ≤ 0), which assigns the loss of 1

for misclassification and 0 otherwise. However, since the 0-1 loss is a non-convex and non-smooth

function that is difficult to optimize, many convex surrogate loss functions have been proposed. For

example, the SVM uses the hinge loss L(yf(x)) = max (0, 1− yf(x)). Other popular loss functions

include the binomial deviance loss for penalized logistics regression (Lin et al. (2000)), the expo-

nential loss for AdaBoost (Freund and Schapire (1997)), and the Huber loss for robust classifiers

(Rosset and Zhu (2007)). Figure 1 compares different loss functions on yf(x). Recently, Liu et al.

(2011) proposed a family of large margin classifiers to unify many large-margin machines.

Among various large margin classifiers, according to the functional class F in (1), one can divide
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them into two major groups: linear or nonlinear classifiers. The comparison between linear and

nonlinear classifiers in the introduction motivates us to propose a new method to combine the

strengths of both methods. One possible approach is to use two linear hyperplanes to separate two

classes. In this situation, the functional margin becomes yf1(x)f2(x) = y(xTw1)(x
Tw2) and can

be further expressed as yxTAx by replacing w1w
T
2 with a p × p matrix A. In order to get two

linear hyperplanes, the rank of A should be equal to 1, which inspires us to propose the following

bilinear optimization problem:

min
A∈Rp×p

1

n

n∑
i=1

L(yix
T
i Axi),

subject to rank(A) = 1.

(2)

Note that xTi Axi = 〈A,xixTi 〉, which is the inner product between two matrices. The (k,m)-th

entry of matrix A, denoted as Akm, corresponds to the contribution of interaction between the k-th

and m-th variables in the classification rule. Since xi includes the constant term, xTi Axi covers both

linear and quadratic terms. Our matrix representation can be viewed as a data-driven classification

technique with rank-one approximation to the coefficient matrix A. Under the assumption that the

coefficient matrix is of a low rank, we can further extend the constraint in (2) to rank(A) = r by

solving

min
Ur,Vr∈Rp×r

1

n

n∑
i=1

Li(yix
T
i Axi),

subject to A = UrV
T
r ,

(3)

where Ur and Vr form a matrix factorization for A and their own columns are orthogonal. Note that

r needs to be decided in advance or be viewed as a tuning parameter similar to principal component

analysis or k-means clustering.

For illustration, we consider some toy examples in Figure 2. We consider A as a size 5 by 5

matrix. On the left panel, we let A = u1v
T
1 of rank 1, where u1 is a vector of length 5 with all

entries 0 except the first entry being 1 and the entries for v1 are 0 except the last entry being 1. On

the right panel, we consider a rank-2 matrix A, where A can be expressed as u1v
T
1 + uT2 v

T
2 with

u1v1 as the left panel, and u2 is a vector of length 5 with all entries 0 except the second entry being

1 and the entries for v2 are 0 except the fourth entry being 1.
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Figure 2: Illustration of the coefficient matrix A with size 5 by 5. The coefficients are either 1 (gray)

or 0 (white). The left panel shows a matrix of rank 1, which represents interaction between the first

and the last features. The right panel shows a matrix with rank 2 with an additional interaction

between the second and the fourth features.

To further illustrate the idea, we consider the classifier in the form of sign((xTw1)(x
Tw2)) in

(2), where w1 = (0, 1, 0) and w2 = (0, 0, 1). The corresponding classification boundary is shown in

Figure 3. Based on this plot, we can see that a decision boundary using two cross lines identifies

the class structure. Note that the decision function in the form of (xTw1)(x
Tw2) can be quite

general. It covers linear classifiers if xTw2 is estimated to be a constant. Moreover, if each class

contains subpopulations such as a mixture of multiple Gaussian components, such a decision function

can capture the classification structure by constructing two hyperplanes. Classification problems

with within class subpopulations can be commonly seen in practice. For example, in cancer gene

expression study of classifying cancer versus normal samples, the cancer class may have multiple

subtypes due to the disease heterogeneity (Tibshirani et al. (2002)).

Although problems (2) and (3) have clear motivations, the corresponding optimization problems

are non-covex due to the rank constraint. For example, for any matrix A1 and A2 with rank r, the

rank of λA1 + (1− λ)A2 is not necessarily still r, where λ ∈ (0, 1). As a result, the rank constraint

is not a convex set and thus the optimization problem can be difficult to solve. In Section 2.1, we

propose a convex surrogate classifier to solve such problems.
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Figure 3: Illustration of the decision function (xTw1)(x
Tw2), where w1 = (0, 1, 0) and w2 = (0, 0, 1).

Noe that the two classes can be separated by two hyperplanes.

2.1 Convex Bilinear Large Margin Classifier Framework

Before we introduce our CBC method, we first introduce notations to be used for the rest of this

article. For a vector w ∈ Rp, the Euclidean norm is denoted as ‖w‖ =
√∑p

i=1w
2
i . For a matrix

A ∈ Rm×n, we denote the Frobenius norm as ‖A‖F =
√∑m

i=1

∑n
j=1A

2
ij , where Aij denotes the

(i, j)-th entry of A. If the rank of A is r, then the condensed singular value decomposition (SVD)

of A can be expressed as A = UrΣrV
T
r , where Ur ∈ Rm×r and Vr ∈ Rn×r satisfy UT

r Ur = Ir

and V T
r Vr = Ir respectively, and Σr = diag(σ1(A), · · · , σr(A)) with σ1(A) ≥ · · · ≥ σr(A) > 0. In

addition, ‖A‖∗ =
∑r

i=1 σi(A) denotes the nuclear norm of A.

Since (2) involves a non-convex optimization problem, it may be hard to solve when the dimension

is large. Convex relaxation of the rank constraint using the nuclear norm has been shown to be

successful in solving rank-constrained problems with some theoretical guarantees (Candès and Tao

(2010)). Minimizing the nuclear norm can help to reduce the rank stably and perform shrinkage

at the same time. This encourages us to reformulate (2) into the following convex minimization

problem

min
A∈Rp×p

F (A) =
1

n

n∑
i=1

L(yi,x
T
i Axi) + τ ‖A‖∗ . (4)

Note that for a given τ , solving (4) does not necessarily give us an exactly rank r solution. One

intuitive approach is to solve (4) using a series of τ to get a solution with rank r. However, replacing
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the rank constraint by the nuclear norm may lead to infinite solutions due to the special form xTi Axi

by the following theorem.

Theorem 1. For any matrix A ∈ Rp×p and any τ ≥ 0, there exists a symmetric matrix Z such

that F (Z) ≤ F (A). Furthermore, if an optimal solution A∗ to (4) is not symmetric, any convex

combination of A∗ and A∗T is also an optimal solution.

From Theorem 1, we know that there always exists a symmetric matrix A∗ optimizing problem

(4). Since both xTi Axi and ‖A‖∗ are invariant to the transpose operator, we need to add a symmetric

constraint on matrix A in the optimization problem (4) as follows to make it meaningful:

min
A∈Sp

G(A) =

n∑
i=1

L(yi,x
T
i Axi) + τ ‖A‖∗ , (5)

where Sp denotes the class of p × p symmetric matrices. For problem (5) we can still control τ to

get a solution with rank r. However, it may lead to unsatisfactory classifiers with useless prediction.

For example, if we search a series of τ in problem (5) to get the solution with rank r = 1, the optimal

A∗ can always be degenerated as A∗ = λ1 ‖u‖22 by spectral decomposition. In this situation, the

classification rule will become sign(λ1 ‖u‖22 ‖x‖
2
2) = sign(λ1) for any given new instance x, which

means that the corresponding classifier will always assign a new instance to one class. In order to

address this difficulty incurred by the symmetric constraint especially when our purpose is to get

rank r = 1, Theorem 1 inspires us to search the solution with rank higher than r first and then find

the equivalent best rank r solution. Here the equivalent best rank r solution means achieving the

same objective value in (5) but without being symmetric. For example, if we want to get a solution

with rank r = 1, we may search some τ ’s to get the solution with r = 2 first and then find the

equivalent best rank 1 matrix.

Suppose A(τ) be an optimal solution to (5) with the tuning parameter τ . We assume that

rank(A(τ)) is monotonely non-increasing in τ and there exists 0 = τ0 < τ1 < · · · < τp < τp+1 = ∞

such that for τ ∈ [τk, τk+1), the corresponding rank of A(τ) is k. This assumption is reasonable

because as τ increases, a large penalty on the nuclear norm of A is imposed, and consequently leads

to smaller ranks in general. We have the following theorem.

Theorem 2. For any τ ∈ [τ2, τ3) with A(τ) as the solution for (5), there always exists a A∗(τ)

with rank r = 1 such that G(A∗(τ)) = G(A(τ)). Furthermore, A∗(τ) is also a global minimizer to

min
A∈Rp×p

n∑
i=1

Li(yix
T
i Axi) + τ ‖A‖∗ ,

subject to rank(A) = 1,

(6)
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(a) original plot

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●
● ●

●

● ●

●

−6 −4 −2 0 2 4 6

−6
−4

−2
0

2
4

6

score 1

sc
or

e 
2

● class 1
class 2

(b) 2-D visualization plot

Figure 4: (a) is a 4-cluster twisted example with 50 input features, whose class labels are decided

by the sign of first two features x1, x2. (b) is 2-D visualization plot by projecting all the features

into 2 orthogonal directions estimated by our CBC method.

where τ ∈ [τ2, τ3). Let two eigenvalues of A(τ) be λ1, λ2 with λ1 ≥ λ2 and their corresponding two

eigenvectors be q1, q2. Then we can find A∗(τ) = U1V
T
1 explicitly with

U1 =
√
|λ1|q1 +

√
|λ2|q2,

V1 =
√
|λ1|q1 −

√
|λ2|q2.

(7)

Remark 1. Note that the rank 1 solution A∗(τ) with U1,V1 can be interpreted as two linear hyper-

planes to separate the input space. Two orthogonal eigenvectors q1, q2 could be used for supervised

dimension reduction by projecting data into the corresponding two-dimensional orthogonal space.

This projection provides us a new way of data visualization for high dimensional data and can possi-

bly help to detect subcluster structure within each class as we will demonstrate in Section 5. Figure

4 gives us one toy example. The dataset has four clusters and two for each class respectively. Their

class label is decided by the first two features with additional 48 dimension noisy features, as seen

in the left panel of Figure 4. On the right panel, features are projected onto orthogonal directions

q1, q2. Clearly this new data visualization approach captures the structure of two clusters in each

class and their relative location by making use of both input features and label information.

Remark 2. For a higher rank-constrained problem, we can use a similar strategy as in Theorem

2. However, the corresponding computation may be more intensive since we do not have an explicit
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form as Equation (7) in Theorem 2. Although higher rank solutions may be able to identify more

complicated classification structures, we may loss the interpretation of the corresponding classifiers.

For simplicity, we mainly consider how to get the rank r = 1 solution based on problem (5),

although the higher rank setting can be extended directly. Note that the loss function L on the

margin yf(x) can be general convex loss functions for theorems discussed so far. For an illustration,

we use the smooth hinge loss function proposed by Rennie and Srebro (2005) that shares some

similarity with the standard hinge loss and can be solved by gradient-decent-type algorithms with

L(z) = 1/2− z if z ≤ 0, (1− z)2/2, if 0 < z < 1, and 0 if z ≥ 1.

In Section 2.2, we discuss the close connection between (6) and the classification problems in

Huang et al. (2012). This connection further motivates the idea of our proposed methods.

2.2 Properties and Related Literature

In Theorem 2, we conclude that U1 and V1 form a global solution to (6) for τ ∈ [τ2, τ3). Note

that the optimization problem (6) controls both the nuclear norm and rank simultaneously, which

is closely related to the standard classification problem as shown in the following theorem.

Theorem 3. The solution to (6) with A = U1V
T
1 lies in the solution path of the following problem:

min
U1,V1∈Rp×1

n∑
i=1

L(yix
T
i U1V

T
1 xi) +

τ

2
(‖U1‖2F + ‖V1‖2F ). (8)

We observe that the problem is exactly to find two linear hyperplanes similar to the usual clas-

sification framework. In this setting, (8) is the same to the bidirectional discrimination proposed

by Huang et al. (2012), where in their paper they use the standard hinge loss and didn’t include

the constant term inside the features x to be regularized. They used the block-coordinate decent

algorithm to solve (8) by iteratively fixing U1 or V1 to solve the other via standard quadratic pro-

gramming. However, (8) is a non-convex problem with possibly undesirable local minimums. In

contrast, our method for rank r = 1 solves a series of convex optimization with guarantee of global

solutions for different tuning parameters τ within a specific range decided by problem (5). Thus our

CBC method has the potential of more accurate performance as we will demonstrate through our

numerical examples.

In Section 3, we propose a weighted CBC method to approximate variable selection. This

extension can be useful when there are a lot of noise variables, especially under high dimensional

settings. In particular, we consider to modify the optimization problem (8) by adding a weighed L2
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penalty and transform it back into nuclear norm minimization problems. This can further improve

the interpretability of our method by identifying important variables.

3 Weighted CBC in Bilinear Large Margin Classifiers

For high dimensional classification problems, there is a high risk of model overfitting. Therefore,

it is desirable to perform further shrinkage in order to improve the prediction accuracy and model

interpretation.

From the statistical function estimation perspective as we discussed before, large margin classi-

fiers, for example the SVM, can be viewed in the regularization form of loss + L2 penalty (Hastie

et al., 2001). It is well known that applying the L2 regularization has the effect of shrinking the

coefficients toward zero, while reducing variances by sacrificing unbiasedness. The same L2 reg-

ularization is used in ridge regression for regression problems. However, the L2 penalty does not

produce exactly 0 solutions for coefficients and thus it may be difficult to interpret the model. Using

a similar idea from LASSO (Tibshirani, 1996) in linear regression, the L1-SVM was proposed to

both increase the prediction accuracy and automatically shrink some coefficients to exact 0 (Bradley

and Mangasarian, 1998). In addition, efficient algorithm has also been proposed to compute the

whole solution path (Zhu et al. (2004)). However, for highly correlated features, L2 regularization

may yield better prediction power than the L1 because the L1 regularization tends to select only a

few among highly correlated variables and remove the rest. In addition, the total number of selected

features is bounded by the sample size.

In our bidirectional large margin framework, in order to implement variable shrinkage, we start

from problem (8). In order to get sparse solutions, we could apply similar ideas as in the L1-SVM

(Zhu et al. (2004)). However, introducing the L1 regularization may make the optimization problem

challenging. In particular, unlike the transformation of convex optimization when the L2 penalty is

used, we do not have such convex transformation anymore when the L1 penalty is used. As a result,

it can be more difficult to solve. Therefore, in order to achieve further shrinkage and avoid non-

convexity, we propose the weighted CBC to approximate variable selection by using the weighted

L2 penalty as follows:

min
U1,V1∈Rp×1

n∑
i=1

L(yi, (x
T
i U1)(V

T
1 xi)) +

τ

2
(

∥∥∥∥U1

α1

∥∥∥∥2 +

∥∥∥∥V1

α2

∥∥∥∥2), (9)

where the division is element-wise and α1,α2 are data driven weights. We can use the solution

U1,V1 in (7) as weights. Although our weighted L2 penalty cannot produce exact sparse solutions,
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it can be viewed as an approximation of the L0 regularization, where L0(U1) =
∑p

i=1 I(|U1i| > 0).

The L0 regularization corresponds to the best subset variable selection technique. For our weighted

penalty, if one of α1i is large, the corresponding U1i will have a small penalty for being non-zero.

On the other hand, a small α1i will yield a large penalty on U1i not being zero, shrinking it towards

0. We can iteratively optimize (9) to get a nearly sparse solution. In our numerical study, we find

that our one-step weighted CBC performs well.

Note that optimization problem (9) can be rewritten as

min
U1,V1∈Rp×1

n∑
i=1

L(yi, (xi •α1)
TU1V

T
1 (xi •α2)) +

τ

2
(‖U1‖2 + ‖V1‖2), (10)

which is similar to problem (8). Basically, (10) is the weighted solution of (8). But the key difference

between (10) and (8) lies in that, in (10), we consider the modified or weighted covariates xi ·α1 and

xi ·α2. This motivates us to develop a different approach to handle it, using the following corollary.

Corollary 3.1. The following nuclear norm minimization problem is equivalent to (9):

min
A∈Rp×p

n∑
i=1

L(yi, (xi •α1)
TA(xi •α2)) + τ2 ‖A‖∗

subject to rank(A) = 1,

(11)

where • denotes the element-wise product.

In order to solve the problem (11), we no longer need to search a series of τ to get the rank 2

solution first and transform the rank 2 solution into rank 1 solution. This is because (xi • α2) no

longer equals to (xi •α1) and Theorem 1 does not apply anymore. In this situation, by controlling

τ2 for rank 1 solutions, we can solve it directly.

To summarize the relationship among different formulations, problem (9) is a weighted version

of (8). Since (10) is equivalent to (9), (10) can be viewed as a weighted version of (8) as well. The

key difference between (10) and (8) lies in that we consider modified (xi •α1) and (xi •α2) in (10).

4 Computational Algorithm

In this section, we present our algorithm for solving the nuclear norm minimization problem (5).

To that end, we first introduce an important lemma.

Lemma 1. Suppose we have X ∈ Rp×p, then the unique solution to the optimization problem:

minimize
Y ∈Rp×p

1

2
‖X − Y ‖2F + τ ‖Y ‖∗

12



Algorithm 1 basis estimation algorithm

1: procedure basis estimation algorithm

2: Given τ1 > τ2 > · · · > τk and Initialize Alast by random

3: Alast = Alast+AlastT

2

4: while rank(Aτk) ≤ 2 do

5: δ = 1

6: while δ > ε do

7: ∂L
∂A |Alast =

∑n
i=1 L

′(yi,x
T
i A

lastxi)yixix
T
i

8: Anext = Stτk(Alast − t ∂L∂A |Alast)

9: δ =
‖Alast−Anext‖

F

max(1,‖Alast‖
F
)

10: Alast = Anext

11: end while

12: Aτk = Alast

13: end while

14: end procedure

is Y = Sτ (X), where Sτ (X) = UΣτV
T , U and V are left and right singular vectors of X, and

Στ = diag((σ1(X)− τ)+, · · · , (σp(X)− τ)+), where the function m+ = max(m, 0).

This operator Sτ (X) is known as soft-thresholding and proofs can be found in Cai et al. (2009)

and Mazumder et al. (2010). The closed form solution in Lemma 1 motivates us to use the proximal

gradient decent method.

4.1 Proximal gradient algorithm for subspace estimation

In order to solve (5), by using the proximal gradient decent method, we compute a series of solutions

with different τ in a decreasing order and the previous solution can be a warm start for the next

solution. Algorithm 1 provides the details. After getting a series of solutions of Aτi , we pick all the

rank 2 solutions. Note that there are potential multiple rank 2 solutions based on pre-specified τ .

We choose the best rank 2 solution by cross validation discussed in Section 4.3.

We set the starting point to be symmetric and all the steps of the computation will keep our

solution always be symmetric. Thus the constraint is always satisfied. The assumption behind line

3 in Algorithm 1 is that the rank of solution A is non-increasing with respect to τ . For line 7

we perform the proximal operator following Lemma 1 and the step size t can either be a Lipschitz

13



Algorithm 2 basis estimation algorithm

1: procedure basis estimation algorithm using FISTA

2: Given τ1 > τ2 > · · · > τk and Initialize Alast by random

3: Alast = Alast+AlastT

2

4: while rank(Aτk) ≤ 2 do

5: δ = 1, θ1 = 1,Blast = Alast

6: while δ < ε do

7: ∂L
∂A |Alast =

∑n
i=1 L

′(yi,x
T
i A

lastxi)yixix
T
i

8: Bnext = proxtτi(A
old − t ∂L∂A |Aold) = Stτi(A

old − t ∂L∂A)

9: θ2 =
1+
√

1+4θ21
2

10: Anext = Bnext + ( θ1−1θ2
)(Blast −Bnext)

11: δ =
‖Alast−Anext‖

F

max(1,‖Alast‖
F
)

12: θ2 = θ1,A
last = Anext,Blast = Bnext

13: end while

14: Aτk = Alast

15: end while

16: end procedure

constant or decided by the line search. Many types of line search work and here we use the simple

one proposed in Beck and Teboulle (2009b). Within the inner loop, the sequence of solution {A} will

converge to the optimal solution with rate O( 1k ), where k is the number of iterations, as discussed in

Parikh and Boyd (2014). Since the proximal gradient algorithm only shares a sublinear global rate of

convergence, Beck and Teboulle (2009a) proposed Fast Iterative Shrinkage Thresholding Algorithm

(FISTA) to improve the rate to O( 1
k2

). For our specific problem, we modify our algorithm following

the spirit of FISTA. See Algorithm 2 for details.

For algorithms 1 and 2, the most time consuming step is the proximal operator Stτi(A
old−t ∂L∂A) in

each iteration. This requires to compute the truncated SVD of a possibly low rank matrix especially

when we use the previous low rank solution as the warm start. There is a large literature regarding

SVD in numeric algebra such as Golub and Van Loan (1996) for general SVD. However, in order to

handle large datasets, truncated SVD could be computed efficiently by Krylov subspace projection

methods (Saad, 1992). Note that although Algorithm 2 has a faster convergence rate than Algorithm

1, Algorithm 1 may not perform worse than Algorithm 2 in terms of actual computational time due

14



to the truncated SVD in each iteration. In particular, in line 8 of Algorithm 2, the next step is

decided by the extrapolation of two previous stages and it is not necessarily a low rank matrix and

may cost more time in computation than Algorithm 1 when performing SVD.

4.2 Algorithm for Weighted CBC

In order to solve weighted CBC, we can use a similar algorithm as in Section 4.1. However, in this

situation the while condition in line 4 of both algorithms becomes rank(A) ≤ 1. After obtaining

the best rank one solution A∗ to (9) by cross validation, we need to transform the solution γ1,γ2

in (9) back to U1,V1 by SVD.

To solve problem (11) without the rank constraint, we use the equivalent problem (11). Thus

we use a similar idea in Section 2 and the algorithm remains the same except that we stop our

algorithm when the rank of solution is higher than 1. Furthermore, as we include the intercept

term in the input variables, we also include it in the regularization term. In order to remove the

regularization on the intercept term, we use a similar idea as in the weighted CBC by setting the

first elements of both α1 and α2 in (11) to be large so that the corresponding penalties to be small.

4.3 Choice of Rank-based Tuning parameters τ and τ2

For the two algorithms in Section 4.1, we pre-specify a series of decreasing values τ in order to get

rank two solutions. Basically we consider an equal spaced grid of τ between [τmin, τmax]. However,

there may have multiple τ corresponding to rank 2 solutions, and cross validation is used to choose

the best tuning parameter. Specifically, we use 5-fold cross validation and repeat 10 times to find the

one with the lowest out of sample test error. For τ2 in weighted CBC, we use a similar strategy. Since

we have weights already, the range of the pre-specify τ2 should be relatively small. We recommend

to choose τmax
2 = τ , which is selected in the unweighted CBC.

5 Numerical Results

In this section, we use both simulated and real data to compare CBC with other methods.

5.1 Simulation Study

Using simulation, we compare our proposed CBC and weighted CBC methods with the BDD method

in Huang et al. (2012), the linear SVM, quadratic SVM, Gaussian Kernel SVM, generalized additive

15
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Figure 5: The first panel shows a two-class-twisted example, the middle one corresponds to a two-

class-straight example, the right panel contains a 3-cluster-triangle example and their corresponding

decision boundaries.

model (GAM) from Chouldechova and Hastie (2015), one hidden layer with one-node neural network

(1-1-NN), and one hidden layer with two-node neural network (1-2-NN) (Hansen and Salamon

(1990)) based on the prediction performance and model interpretability. For data visualization, we

compare CBC with PCA.

In order to demonstrate that our method can identify sub-clusters within each class, we first

simulate three bilinear examples shown in Figure 5. Within each class, the subclusters are generated

from shifted bivariate normal distributions with parameter µ. The details are provided below.

1. Example 1 is a four-cluster-twisted case shown in the left panel of Figure 5, which includes

four clusters and two for each class respectively. The first two features of each cluster are

shifted by bivariate normal with means (µ, µ), (−µ,−µ), (−µ, µ), (µ,−µ) correspondingly and

variance equal to 1. Other dimensions are just standard white noise. In this case, linear

classifiers may be difficult to find a good classifier. The perfect classifier has a quadratic form

as sign(x1x2). Thus we expect CBC to estimate two linear hyperplanes such as f1 = x1 and

f2 = x2 up to some constant.

2. Example 2 is a four-cluster-straight case shown in the middle panel of Figure 5, which includes

four clusters and two for each class respectively but at the same side. The first two features

of each cluster are shifted by bivariate normal with means (µ, µ), (µ,−µ), (−µ, µ), (µ, µ) cor-

respondingly and variance equal to 1. Other dimensions are also just white noise. In this

case, linear classifiers are expected to perform well. The perfect classifier is a linear form as

16



sign(x1). Thus we expect our CBC method to estimate two linear hyperplanes such as f1 = x1

and f2 = 1 up to some constant.

3. Example 3 is a three-cluster-triangle case shown in the right panel of Figure 5, which includes

three clusters, two for one class and the rest for the other. The first two features of each cluster

are shifted by bivariate normal with means (µ, 0), (−µ, 0), (0, µ) correspondingly and variance

equal to 1. Other dimensions are white noise. Similar to Example 1, this is also challenging

for linear classifiers. The perfect classifier has a quadratic form as sign((x1 + x2)(x1 − x2)).

Thus we expect our CBC method to estimate two linear hyperplanes such as f1 = x1 +x2 and

f2 = x1 − x2 up to some constant.

4. In Example 4, we use the same generation scheme as in Example 1, but different for the last

two features, which are generated by the 2-dimensional Gaussian mixture model with 4 cluster

components. Each component follows bivariate normal with means (µ, µ), (−µ,−µ), (−µ, µ),

(µ,−µ) and variance equal to 1. Note that the last two features are useless for classification.

The perfect classifier is the same as Example 1.

We evaluate our method on both low dimensional cases with dimension p = 50 and high di-

mensional cases with p = 1000. Both settings have the training sample size n1 = 100 and testing

sample size n2 = 1000. In the low dimensional case, we set the shifted mean µ to be
√

5. For the

high dimensional case, we maintain an appropriate signal to noise ratio by letting µ to be
√
p
8 . The

experiments are repeated for 100 times.

Tables 1 and 2 summarize prediction errors for different methods. The last column gives the

estimated Bayes errors for each example. Both CBC and weighted CBC achieve the smallest mis-

classification rates among all these methods in all examples, and weighted CBC approximates the

best performance. Note that BDD performs significantly worse in Example 4 and the corresponding

standard error is large because of the difficulty of finding a good initial solution. In contrast, our

convex CBC methods are robust to initial points and perform well in all these cases.

For variable selection, since the rank 1 solution of CBC and weighted CBC can be decomposed

into U1,V1 in Theorem 2, we compare both methods with BDD for Example 1. In this example,

the perfect classifier is the sign of the product of the first two features. In Figure 6, we observe that

compared with other methods, our weighted CBC can successfully select the first two variables and

keep the other coefficients extremely small.

For data visualization, CBC can provide us a new way to visualize the data in a lower dimensional
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Table 1: Comparison of test errors (%) among different classifiers in four simulated examples

(p = 50) and the corresponding standard errors (%) in parenthesis.

Method Example 1 Example 2 Example 3 Example 4

W-CBC 2.46 (0.00) 1.34 (0.36) 11.05 (1.06) 2.51 (0.45)

CBC 3.47 (0.00) 1.83 (0.46) 12.51 (1.17) 3.97 (0.72)

BDD 5.68 (0.02) 2.98 (0.97) 16.04 (2.61) 9.61 (8.45)

Linear-SVM 49.9 (0.04) 2.17 (0.74) 18.5 (2.13) 49.74 (2.08)

Quad-SVM 7.22 (0.01) 21.71 (1.86) 20.57 (1.62) 10.52 (1.29)

Gaussian-SVM 43.36 (0.10) 13.62 (10.08) 44.42 (6.71) 45.07 (2.35)

GAM 50.00 (0.11) 1.39 (0.03) 14.80 (0.13) 50.03 (0.08)

1-1-NN 50.00 (0.14) 2.87 (0.01) 25.96 (0.22) 50.18 (0.14)

1-2-NN 47.00 (0.5) 3.18 (0.1) 24.73 (0.27) 48.65 (0.31)

Estimated optimal 2.46 (0.00) 1.34 (0.36) 10.79 (0.95) 2.50 (0.44)
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Figure 6: Coefficient estimation for the two directions for Example 1. All the coefficients have been

normalized. The results show that the weighted CBC works the best, followed by CBC, and BDD

performs the worst.

space. The main difference with PCA is that we also make use of the class label information. The

top two panels of Figure 7 are 2-D projection plots generated by PCA and CBC for Example 1.

Both methods can preserve the true structure of the data in the 2-D space compared with the raw

data in the first plot of Figure 5. However, for Example 4, as shown in the bottom two panels of

Figure 7, PCA fails to identify the within-class subcluster structure, while CBC can still identify the
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Table 2: Comparison of test errors (%) among different classifiers for four simulated examples

(p = 1000) and the corresponding standard errors (%) in parenthesis.

Method Example 1 Example 2 Example 3 Example 4

W-CBC 0.01 (0.03) 0.00 (0.02) 1.15 (0.85) 0.01 (0.03)

CBC 0.25 (0.21) 0.26 (0.39) 5.80 (0.88) 0.39 (0.24)

BDD 0.32 (0.18) 0.22 (0.16) 9.33 (9.39) 2.92 (5.60)

Linear-SVM 49.86 (1.60) 0.20 (0.15) 15.68 (1.32) 49.92 (1.40)

Quad-SVM 3.80 (1.66) 44.77 (1.63) 25.65 (3.67) 7.27 (2.07)

Gaussian-SVM 45.02 (4.73) 32.63 (16.04) 45.66 (5.26) 44.34 (4.34)

GAM 49.92 (0.12) 0.00 (0.00) 2.85 (0.06) 49.88 (0.10)

1-1-NN 49.89 (0.15) 1.18 (0.46) 27.39 (0.19) 49.94 (0.15)

1-2-NN 50.00 (0.15) 0.52 (0.22) 26.81 (0.26) 50.00 (0.15)

Estimated optimal 0.01 (0.03) 0.00 (0.02) 0.52 (0.22) 0.01 (0.03)

structure very clearly. In addition, in Figure 8, we also compare our proposed methods with BDD

via projection of test data on two directional coefficients for Example 4 when p = 50. BDD performs

worse than our proposed CBC methods. One potential reason is that the Gaussian mixture noise

variables in this example make the optimization problem more challenging for BDD.

The advantage of our methods over BDD comes from several aspects. The main reason is that

BDD solves a non-smooth and non-convex optimization problem (8) by using alternative minimiza-

tion methods, which can not provide any guarantee of convergence to even a local solution (See

examples in Powell (1973) and Razaviyayn et al. (2013)). In contrast, our proposed methods solve a

series of more robust convex optimization subproblems. Second, using a smooth hinge loss instead

of the standard hinge loss can avoid potential data pilling issues, especially for high dimensional low

sample size applications (Marron et al. (2007)). In addition, using approximate variable selection,

our weighted CBC can further improve the classification performance by strengthening the signals

and reducing the effect of noise features.

5.2 Real Data Analysis

In this section, we apply our CBC and weighed CBC to the prostate cancer dataset, available at

ftp://stat.ethz.ch/Manuscripts/dettling/prostate.rda, to detect whether there exists sub-
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Figure 7: The top two panels are 2-D visualization plots of Example 1 by PCA and CBC. The

bottom two corresponding to Example 4 by PCA and CBC. In the normal setting in Example 1, both

methods can capture sub-cluster structure. However, in Example 4 where there are uncorrelated

but clustered noise features, CBC can still capture the classification structure correctly but PCA

fails to do so.

clusters in each class. Prostate cancer is one of the most common cancers among men. The dataset

contains 52 patients and 50 normal people with expression values for 6033 genes.

For illustration, we only keep the top 200 genes based on largest absolute values of the two sample

t-statistics. We randomly split data into 80% for training and 20% for testing. Within the training

data, we use 5-fold cross validation for tuning parameter selection. We repeat this procedure for

120 times. Table 3 summarizes the misclassification error rates. Our weighted CBC achieves the

lowest error rate among all these methods. Furthermore, there appears to have potential subtypes

in normal-like samples as shown in Figure 9. To explore further on whether these clusters indicate

potential new subtype for the prostate cancer, we perform k-means clustering and select 3 clusters

according to the elbow method. The results indicate that the finding of subtypes behind normal-

like samples may be worthwhile to investigate further. Finally, Figure 9 shows the effective variable
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Figure 8: Plots of the projection of testing data of Example 4 on two directional coefficients to get

f1 and f2 by using BDD, CBC and weighted CBC, respectively. Note that BDD fails to correctly

classify some instances while both CBC and weighted CBC work better. In addition, weighted CBC

has slightly more accurate boundary than CBC.

Table 3: Comparison of test errors (%) among different classifiers for the prostate cancer dataset

and the corresponding standard errors (%) in parenthesis.

W-CBC CBC BDD Linear-SVM Quad-SVM Gaussian-SVM GAM 1-1-NN 1-2-NN

7.30 (5.34) 7.74 (5.38) 12.2 (6.72) 11.94 (7.36) 7.86 (5.15) 8.02 (5.24) 8.56 (4.81) 7.48 (5.32) 7.52 (4.97)

Figure 9: The 2-D visualization plot of the prostate cancer data by our CBC method. There are

potential two clusters within normal patients which are located at top left and bottom of the plot.

selection of our W-CBC method.
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Figure 10: The plot of two directional coefficients. We can see several genes play an important role

in both directions.

6 Conclusion

In this paper, we propose a convex bidirectional large margin classifier framework for high di-

mensional classification. Our method not only enjoys high predictive accuracy but also has good

interpretability. In addition, our method provides a new data visualization tool by making use of

class label information. It can be a useful tool to discover potential subclusters within each class as

we demonstrate using both simulated and real data applications.

7 Supplemental Materials

The computer code for the proposed methods is available with this article as Supplemental Materials.
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Appendix

Proof of Theorem 1

The first statement is just a special case of the latter one. Thus, it is sufficient to prove the second

statement. Suppose an optimal solution A∗ is not symmetric, then let Z = αA∗ + (1 − α)A∗T ,

which is a convex combination of A∗ and A∗T . Since (4) is a convex function, according to the

definition of convexity, we have F (Z) ≤ αF (A∗)+(1−α)F (A∗T ) = F (A∗). The last equality holds

because F (A∗) = F (A∗T ). The first statement is true when α = 1
2 .

Proof of Theorem 2

Since A(τ) is an optimal solution with rank r = 2 to (5), by spectral decomposition, A(τ) =

UrΣrU
T
r . Let zi = xiUr, where zi ∈ Rr, then we can rewrite the objective value as G(A(τ)) =∑n

i=1 L(yi,x
T
i UrΣrU

T
r xi) + τ

∥∥UrΣrU
T
r

∥∥
∗ =

∑n
i=1 L(yi, z

T
i Σrzi) + τTr(|Σr|), where Tr(X) is the

trace norm function over square matrices.

In order to find a A∗(τ) with rank k = 1, we claim that the space of A∗(τ) is formed by Ur.

Thus we want to find two matrices V1,V2 ∈ Rr×k such that A∗(τ) = UrV1V
T
2 U

T
r . Since we need

G(A(τ)) = G(A∗(τ)), we have the following equation:

n∑
i=1

L(yi, z
T
i Σrzi) + τTr(|Σr|) =

n∑
i=1

L(yi,x
T
i UrV1V

T
2 U

T
r xi) + τ

∥∥UrV1V
T
2 U

T
r

∥∥
∗

=
n∑
i=1

L(yi, z
T
i V1V

T
2 zi) + τ

∥∥V1V
T
2

∥∥
∗ .

In order to get the equality for every zi ∈ Rr, we need to solve the following two equations:

(V1V
T
2 + V2V

T
1 )

2
= Σr (1)∥∥V1V

T
2

∥∥
∗ = Tr(|Σr|). (2)

Then we can check that the following V1,V2 satisfy the equation above:

V1 = (
√
|λ1|,

√
|λ2|)

V2 = (
√
|λ1|,−

√
|λ2|),

(12)

where λ1, λ2 are the diagonal values of Σr.

Proof of Theorem 3

We first introduce the following lemma:

Lemma 2. For any matrix A ∈ Rm×n with r = rank(A) < min(m,n), we have the following

equation:

‖A‖∗ = min
U ,V ,A=UV T

1

2
(‖U‖2F + ‖V ‖2F ),
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where the minimum is attained at a factor decomposition A = UrV
T
r

Proof. See the proof in Lemma 6 of Mazumder et al. (2010).

Note that (8) can also be represented as:

minimize
A∈Rp×p

n∑
i=1

L(yix
T
i Axi) +

τ

2
(‖Ur‖2F + ‖Vr‖2F )

subject to A = UrV
T
r .

By using Lemma 2, we get the following equivalent problem:

minimize
A∈Rp×p

n∑
i=1

L(yix
T
i Axi) + τ ‖A‖∗

subject to A = UrV
T
r .

That is

minimize
A∈Rp×p

n∑
i=1

L(yix
T
i Axi) + τ ‖A‖∗

subject to rank(A) = r.

Note that r = 1 is a special case of Theorem 3. Thus we have the conclusion that the solution to

(6) lies in the solution path of (8).
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