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ABSTRACT

Background: The rapid global spread of the SARS-CoV-2 virus has provoked a spike in
demand for hospital care. Hospital systems across the world have been over-extended,
including in Northern ltaly, Ecuador, and New York City, and many other systems face similar
challenges. As a result, decisions on how to best allocate very limited medical resources and
design targeted policies for vulnerable subgroups have come to the forefront. Specifically, under
consideration are decisions on who to test, who to admit into hospitals, who to treat in an
Intensive Care Unit (ICU), and who to support with a ventilator. Given today’s ability to gather,
share, analyze and process data, personalized predictive models based on demographics and
information regarding prior conditions can be used to (1) help decision-makers allocate limited
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resources, when needed, (2) advise individuals how to better protect themselves given their risk
profile, (3) differentiate social distancing guidelines based on risk, and (4) prioritize vaccinations
once a vaccine becomes available.

Objective: To develop personalized models that predict the following events: (1) hospitalization,
(2) mortality, (3) need for ICU, and (4) need for a ventilator. To predict hospitalization, it is
assumed that one has access to a patient’s basic preconditions, which can be easily gathered
without the need to be at a hospital and hence serve citizens and policy makers to assess
individual risk during a pandemic. For the remaining models, different versions developed
include different sets of a patient’s features, with some including information on how the disease
is progressing (e.g., diagnosis of pneumonia).

Materials and Methods: National data from a publicly available repository, updated daily,
containing information from approximately 91,000 patients in Mexico were used. The data for
each patient include demographics, prior medical conditions, SARS-CoV-2 test results,
hospitalization, mortality and whether a patient has developed pneumonia or not. Several
classification methods were applied and compared, including robust versions of logistic
regression, and support vector machines, as well as random forests and gradient boosted
decision trees.

Results: Interpretable methods (logistic regression and support vector machines) perform just
as well as more complex models in terms of accuracy and detection rates, with the additional
benefit of elucidating variables on which the predictions are based. Classification accuracies
reached 72%, 79%, 89%, and 90% for predicting hospitalization, mortality, need for ICU and
need for a ventilator, respectively. The analysis reveals the most important preconditions for
making the predictions. For the four models derived, these are: (1) for hospitalization: age,
pregnancy, diabetes, gender, chronic renal insufficiency, and immunosuppression; (2) for
mortality: age, immunosuppression, chronic renal insufficiency, obesity and diabetes; (3) for ICU
need: development of pneumonia (if available), age, obesity, diabetes and hypertension; and (4)
for ventilator need: ICU and pneumonia (if available), age, obesity, and hypertension.

Key words: Predictive models, COVID-19, coronavirus, SARS-CoV-2, hospitalization,
mortality, ICU, ventilator, Electronic Health Records (EHRS).

1 INTRODUCTION

Currently, the world is facing a health and economic crisis due to the spread of the virus
SARS-CoV-2 which causes a disease referred to as COVID-19 [1]. By the end of April 2020, the
virus has spread to over 3.3 million people worldwide and has killed over 230,000 [2,3]. During
this pandemic, governments and hospitals have struggled to allocate scarce resources,
including tests, treatment in intensive care units (ICUs) and ventilators [4,5].

As the virus continues to spread, predicting hospitalizations, mortality, and other patient
outcomes becomes important for several reasons: (i) using risk profiles to inform decisions on



who should be tested (for the virus and/or antibodies) and at which frequency, (ii) providing
more accurate estimates of who is more likely to be hospitalized and the type of care they may
need, (iii) informing plans for staffing, resources, and prioritizing the level of care in extremely
resource-constrained settings. Equally importantly, as societies adapt to the pandemic,
predictive models can (i) assess individual risk so that social distancing measures can transition
from “blanket" to more targeted (e.g., deciding who can return to work, who is advised to stay at
home, who should be tested, etc.) and (ii) direct policy decisions on who should receive priority
for vaccination, which will be critical as initial vaccine production may not suffice to vaccinate
everybody.

In an attempt to understand better the disease, several predictive models have been
developed during this pandemic [6]. One of the limitations of all of these predictors is their high-
risk of bias given their small sample sizes. In fact, out of the 66 predictors summarized in [6],
the mean and standard deviation of the sample size and test size used are 443.5 + 560 and
155 + 276 respectively. In turn, our work provides with a less biased predictor by employing a
dataset which is 4.7 times larger than the biggest dataset reported in [6].

To develop predictive models, we leverage supervised machine learning methods that learn
from given examples of predictive variables and associated outcomes — the so called training
set. Performance is then evaluated on a separate fest set. In the specific application of interest,
we will focus on classification, a setting where the outcome is binary, e.g., someone is
hospitalized or not.

Many models have been used to predict a patient admission to a hospital, mortality and
other health care applications based on comorbidities. Some examples include: predicting
morbidity of patients with chronic obstructive pulmonary disease [7], febrile neutropenia [8], as
well as classifying the hospitalization of patients with preconditions on diabetes [9], heart
disease [10,11], and hospital readmission for patients with mental or substance use disorders
[12]. Recent advances in the machine learning literature have suggested that sparse classifiers,
those that use few variables (e.g., [1-regularized Support Vector Machines), have stronger
predictive power and generalize better on out-of-sample data points than very complex
classifiers [13]. Related work has shown that regularization is equivalent to robustness, that is,
learning models which are robust to the presence of outliers in the training set [14]. Moreover,
the benefit of using sparse predictors is the enhanced interpretability they provide for both the
model and the results.

1.1 Objective

Construct data-driven predictive models using data from patients tested for SARS-CoV-2
to predict if a patient will (1) be hospitalized, (2) succumb to the disease, (3) need treatment in
an ICU, and/or (4) need a ventilator. To train and test these classifiers we use a public dataset
[15] made available by the Mexican government that contains individual information on:
demographics (e.g., location), preconditions (e.g., hypertension) and outcomes (e.g., admission
to an ICU) for every person who has been tested for SARS-CoV-2 in Mexico.

1.2 Main Contributions
o We provide descriptive statistics of the distribution of hospitalized and deceased patients
given basic information on preconditions and demographics.



o We develop interpretable models that not only predict the outcomes but also quantify the
role of various variables in making these predictions.

o The models we develop leverage data from Mexico. This can motivate additional work
using the same data, while the models could be applicable to other Latin American
countries with similar population characteristics. This adds to existing work using
Electronic Health Records which has focused on patients in the US, Europe, or Asia.

The remainder of the paper is organized as follows: In Section 2 we describe the data used
accompanied by descriptive statistics and preprocessing procedures. In Section 3 we describe
the binary supervised classification models used and the performance evaluation metrics
employed. In Section 3, we present the main results. Discussion of the results can be found in
Section 4 and Conclusions in Section 5.

2 DATA DESCRIPTION AND PREPROCESSING

2.1 Data

We use a dataset that has been open for the general public by the Mexican Government
(and updated daily) [15]. These data include information about every person who has been
tested for SARS-CoV-2 in Mexico. They include demographic information such as: Age,
Location, Nationality, the use of an indigenous language; as well as information on prior medical
conditions, including whether the patient has: diabetes, chronic obstructive pulmonary disease
(COPD), asthma, immunosuppression (e.g., due to treatment for cancer or auto-immune
conditions [16]), hypertension, obesity, pregnancy, chronic renal failure, other prior diseases,
and whether was or is using fobacco. In addition, the data report the dates on which the patient
first noticed symptoms, the date when the patient arrived to a care unit, and the date when the
patient was deceased (if applicable). Finally, it contains fields showing whether the patient was
hospitalized, has pneumonia, needed a ventilator, was treated in an ICU, as well as the result of
the SARS-CoV-2 test. To confirm a case, the Ministry of Health in Mexico requires that, in
addition of being tested positive, the patient presents at least two of: cough, fever or headache,
and at least one of: dyspnea, arthralgia, myalgia, odynophagia, rhinorrhea, conjunctivitis or
chest pain. More technical details on the surveillance model used are provided in [17].

As of May 1st, 2020, the data contained more than 91,179 observations out of which more
than 20,737 account for positive tests, around 15,000 tests were being processed, and the rest
are negative test results. Table 2-1 provides a more precise description of the dataset.

Table 2-1: Descriptive statistics of data set as on May 1st, 2020. In parenthesis, we denote the number

of observations belonging to the randomly selected test set.

Total number of tests 91,179
Positive 20,737 (6,239)
Waiting for Result 15,445 (4,677)
Negative 54,997

Total number of patients hospitalized 24,099 (3,801)
Positive 8,221 (1996)

Waiting for Result 4,389 (1,737)



Negative 11,489 (0)
Pneumonia 14,462 (1,737)
Need Ventilator 1,809 (246)
Need ICU 2,059 (258)
Deceased (Positive or Waiting for Result) 3,192 (501)

Number of observations with pre-conditions
with non-negative test

Diabetes 6,042 (1,878)
COPD 825 (231)
Asthma 1,235 (385)
Immunosuppression 632 (190)
Hypertension 7,238 (2,161)
Pregnant 221(64)
Cardiovascular disease 991 (267)
Obesity 6,998 (2,056)
Chronic renal insufficiency 820 (235)

Demographics of patients with non-negative
test
Contact with a positive COVID case
Speak an indigenous language

11,355 (3,360)
466 (128)

2.2 Basic Analytics

We provide plots that help us observe trends in the data. We begin by disaggregating data
into age groups. In the lower plot of Figure 1 the number of observations of patients having a
positive test or waiting their result per age is shown. In addition, the upper bar plot denotes the
percentage of the patients in a certain age range who have been hospitalized. This information
is aligned with the current knowledge on COVID-19, which indicates that older people have
higher risk of being hospitalized. Also, this plot suggests that the risk of being hospitalized
increases linearly from the age of thirty up to seventy-five and then plateaus. We ran an
ordinary linear regression (OLS) to calculate the rate at which the percentage of hospitalization
increases for every additional year of age. The rate results to be 0.014 with an R? equal to 0.99.
This suggests that the risk of hospitalization increases by approximately 1.4% for every year of
age between 30 and 75 years old.
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Figure 1: Lower: Number of patients tested positive or waiting for result by age; Upper: Percentage of

these patients that have been hospitalized.

Next, in Figure 2 we report the fraction of patients who have been hospitalized,
deceased, needed an ICU or a ventilator given a certain precondition, e.g., in the upper-left box
we divide the number of hospitalized patients with pneumonia by the total number of patients
with pneumonia. We observe that for both hospitalizations and deaths, preconditions such as
chronic renal insufficiency, COPD, diabetes, immunosuppression, cardiovascular disease and
hypertension are critical. Nevertheless, even though this gives us information about the risk of a
precondition, it does not include the sensitivity regarding how age and preconditions affect a

patient with COVID-19.

T
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Pneumonia (9345) 017 0.11 0.11

chronic renal insufficiency (820) 0.2 0.06 0.074 0.8
COPD (825) 0.6 0.18 0.057 0.062
0.7
Diabetes (6042) 0.6 0.14 0.062 0.06
Immunosuppression (632) 0.62 0.15 0.06 0.047 -
Cardiovascular disease (991) 0.55 0.15 0.07 0.065
Hypertension (7238) 0.55 0.13 0.055 0.055 0.5
Other (1324) 0.46 0.098 0.048 0.032
Obesity (6998) 0.43 0.09 0.047 0.048 <
Tobacco use (3266) 0.38 0.062 0.034 0.039
Female (15888) 0.28 0.042 0.022 0.021 o3
Pregnant (221} 0.023 0.027 0.009 02
Asthma (1235) 0.054 0.03 0.019
Male (20294) - 0.033 0.017 0.016 - 0.1
Contact COVID case (11355) - 0.15 0.022 0.02 0.02
HospitlaEized De.'lath ICIU Ventillator

Figure 2: Fraction (%) of patients with a precondition that have been hospitalized, have died or required

an ICU or ventilator.

To complement the previous table, we report the percentage of the hospitalized by age group
and by existing preconditions in Figure 3. To that end, we create age groups for every five years
and report results for groups with at least ten observations, otherwise the bin is left blank. On
the top row of the table, we include the statistic for a patient without any preconditions. As an
example, the top-left entry reports the ratio of the number of patients between 0-5 years old
without preconditions who have been hospitalized divided by the number of patients between 0-
5 years without preconditions who may or may not have been hospitalized. We observe that
chronic renal insufficiency, diabetes, and immunosuppression are among the preconditions that
are associated with a higher hospitalization rate.
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Figure 3: Fraction (%) of population per age group being hospitalized given a precondition.

Finally, we present histograms reporting the lag times among various states of the
disease for the Mexican population. For this analysis, we separate the data in three groups:
individuals with ages between 0-20, 20-50, and patients over 50 years old. In Figure 4 (left), we
plot the distribution of the number of days between the onset of symptoms and a subsequent
hospitalization. Figure 4 (center) depicts the distribution of time (days) between hospital
admission and death. Interestingly, we observe that a large portion of the patients who were
hospitalized died the same day they were admitted. This could be explained either by a
healthcare system working at capacity in which only seriously-ill patients are admitted or by the
abrupt deterioration of a patient’s condition [18,19] and should be further investigated. The rest
of the distribution behaves like the tail of a Weibull distribution with very few patients being
hospitalized for more than three weeks. Finally, Figure 4 (right) shows the distribution of the
number of days between the onset of symptoms and death (the mean is 9.8 days).



ddmission date - Symptoms date Death date  Admission dabe Death date - Symptoms date

4
a

HI=5i pEErs 00 [ RTES R R
. 50100 pears =51 yeary
e [+ 1 B 0-10 yesry N 0-3] pears

BTN IH B R
I0-5U years
N 0-3] pears

ki
=}

100

E B

CRune, 3134 oAt paints
|

s days days

Figure 4: Histograms showing (left) the time between the onset of symptoms and death, (center) the time
between hospital admission and death, and (right) the time between the onset of symptoms and death.

2.3 Preprocessing

2.3.1 Removing outliers

We found a few outliers which are easily identified, for example, the pregnancy of male
patients, the date of death of a patient being earlier than the day the patient was admitted to the
hospital. Such data points were removed from the dataset.

2.3.2 One-hot encoding

The data contain precondition features reported as categorical. Specifically, each of
these precondition features takes the value yes, no, unknown or unspecified. We generate one-
hot encoding for all these features. One-hot encoding converts the categorical feature to
multiple binary variables by creating auxiliary variables that help distinguish between the
different categories of a feature. For the case of our data, one-hot encoding generates three
binary variables for each specific precondition; these variables (as opposed to categories) are:
no, unknown and unspecified. Then, for each observation, at most one of these variables will be
active, pointing to the correct value for the original feature. If none of the three is active, then the
value of the precondition is yes.

2.3.3 Removing correlated variables

We find and delete variables that are highly correlated since they, in general, provide
similar information. Specifically, we compute pairwise correlations among the variables, and
remove one variable from each highly correlated pair (using a threshold of 0.8 for the absolute
correlation coefficient). We found that the correlated binary features were the ones
corresponding to unknown or unspecified for preconditions. This is because observations that
contain an unknown or unspecified value, typically have this same value for all preconditions
(not just for one), indicating potential issues in data gathering. Hence, we remove all these
auxiliary variables denoting unknown or unspecified preconditions.

3 METHODS AND METRICS
In this section, we briefly introduce the methodologies used to build the binary classifiers.
For each model, we train the classifier using four different supervised classification



methodologies: sparse Support Vector Machines (SVM), sparse Logistic Regression (LR),
Random Forests (RF) and gradient boosted decision trees (XGBoost). For healthcare
applications, the first two are preferable due to their interpretability. In turn, the last two are the
state-of-the-art classification algorithms today and will serve as a basis to compare the accuracy
of the interpretable methods with the non-interpretable benchmark models. Appendix B provides
details on these methods, particularly because the robust/sparse LR and SVM formulations are
not standard.

3.1 Cross-Validated Recursive Feature Elimination

Classifiers based on few variables are desirable because they have stronger predictive
power, generalizing better out-of-sample, and offering enhanced interpretability [20,21]. Aiming
to reduce the number of variables, we employ a Recursive Feature Elimination (RFE) procedure
[22] to find the variables that optimize a given performance metric. The general framework of
this algorithm begins by building a classifier using all the features and computing an importance
score for each predictor. In the case of Logistic Regression (or Linear SVM), we use as
important score the absolute value (or magnitude) of the linear coefficient §; of feature i. After
this step, the least important feature (the one with the smallest |3;]) is deleted from the dataset.
We repeat iteratively this process until we are left with one feature. Then, for each of these
iterations we report the performance of the model (using cross-validation over the training set)
and we pick the set of features that maximize this value. Additionally, at each iteration, we use
the same cross-validation process to tune the hyper parameters of the classifier to achieve the
best performance. In this work, we use LR to eliminate variables based on their coefficients as
described earlier, as it gives a clear and interpretable meaning of the score for each variable. At
each iteration we use a stratified ten-fold cross-validation (over the training set) to estimate the
AUC performance until we are left with one variable. Finally, we pick the features for which we
obtain the model with the maximum AUC value. This subset of variables is then used to train all
the predictive models.

3.2 Performance Evaluation

The primary objective of learning a classifier is to maximize the prediction accuracy (or
equivalently minimize a loss function), and in our health care setting offer interpretability of the
results.

We characterize the prediction accuracy of a classifier using two commonly used metrics:
(1) the false positive (or false alarm) rate which measures how many patients were predicted to
be in the positive class, e.g., hospitalized, while they truly were not, as a fraction of all negative
class patients. In the medical literature, the term specificity is often used and it equals 1 minus
the false positive rate; and (2) the detection rate that captures how many patients were
predicted to be on the positive class while they truly were, as a fraction of all positive class
patients. This term is often referred to as sensitivity or recall. Another term commonly used is
precision defined as the ratio of true positives over true and false positives.

A single metric that captures both types of error is the Area Under the Curve (AUC) of the
Receiver Operating Characteristic (ROC). ROC plots the detection rate (or sensitivity or recall)
over the false positive rate. A naive random selection (assigning patients to classes randomly)



has AUC of 0.5 while a perfect classifier an AUC of 1. To complement the AUC metric, we
report the accuracy that computes the ratio of the number of correct predictions over all
predictions within the test set. In addition to the ROC AUC and accuracy, and rather than
evaluating the precision and recall for both the positive class and the negative class, we report a
single metric, the weighted F1-score. Specifically, the F1-score is the harmonic mean of
precision and recall and can be computed for both the positive and negative classes. The
weighted F1-score is just an average of the per class F1-scores weighted according to the
number of (test) samples in each class. We are interested in this performance metric because it
is as important to accurately predict who is not likely to have a specific outcome (e.g.,
hospitalized), in addition to who will. For example, one can ease restrictions on those who are
predicted to have lower risk. In fact, having more false positives corresponds to being more
conservative with patients by assigning higher-risk profiles, and what is needed is striking the
right balance between being conservative vs. having a lot of false positives. The weighted F1-
score is one appealing way of quantifying this trade-off.

For individual variables and each different model, we also report the Odds Ratio (OR),
which indicates how the odds of observing the outcome are scaled by having that variable take
the value 1 (vs. 0), while controlling for all other variables in the model.

We finally emphasize that all metrics we report are computed on a randomly selected test
set of patients (i.e., out-of-sample) which corresponds to 30% of the observations and has not
been used for training the models. In addition, all metrics were calculated using a discriminant
classification threshold which was selected by optimizing the AUC and reported in Table 2 :
Summary of results of all models using LR.

4 RESULTS

We build binary classification models to predict hospitalization, mortality and the need for
an ICU or ventilator. At a minimum, all models use a set of base features composed by: age,
gender, diabetes, COPD, asthma, immunosuppression, hypertension, obesity, pregnancy,
chronic renal failure, tobacco use, other disease, as well as the SARS-CoV-2 test result, which
is either positive or pending (we exclude all negative cases to train our models). In this section,
we provide a summary of the results while in Appendix A we provide all results.

4.1 Hospitalizations

Our first model predicts if a patient who has tested positive or is waiting for the test result
will be hospitalized given their base features. This model has a moderate accuracy for all
methodologies employed which accounts for an AUC of 0.74 and an accuracy of classifying
72% of the observations correctly. An interesting observation is that SVM and LR performs
better than RF and XGBoost.

The coefficients of the SVM and LR models have the same trend and suggest that the
features that contribute the most for predicting the hospitalization of a patient are: age over 80
(OR=3.2), age between 65-80 (OR=2), pregnancy (OR=2.3), diabetes (OR=2.3), chronic renal
insufficiency (OR=2.3), immunosuppression (OR=2), COPD (OR=1.5), and gender. The rest of
the variables (Obesity, Hypertension, Other, Tobacco Use, Cardiovascular disease and Asthma)



have a much smaller impact. It is however possible that some of these variables have smaller
coefficients because the effect is captured by another highly correlated variable (e.g., obesity
and diabetes).

4.2 Mortality

We explore two models to predict mortality. The first model assumes we only know the
base features of a patient whereas the second model includes variables that indicate if the
patient has been hospitalized or not, has pneumonia, or has needed an ICU or ventilator. The
reason to consider the first model is to have a classifier which identifies which patients are the
most vulnerable prior to hospitalization, while the second model predicts the mortality of an
individual in the hospital by using information on how the disease is progressing. In order to
have a more balanced dataset and to detect better the deceased class, we ran this model only
on the observations of patients who have been hospitalized and have been tested positive or
are waiting for their test result.

For the model which considers the case that only uses the base features of a patient (prior
to attending a healthcare facility), we are able to predict with 79% accuracy and with an AUC
equal to 0.63 the mortality of a patient. Moreover, when we include more information about the
hospitalization, pneumonia, ICU, and ventilation, the classification task achieves a similar
accuracy but a higher detection rate of 0.701 (an increase of ~12% in detection).

Both interpretable models, LR and SVM, suggest that the variables that are critical for
predicting mortality are the patient’s age, gender, immunosuppression (OR=1.68), chronic renal
insufficiency (OR=1.46), obesity (OR=1.4) and diabetes (OR=1.32). For the model that has
more features, as expected, information about the need for ventilator and ICU are highly
relevant when predicting mortality.

4.3 ICU need

Similar to the mortality case, we train two classification models to predict the need for an
ICU. The first model predicts the need for an ICU bed using the base features and assumes that
we don’t know if the patient will or will not develop pneumonia. This might serve for planning
purposes, as it will help us predict which individuals are more likely to need an ICU in case they
contract SARS-CoV-2. This model achieves an accuracy of 89% with an AUC of 0.55
(XGBoost). Additionally, when we include information about the development of pneumonia, the
AUC of the model increases by about 10% to 0.64, highlighting the importance of using the
most recent information of a patient while predicting its outcome.

In these cases, SVM and LR suggest that information on: age, development of pneumonia
(OR=4.13), if available, diabetes (OR=1.23), obesity and hypertension are among the most
important variables to predict the need for an ICU.

4.4 Ventilator Need

In the same way as in the mortality and ICU models, we develop two models to predict the
need for a mechanical ventilator given that a patient is either a confirmed or suspected COVID-
19 case. The first model evaluates the situation prior to knowing if patient has developed
pneumonia or needs an ICU. The accuracy reached by this model is higher than both the



mortality and the ICU models, achieving an accuracy of 90% and an AUC of 0.58. In addition to
this model, the second instance uses information about the development pneumonia and the
admission to an ICU. As expected, this additional information is relevant for predicting
ventilation need. It increases its accuracy to 92% and the AUC to 0.86.

Moreover, both models classifying the need for a ventilator show that information on ICU
(OR=15.5) and pneumonia (OR=9.1), if available, age, gender, chronic renal insufficiency
(OR=1.5), obesity (OR=1.4), hypertension (OR=1.16) and diabetes (OR=1.12) are the most
relevant features for predicting the need for a mechanical ventilator.

To summarize and provide interpretability we report in “Table 2 : Summary of results of all
models using LR.” the performance metrics for all the models and in “Table 3 : Odds ratios for
all models, considering LR-I1.” the odds ratio for each model variables using LR. We observe
that the coefficients of both interpretable models (SVM and LR) are consistent and have an
accuracy comparable, or higher than RF and XGBoost.

Table 2 : Summary of results of all models using LR.

Hospitalization Mortality I(\Q\g:/t:gtg,e d) ICU zg:vance d) Ventilator zgzr:gﬁfg d)
Discriminant , 45, 0.36 0.32 022 022 0.23 0.35
Threshold
Accuracy 0.718 0.793 0.794 0.894 0.894 0.899 0.917
Flw 0.7 0.716 0.75 0.844 0.844 0.851 0.911
AUC 0.749 0.634 0.701 0.534 0.636 0.578 0.859

Table 3 : Odds ratios for all models, considering LR-I1.

G . Mortality ICU . Ventilator
Hospitalization Mortality (advanced) ICU (advanced) Ventilator (advanced)

Age-80-100 3.180 2.361 3.212 1.000 1.000 1.000 1.002
Pregnant 2.321 1.000 1.245 1.000 1.000 1.000 1.000
Diabetes 2.291 1.324 1.309 1.230 1.197 1.120 1.082
Chronic Renal 2.268 1458  1.468 0631 0627 1.000 1513
Insufficiency

Immunosuppression 2.088 1.684 1.699 0.922 0.958 0.589 1.000
Age-65-80 2.073 1.461 1.744 1.204 1.298 1.294 1.133
COPD 1.536 1.266 1.000 0.963 0.913 0.911 0.641
Other 1.411 1.363 1.317 1.000 1.025 0.729 0.562
Obesity 1.323 1.399 1.232 1.330 1.247 1.441 1.313
Hypertension 1.157 1.315 1.179 1.169 1.151 1.162 1.092
Age-50-65 1.000 1.000 1.000 1.019 1.102 1.116 1.000
Tobacco Use 0.965 0.852 0.871 0.720 0.701 0.872 1.115
Cardiovascular Disease 0.962 1.048 1.200 1.003 1.010 1.000 1.000
Asthma 0.773 1.420 1.737 1.037 1.040 0.748 0.625
Gender 0.549 0.687 0.705 0.780 0.806 0.732 0.806
Age-30-50 0.457 0.618 0.665 0.903 0.979 0.701 0.597
Age-0-30 0.259 0.271 0.269 0.638 0.731 0.733 0.789
Ventilator 4.341

ICU 1.297 15.534
Pneumonia 1.276 4.125 9.098




5 DISCUSSION

Overall, the models we develop range from moderately to significantly accurate. Predicting
hospitalizations appears harder just based on the basic variables at our disposal, particularly
considering all patients who have a positive test or with a test pending. Potential additional
features are at play including state of health (measured through detailed lab results) and the
viral load they were exposed to. Furthermore, a number of hospitalizations are driven by
socioeconomic factors, e.g., the living arrangements of a patient and whether he/she can pose
infection risk for many others. Still, an AUC of 0.75 is significantly better than random and the
results could help tighten estimates on the number of hospitalizations expected.

From an actionable and planning perspective, predicting ICU treatment and ventilator need
are quite useful. These models can be quite accurate, achieving accuracies of 89% and 90%,
respectively, when information on how the disease is progressing is taken into account (e.g.,
development of pneumonia). Similarly, the mortality model can achieve an accuracy of 76%.

An interesting observation is that interpretable models (such as LR and SVM), when used
in conjunction with robustness/regularization approaches and elaborate feature selection
procedures, can lead to performance that is comparable, if not better than more complex and
expensive classifiers. The significant advantage of the former models is that they are
interpretable and provide information on which variables drive the predictions.

This study has some limitations. It is important to emphasize that the dataset used in this
work lacks critical information (such as lab results, vital signs, among others) to be able to
provide a clinical understanding of COVID-19. Rather, the focus of this work is to help inform
decisions on how to best allocate limited medical resources, and to help design targeted policies
for vulnerable subgroups which might not have access to clinical and lab assessments.
Interesting patterns can be observed in our results, motivating further research directions in
resource allocation during a pandemic. For example, our results suggest that pregnancy is an
important variable for predicting hospitalization but not mortality, ICU or ventilation, potentially
indicating a bias towards being more conservative and hospitalizing pregnant women when they
may not need it. Readers should also be aware that, due to the insufficient testing resources in
Mexico, the dataset might be biased toward overestimating deaths. While the dataset may
reflect all deaths, it does not include mild-moderate COVID-19 cases as these are never tested.
Another limiting factor is that the dataset does not include specific dates at which hospitals
discharge patients, which is of high importance to assess the utilization of medical equipment.
Finally, to the extent that these risk models can be used to prioritize the use of resources, we
understand that medical risk is not the only factor in making such decisions. Nevertheless, in
order to quantify medical risk one can leverage the models presented in this work.

6 CONCLUSIONS

We develop models to identify the medical risk of a patient with (or suspected for) COVID-
19. We hope this work can help hospitals and policymakers to distribute more effectively their
limited resources including tests, ICU beds and ventilators, as well as, to motivate countries and
healthcare systems to standardize and share data with the medical informatics community.
Moreover, we hope this research spreads the knowledge of the existence of this public dataset



and motivates researchers to work with these data. Finally, we hope that risk models are taken
into account to fine-tune social distancing advisories, moving from “blanket” to risk-based, as

well as prioritizing vaccine distribution to the more vulnerable and to those who need to interact
with the more vulnerable. For the sake of reproducibility and to facilitate the analysis for further

research we have made our models and results available on a Github repository [23].
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8 SUMMARY TABLE

What was already known

What this study added to the knowledge

Due to the fast spread of COVID-
19, a lot of attention has been
devoted to measuring and
predicting the spread. There have
also been anecdotal reports on
certain prior conditions that appear
to lead to more severe disease.

This work is among the first to use data to develop
explicit models predicting hospitalization, ICU
treatment, ventilator use, and mortality for individual
patients.

Most research related to COVID-19
has been done in countries and
communities where the virus hit
first. These include China, Italy,
Spain, US.

Our research focuses on the Mexican population, which
has particular characteristics of interest to Latin
American countries with similar socio-economic
conditions and health care systems that may become
more congested due to COVID-19.

Most research related to COVID-19
that employs Machine Learning
techniques has been focused on
learning from complex data
sources such as chest scans [24—
28].

We focus on a basic set of preconditions that are
known for the vast majority of the population without the
need to attend a medical facility. Hence, the risk metrics
we develop can be computed for anyone susceptible to
COVID-19, helping to prioritize testing, care, and post-
surge social distancing and vaccination policies.

Authors’ Contributions

S.W.-B. co-designed and analyzed the methods, co-wrote the manuscript, performed

the analysis, and produced results and figures. C.G.C co-led the study, co-designed the

methods, and commented on the manuscript. I.C.P. co-led the study, co-designed the

methods, and co-wrote the manuscript.




CONFLICT OF INTEREST STATEMENT:

The authors have no financial or personal relationships with other people or organizations that
could inappropriately influence (bias) their work.



REFERENCES

[1]
(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]

[19]

WHO announces COVID-19 outbreak a pandemic, (2020).

E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19 in real time,
Lancet Infect. Dis. (2020). https://doi.org/10.1016/S1473-3099(20)30120-1.

COVID-19 Global Cases by Johns Hopkins University, 2020. https://www.gisaid.org/ epiflu-
applications/global-cases-covid-19/.

At the Top of the Covid-19 Curve, How Do Hospitals Decide Who Gets Treatment? - The New York
Times, (n.d.). https://www.nytimes.com/2020/03/31/us/coronavirus-covid-triage-rationing-
ventilators.html (accessed April 29, 2020).

The Hardest Questions Doctors May Face: Who Will Be Saved? Who Won't? - The New York
Times, (n.d.). https://www.nytimes.com/2020/03/21/us/coronavirus-medical-rationing.html (accessed
April 29, 2020).

L. Wynants, B.V. Calster, G.S. Collins, R.D. Riley, G. Heinze, E. Schuit, M.M.J. Bonten, J.A.A.
Damen, T.P.A. Debray, M.D. Vos, P. Dhiman, M.C. Haller, M.O. Harhay, L. Henckaerts, N.
Kreuzberger, A. Lohmann, K. Luijken, J. Ma, C.L.A. Navarro, J.B. Reitsma, J.C. Sergeant, C. Shi,
N. Skoetz, L.J.M. Smits, K.I.LE. Snell, M. Sperrin, R. Spijker, E.W. Steyerberg, T. Takada, S.M.J. van
Kuijk, F.S. van Royen, C. Wallisch, L. Hooft, K.G.M. Moons, M. van Smeden, Prediction models for
diagnosis and prognosis of covid-19: systematic review and critical appraisal, BMJ. 369 (2020).
https://doi.org/10.1136/bmj.m1328.

Z.yong Huang, S. Lin, L. li Long, J. yang Cao, F. Luo, W. cheng Qin, D. ming Sun, H. Gregersen,
Predicting the morbidity of chronic obstructive pulmonary disease based on multiple locally
weighted linear regression model with K-means clustering, Int. J. Med. Inf. 139 (2020) 104141.
https://doi.org/10.1016/j.ijmedinf.2020.104141.

X. Du, J. Min, C.P. Shah, R. Bishnoi, W.R. Hogan, D.J. Lemas, Predicting in-hospital mortality of
patients with febrile neutropenia using machine learning models, Int. J. Med. Inf. 139 (2020)
104140. https://doi.org/10.1016/j.ijmedinf.2020.104140.

T.S. Brisimi, T. Xu, T. Wang, W. Dai, |.C. Paschalidis, Predicting diabetes-related hospitalizations
based on electronic health records, Stat. Methods Med. Res. 28 (2019) 3667-3682.
https://doi.org/10.1177/0962280218810911.

T.S. Brisimi, T. Xu, T. Wang, W. Dai, W.G. Adams, |.C. Paschalidis, Predicting Chronic Disease
Hospitalizations from Electronic Health Records: An Interpretable Classification Approach, Proc.
IEEE. 106 (2018) 690—-707. https://doi.org/10.1109/JPROC.2017.2789319.

T.S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I.C. Paschalidis, W. Shi, Federated learning of
predictive models from federated Electronic Health Records, Int. J. Med. Inf. 112 (2018) 59-67.
https://doi.org/10.1016/j.ijmedinf.2018.01.007.

D. Morel, K.C. Yu, A. Liu-Ferrara, A.J. Caceres-Suriel, S.G. Kurtz, Y.P. Tabak, Predicting Hospital
Readmission in Patients with Mental or Substance Use Disorders: A Machine Learning Approach,
Int. J. Med. Inf. 139 (2020) 104136. https://doi.org/10.1016/j.jmedinf.2020.104136.

A.Y. Ng, Feature selection, L1 vs. L2 regularization, and rotational invariance, in: Proc. Twenty-First
Int. Conf. Mach. Learn. ICML 2004, 2004: pp. 615-622. https://doi.org/10.1145/1015330.1015435.
R. Chen, I.C. Paschalidis, A Robust Learning Approach for Regression Models Based on
Distributionally Robust Optimization, J. Mach. Learn. Res. 19 (2018) 1-48.

Datos Abiertos - Direccion General de Epidemiologia | Secretaria de Salud | Gobierno | gob.mx,
(n.d.). https://www.gob.mx/salud/documentos/datos-abiertos-152127 (accessed April 29, 2020).
Calculadora de complicacion de salud por COVID -19, (n.d.). http://www.imss.gob.mx/covid-
19/calculadora-complicaciones (accessed June 25, 2020).

Lineamiento estandarizado para la vigilancia epidemioldgica y por laboratorio de la enfermedad
respiratoria viral, (2020).
https://www.gob.mx/cms/uploads/attachment/file/552972/Lineamiento_VE_y_Lab_Enf_Viral_20.05.
20.pdf.

Clinical progression of patients with COVID-19 in Shanghai, China, (n.d.).
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7102530/ (accessed May 2, 2020).

D. Wang, B. Hu, C. Hu, F. Zhu, X. Liu, J. Zhang, B. Wang, H. Xiang, Z. Cheng, Y. Xiong, Y. Zhao,
Y. Li, X. Wang, Z. Peng, Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel



[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]
[31]
[32]
[33]

[34]

[35]

Coronavirus—Infected Pneumonia in Wuhan, China, JAMA. 323 (2020) 1061-1069.
https://doi.org/10.1001/jama.2020.1585.

E. Steyerberg, Clinical Prediction Models: A Practical Approach to Development, Validation, and
Updating, Springer-Verlag, New York, 2009. https://doi.org/10.1007/978-0-387-77244-8.

L.N. Sanchez-Pinto, L.R. Venable, J. Fahrenbach, M.M. Churpek, Comparison of variable selection
methods for clinical predictive modeling, Int. J. Med. Inf. 116 (2018) 10-17.
https://doi.org/10.1016/j.ijmedinf.2018.05.006.

I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support
vector machines, Mach. Learn. 46 (2002) 389—422. https://doi.org/10.1023/A:1012487302797.
salomonw/covid-predictors-mexico, GitHub. (n.d.). https://github.com/salomonw/covid-predictors-
mexico (accessed May 2, 2020).

W.J. Guan, Z.Y. Ni, Y. Hu, W.H. Liang, C.Q. Ou, J.X. He, L. Liu, H. Shan, C.L. Lei, D.S.C. Hui, B.
Du, L.J. Li, G. Zeng, K.Y. Yuen, R.C. Chen, C.L. Tang, T. Wang, P.Y. Chen, J. Xiang, S.Y. Li, J.L.
Wang, Z.J. Liang, Y.X. Peng, L. Wei, Y. Liu, Y.H. Hu, P. Peng, J.M. Wang, J.Y. Liu, Z. Chen, G. Li,
Z.J. Zheng, S.Q. Qiu, J. Luo, C.J. Ye, S.Y. Zhu, N.S. Zhong, Clinical Characteristics of Coronavirus
Disease 2019 in China, N. Engl. J. Med. (2020). https://doi.org/10.1056/NEJM0a2002032.

M. Chung, A. Bernheim, X. Mei, N. Zhang, M. Huang, X. Zeng, J. Cui, W. Xu, Y. Yang, Z.A. Fayad,
A. Jacobi, K. Li, S. Li, H. Shan, CT imaging features of 2019 novel coronavirus (2019-NCoV),
Radiology. 295 (2020) 202—-207. https://doi.org/10.1148/radiol.2020200230.

A. Bernheim, X. Mei, M. Huang, Y. Yang, Z.A. Fayad, N. Zhang, K. Diao, B. Lin, X. Zhu, K. Li, S. Li,
H. Shan, A. Jacobi, M. Chung, Chest CT Findings in Coronavirus Disease-19 (COVID-19):
Relationship to Duration of Infection, Radiology. (2020) 200463.
https://doi.org/10.1148/radiol.2020200463.

E. Tartaglione, C.A. Barbano, C. Berzovini, M. Calandri, M. Grangetto, Unveiling COVID-19 from
Chest X-ray with deep learning: a hurdles race with small data, (2020).

Y. Fang, H. Zhang, J. Xie, M. Lin, L. Ying, P. Pang, W. Ji, Sensitivity of Chest CT for COVID-19:
Comparison to RT-PCR, Radiology. (2020) 200432. https://doi.org/10.1148/radiol.2020200432.

C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995) 273-297.
https://doi.org/10.1007/bf00994018.

C.M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics),
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

K. Koh, S.-J. Kim, S. Boyd, Y. Lin, An Interior-Point Method for Large-Scale 1-Regularized Logistic
Regression, 2007.

L. Breiman, Random forests, Mach. Learn. 45 (2001) 5-32.
https://doi.org/10.1023/A:1010933404324.

L. Breiman, J. Friedman, C. Stone, R. Olshen, Classification and regression trees, CRC Press.
(1984).

T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Proc. ACM SIGKDD Int. Conf.
Knowl. Discov. Data Min., Association for Computing Machinery, New York, New York, USA, 2016:
pp. 785-794. https://doi.org/10.1145/2939672.2939785.

Tree Boosting With XGBoost — Why Does XGBoost Win “Every” Machine Learning Competition?,
(n.d.). https://medium.com/syncedreview/tree-boosting-with-xgboost-why-does-xgboost-win-every-
machine-learning-competition-ca8034c0b283 (accessed April 29, 2020).



