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Abstract We consider the classification problem when the input features are represented as ma-
trices rather than vectors. To preserve the intrinsic structures for classification, a successful method
is the Support Matrix Machine (SMM) in [19], which optimizes an objective function with a hinge
loss plus a so-called spectral elastic net penalty. However, the issues of extending SMM to mul-
ticategory classification still remain. Moreover, in practice, it is common to see the training data
contaminated by outlying observations, which can affect the robustness of existing matrix classifica-
tion methods. In this paper, we address these issues by introducing a robust angle-based classifier,
which boils down binary and multicategory problems to a unified framework. Benefitting from the
use of truncated hinge loss functions, the proposed classifier achieves certain robustness to outliers.
The underlying optimization model becomes nonconvex, but admits a natural DC (difference of
two convex functions) representation. We develop a new and efficient algorithm by incorporat-
ing the DC algorithm and primal-dual first-order methods together. The proposed DC algorithm
adaptively chooses the accuracy of the subproblem at each iteration while guaranteeing the overall
convergence of the algorithm. The use of primal-dual methods removes a natural complexity of the
linear operator in the subproblems and enables us to use the proximal operator of the objective
functions, and matrix-vector operations. This advantage allows us to solve large-scale problems
efficiently. Theoretical and numerical results indicate that for problems with potential outliers, our
method can be highly competitive among existing methods.
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1 Introduction

Many popular classification methods are originally developed for data with a vector of covariates,
such as linear discriminant analysis, logistic regression, support vector machine (SVM), and Ad-
aboost [12]. Recent advances in technology enable the generation of a wealth of data with complex
structures, where the input features are represented by multi-linear geometric objects such as ma-
trices or tensors, rather than by the form of vectors or scalars. The matrix-type datasets are often
encountered in a wide range of real applications, e.g., the face recognition [31] and the analysis of
medical images, such as the electroencephalogram data [36].

One common strategy to handle the matrix data classification is to stack a matrix into a long
vector, and then employ some existing vector-based methods. This approach has several drawbacks.
First, after vectorization, the dimensionality of the resulting vector typically becomes exceedingly
high, which in turn leads to the curse of dimensionality, i.e. the large p and small n phenomenon.
Second, vectorization of matrix-type data can destroy informative structure and correlation of data
matrix, such as the neighbor information and the adjacent relation. Third, under the statistical
learning framework, the regularization of vector and matrix data should be different due to their
intrinsic structures. To exploit the correlation among the columns or rows of the data matrix,
several methods were developed, for example, [6], [27], [24], [14]. These methods are essentially
built on the low-rank assumption. Another major direction is to extend regularization techniques
commonly used in vector-based classification methods to the present matrix-type data, under
certain sparsity assumptions. The regularization with the nuclear norm of matrix of parameters
is popular in a variety of settings; see [7] for matrix completion with a low rank constraint, and
[36] for matrix regression problems based on generalized linear models. Specifically, [19] proposed
the Support Matrix Machine (SMM) which employs a so-called spectral elastic net penalty for
binary classification problems. The spectral elastic net penalty is the combination of the squared
Frobenius matrix norm and the nuclear norm, in parallel to the elastic net [37]. They showed that
the SMM classifier enjoys the property of grouping effect, while keeping a low-rank representation.

Our approach and contribution: Though the SMM model is simple yet effective, two major issues
still remain. The first one is how to extend it to address the problem of multicategory classifica-
tion. One may reduce the multicategory problem via a sequence of binary problems, for example,
using one-versus-rest or one-versus-one techniques. However, the one-versus-rest method can be
inconsistent when there is no dominating class, and one-versus-one method may suffer a tie-in-vote
problem [17, 18]. Another issue is that existing classifiers may not be robust against outliers, and
thus they may have unstable performance in practice [30]. To address these two issues, we pro-
pose a new multicategory angle-based SMM using truncated hinge loss functions, which not only
provides a natural generalization of binary SMM methods, but also achieves certain robustness
to outliers. Our proposed classifier can be viewed as a robust matrix counterpart of the robust
vector-based classifier in [32]. We show that the proposed classifier enjoys Fisher consistency and
other attractive theoretical properties.

Because the truncated hinge loss is nonconvex and the spectral elastic net regularization is
not smooth, the optimization problem involved in our classifier is highly non-trivial. We first
show that this problem admits a global optimal solution by exploiting special structures of the
model. Next, we show that the optimization problem has a natural DC (difference of two convex
functions) decomposition. Hence, one can apply a DC algorithm (DCA) [2] to solve this problem.
However, the convex subproblem is rather complicated with nonsmooth objective functions and
linear operators, and cannot be solved exactly. This prevents us from solely applying DCA to solve
our nonconvex problem. We instead develop a new variant, namely the inexact proximal DCA, to
solve this problem. By using the proximal term, we obtain a strongly convex subproblem. Then, to
approximately solve this subproblem, we propose to use primal-dual first-order methods proposed
in [8, 28]. These methods allow us to exploit the special structures of the problem by utilizing the
proximal operator of the objective terms, and matrix-vector multiplications. One drawback of this
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approach is to match the number of inner iterations in the primal-dual scheme and the inexactness
of the proximal DCA scheme. By exploiting the problem structure, we show how to estimate this
number of inner iterations at each step of the DCA scheme to obtain a unified DCA algorithm for
solving the nonconvex optimization problem. We prove that by adaptively controlling the number of
iterations in the primal-dual routine, we can still achieve a global convergence of our DCA variant,
which converges to a stationary point. Our method can be implemented efficiently and does not
require to estimate any parameter with expensive computational cost. To our limited knowledge,
we are not aware of any efficient method to solve SMM-type problems in the literature except the
alternating direction method of multipliers (ADMM)-based scheme [5]. In order to examine the
efficiency of our method, we compare it with an ADMM-based scheme [5]. As shown in Section 5,
our method outperforms ADMM in terms of computational time, and our new model has highly
competitive performance among existing methods in different aspects.
Paper organization: The rest of the article is organized as follows. In Section 2, we briefly review
some related works, and then introduce our proposed model and methodology. In Section 3, we
describe a new inexact proximal DCA algorithm and investigate its convergence. Some statistical
learning results, including Fisher consistency, risk and robustness analysis, are presented in Section
4. Numerical studies are given in Section 5 on both synthetic and real data. Section 6 concludes
our work with some remarks, and theoretical proofs are delineated in the appendix.
Notation: For a matrix A ∈ Rp×q of rank r (r ≤ min(p, q)), A = UAΣAV>A represents the
condensed singular value decomposition (SVD) of A, where UA ∈ Rp×r and VA ∈ Rq×r satisfy
U>AUA = Ir and V>AVA = Ir, and ΣA = diag{σ1(A), · · · , σr(A)} with σ1(A) ≥ · · · ≥ σr(A) > 0.
For each τ > 0, the singular value thresholding operator Dτ (·) is defined as follows:

Dτ (A) = UADτ (ΣA)V>A,

where Dτ (ΣA) = diag
{

[σ1(A) − τ ]+, · · · , [σr(A) − τ ]+
}

with [a]+ = max{0, a}. For A ∈ Rp×q,
‖A‖F =

√∑
i,j a

2
ij denotes the Frobenius norm of A, ‖A‖∗ =

∑r
i=1 σi(A) denotes the nuclear

norm of A, and ‖A‖2 = σ1(A) stands for the spectral norm of A. The inner product between two

matrices is defined as 〈A, B〉 =
√

tr(A>B) =
√∑

i,j ai,jbi,j . It is well-known that the nuclear

norm ‖A‖∗, as a mapping from Rp×q to R, is not differentiable, but convex. Alternatively, one
considers the subdifferential of ‖A‖∗, which is the set of subgradients and denoted by ∂‖A‖∗. For
a matrix A, vec(A) denotes its vectorization. We use 〈·, ·〉 to denote the inner product.

For a proper, closed, and convex function ϕ : Rn → R ∪ {+∞}, dom(ϕ) denotes the do-
main of ϕ, proxϕ(x) , arg miny

{
ϕ(y) + 1

2

}
‖y − x‖2 denotes its proximal operator, and ϕ∗(y) ,

sup
{
x>y − ϕ(x)

}
denotes its Fenchel conjugate. We say that ϕ has a “friendly” proximal operator

if its proximal operator proxϕ can be computed efficiently by, e.g., closed-form or polynomial time

algorithms. We say that ϕ is µϕ-strongly convex if ϕ(·)− 1
2µϕ‖ · ‖

2
F is convex, where µϕ ≥ 0. Given

a nonnegative real number x, we denote bxc the largest integer that is less than or equal to x.

2 Methodology

Assume that the underlying joint distribution of (X,Y) is Pr(X,Y), where X ∈ Rp×q is the
matrix of predictors and Y is the label. We are given a set of training samples of matrix-type
data TN = {Xi, yi}Ni=1 collected independently and identically distributed (i.i.d.) from Pr, where
Xi ∈ Rp×q is the ith input sample and yi is its corresponding class label. Here, we assume that Xi’s
are zero-centered; otherwise we can make transformation by Xi−X, where X = N−1

∑N
i=1 Xi. We

take the structure information into consideration and handle all Xi’s in the matrix form. Based on
the given training set TN , the target of a classification problem is to estimate a classifier ŷ : X 7→ Y,
by minimizing the empirical prediction error

1

N

N∑
i=1

I(ŷ(Xi) 6= yi),
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where I(·) is the indicator function. Because I(·) is discontinuous, in practice, we use some surrogate
loss function to approximate it. As an example, in the case of the SVM, the hinge loss is adopted.

2.1 Review of the Support Matrix Machine

We take the binary problem as a special example with the encoded class labels set {+1,−1}. The
optimization problem of [19]’s SMM can be expressed as

min
M1,b

{
1

N

N∑
i=1

`(yi(〈M1, Xi〉+ b)) + λ

(
1

2
‖M1‖2F + τ‖M1‖∗

)}
, (1)

where M1 ∈ Rp×q, and `(u) , [1 − u]+ = max{1 − u, 0} is the hinge loss, τ ≥ 0 controls the
balance between the Frobenius norm and nuclear norm, and λ > 0 is a tuning parameter that
balances the loss and regularization terms. The SMM (1) is a soft margin classifier, and it has a
close connection to the ordinary SVM [4, 10]. With τ = 0, by vectorization of the coefficient matrix
M1, SMM reduces to the standard form of the SVM.

The penalty term, J(M1) , 1
2 ‖M1‖2F + τ‖M1‖∗, can be re-expressed as

J(M1) =

min{p,q}∑
i=1

σ2
i (M1)

2
+ τ

min{p,q}∑
i=1

σi(M1).

Clearly, this term is essentially of the form of the elastic net penalty for all singular values of the
regression matrix M1, and thus is referred to as the spectral elastic net penalty. Such regularization
encourages a low-rank constraint of the coefficient matrix. This can be better understood by the
dual problem of (1), which is presented as follows:

min
α

1

2

∥∥∥∥∥Dτ
(

N∑
i=1

αiyiXi

)∥∥∥∥∥
2

F

−
N∑
i=1

αi


s.t. 0 ≤ αi ≤ C, i = 1, . . . , N ;

N∑
i=1

αiyi = 0,

(2)

where C = (Nλ)−1, and the optimum satisfies M1 = Dτ
(∑N

i=1 αiyiXi

)
. The derivation of (2) is

given in the appendix. Under the low-rank assumption, small singular values of
∑N
i=1 αiyiXi are

more likely to be noisy, and hence SMM could be more efficient than the SVM by thresholding
with an appropriate choice of τ . Moreover, due to the use of the trace norm, [19] also showed that
there is a stronger grouping effect in the estimation of M1 than the ordinary SVM.

2.2 Robust Multicategory SMM

For extensions of the binary classification method to the multicategory case, a common approach
is to use K classification functions to stand for the K categories, and the prediction rule is based
on which function has the largest value. Recently, [32] showed that this approach can be inefficient
and suboptimal, and proposed an angle-based classification framework that needs to train K − 1
classification functions f = (f1, · · · , fK−1)>. The angle-based classifiers can enjoy better prediction
performance and faster computation [33, 34, 26]. Hence, we adopt this strategy here. For simplicity,
we focus on linear learning.

To be more specific, consider a centered simplex with K vertices W = (w1, · · · ,wK) in RK−1,
where these vertices are given by

wk =

(K − 1)−
1
2 1 if k = 1,

− 1+
√
K

(K−1)
3
2
1 +

√
K
K−1ek−1 if k ≥ 2.
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Here, ek is the unit vector of length K − 1 with the kth entry 1 and 0 otherwise, and 1 is the
vector of all ones. One can verify that each vector wk has Euclidean norm 1, and the matrix
W introduces a symmetric simplex in RK−1. Each wk represents the kth class label. Let M be
the linear transformation matrix which maps an input X into a (K − 1)-variate vector f(X) =

M · vec(X), where M = [vec(M1), · · · , vec(MK−1)]
> ∈ R(K−1)×pq, and Mj ∈ Rp×q for any

j ∈ {1, · · · ,K − 1}. The angle ∠(f(X), wk) shows the confidence of the sample X belonging to
class k. Thus the prediction rule is based on which angle is the smallest, i.e.,

ŷ(X) = arg min
k∈{1,··· ,K}

∠(f(X), wk).

It can also be verified that the least-angle prediction rule is equivalent to the largest inner product,
i.e.,

ŷ(X) = arg max
k∈{1,··· ,K}

〈f(X), wk〉.

Here, we define Ha(u) , [a− u]+ = max {0, a− u} and Ga(u) , [a+ u]+ = max{0, a+ u}. Based
on the structure of matrix-type data, our proposed Robust Multicategory Support Matrix Machine
(RMSMM) solves

min
f∈F

 1

N

N∑
i=1

γT(K−1)s(〈f(Xi), wyi〉) + (1− γ)
∑
k 6=yi

Rs(〈f(Xi), wk〉)

+ λJ(M)

 , (3)

where

– F ,
{
f | f(X) = Mvec(X), M ∈ R(K−1)×pq};

– f(X) , (f1(X), · · · , fK−1(X)) with fj(X) = 〈Mj ,X〉 for j = 1, · · · ,K − 1;

– J(M) ,
∑K−1
j=1

(
1
2‖Mj‖2F + τ‖Mj‖∗

)
, where τ ≥ 0 is a balancing parameter;

– Ts(u) , HK−1(u)−Hs(u) and Rs(u) , G1(u)−Gs(u). The notation s ≤ 0 is a parameter
that controls the location of truncation, and γ ∈ [0, 1] is a convex combination parameter.

In (3), the loss term L(X, y,M) =
{
γT(K−1)s(〈f(X), wy〉) + (1− γ)

∑
k 6=y Rs(〈f(X), wk〉)

}
can be written as L1(X, y,M)− L2(X, y,M), where

L1(X, y,M) = γH(K−1)(〈f(X), wy〉) + (1− γ)
∑
k 6=y

G1(〈f(X), wk〉), and

L2(X, y,M) = γH(K−1)s(〈f(X), wy〉) + (1− γ)
∑
k 6=y

Gs(〈f(X), wk〉).

The first term L1 of the above representation is a generalization of the reinforced multicategory
loss function in the angle-based framework proposed by [33]. Note that L1 explicitly encourages
〈f(X), wy〉 to be large, while the second term encourages 〈f(X), wy〉 to be small for k 6= yi.
In parallel to [33], we will show later that this convex combination of hinge loss functions enjoys
Fisher consistency with γ ∈ [0, 12 ] and s ≤ 0.

The use of the second term L2 is motivated by [30] to alleviate the effect of potential outliers,
resulting in a truncated hinge loss. It can be seen that for any potential outlier (X, y) with a
sizable 〈f(X), wy〉, its loss L is upper bounded by a constant for any f . Thus, the impact of
outliers can be alleviated by using L. Note that when s > 0, Ts(u) and Rs(u) are constants within
[−s, s]. In this case, the loss for some correctly classified observations is the same as that of those
misclassified ones. Hence, it is more desirable to set s ≤ 0. As recommended by [32], the choice of
s = −(K − 1)−1 works well and will be used in our simulation study.

The truncated hinge loss is nonconvex, which makes the optimization problem (3) more involved
than that of SMM. We next present an efficient algorithm to implement our RMSMM.
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3 Optimization Algorithm

Since the optimization problem (3) admits a DC decomposition, we propose to apply DCA [2]
to solve this problem. At each iteration of DCA, it requires to solve a convex subproblem, which
does not have a closed form. We instead solve this convex subproblem up to a given accuracy and
design an inexact variant of DCA so that it automatically adapts the accuracy of the subproblem
to guarantee the overall convergence of the full algorithm.

3.1 A DC Representation of (3)

Problem (3) is nonconvex, but fortunately, it possesses a natural DC representation. Indeed, due
to the relation f(X) , M · vec (X), we can write

〈f(X),w〉 = w>M · vec (X) = a>vec (M) ,

where a , vec (X)⊗w with ⊗ denoting the Kronecker product. Let us define

ai , vec (Xi)⊗wyi , and bik , vec (Xi)⊗wk, i = 1, · · · , N, k = 1, · · · ,K − 1. (4)

Then, we can rewrite problem (3) as

min
M∈R(K−1)×pq

F (M),
1

N

N∑
i=1

γTs(K−1) (a>i vec (M)
)
+(1−γ)

∑
k 6=yi

Rs
(
b>ikvec (M)

)+λJ(M)

 . (5)

Problem (5) has a DC representation as follows:

min
M

{
F (M) , Φ(M)− Ψ(M)

}
, (6)

where 
Φ(M) ,

1

N

N∑
i=1

γHK−1
(
a>i vec (M)

)
+ (1− γ)

∑
k 6=yi

G1

(
b>ikvec (M)

)+ λJ(M)

Ψ(M) ,
1

N

N∑
i=1

γHs(K−1)
(
a>i vec (M)

)
+ (1− γ)

∑
k 6=yi

Gs
(
b>ikvec (M)

) .
(7)

Here, both function Φ and Ψ are convex, but nonsmooth. In addition, Ψ is polyhedral. Note that
we can always add any strongly convex function S to Φ and Ψ to write F = Φ− Ψ as

F (M) = Φ(M)− Ψ(M) = [Φ(M) + S(M)]− [Ψ(M) + S(M)], (8)

to obtain a new DC representation. The latter representation shows that both convex functions
Φ+S and Ψ+S are strongly convex. This representation also leads to a strongly convex subproblem
at each iteration of DCA as we will see in the sequel. However, the choice of S is crucial, and also
affects the performance of the algorithm. In our implementation, we simply add a convex quadratic
function which leads to a proximal DCA.

Note that dom(Φ) ∩ dom(Ψ) 6= ∅. Since problem (6) is nonconvex, any point M∗ ∈ R(K−1)×pq

satisfies
0 ∈ ∂F (M∗) ≡ ∂Φ(M∗)− ∂Ψ(M∗) (9)

is called a stationary point of (6). If M∗ satisfies ∂Φ(M∗) ∩ ∂Ψ(M∗) 6= ∅, then we say that M∗ is
a critical point of (6). We show in the following theorem that (6) has a global optimal solution.

Theorem 1 If λ > 0, then problem (6) has at least one global optimal solution M∗.
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Proof We first write the objective function F of (5) into the sum F (M) = F (M)+ λ
2 ‖M‖

2
F , where

F is a function combining the sum of Ts(K−1), Rs, and the nuclear norm
∑K−1
j=1 τ‖Mj‖∗ in J .

Next, we show that F is Lipschitz continuous. Indeed, using the fact that [a]+ = max {0, a} =
1
2 (a+ |a|), we can show that

Ts(u) = HK−1(u)−Hs(u) = [K−1−u]+− [s−u]+ and Rs(u) = G1(u)−Gs(u) = [1+u]+− [s+u]+

are both Lipschitz continuous. In addition, we have ‖Mj‖F ≤ ‖Mj‖∗ ≤ [min {p, q}]1/2‖Mj‖F for

j = 1, · · · ,K− 1. Hence,
∑K−1
j=1 τ‖Mj‖∗ is also Lipschitz continuous. As a consequence, F defined

above is Lipschitz continuous. That is, there exists L ∈ [0,+∞) such that |F (M) − F (M̂)| ≤
L‖M− M̂‖F for all M, M̂ ∈ R(K−1)×pq.

Using a fixed point M0 ∈ R(K−1)×pq, we can bound F as

F (M) ≥ F (M0)− LF ‖M−M0‖F +
λ

2
‖M‖2F → +∞, as ‖M‖F → +∞.

Hence, F is coercive, i.e., F (M) → +∞ as ‖M‖F → ∞. Consequently, its sublevel set L(β) =
{M | F (M) ≤ β} is closed and bounded for any β ∈ R. By the well-known Weierstrass theorem,
(6) has at least one global optimal solution M∗. �

3.2 Inexact Proximal DCA Scheme

Let us start with the standard DCA scheme [2] and propose an inexact proximal DCA scheme
to solve (6). The proximal DCA is equivalent to DCA applying to the DC decomposition (8)
mentioned above, but often uses an adaptive strongly convex term S.

3.2.1 The Standard DCA Scheme and Its Proximal Variant

The DCA method for solving (6) is very simple. At each iteration t ≥ 0, given Mt, we compute a
subgradient ∇Ψ(Mt) ∈ ∂Ψ(Mt) and form the subproblem:

min
M

{
F̃t(M) , Φ(M)− 〈∇Ψ(Mt),M〉

}
, (10)

to compute the next iteration Mt+1 as an exact solution of (10). The subproblem (10) is convex.
However, it is fully nonsmooth and does not have a closed form solution.

In the proximal DC variant, we instead apply DCA to the DC decomposition (8) with S(M) ,
ρ
2‖M‖

2
F , which leads to the following scheme:

Mt+1 , arg min
M

{
F̃t(M) , Φ(M)− 〈∇Ψ(Mt),M〉+

ρt
2
‖M−Mt‖2F

}
, (11)

where ρt > 0 is a given proximal parameter. Clearly, Mt+1 is well-defined and unique.

3.2.2 Inexact Proximal DCA Scheme

Clearly the subproblem (11) in the proximal DCA scheme (11) does not have a closed form solution.
We can only obtain an approximate solution of this problem. This certainly affects the convergence
of (11). We instead propose an inexact variant of (11) by approximately solving

Mt+1 :≈ arg min
M

{
F̃t(M) , Φ(M)− 〈∇Ψ(Mt),M〉+

ρt
2
‖M−Mt‖2F

}
, (12)

where :≈ stands for the approximation between the approximate solution Mt+1 and the true

solution M
t+1

of the subproblem (12), and is characterized via the objective residual as

F̃t(M
t+1)− F̃t(M

t+1
) ≤ δ2t

2
. (13)
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We note that this condition is implementable if we apply first-order methods in convex optimization
to approximately solving (12).

Clearly, by strong convexity, we have

ρt
2
‖Mt+1 −M

t+1‖2F ≤ F̃t(Mt+1)− F̃t(M
t+1

) ≤ δ2t
2
.

This leads to ‖Mt+1 −M
t+1‖F ≤ δt/

√
ρt, which shows the difference between the approximate

solution Mt+1 and the true one M
t+1

.

Under the inexact criterion (13), we can still prove the following descent property of the inexact
proximal DCA scheme (12).

Lemma 1 Let Ψ be µΨ -strongly convex with µΨ ≥ 0. Let {Mt} be the sequence generated by the
inexact proximal DCA scheme (12) under the inexact criterion (13). Then

F (Mt+1) ≤ F (Mt)− (ρt + µΨ )

2
‖Mt+1 −Mt‖2F +

δ2t
2
. (14)

Proof Using the optimality condition of (12), we have

∇Φ(M
t+1

)−∇Ψ(Mt) + ρt(M
t+1 −Mt) = 0, where ∇Φ(M

t+1
) ∈ ∂Φ(M

t+1
).

From the µΦ- and µΨ -strong convexity of Φ and Ψ , respectively, we have

Φ(M
t+1

) ≤ Φ(Mt) + 〈∇Φ(M
t+1

),M
t+1 −Mt〉 − µΦ

2 ‖M
t+1 −Mt‖2F ,

−Ψ(Mt+1) ≤ −Ψ(Mt)− 〈∇Ψ(Mt),Mt+1 −Mt〉 − µΨ
2 ‖M

t+1 −Mt‖2F
= −Ψ(Mt)− 〈∇Ψ(Mt),M

t+1 −Mt〉+ 〈∇Ψ(Mt),M
t+1 −Mt+1〉

−µΨ2 ‖M
t+1 −Mt‖2F .

Summing up the last two inequalities and using the above optimality condition, we obtain

Φ(M
t+1

)− Ψ(Mt+1) ≤ F (Mt)− ρt‖M
t+1 −Mt‖2F + 〈∇Ψ(Mt),M

t+1 −Mt+1〉

−µΦ2 ‖M
t+1 −Mt‖2F −

µΨ
2 ‖M

t+1 −Mt‖2F .

Here, F (M) = Φ(M)− Ψ(M). Next, using (13), we have

Φ(Mt+1) ≤ Φ(M
t+1

)− 〈∇Ψ(Mt),M
t+1 −Mt+1〉+

δ2t
2

+ρt
2 ‖M

t+1 −Mt‖2F −
ρt
2 ‖M

t+1 −Mt‖2F .

Summing up the last two inequalities and using F = Φ− Ψ again, we obtain

F (Mt+1) ≤ F (Mt)− 1

2

[
(ρt + µΦ)‖Mt+1 −Mt‖2F + (ρt + µΨ )‖Mt+1 −Mt‖2F

]
+
δ2t
2
.

This implies (14) by neglecting the term − 1
2 (ρt + µΦ)‖Mt+1 −Mt‖2F . �
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3.3 Solution of The Convex Subproblem

By rescaling the objective function by a factor of 1
λ , we can rewrite the strongly convex subproblem

(12) at the iteration t of the inexact proximal DCA scheme as follows:

min
M

{
F̃t(M) , Pt(A(M)) +Qt(M)

}
, (15)

where

Pt(A(M)) ,
1

λN

N∑
i=1

γHK−1
(
a>i vec (M)

)
+ (1− γ)

∑
k 6=yi

G1

(
b>ikvec (M)

)− 1

λ
〈∇Ψ(Mt),M〉,

and

Qt(M) , J(M) +
ρt
2

∥∥M−Mt
∥∥2
F

=

K−1∑
j=1

[
1

2
‖Mj‖2F + τ ‖Mj‖∗ +

ρt
2

∥∥Mj −Mt
j

∥∥2
F

]
.

Here, A is a linear operator concatenating all vectors ai and bik, and the subgradient ∇Ψ(Mt)
in Pt, and Pt is a nonsmooth convex function, but has a “friendly” proximal operator that can
be computed in linear time (see Subsection 3.5 for more details). Due to the strong convexity of
J , (15) is strongly convex even for ρt = 0. However, one can adaptively choose ρt ≥ 0 such that
we have a “good” strong convexity parameter. If we do not add a regularization term 1

2‖Mj‖2F ,
then (15) is strongly convex if ρt > 0. Since µΨ = 0 in (6), to get a strictly descent property in
Lemma 1, we require ρt > 0. The following lemma will be used in the sequel, whose proof is given
in the appendix.

Lemma 2 The objective function Pt(·) of (15) is Lipschitz continuous, i.e., there exists L0 ∈
(0,+∞) such that |Pt(u) − Pt(û)| ≤ L0‖u − û‖F for all u, û, where L0 is independent of t.
Consequently, the domain dom(P ∗t ) of the conjugate P ∗t is bounded uniformly in t, i.e., its diameter
DP∗ , 2 sup {‖v‖ | v ∈ dom(P ∗t )} is finite and independent of t.

Denote by

L(β) ,
{

M ∈ R(K−1)×pq | F (M) ≤ β
}
, (16)

the sublevel set of (5). As we proved in Theorem 1, the sublevel set L(β) is closed and bounded
for any β ∈ R. We define

DL , 2 sup
{
‖M‖F | F (M) ≤ F (M0)

}
(17)

the diameter of this sublevel set, which is finite, i.e., DL ∈ (0,+∞).

3.3.1 Primal-dual Schemes for Solving (15)

Problem (15) can be written into a minimax saddle-point problem using the Fenchel conjugate of
Pt. It is natural to apply primal-dual first-order methods to solve this problem. We propose in this
subsection two different primal-dual schemes to solve (15).

Our first algorithm is the common Chambolle-Pock primal-dual method proposed in [8]. This

method is described as follows. Starting from M̂t
0 = M̃t

0 = Mt, and Yt
0 = Yt as an initial dual
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variable with Y0 = 0, set Mt
0 = 0, and at each inner iteration l ≥ 0, we perform

Yt
l+1 = proxσtlP∗

t

(
Yt
l + σtlA(M̂t

l)
)
,

M̃t
l+1 = proxωtlQt

(
M̃t

l − ωtlA∗(Yt
l+1)

)
,

θtl = 1√
1+2(1+ρt)ωtl

, ωtl+1 = θtlω
t
l , σtl+1 =

σtl
θtl
,

M̂t
l+1 = M̃l+1

t + θtl (M̃
t
l+1 − M̃t

l),

Mt
l+1 = (1− stl)Mt

l + stlM̃
t
l+1, with stl =

σtl∑l
j=0 σ

t
j

.

(18)

Here, we use the index t for the DCA scheme as the outer iteration counter, and the index l for
the inner iteration counter. The initial stepsizes are set to be σt0 = ωt0 = c‖A‖−1, where ‖A‖ is the
operator norm of A, and c = 0.999; A∗ is the adjoint operator of A (i.e., when A is a matrix, A∗
is the transpose of A), proxσP∗

t
is the proximal operator of the Fenchel conjugate P ∗t of Pt, and

proxωQt is the proximal operator of ω ·Qt.
Alternatively, we can also apply [28, Algorithm 2] to solve (15). Originally, [28, Algorithm 2]

works directly on the primal space, and has a convergence guarantee on the primal sequence {Mt
l}

that is independent of the dual variable Yt
l as we can see in Lemma 3 below. Let us describe

this scheme here to solve (15). Starting from Mt
0 = Mt, M̃t

0 = Mt, and Yt
0 = Yt, at each inner

iteration l ≥ 0, we update

Yt
l+1 = proxσtlP∗

t
(Yt

0 + σtlA(M̂t
l))

M̃t
l+1 = proxQt/(ωtlβtl )

(
M̃t

l − 1
ωtlβ

t
l
A∗
(
Yt
l+1

))
Mt

l+1 = (1− ωtl )Mt
l + ωtlM̃

t
l+1

ωtl+1 =
ωtl
2

(√
(ωtl )

2 + 4− ωtl
)
, σtl+1 =

σtl
1−ωtl+1

, βtl+1 = ‖A‖2σtl+1,

M̂t
l+1 = Mt

l+1 +
ωtl+1(1−ω

t
l )

ωtl
(Mt

l+1 −Mt
l).

(19)

Here, the initial values ωt0 = 1 and σt0 = 1
2‖A‖

−2(1 + ρt) are given.
Note that both schemes (18) and (19) look quite similar at first glance, but they are fundamen-

tally different. First, the dual step Yt
l in (19) fixes Yt

0 for all iterations l, while it is recursive with
Yt
l in (18). Second, (18) has an extra averaging step at the last line, while (19) has a linear coupling

step at the last line, where it works similarly as the accelerated gradient method of Nesterov [23].
Finally, the way of updating parameters in both schemes are really different.

In terms of complexity, (18) and (19) essentially have the same per-iteration complexity with
one proximal operator proxsP∗

t
, one proximal operator proxrQt , one matrix-vector multiplication

A(M), and one adjoint operation A∗(Y).
The following lemma provides us conditions to design a stopping criterion for the inner loop

(i.e., the l-iterative loop), whose proof is given in the appendix.

Lemma 3 Let M
t+1

be the unique solution of (15) at the outer iteration t. Then, the sequence
{Mt

l}l≥0 generated by (18) satisfies

F̃t(M
t
l)− F̃t(M

t+1
) ≤ (1 + ρt + ‖A‖)‖A‖

(1 + ρt)l2

(
‖Mt

0 −M
t+1‖2F + ‖Yt

0 −Y
t+1‖2F

)
, (20)

where Y
t+1

is the corresponding exact dual solution of (15).
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Alternatively, the sequence {Mt
l}l≥0 generated by (19) satisfies

F̃t(M
t
l)− F̃t(M

t+1
) ≤ 4L0‖A‖

(l + 1)2

[2L0‖A‖
1 + ρt

+
√

3‖Mt
0−M

t+1‖F
]

+
3(ρt + 1)‖Mt

0 −M
t+1‖2F

(l + 1)2
, (21)

where L0 is given in Lemma 2

One advantage of (19) over (18) is that the right-hand side bound (21) does not depend on the

dual variables Yt
0 and Y

t+1
as in (20).

3.3.2 The Upper Bound of the Inner Iterations

Our next step is to specify the maximum number of inner iterations lmax(t) to guarantee the
condition (13) at each outer iteration t.

First, from both schemes (18) and (19), one can see that {Yt
l} ⊂ dom(P ∗t ). Hence, by Lemma 2,

we can bound ‖Yt
0−Y

t+1‖F ≤ DP∗ . On the other hand, by Theorem 1, the sublevel set L(F (M0))

defined by (16) is bounded. We can also bound ‖Mt
0 −M

t+1‖F ≤ DL, where DL is given by (17).
Using these upper bounds and (20), we can show that

F̃t(M
t
l)− F̃t(M

t+1
) ≤ (1 + ρt + ‖A‖)‖A‖

(1 + ρt)l2
(
D2
L +D2

P∗

)
.

Let K̄t , (1 + ρt)
−1(1 + ρt + ‖A‖)‖A‖ be a constant. In order to guarantee (13), we require to

choose the number of iterations l at most

lmax(t) ,

⌊
1

δt

√
K̄t(D2

L +D2
P∗)

⌋
+ 1 with δt =

1

(t+ 1)α

√
D2
L +D2

P∗ . (22)

Here, α > 1 is a given constant specified by the user. With such a choice of δt, we have lmax(t) =⌊√
K̄t(t+ 1)α

⌋
+ 1, which is independent of DL and DP∗ .

If we apply (19) to solve (15), then we have the bound (21). Let K̂t ,
8L2

0‖A‖
2

1+ρt
+4
√

3L0 ‖A‖DL+

3(ρt+1)D2
L. Since ‖Mt

0−M
t+1‖F ≤ DL, in order to achieve F̃t(M

t
l)−F̃t(M

t+1
) ≤ δ2t /2, we require

(l + 1)−2K̂t ≤ δ2t /2, which implies l + 1 ≥
√

2K̂t/δt. Hence, we can choose

lmax(t) ,

⌊√
2K̂t

δt

⌋
+ 1, with δt =

C0

√
2K̂t

(t+ 1)α
and C0 ∈ (0, 1), (23)

to terminate the primal-dual scheme (19). With such a choice of δt, we can exactly evaluate
lmax(t) =

⌊
C−10 (t+ 1)α

⌋
+ 1, which is also independent of DL.

Remark 1 By the choice of δt as in (22) or (23), the maximum number of inner iterations lmax(t) is
independent of the two constants DL and DP∗ . These constants only show up when we prove the
convergence of Algorithm 1 in Theorem 2, but they do not need to be evaluated in Algorithm 1

below. Hence, in the implementation of Algorithm 1, we simply use lmax(t) =
⌊√

K̄t(t+ 1)α
⌋

+ 1

for (18), or lmax(t) =
⌊
C−10 (t+ 1)α

⌋
+1 for (19) to specify the maximum number of inner iterations,

where α > 1 is a given number, e.g., α = 1.1.
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Algorithm 1 (Inexact Proximal DC Algorithm with primal-dual iterations)

1: Initialization:
2: Input an accuracy ε > 0. Choose an initial point M0 ∈ R(K−1)×pq, and choose Y0 , 0.
3: Choose two parameters 0 < ρ < ρ̄ < +∞, and σ0 = ω0 = 0.999‖A‖.
4: For t = 0 to T , perform

5: Evaluate a subgradient ∇Ψ(Mt) ∈ ∂Ψ(Mt) and choose ρt ∈ [ρ, ρ̄].

6: Initialization of inner loop: Initialize Mt
0, M̂t

0, M̃t
0, Yt

0, σt0, and ωt0. Compute lmax(t).
7: Inner loop: For l = 0, 1, · · · , lmax(t), perform either (18) or (19).
8: Terminate the inner loop: If l ≥ lmax(t), then set Mt+1 = Mt

lmax(t)
and Yt+1 = Yt

lmax(t)
.

9: Stopping criterion: If ‖Mt+1−Mt‖F ≤ εmax {1, ‖Mt‖F }, then terminate and return Mt+1.
10: End for

3.4 The Overall Algorithm and Its Convergence Guarantee

We now combine the inexact proximal DCA scheme (12), and the primal-dual scheme (18) (or
(19)) to complete the full algorithm for solving (5) as in Algorithm 1.

In the sequel, we will explicitly specify the evaluation of a subgradient ∇Ψ(Mt) of Ψ , the
choice of ρt, and the evaluation of proxsP∗

t
and proxrQt . The number of maximum iterations T

of the outer loop is not necessary to specify. However, we use T as a safeguard value to prevent
the algorithm from an infinite loop. Practically, we can set T to be a relatively large value, e.g.,
T = 103. Nevertheless, the stopping criterion at Step 9 will terminate Algorithm 1 earlier. For
large-scale problems, we can evaluate the operation norm ‖A‖ of A by a power method.

We state the overall convergence of Algorithm 1 in the following theorem.

Theorem 2 (Overall convergence) Let {Mt} be the sequence generated by Algorithm 1 using
(18) (respectively, (19)) for approximately solving (12) up to lmax(t) inner iterations as in (22)
(respectively, (23)). Then, we have

∞∑
t=0

‖Mt+1 −Mt‖2F < +∞ and it implies lim
t→∞

‖Mt+1 −Mt‖F = 0.

Moreover, the sequence {Mt} is bounded. Any cluster point M∗ of {Mt} is a stationary point of
(5). Consequently, the whole sequence {Mt} converges to a stationary point of (5).

Proof Since we apply (19) to solve the subproblem (12), with the choice of δt as in (23), we can
derive from Lemma 1 that

T∑
t=0

ρt‖Mt+1 −Mt‖2F ≤ 2(F (M0)− F (MT+1)) +

T∑
t=0

δt.

By Theorem 1, we have F (MT+1) ≥ F (M∗) > −∞, the global optimal value of (5). Hence, using
the fact that ρt ≥ ρ > 0, we obtain

ρ

∞∑
t=0

‖Mt+1 −Mt‖2F ≤ 2(F (M0)− F (M∗)) +

∞∑
t=0

δt < +∞.

Here,
∑∞
t=0 δt < +∞ due to the choice of δt. This is exactly the first estimate in Theorem 2. The

second limit in Theorem 2 is a direct consequence of the first one.
By Theorem 1 again, the sublevel set L(F (M0)) defined by (16) is bounded, and F (Mt+1) ≤

F (Mt) by Lemma 1, we have {Mt} ⊂ L(F (M0)), which is bounded. For any cluster point M∗
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of {Mt}, there exists a subsequence {Mts} that converges to M∗. Now, we prove that M∗ is a
stationary point of (5). Using the optimality condition of (12), we have

0 ∈ ∂Φ(M
t+1

)−∇Ψ(Mt) + ρt(M
t+1 −Mt). (24)

Note that limt→∞ ‖M
t+1 −Mt+1‖F = 0 due to the choice of δt. Here, we can pass this limit to a

subsequence if necessary. Using this limit and the fact that limt→∞ ‖Mt+1−Mt‖F = 0, we can show

that limt→∞ ‖M
t+1 −Mt‖F = 0. In summary, we have limt→∞M

t+1
= limt→∞Mt = M∗. Using

the definition of Φ and Ψ , we can see that the subgradient ∇Ψ(Mt) of Ψ is uniformly bounded

and independent of t. The subgradient ∇Φ(M
t+1

) can be represented as ∇Φ(M
t+1

) = S
t+1

+

λM
t+1

, where S
t+1

is uniformly bounded and independent of t. By taking subsequence if necessary,

both ∇Φ(M
t+1

) and ∇Ψ(Mt) converge to ∇Φ(M∗) and ∇Ψ(M∗), respectively. By [25, Theorem

24.4], we have ∇Φ(M∗) ∈ ∂Φ(M∗) and ∇Ψ(M∗) ∈ ∂Ψ(M∗). Using this fact, limt→∞M
t+1

=
limt→∞Mt = M∗, and the boundedness of ρt, we can show that 0 ∈ ∂Φ(M∗) − ∂Ψ(M∗). Hence,
M∗ is a stationary point of (5). By the boundedness of {Mt} and limt→∞ ‖Mt+1 −Mt‖F = 0,
one can then use routine techniques to show that the whole sequence {Mt} converges to M∗. �

While the convergence result given in Theorem 2 is rather standard and similar to those in
[2], its analysis for the inexact proximal DCA seems to be new to the best of our knowledge.
Note that the convex subproblem in DCA-type methods is often general and may not have closed-
form solutions. It is natural to incorporate inexactness in an adaptive manner to guarantee the
convergence of the overall algorithm.

3.5 Implementation Details and Comparison with ADMM

In Algorithm 1, we need to compute the proximal operator proxσtlP∗
t

of the Fenchel conjugate P ∗t
of Pt, and proxωtlQt of Qt. In addition, in order to compare our method with other optimization

methods, we specify the well-known ADMM to solve (12) as our comparison candidate.

3.5.1 Evaluation of Subgradient ∇Ψ(Mt) and The Choice of ρt

Using the definition of Ψ from (7), we have

∇Ψ(Mt) =
1

N

N∑
i=1

[
γ∇Hs(K−1)

(
a>i vecMt

)
ai + (1− γ)

∑
k 6=yi

∇Gs
(
b>ikvecMt

)
bik

]
,

where ∇Hs(K−1)(u) = 1
2 · sign(s(K − 1)− u)− 1

2 and ∇Gs(v) = 1
2 · sign(s+ v) + 1

2 . Here, sign(·)
is the common sign function.

To choose ρt, we first choose a range [ρ, ρ̄] in (0,+∞). For instance, we can choose ρ = 10−5

and ρ̄ = 105, and {ρt} is any sequence in [ρ, ρ̄]. We can also fix ρt for all t as ρt = ρ̄ > 0, e.g.,

ρt = 10−3. From our experience, we observe that if ρt is small, the strong convexity of (15) is 1+ρt,
which is also small. Hence, the number of inner iterations lmax(t) is large. However, the number of
outer iterations t may be small. In the opposite case, if ρt is large, then we need a small number
lmax(t). Nevertheless, due to a short step Mt+1−Mt, the number of outer iterations may increase.
Therefore, trading-off the value of ρt is crucial and affects the performance of Algorithm 1.

3.5.2 Evaluation of Proximal Operators

To compute the proximal operator of P ∗t in (18), we can use Moreau’s identity [3]:

proxσP∗
t

(z) =

zj − σprox1/σPt (zj/σ) = zj − σ
[
S1/σ (zj + µj)− µj

]
, j = 1, · · · , 2N,

zj − σprox1/σPt (zj/σ) = (1− σ)z2N+1 + 1,
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where Sr(v) = sign(u)�max {|v| − r, 0} is the well-known soft-thresholding operator.
To compute the proximal operator of Qt, we note that (here, τj = τ)

Qt(M) ,
K−1∑
j=1

[
1

2
‖Mj‖2F + τj ‖Mj‖∗ +

ρt
2
‖Mj −Mt

j‖2F
]
.

Hence, we have
proxωQt(M) = (proxωQtj

(Mj))
K−1
j=1 ,

where Qtj (Mj) , 1
2 ‖Mj‖2F + τj ‖Mj‖∗ + ρt

2 ‖Mj −Mt
j‖2F , and

proxωQtj
(Mj) , arg min

M̂j

{
ωτj‖M̂j‖∗ +

1 + ω(1 + ρt)

2

∥∥∥∥M̂j −
ωρtM

t
j + Mj

1 + ω(ρt + 1)

∥∥∥∥2
F

}
.

This operator can be computed in a closed form using SVD of (ωρtM
t
j + Mj)/[1 + ω(ρt + 1)] =

UjΣjV
>
j as proxωQtj

(Mj) = UjSr(Σj)V
>
j , where Sr is the soft-thresholding operator defined

above with r = ωτj/[1 + ω(1 + ρt)].

3.5.3 ADMM Method for Solving (15)

In Algorithm 1, we can apply ADMM to solve the subproblem (15) instead of primal-dual methods.
We split the nuclear norm in Qt of (15) by introducing an auxiliary variable S and rewrite (15) as

min
M,S


Pt(A(M)) +

K−1∑
j=1

[
1

2
‖Mj‖2F +

ρt
2

∥∥Mj −Mt
j

∥∥2
F

]
Bt(M)

+

K−1∑
j=1

τj ‖Sj‖∗


s.t. S−M = 0.

(25)

We define the corresponding augmented Lagrangian function of (25) as

Lβ(M,S,Λ) , Pt(A(M)) +

K−1∑
j=1

[
1

2
‖Mj‖2F +

ρt
2

∥∥Mj −Mt
j

∥∥2
F

]
+

K−1∑
j=1

τj ‖Sj‖∗

+trace
(
Λ>(S−M)

)
+ β

2 ‖S−M‖2F ,

where β > 0 is a penalty parameter. Starting from an initial point Mt
0 = Mt, St0 = Mt, our

ADMM scheme for solving (25) updates at the inner iteration l according to the following steps:

Mt
l+1 , arg min

M

{
Bt(M) + trace

(
(Λt)>l (Stl −M)

)
+
β

2
‖Stl −M‖2F

}

Stl+1 , arg min
S


K−1∑
j=1

τj ‖Sj‖∗ + trace
(
(Λt

l)
>(S−Mt

l+1)
)

+
β

2
‖S−Mt

l+1‖2F


Λt
l+1 , Λt

l + β(Stl+1 −Mt
l+1).

(26)

In this scheme, the auxiliary sequence {Stl} can be computed into a closed form using SVD as
we have done in Subsection 3.5.2. The sequence {Mt

l} requires to solve a general convex problem.
However, this problem has a special structure so that its dual formulation becomes a boxed con-
strained convex quadratic program, which is very similar to (2). Hence, we solve this problem by
coordinate descent methods, see, e.g., [29]. In summary, if we apply ADMM to solve (15), then
our inexact proximal DCA has three loops: DCA outer iterations, ADMM inner iterations, and
coordinate descent iterations for computing {Mt

l}.
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Remark 2 (Convergence of the ADMM scheme (26)) Note that (15) is strongly convex, and both
subproblems in Mt

l+1 and Stl+1 of (26) are strongly convex, and therefore, uniquely solvable.
Consequently, this scheme converges theoretically as proved e.g., in [5, Appendix A]. Together
with asymptotic convergence guarantees, the convergence rates of ADMM, where (26) is a special
case, have been studied in e.g., [11, 13, 21]. We omit the details here.

4 Statistical Properties

In this section, we explore some statistical properties of our proposed classifier RMSMM (3). In
the first part, we establish the Fisher consistency result for the RMSMM, and study the finite
sample bound on the misclassification rate. In the second part, we analyze the robustness property
of RMSMM via the breakdown point theory.

4.1 Classification Consistency

Fisher’s consistency is a fundamental property of classification methods. For an observed matrix-
type data with fixed X, and denote by Pk(X) = Pr(Y = k | X) the class conditional probability
of class k ∈ {1, 2, · · · ,K}. One can verify that the best prediction rule, namely, the Bayes rule,
which minimizes the misclassification error rate, is ŷBayes(X) = arg maxk Pk(X).

For a classifier, denote by φ(f(X), y) its surrogate loss function for classification using f as the
classification function, and ŷf the corresponding prediction rule. Assume the conditional loss is
L(X) = E[φ(f(X), y) | X], where the expectation is taken with respect to the marginal distribution
of (Y | X). We denote the theoretical minimizer of the conditional loss as f∗(X) = arg minf L(X).
When ŷf∗(X) = ŷBayes(X), we say the classifier is Fisher consistent. Let us denote by L(X, y,M)
the loss function in (3). Then, we have the following result.

Theorem 3 The classifier with the loss L(X, y,M) is Fisher consistent when γ ∈
[
0, 1

2

]
and

s ≤ 0.

This result can be viewed as a generalization of Theorem 1 in [34] which is devised for vector-
type observations. By this theorem, we know that our classifier RMSMM can achieve the best
classification accuracy, given a sufficiently large matrix-type training dataset and a rich family F .
The following theorem provides an upper bound of the prediction error using the training dataset.
The proof of both Theorems 3 and 4 can be found in the appendix.

Theorem 4 Suppose that the conditional distribution of X given Y = k is the same as the distri-
bution of Ck + E, where Ck ∈ Rp×q is a constant matrix and the entries of E are i.i.d. random

variables with mean zero and finite fourth moment. Let M̂ =
[
vec(M̂1), · · · , vec(M̂K−1)

]>
∈

R(K−1)×pq denote the solution of (5). Then, with probability at least 1 − δ, the misclassification

rate of the classifier ŷ corresponding to M̂ can be bounded as

E [I {Y 6= ŷ(X)}] ≤ 1

N

N∑
i=1

I {yi 6= ŷ(Xi)}+

√
log(δ−1)

N
+
cr(
√
p+
√
q)

√
N

, (27)

where r =
∑K−1
j=1 ‖M̂j‖∗, and c is a constant specified in the proof.

Theorem 4 measures the gap between the expectation error and the empirical error, which
allows us to get a better understanding of the utility of the nuclear norm. For each category,
the decision matrix contains p × q parameters, and therefore, if we only impose the Frobenius
constraints [34] we would expect at best to obtain rates of the order

√
pq. By taking the low rank

structure of the decision matrices into account, we use the nuclear norm penalty to control the
singular values of the decision matrices. For the i-th singular vectors of the k-th decision matrix,
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there are p + q + 1 free parameters in total [22], one for the singular value σki and the others for
the orthogonal vectors with dimensions p and q. Its contribution to the gap will be cσki(

√
p+
√
q).

Hence, with the low-rank structure of the decision matrices, the nuclear-norm-penalized estimator
achieves a substantially faster rate.

The rate in Theorem 4 can be further improved if we additionally impose some low-rank
constraint on the noise term of Xi. For example, consider E = UΛV>, where Λ ∈ Rrx×rx is a
low-rank noise with all entries i.i.d. with mean zero and the finite fourth moment, U and V are
orthogonal projection matrices independent of Λ. It can be verified that the term

√
p+
√
q in the

rate above can be replaced by 2
√
rx. Finally, as a side remark, consider a special case with q = 1,

i.e., the features are vectors rather than matrices. In such a situation, the nuclear norm reduces to
the quadratic norm, and the last term of the upper bound in (27) will become cr(

√
p + 1)/

√
N ,

which is equivalent to existing results, for example, see [34].

4.2 Breakdown Point Analysis

Robustness theory has been developed to evaluate instability of statistical procedures since the
1960s [15]. The breakdown point theory focuses on the smallest fraction of contaminated data that
can cause an estimator totally diverging from the original model. Here we consider the breakdown
point analysis for multicategory classification models.

Let Tn be the original n observations, and T̃n,m = Tn−m∪Vm be the contaminated sample with

m observations of Tn contaminated, and M̃ = M̂(T̃n,m) be the parameters estimated from the
contaminated sample. We extend the sample angular breakdown point in [35] to the multicategory
classification problem as

ε?(M̂, Tn) = min
{m
n
| ∃k, s.t. w>k M̂M̃>wk ≤ 0

}
,

where M̂ = M̂(Tn) is the estimated decision matrix from the original sample. Since the angle-based
classifiers make the decision by comparing the angles between the (K−1)-dimensional classification
function f and the K vertices of the simplex {wk}Kk=1, it is reasonable to quantify the divergence

between classifiers via the angles between the decision vectors w>k M̃ and the original counterpart,

w>k M̂. When there exists one category k so that the angle between the two decision vectors is
larger than π/2, the two classifiers would behave totally different at this category. Consequently,
the classifier with contaminated samples would “break down”.

The following theorem compares the sample breakdown points of the proposed RMSMM and
the multicategory SMM (MSMM) which generalizes [19]’s SMM using angle-based methods, say
γ = 1/2 and s = −∞ in Eq. (3).

Theorem 5 Assume that M̂ 6= 0. Then the breakdown point of MSMM is 1/n, while the breakdown
point of RMSMM is not smaller than ε1

2(K−1)(1−s) , where

ε1 = min
M∈∆−

F (M)− min
M∈∆+

F (M) > 0.

By this theorem, only one contaminated observation will make the MSMM classifier break down.
In other words, this estimator may not work well in the presence of few outliers. In contrast,
the breakdown point of our proposed RMSMM, benefitting from the use of truncated hinge loss
functions, has a fixed lower bound. Thus, the RMSMM has high outlier-resistance compared to its
counterpart without truncation. The robustness property will be carefully examined via numerical
comparisons in the next section.
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5 Numerical Experiments

In this section, we investigate the performance of our proposed robust angle-based SMM using
simulated and real datasets. Our configuration of the algorithm is as follows. For the primal-dual
method described in Algorithm 1, we use M0 = 0 and ρt = 0.01 for every t. We set the stop
criterion as ‖Mt+1−Mt‖F ≤ 10−4 max {1, ‖Mt‖F }. All the simulation results are obtained based
on 100 replications.

5.1 Simulation Results

We generate simulated datasets by the following two scenarios. In the first scenario, the dimensions
of input matrices are 50× 50. For the kth category, to make the matrices low-rank, we randomly
generate two 50 × 5 matrices, Uk and Vk, which are standard orthonormal. More precisely, we
first generate two 50× 5 matrices with all the entries i.i.d. from the standard normal distribution
and obtain Uk and Vk by the Gram-Schmidt process. The center of each class is then specified by
Ck = UkV

>
k ; k = 1, · · · ,K. The observations in each class are generated by Ck+E; k = 1, · · · ,K,

where E is a 50×50 normal random matrix with all entries i.i.d fromN (0, σ2). For the contaminated
observations, we generate them by 3C1 + E for Y ∈ {1, · · · ,K}.

σ = 0.5 σ = 0.7 σ = 0.9
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Fig. 1 Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario (I) and K = 2.
Here, ρ stands for the percentage of data that are contaminated. SMM: [19]’s support matrix machine; SVM: the
standard SVM applied to the stacked-up vectors.

In the second scenario, the dimensions of input matrices are fixed as 80 × 100. We follow the
settings in [36] to generate the true array signals by Ck = Ck,1C

>
k,2; k = 1, · · · ,K, where each

entry of Ck is 0 or 1 and Ck,i ∈ Rpi×r, p1 = 80 and p2 = 100. To control the rank and the
percentage of nonzero entries, we set r = 10 and generate Ck,i by setting each row to contain only
one entry one and others zero, and the probabilities of entries being one are equal. All the entries
of the noise matrix E are i.i.d. from σ · t(3), where t(3) denotes the Student’s t-distribution with
three degrees of freedom. The outliers are generated by the same method as in the first scenario.

We use 103 observations for training, 104 observations for tuning and 104 observations for test-
ing. The contamination ratio in the training sample ρ, is chosen as 0%, 10%, and 20%. For training
the truncated model, we use the solutions of the ordinary SMM as an initial point. Following the
suggestion by [33], we choose γ = 1/2 as it can provide stable classification performance. The trun-
cation parameter, s, is fixed at −1/(K − 1). The other hyper-parameters, C and τ , are selected
via a grid search on the tuning set.

We first consider the binary classification problem, say K = 2. We compare our RMSMM with
the SMM in [19]. We also include a naive benchmark, the standard SVM method which is applied
to the stacked-up vectors. Fig. 1 presents the classification error rates of RMSMM, SMM, and
SVM on the simulated data with Scenario (I) and K = 2. Three noise magnitudes are considered:
σ = 0.5, 0.7 and 0.9. Both two “support-matrix-based” methods, RMSMM and SMM, perform
much better than the SVM. It has been observed that RMSMM generally outperforms SMM when
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Fig. 2 Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario (I). The
top three panels: the case with K = 3; the bottom three panels: the case with K = 5. MSMM: multicategory
generalization of SMM using angle-based methods; MSVM: the angle-based multicategory SVM [32]; RMSVM: the
robust angle-based multicategory SVM [34].

ρ=0.0 ρ=0.1 ρ=0.2

0

1

2

3

4

5

5

10

C
la

s
s
if
ic

a
ti
o
n
 e

rr
o
r 

ra
te

s
 (

%
)

σ = 3

ρ=0.0 ρ=0.1 ρ=0.2

4

8

12

16

20

24

28

32

σ = 4

K
=

3
K

=
5

ρ=0.0 ρ=0.1 ρ=0.2

15

20

25

30

35

40

45

50

Method

RMSMM

MSMM

RMSVM

MSVM

σ = 5

Fig. 3 Classification error rates for RMSMM, SMM, and SVM on the simulated data with Scenario (II). The top
three panels: the case of K = 3; the bottom three panels: the case of K = 5.
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there exits outliers, and its advantage becomes more pronounced for larger ρ. All methods are
affected by different values of σ, but the comparison conclusion still holds for various σ.
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Fig. 4 Comparison between the ADMM and primal-dual algorithms: Primal-Dual stands for (18), and Proximal-
Alter stands for (19) for solving the RMSMM optimization problem (5). The top two panels: classification error
rates under Scenario (I) with σ = 0.7 and Scenario (II) with σ = 4 when K = 3; The bottom two panels: the
corresponding computational time (in seconds).

Next we consider the multicategory case. Fig. 2 depicts the boxplots of the classification error
rates for RMSMM and other competitors under Scenario (I) with K = 3 and 5. Three benchmarks
are considered: the multicategory SMM using angle-based methods, MSMM; the angle-based mul-
ticategory SVM classifier [32] and its robust version RMSVM classifier [34]. In the case of ρ = 0,
the RMSMM and its non-robust counterpart MSMM perform almost identically, which demon-
strates that the truncation parameter, s, can adapt to the data structure and make the efficiency
loss of RMSMM relative to MSMM minimal when there is no outlier. When ρ = 0.1 or ρ = 0.2,
the advantage of RMSMM is clear: the means and standard variations of its classification error
rates are generally smaller. From this figure, we can also observe that the use of the nuclear norm
is prominent: the two SMM-based classifiers perform much better than the two SVM-based ones.
Similar comparison conclusions can be drawn from Fig. 3, which reports the classification error
rates of RMSMM and the other three methods under Scenario (II) with σ = 3, 4, and 5.

Finally, we present some comparison results of the ADMM and primal-dual algorithms for
solving the RMSMM optimization problem (5). Fig. 4 reports the classification error rates and
the corresponding computational time (in seconds) of the RMSMM using the two different primal-
dual algorithms: (18) and (19) under Scenario (I) with σ = 0.7 and Scenario (II) with σ = 4
when K = 3. The bottom two panels record the total run time including the selection of tuning
parameters. The tuning parameters λ and τ in the RMSMM are selected via a grid search. To
be more specific, λ ∈ [0.1, 104] and for each choice of λ, τ is tuned to make the decision matrix
change from full-rank to rank one. One can see that the two algorithms perform very similarly in
terms of classification rates, but the proposed primal-dual algorithm is significantly faster and the
advantage is more remarkable as ρ increases. This is further confirmed by Fig. 5 which depicts the
decay curves of the RMSMM objective function values versus the computational time until the two
algorithms reach the desired accuracy. We consider the case under Scenario (II) with K = 3 and
σ = 4 for a given combination of tuning parameters. In particular, we fix a combination of (λ, τ)
and record the objective function values for each iteration. Clearly, the primal-dual algorithm is
generally more stable and converges much faster than ADMM.
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Fig. 5 The decrease of the RMSMM objective values with respect to the computational time under Scenario (II)
with K = 3 and σ = 4.

5.2 A Real-data Example

We apply the RMSMM model (5) to the Daily and Sports Activities Dataset [1] which can be
found on the UCI Machine Learning Repository. The dataset comprises motion sensor data of 19
daily sport activities, each performed by 8 subjects (4 females, 4 males, between the ages of 20
and 30) in their own style for 5 minutes. The dataset was collected by several sensors. The input
matrices are of dimension 125× 45, where each column contains 125 samples of data acquired by
a sensor over a period of 5 seconds at 25 Hz sampling frequency, and each row contains the data
acquired from all of 45 sensor axes at a particular sampling instant.

To show the efficient performance of the proposed RMSMM model, we only select the first 10
categories of the dataset for simplicity. Thus the total number of instances is N = 10 × 8 × 60 =
4, 800. It is a 10-category and balanced classification problem with 480 instances in each category.
We equally and randomly divide the data into three parts for training, tuning, and testing, and
the sample size of each part is 1, 600.
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Fig. 6 Classification error rates for RMSMM, MSMM, RMSVM, and MSVM on the Daily and Sports Activities
Dataset. The left and right panels present the results when the data are clean or contaminated, respectively.

We choose s = −K + 1, and select the other parameters by a grid search. We report the
classification accuracy of RMSMM, MSMM, RMSVM, and MSVM in Fig. 6-(left). The two matrix-
based methods achieve lower classification rates than the other two vector-based classifiers, due
to the benefit of the nuclear norm. This improvement can be more clear in Fig. 7, which presents
the heatmap of the decision matrices of RMSMM and RMSVM; the former has a more sparse
structure than the latter.

To demonstrate the effect of potential outliers on classification accuracy, we artificially con-
taminate the dataset with outliers by randomly relabeling 10% of the training set into another
class. From Fig. 6-(right), we observe that the performances of all the methods are deteriorated
by this manipulation, while the RMSMM performs the best. Both two robust classifiers, RMSMM
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Fig. 7 Heatmaps of the first decision matrices of RMSMM (left panel) and RMSVM (right panel)

and RMSVM, are less affected by the outliers, than the other two non-robust methods. All these
numerical examples shown above suggest that the RMSMM is a practical and robust classier for a
multicategory classification problem when the input features are represented as matrices.

6 Concluding Remarks

In this paper, we consider how to devise a robust multicategory classifier when the input features
are represented as matrices. Our method is constructed in the angle-based classification frame-
work, embedding a truncated hinge loss function into the support matrix machine. Although the
corresponding optimization problem is nonconvex, it admits a natural DC (difference of two con-
vex functions) representation. Hence, it is natural to apply DCA algorithms to solve this problem.
Unfortunately, the convex subproblem in DCA is rather complex and does not have a closed form
solution. Therefore, we develop an inexact proximal DCA variant to solve the underlying opti-
mization problem. To approximately solve the convex subproblem, we propose to use primal-dual
first-order methods. We combine both inexact proximal DCA and primal-dual methods to obtain
a new proximal DCA scheme. We prove that our optimization model admits a global optimal
solution, and the sequence generated by our DCA variant globally converges to a stationary point.

In terms of statistical learning perspective, we prove Fisher’s consistency and prediction error
bounds. Numerical results demonstrate that our new classifiers are quite efficient and much more
robust than existing methods in the presence of outlying observations. We conclude the article with
two remarks. First, our unified framework is demonstrated using the linear classifier. Though it is
well recognized that linear learning is an effective solution in many real applications, it may be sub-
efficient especially for problems with complex feature structures. Thus it is of interest to thoroughly
study nonlinear learning under the proposed framework. Second, our numerical results show that
the proposed procedure works well under large-dimensional scenarios. Theoretical investigation to
the necessary condition on which the statistical theoretical guarantee of RMSMM holds is another
interesting topic for future study.
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A Appendix: Proofs of Technical Results

In this appendix, we provide all the remaining proofs of the results presented in the main text.
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A.1 Proof of Lemma 2: Lipschitz continuity and boundedness

Since [a]+ = max {0, a} = (a+|a|)/2, the function Pt defined in (15) can be rewritten as Pt(A(z)) =
‖Âz + µ‖1 + d>t z for some matrix Â and vectors µ and dt. Here, dt , d̄ − λ−1vec (∇Ψ(Mt)).
However, Ψ is also Lipschitz continuous due to its definition. This implies that∇Ψ(Mt) is uniformly
bounded, i.e., there exists a constant C0 ∈ (0,+∞) such that ‖∇Ψ(Mt)‖F ≤ C0 for all Mt ∈
R(K−1)×pq. As a consequence, Pt is Lipschitz continuous with the uniform constant L0 that is
independent of t, i.e., |Pt(u)− Pt(û)| ≤ L0‖u− û‖F for all u, û. The boundedness of dom(P ∗t ) of
the conjugate P ∗t follows from [3, Corollary 17.19]. �

A.2 The proof of Lemma 3: The convergence of the primal-dual methods

Let G(M,Y) = Qt(M) + 〈A(M),Y〉 − P ∗t (Y), where P ∗t is the Fenchel conjugate of Pt. Applying
[9, Theorem 4] with f = 0, for any M and Y, we have

G(Mt
l ,Y)− G(M,Y

t

l) ≤
1

Tl

(
‖Mt

0 −M‖2F
2ωt0

+
‖Yt

0 −Y‖2F
2σt0

)
, (28)

where Tl =
∑l
i=1

σti−1

σt0
, and Y

t

l = 1
Tl

∑l
j=1

σtj−1

σt0
Yt
j .

By the update rule in (18), we have ωtl+1σ
t
l+1 = ωtlσ

t
l . Hence, by induction, we have ωtlσ

t
l =

ωt0σ
t
0 = ‖A‖−2. On the other hand, by [8, Lemma 2], with the choice of λ = ‖A‖−1 (1 + ρt), we

have
‖A‖

1 + ρt
+

‖A‖ l
‖A‖+ (1 + ρt)

≤ 1

(1 + ρt)ωtl
≤ ‖A‖

1 + ρt
+ l.

Using this estimate and σtl = ‖A‖−2 ω−tl , we have

Tl =

l∑
i=1

σti−1
σt0

=
1

‖A‖

l∑
i=1

1

ωti−1
≥

l∑
i=1

(
i− 1

1 + c
+ 1

)
=

l(l − 1)

2(1 + c)
+ l ≥ l2

2(1 + c)
,

where c = ‖A‖ (1 + ρt)
−1. Hence, we can estimate Tl as Tl ≥ 1

2 (1 + ρt + ‖A‖)−1(1 + ρt)l
2. Using

this estimate of Tl, σ
t
0 = ωt0 = ‖A‖, and F̃t(M

t
l) − F̃t(M

t+1
) ≤ G(Mt

l ,Y
t+1

) − G(M
t+1

,Y
t

l), we
obtain from (28) that

F̃t(M
t
l)− F̃t(M

t+1
) ≤ (1 + ρt + ‖A‖)‖A‖

(1 + ρt)l2

(
‖Mt

0 −M
t+1‖2F + ‖Yt

0 −Y
t+1‖2F

)
.

This is exactly (20).
Next, we prove (21). By introducing Y = A(M), we can reformulate the strongly convex

subproblem (15) into the following constrained convex problem:

F̃t(M
t+1

) = min
M,Y

{
F̃t(M,Y) = Pt(Y) +Qt(M) | A(M)−Y = 0

}
. (29)

Note that Qt is strongly convex with the strong convexity parameter 1 + ρt. We can apply [28,
Algorithm 2] to solve (29). If we define

∆σtl
(Mt

l+1) = Pt(Y
t
l+1) +Qt(M

t
l+1) +

σtl
2
‖A(Mt

l+1)−Yt
l+1‖2F − F̃t(M

t+1
),

then, from the proof of [28, Theorem 2], we can show that

∆σtl
(Mt

l+1) ≤
2
[
σt0‖A‖2 + 1 + ρt

]
‖Mt

0 −M
t+1‖2F

(l + 2)2
. (30)
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By Lemma 2, Pt is Lipschitz continuous with the Lipschitz constant L0. Then we have

F̃t(M
t
l+1)− F̃t(M

t+1
)

= Pt(A(Mt
l+1)) +Qt(M

t
l+1)− F̃t(M

t+1
)

≤ Pt(Y
t
l+1) +Qt(M

t
l+1)− F̃t(M

t+1
) + L0‖A(Mt

l+1)−Yt
l+1‖F .

Combining (30) and this estimate, we obtain

0 ≤ F̃t(Mt
l+1)− F̃t(M

t+1
)

≤
2
[
σt0‖A‖2 + 1 + ρt

]
‖Mt

0 −M
t+1‖2F

(l + 2)2

+ L0‖A(Mt
l+1)−Yt

l+1‖F −
σtl
2
‖A(Mt

l+1)−Yt
l+1‖2F .

Similar to the proof of [28, Corollary 1], by using σt0 = 1+ρt
2‖A‖2 , the last inequality leads to

‖A(Mt
l+1)−Yt

l+1‖F ≤
4‖A‖

(l + 1)2

[2L0‖A‖
1 + ρt

+
√

3‖Mt
0 −M

t+1‖F
]
.

Combining the two last estimates, we obtain

F̃t(M
t
l)− F̃t(M

t+1
) ≤ 4‖A‖L0

(l + 1)2

[2L0‖A‖
1 + ρt

+
√

3‖Mt
0 −M

t+1‖F
]

+
3(ρt + 1)‖Mt

0 −M
t+1‖2F

(l + 1)2
,

which is exactly (21). �

A.3 Proof of statistical properties

We provide the proof of Theorems 3 and 4 in this section.

A.3.1 Proof of Theorem 3: Fisher’s consistency

In our RMSMM (3), one can abstract the truncated hinge loss function as

φ(f(X), y) = γT(K−1)s(〈f(X), wy〉) + (1− γ)
∑
k 6=y

Rs(〈f(X), wk〉).

Then, the conditional loss can be rewritten as

L(X) ,
K∑
k=1

[
γPkT(K−1)s(〈f(X), wk〉) + (1− Pk)Rs(〈f(X), wk〉)

]
.

[34, Theorem 1] showed that for a vector data x, the robust classifier based on the loss function
φ(f(x), y) is Fisher consistent with γ ∈

[
0, 1

2

]
and s ≤ 0. By vectorizing the matrix data X to a

new vector x = vec(X), then all settings here are the same as those of Theorem 1 in [34]. In this
case, Fisher consistency results can naturally be transferred to matrix-type data. �
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A.3.2 Proof of Theorem 4: Misclassification rates

First, we introduce the Rademacher complexity. Let G = {g : X × Y → R} be a class of loss
functions. Given the sample T = {(Xi, yi)}Ni=1, we define the empirical Rademacher complexity of
G as

R̂N (G ) = Eσ

{
sup
g∈G

1

N

N∑
i=1

σig(Xi, yi)

}
,

where σ = {σi}Ni=1 are i.i.d. random variables with Pr(σ1 = 1) = Pr(σ1 = −1) = 1/2. The
Rademacher complexity of G is defined as

RN (G ) = Eσ,T

{
sup
g∈G

1

N

N∑
i=1

σig(Xi, yi)

}
.

For our model, let

H =

h(X, y) = min
k 6=y

(〈f(X), wy −wk〉) | f ∈ F ,
∑
j

‖Mj‖∗ ≤ r

 ,

and

Iκ(x) =


1 x < 0,

1− 1
κx 0 ≤ x ≤ κ,

0 otherwise.

To prove Theorem 4, we first recall the following lemma which provides a bound on E [Iκ {h(X, y)}]
by the empirical error and the Rademacher complexity.

Lemma 4 For any h ∈ H, with probability at least 1− δ, we have

E [Iκ {h(X, y)}] ≤ 1

N

N∑
i=1

Iκ {h(Xi, yi)}+ 2RN (Iκ ◦ H) +

{
log(δ−1)

N

}1/2

.

The proof of Lemma 4 can be found in [34].
Now, we need to derive the upper bound of the Rademacher complexity used in Lemma 4.

Since Iκ is 1
κ -Lipschitz, we have

RN (Iκ ◦ H) ≤ 1

κ
Eσ,T

 sup∑
‖Mj‖∗≤r

1

N

N∑
i=1

σi

K−1∑
j=1

tr(M>
j X̃i)


=

r

κN
Eσ,T

{∥∥∥∥∥
N∑
i=1

σiX̃i

∥∥∥∥∥
2

}
,

where X̃i denotes Xi− X̄ and X̄ = N−1
∑N
i=1 Xi. The first inequality is due to Lemma 4.2 in [20],

and the absolute values of the entries in wy −wk are all bounded by 1.

Firstly, by the assumption, we can write X = E(X) + E, where E(X) =
∑K
k=1 Pr(Y = k)Ck

and the variance and the fourth moment of the entries are σ2 and µ4
4. Accordingly, X̃i = Ei − Ē,

where Ē = N−1
∑N
i=1 Ei. Since {(Xi, yi)}Ni=1 are the i.i.d. copies of (X,Y), we have∥∥∥∥∥

N∑
i=1

σiX̃i

∥∥∥∥∥
2

≤

∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣ ∥∥Ē∥∥2 +

∥∥∥∥∥
N∑
i=1

σiEi

∥∥∥∥∥
2

.
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Because E[(
∑N
i=1 σiEi)

2] = Nσ2 and E[(
∑N
i=1 σiEi)

4] = Nµ4
4 + 3N(N − 1)σ4, by Theorem 2 in

[16] we have

Eσ,T

(∥∥∥∥∥
N∑
i=1

σiEi

∥∥∥∥∥
2

)
≤ cσN1/2

{
p1/2 + q1/2 + (pq)1/4[Nµ4

4 + 3N(N − 1)σ4]1/4/(σN1/2)
}

≤ cσ(1 +
31/4

2
)N1/2

{
p1/2 + q1/2

}
+O(N1/4(p1/2 + q1/2)),

where c is a constant which does not depend on T . By similar arguments, it is easy to see that

Eσ,T

(∣∣∣∣∣
N∑
i=1

σi

∣∣∣∣∣ ∥∥Ē∥∥2
)
≤

√√√√√Eσ


(

N∑
i=1

σi

)2
ET (‖Ē‖2)

= N1/2ET
(
‖Ē‖2

)
= O(p1/2 + q1/2).

Accordingly, we obtain the upper bound of the Rademacher complexity as

RN (Iκ ◦ H) ≤ r

κ
√
N

{
cσ(1 +

31/4

2
)(p1/2 + q1/2)

}
.

The proof is completed by using Lemma 4 with this bound and the fact that the continuous
indicator function Iκ is an upper bound of the indicator function for any κ. �

A.3.3 Proof of Theorem 5: Breakdown Point Analysis

Let F (M, T ) denote the loss function (3) with the sample T , and

∆+ ,
{

M | ∀k, s.t. w>k M̂M>wk > 0
}

and ∆− ,
{

M | ∃k, s.t. w>k M̂M>wk ≤ 0
}
.

For the MSMM classifier, we can choose the contaminated observation as (Xo, k) with vec(Xo)> =

−cw>k M̂. For any M ∈ ∆+, w>k M̂M>wk > 0, then w>k Mvec(Xo) = −cw>k M̂M>wk → −∞ as
c → ∞. In this situation, the loss term corresponding to this contaminated observation will tend

to infinity. Hence, we have M̃ ∈ ∆− and the classifier breaks down.

For the RMSMM, since M̂ 6= 0, M̂ is an interior point of ∆+, the claim

ε1 = min
M∈∆−

F (M, Tn)− min
M∈∆+

F (M, Tn) > 0

is true. Note that the loss function

l(X,Y,M) = γTs(K−1)(w
>
y Mvec(X)) + (1− γ)

∑
k 6=Y

Rs(w
>
k Mvec(X))

is bounded by (K − 1)(1 − s). For any m ≤ nε1/[2(1 + δ)(K − 1)(1 − s)] with δ > 0 being any
positive constant, any corresponding n−m clean subset Tn−m ⊂ Tn, and any M ∈ Rp×q, we have

0 ≤ F (M, Tn)− n−m
n

F (M, Tn−m) =
1

n

∑
i∈Tn\Tn−m

l(Xi, yi,M) ≤ m(K − 1)(1− s)
n

<
ε1

2 + 2δ
.

Therefore,∣∣∣∣ min
M∈∆−

F (M, Tn)− min
M∈∆+

F (M, Tn)− min
M∈∆−

F (M, T̃n,m) + min
M∈∆+

F (M, T̃n,m)

∣∣∣∣ ≤ ε1
1 + δ

,

and

min
M∈∆−

F (M, T̃n,m)− min
M∈∆+

F (M, T̃n,m) >
ε1δ

1 + δ
> 0.

The last inequality reveals that M̃ ∈ ∆+ and thus the classifier would not break down when
m ≤ nε1/[2(1 + δ)(K − 1)(1− s)] observations are contaminated. Finally, the proof is complete by
setting δ → 0 . �
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A.4 Derivation of Eq. (2): The dual problem

Lemma 5 For a p× q real matrix A, the subdifferential of the nuclear norm ‖ · ‖∗ is given as

∂‖A‖∗ =
{

UAVA
> + Z | Z ∈ Rp×q,UA

>Z = 0, ZVA = 0, ‖Z‖2 ≤ 1
}
,

where UAΣAVA
> is the SVD of A, and ∂ stands for the operator of subgradients.

Lemma 6 Suppose that X ∈ Rp×q, ∂G(X) = ρX − P + τ∂‖X‖∗, where P ∈ Rp×q is a constant
matrix w.r.t. X. Let the SVD of P be

P = U0Σ0V
>
0 + U1Σ1V

>
1 ,

where Σ0 contains the singular values of P which are greater than τ , and Σ1 contains the rest.
Then, we have 0 ∈ ∂G(X∗), where X∗ = ρ−1Dτ (P) = ρ−1U0(Σ0 − τI)V>0 .

Lemma 6 can be verified by using Lemma 5 with Z = τ−1U1Σ1V
>
1 .

Now we derive the dual problem (2) of (1). As in the classical SVM, by setting C = (Nλ)−1,
we can rewrite (1) into the following form:

min
M,b,ξ

{
1

2
tr(M>M) + τ‖M‖∗ + C

N∑
i=1

ξi

}
s.t. ξi ≥ 0, yi

[
tr(M>Xi) + b

]
≥ 1− ξi, i = 1, · · · , N.

The corresponding Lagrange function of this problem can be written as

LP (M, b, ξ, α, µ) =
1

2
tr(M>M) + τ‖M‖∗ + C

N∑
i=1

ξi

−
N∑
i=1

αi[yi{tr(M>Xi) + b} − 1 + ξi]−
N∑
i=1

µiξi,

(31)

where αi ≥ 0 and µi ≥ 0 are corresponding Lagrange multipliers. By setting the derivatives w.r.t.
b and ξi of this Lagrange function to zero, we get

N∑
i=1

αiyi = 0,

C − αi − µi = 0, i = 1, · · · , N.

Based on Lemma 6 and setting the derivative w.r.t. M to zero, we have M = Dτ (
∑N
i=1 αiyiXi).

Substituting these conditions into (31), we obtain
min
α

{
1

2
‖Dτ (

N∑
i=1

αiyiXi)‖2F −
N∑
i=1

αi

}

s.t. 0 ≤ αi ≤ C; i = 1, . . . , N,

N∑
i=1

αiyi = 0.

This gives us the dual problem (2) of (1). �
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