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ABSTRACT 
 
Introduction: New financial incentives, such as reduced Medicare reimbursements, have led hospitals 

to closely monitor their readmission rates and initiate efforts aimed at reducing them. In this context, 

many surgical departments participate in the American College of Surgeons National Surgical Quality 

Improvement Program (NSQIP), which collects detailed demographic, laboratory, clinical, procedure 

and perioperative occurrence data.  The availability of such data enables the development of data science 

methods which predict readmissions and, as done in this paper, offer specific recommendations aimed at 

preventing readmissions.   

  

Materials and Methods: This study leverages NSQIP data for 722,101 surgeries to develop predictive 

and prescriptive models, predicting readmissions and offering real-time, personalized treatment 

recommendations for surgical patients during their hospital stay, aimed at reducing the risk of a 30-day 

readmission. We applied a variety of classification methods to predict 30-day readmissions and 

developed two prescriptive methods to recommend pre-operative blood transfusions to increase the 

patient’s hematocrit with the objective of preventing readmissions. The effect of these interventions was 

evaluated using several predictive models. 

      

Results: Predictions of 30-day readmissions based on the entire collection of NSQIP variables achieve 

an out-of-sample accuracy of 87% (Area Under the Curve—AUC). Predictions based only on pre-

operative variables have an accuracy of 74% AUC, out-of-sample. Personalized interventions, in the 

form of pre-operative blood transfusions identified by the prescriptive methods, reduce readmissions by 

12%, on average, for patients considered as candidates for pre-operative transfusion (pre-operative 

hematoctic <30). The prediction accuracy of the proposed models exceeds results in the literature.  

 

Conclusions: This study is among the first to develop a methodology for making specific, data-driven, 

personalized treatment recommendations to reduce the 30-day readmission rate. The reported predicted 

reduction in readmissions can lead to more than $20 million in savings in the U.S. annually. 
 

      

Keywords: hospital readmissions; surgery; quality improvement; predictive analytics; prescriptive 

analytics; machine learning.    
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1. Introduction 

 

The United States spends $3 trillion annually on healthcare, corresponding to more than 17% of the 

U.S. GDP and far exceeding the next-highest spender among high-income countries.[1] While many 

factors contribute to higher spending, hospital readmissions, defined as an additional admission to 

address the same issue within 30 days after discharge, are an important  ̶ and potentially preventable ̶  

source of excessive resource utilization.[2,3]  

 

In an effort to reduce unnecessary costs, the Affordable Care Act of 2012 introduced financial penalties 

for hospitals with readmission rates above the national average. While these measures have so far 

concentrated on medical conditions (e.g., acute myocardial infarction, congestive heart failure, 

pneumonia) and common orthopedic procedures (e.g., hip and knee arthroplasty), the list could expand 

to include common general surgical procedures.   

 
In anticipation of these changes, Surgical Departments have started to closely monitor their 

readmission rates, and establishing processes aimed at reducing them. Several authors have sought to 

determine common causes of readmission after general surgical procedures, and most appear to relate 

to pre-existing conditions[4–7] and complications after surgery.[8]  
 
In 2005, the American College of Surgeons (ACS) established the National Surgical Quality 

Improvement Program (NSQIP), which collects detailed demographic, laboratory, clinical, procedure 

and perioperative occurrence data, currently for General Surgery, and eventually in several 

subspecialties. The availability of such data, enables the development of data analytics methods 

relevant to the readmission reduction efforts.  

 

While earlier work has primarily focused on readmission predictive methods, there has only been 

limited attention given to specific interventions with the potential to reduce readmissions; and that has 

focused mostly on post-discharge care.[9–11] Earlier work on predictive methods for hospitalizations 

have been successful but focused on specific diseases.[12–14] 

 

The objective of this work is to develop more direct prescriptive methods that offer specific treatment 

recommendations during the patients’ hospital stay with the potential to reduce readmission risk. Our 

recommended interventions are driven by data; essentially, for each patient, we learn from data what 
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has been effective in preventing a readmission for other “similar” patients. While the methodologies we 

develop are general and can be applicable to any sort of interventions, we focus on in-hospital 

treatment because the NSQIP data we leverage contain only such variables. We further focus on the 

patients’ pre-operative hematocrit because it is commonly measured, important for assessing 

readmission risk, and easily modulated through blood transfusion.  

 

2. Materials and Methods 

 

Data and pre-processing. The ACS-NSQIP dataset we use in our analysis contains over 300 variables 

on comorbidities, intra-operative events, and 30-day outcomes using prospective random sampling,[15] 

including: (i) baseline demographic and health care status characteristics (e.g., age, gender, race, BMI, 

smoking, diabetes, hypertension, admittance from the ER); (ii) procedure information (e.g., CPT codes, 

ICD9 codes, ASA classification, wound classification); (iii) pre-operative, intra-operative, and post-

operative variables, such as hospital stay information, Surgical Site Infections (SSI, 

superficial/deep/organ space) and complications (e.g., pneumonia, infections, bleeding, 

thromboembolic events), and (iv) laboratories, including pre-operative and post-operative values.  

 

The NSQIP dataset at our disposal included more than 2.2 million surgeries during 2011-2014. While 

the NSQIP program provided high-quality manually curated data obtained from trained data 

abstractors, the variable definitions change over time. Specifically, the definitions of the occurrences 

listed in Table 2 (e.g., sepsis, pneumonia, SSIs) have changed multiple times. To avoid comparisons 

among variables with a different meaning, we selected only surgeries that took place during 2014. We 

included only variables that were continuously monitored and used throughout this period; resulting in 

a total of 231/187 patient variables for post-operative/pre-operative analysis. Patients who died within 

30 days of surgery without readmission were excluded. There were a total of 722,101 remaining 

patients, 39,641 of whom were readmitted within 30 days of discharge, resulting in a readmission rate 

of 5.49%.  

 

For certain pre-operative lab variables, more than 80% of the entries were missing, and they were 

excluded from the study. For other variables which had missing data, we used a statistical method that 

uses k-nearest neighbors and clustering to find the most likely value for a missing value.[16] The 

variables were then further separated into two classes: pre-operative variables and post-operative 
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variables. Pre-operative variables are those that can be reliably known before the main surgical 

procedure starts, whereas post-operative variables (including complications) can only be known after 

the surgery has occurred. Variable scaling was used for all models, except for Optimal Classification 

Trees, to bring all values into the range [0,1]; specifically, all variables were normalized by subtracting 

the minimum and dividing by the range.   

 

Predictive Methods. Two different classes of machine learning methods were used. The first class 

consists of predictive methods used to accurately predict the readmission outcome of a patient. Two 

different scenarios were evaluated: (i) predicting readmissions using pre-operative variables, and (ii) 

predicting readmissions using both pre-operative and post-operative variables. 

 

We tested a variety of machine learning methods, including: Random Forests (RF),[17] Logistic 

Regression (LR), Support Vector Machines (SVM), Gradient Boosted Machines (GBM),[18] and 

Neural Networks (NN).[19] Logistic Regression aims to fit a regression between the features and the 

binary outcomes in the logit space. In this study, we fit the logistic regression with a L2-norm 

regularization term to induce robustness and help guard against data corruption.[20] Both RF and GBM 

assemble a large collection of classification trees that classifies by taking a majority vote of the 

individual trees. Linear SVM aims to find a separating hyperplane in the feature space to best separate 

the patients which were readmitted and those who were not.            We implemented a variant of this 

algorithm, Sparse Linear SVM (SLSVM, see Appendix S1 for details), that chooses a sparse number of 

variables in the separating hyperplane. By only allowing the hyperplane to depend on a small number 

of features, we can understand what are the most important variables that separate those that are 

readmitted and those that are not, which improves interpretability.  

            

To evaluate prediction quality, one typically considers two distinct performance metrics computed out-

of-sample: the false positive rate (or one minus the specificity of the test) and the true positive rate, or 

sensitivity of the test. A Receiver Operating Characteristic (ROC) curve evaluates the performance of a 

binary classifier as the decision threshold is varied, and is formed by plotting the true positive rate 

against the false positive rate at different threshold settings. To have a single metric to compare 

different ROC curves, we will consider the Area Under the ROC Curve (AUC). An ideal prediction 

model has an AUC close to 1, whereas a random prediction would yield an AUC of 0.5.  
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Prescriptive Methods. The second class of methods we employ consists of prescriptive methods. We 

focus on the pre-operative hematocrit (HCT) and seek to modulate it in order to minimize the 

readmission rate. Operationally, this is achieved through blood transfusion before the surgery. 

Consistent with medical practice, the maximum change in the hematocrit level is limited to 9%, 

corresponding, roughly, to 3 standard (300cc) bags of blood, which can be considered as a safe upper 

limit for blood transfusion. Since any such intervention has to be applied before the surgery, the 

methods we develop will only use pre-operative variables (a total of 88 such variables in the dataset).  

 

We introduce two methods we developed for this study: Prescriptive Support Vector Machines (P-

SVM), and Optimal Prescriptive Trees (OPT). They seek to minimize a certain loss function over a set 

of “actionable” variables that can be controlled through treatments. In this study, the actionable 

variable is hematocrit, and there are only 4 treatments available: 0%, 3%, 6% and 9% increase in 

hematocrit, corresponding to 0 to 3 bags of blood transfused. The loss we aim to minimize is the 

readmission rate.  

 

Before we present our prescriptive methods, we need to establish a baseline for the actionable variable 

under all treatments. This information would be used by one of our methods (OPT) to learn an effective 

treatment. In the NSQIP data, we utilize the TRANSFUS variable which indicates whether a pre-

operative blood transfusion took place. However, there is no information on the amount of blood 

transfused. We formed our baseline treatment with the assumption that everyone who has a hematocrit 

value over 30 had at most 1 bag of blood transfused, as the common operative transfusion threshold is 

30.[21] Then, we add additional bags of blood with decreasing hematocrit levels to bring the patient’s 

hematocrit level above 30. The full table of assumed baseline treatment is shown in Table 1. 

 

Table 1. Assumed baseline treatment. 

Assumed Transfusion 
Factuals  

Condition in Data 

No blood transfusion TRANSFUS=0 

1 bag of blood HCT>30 and TRANSFUS=1 

2 bags of blood 27<HCT<30 and TRANSFUS=1 

3 bags of blood HCT<27 and TRANSFUS=1 
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The effect of the treatment suggested by our methods will be evaluated using several predictive 

methods discussed earlier. We rely on four different methods in order to ensure the stability of the 

result. Specifically, we will use: Random Forests (RF), Logistic Regression (LR), Gradient Boosted 

Trees (GBM), and Neural Networks (NN). There is evidence in the literature to suggest that pre-

operative transfusion could potentially lead to adverse outcomes.[22–24]  To ensure such effect is 

properly accounted for, we additionally consider second order effects of blood transfusion on other pre-

operative variables other than hematocrit. Specifically, we fit a regression model of other variables on 

HCT, and then, calculate how they are affected by the transfusion. We use the modified variables to 

predict the final readmission outcome.  

 

Prescriptive Support Vector Machines (P-SVM)[25] is an interpretable prescriptive method based on 

the interpretable SLSVM predictive method we discussed earlier. The method first trains a SLSVM to 

obtain a hyperplane in a sparse variable subspace that separates readmitted from non-readmitted 

patients. Fixing this hyperplane, a second optimization problem is formulated, seeking to select the 

value of the actionable variable (HCT) in order to minimize over the training set a linear combination 

of the readmission rate and a penalty for changes in the actionable variable. Essentially, this 

optimization problem sets a value of HCT for each readmitted patient in a way that balances the 

number of prevented readmissions with the percentage of HCT increase required to prevent them. A 

detailed mathematical formulation of the method is provided in Appendix S1. 

 

Optimal Prescriptive Trees (OPT) is an interpretable prescriptive method based on Optimal 

Classification Trees (OCT). OCTs,[26] use integer programming to build a decision tree that optimizes 

the accuracy of predictions over the training set. A decision tree is interpretable because at each node 

we are only making a binary decision based on one feature, so the final decision is based upon a series 

of simple binary decisions.  Such a tree, assigns each patient to a leaf node of the tree and makes a 

prediction for the patient by a majority vote of other patients assigned to the same leaf.  OPTs similarly 

builds an optimal decision tree but with a modified objective, a linear combination of prediction 

accuracy and the readmission rate. A more detailed mathematical formulation of OPT is in Appendix 

S2. 

 

Methods were evaluated in Python, Matlab, and Julia. For random forests, the number of trees grown 

was 500. Cross-validation was used to tune parameters of the methods. 
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3. Results 

Sample Characteristics. For each patient, a total of 231 variables were extracted. Table 2 summarizes 

the baseline demographic and clinical characteristics of the 722,101 patients included in the study. We 

report the (unnormalized) mean values of the variables over all patients, readmitted patients, and non-

readmitted patients, respectively, and only list 60 variables for which the difference between readmitted 

and non-readmitted patients was the most statistically significant. Specifically, for each variable we 

computed a two-tailed p-value using Welch’s t-test, where the null hypothesis was that the two cohorts 

(readmitted and non-readmitted patients) have equal means. Hence, the smaller the p-value, the less 

likely it becomes that the variable means listed in Table 2 occurred by chance under the null 

hypothesis. We note that for indicator variables, the means reported correspond to the fraction of 

patients satisfying the condition.  
 

Table 2. Most statistically significant differences in readmitted and non-readmitted patients. 

Variable All 
patients Readmitted Non-

Readmitted p-value 

Estimated Probability of Morbidity 0.06 0.11 0.06 <0.000001 
Pre-operative hematocrit 39.67 37.85 39.78 <0.000001 
The American Society of Anesthesiology 
(ASA) Physical Status Classification 2.43 2.78 2.4 <0.000001 

Estimated Probability of Mortality 0.01 0.02 0.01 <0.000001 
Total operation time in minutes 111.31 148.79 109.14 <0.000001 
Return to OR (binary) 0.03 0.24 0.02 <0.000001 
Number of Superficial Wound Occurrences 0.02 0.08 0.01 <0.000001 
Number of Deep Incisional SSI Occurrences 0.01 0.06 0 <0.000001 
Number of Organ/Space SSI Occurrences 0.01 0.11 0.01 <0.000001 
Number of Urinary Tract infection 
Occurrences 0.01 0.06 0.01 <0.000001 

Number of Bleeding Transfusions 
Occurrences 0.06 0.13 0.05 <0.000001 

Number of Sepsis Occurrences 0.02 0.1 0.01 <0.000001 
Days from Operation to Discharge 2.77 4.51 2.67 <0.000001 
OUTPATIENT (if surgical procedure was 
performed in an outpatient setting) 0.4 0.18 0.42 <0.000001 

CPT_Muscl_29x: Casts and 
endoscopy/arthroscopy 0.03 0.01 0.03 <0.000001 

Indicator for any morbidity/complications 0.12 0.49 0.1 <0.000001 
no diagnosis of diabetes or 

0.85 0.77 0.85 <0.000001 
diabetes controlled by diet alone. 
Discharge Destination: Home 0.9 0.82 0.91 <0.000001 
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Pre-operative alkaline phosphatase 69.37 82.75 68.59 <0.000001 
Pre-operative serum albumin 3.95 3.78 3.96 <0.000001 
ICD9 550： Inguinal hernia 0.04 0.01 0.04 <0.000001 
Work Relative Value Unit (a metric of 
surgical complexity) 16.35 19.75 16.16 <0.000001 

Age 56.41 60.42 56.17 <0.000001 
Hypertension requiring medication 0.45 0.57 0.44 <0.000001 
Elective Surgery (binary) 0.8 0.69 0.81 <0.000001 
Number of Pneumonia Occurrences 0.01 0.05 0.01 <0.000001 
Bleeding disorders 0.04 0.09 0.04 <0.000001 
Open wound/wound infection 0.03 0.07 0.03 <0.000001 
Number of DVT/Thrombophlebitis 
Occurrences 0.01 0.04 0 <0.000001 

CPT_Muscl_23x-25x: Shoulder arm wrist 
hand 0.03 0.01 0.03 <0.000001 

CPT_CAT_2x: Musculoskeletal system 0.22 0.16 0.23 <0.000001 
Discharge Destination: Skilled Care Not 
Home 0.06 0.11 0.05 <0.000001 

Pre-operative serum creatinine 0.99 1.18 0.97 <0.000001 
Pre-operative BUN 16.32 18.2 16.21 <0.000001 
CPT_CAT_33x-37x: Cardiovascular system 0.07 0.12 0.06 <0.000001 
Number of Pulmonary Embolism 
Occurrences 0 0.03 0 <0.000001 

History of severe COPD 0.04 0.09 0.04 <0.000001 
Disseminated cancer 0.02 0.06 0.02 <0.000001 
Number of Wound Disruption Occurrences 0 0.03 0 <0.000001 
Functional health status Prior to Surgery 0.03 0.07 0.03 <0.000001 
Pre-operative serum sodium 138.82 138.46 138.87 <0.000001 
Steroid use for chronic condition 0.04 0.07 0.03 <0.000001 
Currently on dialysis (pre-op) 0.01 0.04 0.01 <0.000001 
TRANST_Not transferred (admitted from 
home) 0.96 0.93 0.96 <0.000001 

CPT_Digestive_441x: Intestines - excision 0.02 0.05 0.02 <0.000001 
Number of Septic Shock Occurrences 0.01 0.03 0 <0.000001 
Wound classification 4: Dirty/Infected 0.05 0.08 0.05 <0.000001 
Surgical Specialty: Gynecology 0.07 0.05 0.08 <0.000001 
CPT_Cardio_35x: Repairs bypasses etc. 0.04 0.07 0.03 <0.000001 
Organ/Space SSI PATOS (Present at the 
Time of Surgery) 0 0.02 0 <0.000001 

CPT_Digestive_48x: Pancreas 0.01 0.03 0.01 <0.000001 
CPT_Digestive_49x: Abdomen Peritoneum 
and Omentum 0.11 0.08 0.12 <0.000001 

No dyspnea 0.05 0.08 0.05 <0.000001 
Pre-operative International Normalized 

1.07 1.1 1.07 <0.000001 
Ratio (INR) of PT (Prothrombin Time) values 
CPT_CAT_60x: Endocrine system 0.03 0.02 0.03 <0.000001 



10 
 

Number of Progressive Renal Insufficiency 
Occurrences 0 0.02 0 <0.000001 

Number of Myocardial Infarction 
Occurrences 0 0.02 0 <0.000001 

CPT_CAT_4x: Digestive system 0.41 0.46 0.4 <0.000001 
Number of Unplanned Intubation 
Occurrences 0.01 0.02 0.01 <0.000001 

Discharge Destination: Rehab 0.03 0.05 0.03 <0.000001 
 

Accuracy of predictions. For the predictive task, we evaluated the methods across three distinct splits 

of the data into a training and a test dataset. Each split, randomly selects 80% of the data to form the 

training set and keeps the remaining 20% as the test set, on which model performance is evaluated. The 

mean (Avg.) and standard deviation (Std.) of AUC for each predictive method is reported in Table 3; 

the top table considers predictions using only pre-operative (PRE-op) variables, while the bottom table 

evaluates models using pre-operative and post-operative variables (POST-op).   
 

Table 3. Performance of predictive models. 

PRE-op      

Methods Split I Split  II 
Split  

III Avg. Std. 

L2LR 72.55% 72.61% 72.97% 72.71% 0.23% 

SLSVM 72.51% 72.58% 72.91% 72.67% 0.21% 

RF 73.39% 73.24% 73.59% 73.41% 0.18% 

GBM 73.49% 73.51% 73.78% 73.59% 0.16% 

NN 72.50% 72.74% 73.18% 72.81% 0.34% 

 

POST-op      

Methods Split I Split II 
Split 

III Avg. Std. 

L2LR 84.20% 84.36% 84.64% 84.40% 0.22% 

SLSVM 84.25% 84.38% 84.68% 84.44% 0.22% 

RF 85.24% 85.34% 85.67% 85.41% 0.22% 

GBM 87.06% 87.32% 87.80% 87.39% 0.38% 

NN 83.03% 83.06% 84.00% 83.36% 0.55% 
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Table 3 suggests that readmission predictions are less accurate when using only pre-operative variables. 

Using all variables, predictions are very strong, achieving an average AUC above 87% (using GBM). 

Low standard deviations across different splits for all methods, imply that the predictive power is not 

greatly impacted by the choice of the training data subset. A subgroup analysis using only the general 

surgery class is contained in Appendix S3. The results show that models trained on only the subgroup 

achieved a lower AUC, which suggests that the models trained on the general dataset exhibits favorable 

cross-learning behavior.  

 

Effectiveness of prescriptions. Predicting readmission is only one step toward preventing 

readmissions. For the prescriptive task as well, we evaluated the P-SVM and OPT methods across the 3 

distinct splits of the data. For each split, we train P-SVM and OPT in the training set and then apply the 

method to obtain a recommended number of bags of blood to be transfused for each patient whose 

HCT is less than 30 (HCT<30) in the test set. We evaluate the outcome for each test patient using four 

different predictive methods: L2LR, RF, GBM, and NN. For each predictive model, we chose a 

threshold so that the predicted readmission rate equals the ground truth readmission rate in the training 

dataset. Such a threshold gives a specificity >96% for all of our models as shown in Appendix S4. To 

account for the effects of transfusion on other variables, we modify variables highly correlated with 

HCT (absolute value>0.1) for each test patient under transfusion using the regression model 

constructed against HCT. Such variables are: pre-op creatinine, international normalized ratio, 

prothrombin time, albumin, mortality probability (MORTPROB), and morbidity probability 

(MORBPROB). We used generalized linear regression models to predict the effect on MORTPROB 

and MORBPROB since they have bounded values (in [0,1]).  

 

We report in Table 4 the percentage of readmissions prevented in the test set, defined as the ratio (in %) 

of (i) the number of patients with HCT<30 originally predicted to be readmitted (assuming no 

treatment) and now predicted not to be readmitted (after treatment), over (ii) the number of patients 

with HCT<30 predicted to be readmitted (assuming no treatment). We also report the average number 

of bags of blood per patient under the recommended treatment. 

 

The first column of Table 4 lists the predictive models used to evaluate the effect of treatment, the 2nd 

and 4rd columns show the percentage of readmissions prevented using the OPT and P-SVM 

prescriptions, the 3th and 5th columns show the average number of bags per patient when using OPT 
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and P-SVM prescriptions, and the last column reports a baseline percentage of readmissions prevented, 

assuming any patient (with HCT<30) in the test set gets 1 bag of blood.  

 

Table 4. Percentage reduction of readmissions due to increase in pre-operative hematocrit. 

 

Split I OPT 

Average 
bags for 
patients 

(HCT<30) PSVM 

Average 
bags for 
patients 

(HCT<30) 
decrease_1b

ag 

LR 9.27% 0.97 9.49% 1.06 6.78% 

RF 14.50% 0.97 14.03% 1.06 9.03% 

GBM 4.81% 0.97 3.78% 1.06 3.19% 

NN 16.37% 0.97 16.50% 1.06 8.03% 
 

Split II OPT 

Average 
bags for 
patients 

(HCT<30) PSVM 

Average 
bags for 
patients 

(HCT<30) 
decrease_1b

ag 

LR 9.27% 0.95 9.63% 1.08 5.97% 

RF 13.08% 0.95 11.30% 1.08 8.24% 

GBM 5.34% 0.95 4.20% 1.08 2.84% 

NN 18.96% 0.95 19.08% 1.08 9.22% 
 

 

Split III OPT 

Average 
bags for 
patients 

(HCT<30) PSVM 

Average 
bags for 
patients 

(HCT<30) 
decrease_1b

ag 

LR 10.25% 0.98 10.65% 1.07 6.94% 

RF 15.84% 0.98 14.60% 1.07 8.89% 

GBM 8.66% 0.98 5.72% 1.07 4.41% 

NN 19.51% 0.98 18.37% 1.07 8.46% 
 

We observe that across the different ground truths and splits of the data, the two methods significantly 

decrease the readmitted patients, on average. For OPT, the average decrease across all splits is 12.15%, 
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while it is 11.45% for P-SVM. Moreover, the average needed bags is about 1 bag, which roughly 

corresponds to 300cc of blood.  
 

4. Discussion  

An analysis of the most statistically significant differences in readmitted vs. non-readmitted patients, 

reveals (cf. Table 2) that the former tend to be patients who underwent vascular surgery, or surgeries 

involving the pancreas. In contrast, surgeries involving the endocrine system, or Abdomen, 

Peritoneum, and Omentum are less likely to lead to a readmission. Furthermore, readmitted patients 

tend to have more complications (e.g., septic shock, bleeding, pneumonia, organ/space/deep incisional 

SSIs, renal insufficiency) and show higher incidence of return to OR and unplanned intubation.  

 

The predictive models we tested lead to very accurate predictions of 30-day readmissions, exceeding 

87% AUC with GBM when using all (pre-op and post-op) variables. Using only pre-operative 

variables, AUC is 74%, on average (with GBM). These results outperform earlier models, such as the 

LACE index,[27] which has an AUC of 68.4%, and more recent models,[28] which yield a 72% AUC 

in 2 days after admission, and 78-81% at discharge.      
 

In terms of specific actionable interventions, we developed prescriptive methods based on the pre-

operative predictive models and examined the potential of reducing readmissions by increasing pre-

operative HCT levels. We have shown that across a wide variety of different ground truths, two 

separate prescriptive methods (OPT and P-SVM) are able to prescribe blood transfusion treatments that 

reduce predicted readmissions for patients with HCT<30, with the decrease ranging from 4.81% to 

19.51% for OPT and 3.78% to 19.08% for P-SVM, and with transfusions in the range of 300cc of 

blood per patient on average. To put the achievable readmission reductions into context, if one could 

reduce by the mean percentage we achieved (12%) all 30-day readmissions of patients with HCT<30 

across the U.S. (over 10,000 per year), the cost savings would amount to $20.3 million on an annual 

basis.[29]  
 
A further potential use of our model is to decrease the length of hospital stay for patients with low-risk 

of readmission. We can choose a threshold for our models to have high specificity and thus able to 

accurately identify those that are at low risk of readmission (e.g., the threshold so that the predicted 

readmission rate equals the ground truth readmission rate in the training dataset as in Appendix S4). 
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Moreover, the machine learning methods employed are interpretable. Due to its sparse nature, P-SVM 

produces a small number of predictive variables which provide an explanation as to why a specific 

patient has been predicted as having a high readmission risk. For this particular study, P-SVM chose 

inpatient status, ASA Classification, and mortality probability as some of the variables with most 

explanatory power on readmission, corresponding to an intuitive understanding that patients that have 

more critical conditions going into the surgery are more likely to be readmitted. OPTs, additionally, 

offer the ability to examine every prediction or prescription and identify the specific path through the 

decision tree that led to the decision. Figure 1 depicts a part of a prescriptive tree. At every branching 

step, a binary decision is made. For example, at the top node, the patients are split into two classes, 

smoking or non-smoking. Several splits lead to the leaves of the tree (colored red and blue in this case) 

in which all patients corresponding to a leaf are prescribed a certain treatment. Prescription 1 

corresponds to no transfusion and Prescription 2 corresponds to transfusing one bag of blood. 

Interpretable decision trees enable doctors and experts to understand the proposed decisions and, 

potentially, further improve the model based on the binary decisions it makes. 

 

[Figure 1 goes here] 

Figure 1:  An instance of an Optimal Prescriptive Tree.  

 

A limitation of our study is the lack of the full ground truth for the impact of the proposed 

interventions, namely, whether they prevent readmissions. That is impossible to ascertain without 

performing a randomized clinical trial. Instead, we use a number of strong predictive models to 

evaluate the impact of the derived prescriptions and observe consistent readmission rate reduction 

across these models. We hope that this work motivates clinical trials that could confirm our findings. 

Furthermore, beyond the short-term readmission outcome, it would be beneficial to understand how 

these measures can impact the long-term oncologic outcome, which is equally if not more important. 

However, the NSQIP database unfortunately does not track patients long term, and thus we do not have 

the required data to conduct such an analysis in the paper. 

 
5. Conclusions 

We leveraged a large national dataset of surgical patients with the goal of reducing 30-day 

readmissions. We developed both predictive and prescriptive machine learning models. The former 

predict 30-day readmissions and identify the most discriminative variables. The latter, build on the 
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predictive models and can offer specific recommendations on actionable decisions to reduce 

readmissions. We focused on pre-operative hematocrit and showed how to make personalized 

recommendations to increase its value, when needed, through blood transfusion.   

 

Prediction accuracy with our methods exceeds 87% using the entire collection of NSQIP variables and 

74% using only variables known pre-operatively. The proposed prescriptions/interventions can reduce 

the predicted readmissions by 11.45%-12.15% for patients with HCT<30, on average. Beyond 

improving patient outcomes, this reduction can lead to more than $20 million in annual savings in the 

U.S.  
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APPENDICES 

 
APPENDIX S1 
 

Prescriptive Support Vector Machines (P-SVM) 
Predictions. Prescriptive Support Vector Machines (P-SVM) is a prescriptive method that is based on 

Sparse Linear SVM (SLSVM). To formulate the SLSVM problem, let (𝑥𝑥𝑖𝑖+,𝑦𝑦𝑖𝑖+), 𝑖𝑖 = 1, … ,𝑁𝑁+, denote 

the (𝐷𝐷 + 1) −dimensional positive samples, where 𝑥𝑥𝑖𝑖+ is the 𝐷𝐷 −dimensional vector of variables for 

sample 𝑖𝑖 and 𝑦𝑦𝑖𝑖+ = 1 the class label. Similarly, (𝑥𝑥𝑗𝑗−,𝑦𝑦𝑗𝑗−), 𝑗𝑗 = 1, … ,𝑁𝑁−, denote the negative samples 

(patients who are not re-admitted within 30 days) with 𝑦𝑦𝑖𝑖− = −1. Let (𝜷𝜷,𝛽𝛽0) be the vector orthogonal to 

the SVM hyperplane. Let also 𝑀𝑀 be a parameter controlling the level of sparsity. Training a classifier 

amounts to selecting (𝜷𝜷,𝛽𝛽0) so that the margin of the hyperplane is maximized: 

𝑚𝑚𝑚𝑚𝑚𝑚𝜷𝜷,𝛽𝛽0
1
2
‖𝜷𝜷‖2 + 𝜆𝜆+�𝜉𝜉𝑖𝑖

𝛮𝛮+

𝑖𝑖=1

+ 𝜆𝜆−�𝜁𝜁𝑗𝑗

𝛮𝛮−

𝑗𝑗=1

 

𝑠𝑠. 𝑡𝑡.�|𝛽𝛽𝑑𝑑|
𝐷𝐷

𝑑𝑑=1

≤ 𝑀𝑀, 

𝜉𝜉𝑖𝑖 ≥ 1 − 𝑦𝑦𝑖𝑖+𝛽𝛽0 −�𝑦𝑦𝑖𝑖+𝛽𝛽𝑑𝑑𝑥𝑥𝑖𝑖,𝑑𝑑+
𝐷𝐷

𝑑𝑑=1

,         ∀𝑖𝑖 = 1, … ,𝑁𝑁+,                         

𝜁𝜁𝑗𝑗 ≥ 1 − 𝑦𝑦𝑗𝑗−𝛽𝛽0 −�𝑦𝑦𝑗𝑗−𝛽𝛽𝑑𝑑𝑥𝑥𝑗𝑗,𝑑𝑑
−

𝐷𝐷

𝑑𝑑=1

, ∀𝑗𝑗 = 1, … ,𝑁𝑁−, 

𝜉𝜉𝑖𝑖, 𝜁𝜁𝑗𝑗 ≥ 0, ∀𝑖𝑖 = 1, … ,𝑁𝑁+, 𝑗𝑗 = 1, … ,𝑁𝑁−. 
 

This is a convex quadratic optimization problem and can be solved very efficiently for large training sets 

involving thousands of patients. Let (𝜷𝜷,𝛽𝛽0)  be an optimal solution of the problem above. Then, for a 

patient represented with a vector of variables 𝒙𝒙 we compute 𝛽𝛽0 + ∑ 𝑥𝑥𝑑𝑑𝛽𝛽𝑑𝑑𝐷𝐷
𝑑𝑑=1  and compare it with some 

threshold. If this value is above the threshold, we predict that the patient will be re-admitted. Otherwise, 

we predict it will not. The threshold can be set using cross-validation given a desirable false positive 

probability.    

 

Prescriptions. Fixing the hyperplane (𝜷𝜷,𝛽𝛽0), we next consider each patient 𝑖𝑖 in the training set and seek 
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to optimize the value of “actionable” variables 𝑥𝑥𝑖𝑖,𝑑𝑑+ , for 𝑑𝑑 ∊  Ϲ, where Ϲ is the index set of actionable 

variables, so as to “flip” the patient to the negative side of the hyperplane. To that end, we solve the 

following convex optimization problem. The objective is a linear combination of a penalty for not placing 

the patient on the negative side of the hyperplane and a penalty for altering the values of the variables 

characterizing the patient: 

𝑚𝑚𝑚𝑚𝑚𝑚𝜉𝜉,𝒚𝒚 𝜆𝜆𝜆𝜆 + ||𝒚𝒚 − 𝒙𝒙𝑖𝑖+||𝑝𝑝
𝑝𝑝 

𝑠𝑠. 𝑡𝑡.  𝜉𝜉 − 1 ≥ 𝛽𝛽0 + �𝛽𝛽𝑑𝑑𝑦𝑦𝑑𝑑

𝐷𝐷

𝑑𝑑=1

,   

 
         𝑦𝑦𝑑𝑑 = 𝑥𝑥𝑖𝑖,𝑑𝑑+ , ∀𝑑𝑑 ∉ Ϲ, 

𝜉𝜉 ≥ 0, 
𝐿𝐿𝑑𝑑 ≤ 𝑦𝑦𝑑𝑑 ≤ 𝑈𝑈𝑑𝑑,  ∀𝑑𝑑 ∈ Ϲ, 

 
where ||. ||𝑝𝑝denotes the p-norm, 𝐿𝐿𝑑𝑑and 𝑈𝑈𝑑𝑑 are lower and upper bounds on the actionable variables, and 

𝜆𝜆 is a parameter trading-off the two penalty terms in the objective. The parameter 𝜆𝜆 can be determined 

by validating the performance of the prescription determined by the above formulation in a validation 

dataset. After we fix 𝜆𝜆, we can solve the above problem for each patient in the test set to determine the 

optimal value of the actionable variables.    

 

APPENDIX S2 
 
Optimal Prescriptive Trees (OPT) 
 
We motivate and present the Optimal Prescription Tree (OPT) algorithm that trains prescriptive trees to 

directly minimize the personalization risk. 

Personalization Risk. We consider data such that 𝑌𝑌 is the outcome for each patient, 𝑇𝑇 the choice of 

treatment and 𝑿𝑿 the feature vector. First, we establish the convention that the smaller the outcome the 

better. Hence, we would like to minimize the expected outcome 𝐸𝐸[𝑌𝑌(𝜏𝜏(𝑿𝑿))] with respect to a prescriptive 

rule 𝜏𝜏(𝑿𝑿). For a given dataset, the discretization of the expected value is thus: 

𝑅𝑅(𝜏𝜏) = �𝑌𝑌𝑖𝑖  1[𝜏𝜏(𝑿𝑿𝑖𝑖) = 𝑇𝑇𝑖𝑖]
𝑛𝑛

𝑖𝑖=1

, 

 
where 1[∙] denotes the indicator function. We call 𝑅𝑅(𝜏𝜏) the personalization risk. However, in 
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observational data we only observe the outcome for the treatment that was assigned to the patient in the 

data, and do not know what the outcome would be if a different treatment were prescribed. This leads to 

the corrected expression for the personalization risk: 

𝑅𝑅(𝜏𝜏) = ��𝑌𝑌𝑖𝑖 1[𝜏𝜏(𝑿𝑿𝑖𝑖) = 𝑇𝑇𝑖𝑖] + �𝑌𝑌�𝑖𝑖(𝑡𝑡) 1[𝜏𝜏(𝑋𝑋𝑖𝑖) = 𝑡𝑡]
𝑡𝑡≠𝑇𝑇𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

, 

 

where 𝑌𝑌�𝑖𝑖(𝑡𝑡) denotes the unknown counterfactual outcome that would have been observed if patient 𝑖𝑖 

were to be assigned treatment 𝑡𝑡. 

 

Then, to further control for accuracy, we account for the quality of the counterfactual estimates. However, 

since we only know the true value of the outcome for one particular counterfactual, we will only control 

the quality of those. This leads to the squared loss term: 

��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖(𝑇𝑇𝑖𝑖)�
2

𝑛𝑛

𝑖𝑖=1

, 

 
where 𝑇𝑇𝑖𝑖 is the treatment corresponding to the point (𝑿𝑿𝑖𝑖,𝑌𝑌𝑖𝑖) in the data. Forming the linear combinations 

of these two terms, we obtain the final objective: 

𝑅𝑅(𝜏𝜏) = 𝜇𝜇��𝑌𝑌𝑖𝑖  1[𝜏𝜏(𝑿𝑿𝑖𝑖) = 𝑇𝑇𝑖𝑖] + �𝑌𝑌�𝑖𝑖(𝑡𝑡) 1[𝜏𝜏(𝑿𝑿𝑖𝑖) = 𝑡𝑡]
𝑡𝑡≠𝑇𝑇𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

+ (1 − 𝜇𝜇)��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖(𝑇𝑇𝑖𝑖)�
2

𝑛𝑛

𝑖𝑖=1

, 

 
where 𝜇𝜇 is the prescription factor, a hyperparameter that controls the trade-off between the prescription 

error and the prediction error. Minimizing this function above over 𝜏𝜏 is the basis of Optimal Prescriptive 

Trees. 

Prescription Predictions. To minimize over 𝜏𝜏, we seek a decision rule that takes the form of a 

prescriptive tree, that is, a decision tree that in each leaf prescribes a common treatment for all samples. 

Our approach is to estimate the counterfactual outcomes using this prescriptive tree during the training 

process, and therefore jointly optimize the counterfactual estimation and minimization of personalization 

risk. 

Observe that a decision tree divides the training data into clusters where the samples are similar. We 

propose using these clusters as the basis for our counterfactual estimation. More concretely, we will 

estimate the counterfactual 𝑌𝑌�𝑖𝑖(𝑡𝑡) using the outcomes 𝑌𝑌𝑗𝑗 for all samples 𝑗𝑗 with 𝑇𝑇𝑗𝑗  =  𝑡𝑡 that fall into the 
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same leaf of the tree as sample 𝑖𝑖. An immediate method for estimation is to simply use the mean outcome 

of the relevant samples in this cluster, giving the following expression for 𝑌𝑌�𝑖𝑖(𝑡𝑡): 

𝑌𝑌�𝑖𝑖(𝑡𝑡) =
1

|�𝑗𝑗:𝑿𝑿𝑗𝑗 ∈ 𝛬𝛬𝑙𝑙(𝑖𝑖),𝑇𝑇𝑗𝑗 = 𝑡𝑡�|
� 𝑌𝑌𝑗𝑗

{𝑗𝑗:𝑿𝑿𝑗𝑗∈𝛬𝛬𝑙𝑙(𝑖𝑖)}

, 

 
where 𝛬𝛬𝑙𝑙(𝑖𝑖) represents the leaf of the prescription tree that 𝑿𝑿𝑖𝑖 falls into. Then, using this expression, we 

want to find a prescriptive tree 𝜏𝜏 such that it solves the following problem: 

𝑅𝑅(𝜏𝜏) = 𝜇𝜇��𝑌𝑌𝑖𝑖 1[𝜏𝜏(𝑿𝑿𝑖𝑖) = 𝑇𝑇𝑖𝑖] + �
1

|�𝑗𝑗:𝑿𝑿𝑗𝑗 ∈ 𝛬𝛬𝑙𝑙(𝑖𝑖),𝑇𝑇𝑗𝑗 = 𝑡𝑡�|
𝑡𝑡≠𝑇𝑇𝑖𝑖

� 𝑌𝑌𝑗𝑗  1[𝜏𝜏(𝑿𝑿𝑖𝑖) = 𝑡𝑡]
{𝑗𝑗:𝑋𝑋𝑗𝑗∈𝛬𝛬𝑙𝑙(𝑖𝑖)}

�
𝑛𝑛

𝑖𝑖=1

+ (1 − 𝜇𝜇)��𝑌𝑌𝑖𝑖 −
1

|�𝑗𝑗:𝑿𝑿𝑗𝑗 ∈ 𝛬𝛬𝑙𝑙(𝑖𝑖),𝑇𝑇𝑗𝑗 = 𝑇𝑇𝑖𝑖�|
� 𝑌𝑌𝑗𝑗

{𝑗𝑗:𝑿𝑿𝑗𝑗∈𝛬𝛬𝑙𝑙(𝑖𝑖)}

�

2𝑛𝑛

𝑖𝑖=1

. 

 
We then use local-search methods to optimize the splits of the prescriptive trees over this objective, with 

each one starting from different random splits. Specifically, we initialize many prescriptive trees with 

random splits, and iteratively apply the following steps: 

1. We randomly select a tree 𝜏𝜏𝑖𝑖. 

2. We randomly select a node 𝑛𝑛𝑖𝑖𝑖𝑖 within the selected tree 𝜏𝜏𝑖𝑖. 

3. We optimize the split at node 𝑛𝑛𝑖𝑖𝑖𝑖 keeping all other splits constant by minimizing the 

function above. 

4. We return to Step 1 and repeat. 

The process is completed when all nodes are individually optimized. Then, the best tree is selected 

through validation. The hyperparameter 𝜇𝜇 is also chosen through the validation set. 

 
APPENDIX S3 
 
To illustrate the behavior of our models under a subgroup analysis, we selected the largest subgroup, 
general surgeries, and retrained our models using only these surgeries. We further utilized the same 
splitting scheme for train/validation/test, and ran each model 3 times across 3 random splits. The 
average and standard deviation of the results across these 3 runs are listed in Table S1.   
 

Table S1. Performance of predictive models on the subgroup of general surgeries. 

 POST-op       PRE-op  
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Methods Avg. Std. Avg. Std. 

L2LR 82.91% 0.13% 72.42% 0.20% 

SLSVM 82.89% 0.10% 72.38% 0.18% 

RF 84.10% 0.12% 72.91% 0.28% 

GBM 85.21% 0.21% 73.71% 0.34% 

NN 81.90% 0.25% 72.56% 0.41% 
      
 
APPENDIX S4 
      
Table S2 reports the average specificity of our models across the three splits using the threshold such 
that the predicted readmission rate equals the ground truth readmission rate in the training dataset. 

 
Table S2. Average specificity of the predictive models. 

Methods 
PRE-op 

specificity 
POST-op 
specificity 

L2LR 95.20% 96.71% 

RF 95.17% 96.85% 

SLSVM 95.19% 96.60% 

GBM 95.30% 97.01% 

NN 94.89% 96.80% 
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