
Signal, Image and Video Processing (2020) 14:675–682
https://doi.org/10.1007/s11760-019-01600-7

ORIG INAL PAPER

Additive neural network for forest fire detection

Hongyi Pan1 · Diaa Badawi1 · Xi Zhang1 · Ahmet Enis Cetin1,2

Received: 27 July 2019 / Revised: 12 September 2019 / Accepted: 8 November 2019 / Published online: 18 November 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
In this paper, we introduce a video-based wildfire detection scheme based on a computationally efficient additive deep neural
network, which we call AddNet. This AddNet is based on a multiplication-free vector operator, which performs only addition
and sign manipulation operations. In this regard, we construct a dot product-like operation from the mf-operator and use it to
define dense and convolutional feed-forwarding passes inAddNet.We trainAddNet on images taken from forestry surveillance
cameras. Our experiments show that AddNet can achieve a time-saving by 12.4% when compared to an equivalent regular
convolutional neural network (CNN). Furthermore, the smoke recognition performance of AddNet is as good as regular CNNs
and substantially better than binary-weight neural networks.

Keywords Computationally efficient · Neural network · Additive neural network · Real-time · Forest fire detection

1 Introduction

Despite recent advances in weather forecasting and firefight-
ing technology, devastating forest fires occur throughout the
world. For example, in November 2018, the “Camp Fire”
in California burned about 153,336 acres and resulted in a
death toll of more than 85 people. Early detection of wildfire
is critical to minimizing environmental and human losses.
In recent years, there has been significant interest in devel-
oping real-time algorithms to detect wildfires using regular
video-based surveillance systems [1–18]. Video-based forest
fire detection can be used to replace traditional point-sensor-
type detectors since a single camera can monitor a very large
area from a distance and can detect wildfire smoke imme-
diately after fire eruption as long as the smoke is within the
viewing range of the camera.

B Hongyi Pan
hpan21@uic.edu

Diaa Badawi
dbadaw2@uic.edu

Xi Zhang
xzhan62@uic.edu

Ahmet Enis Cetin
aecyy@uic.edu

1 University of Illinois at Chicago, Chicago, USA

2 Bilkent University, Ankara, Turkey

Deep neural networks (DNNs) are widely used in image
recognition tasks due to their highly powerful recogni-
tion capabilities. In this paper, our goal is to implement a
DNN-based wildfire smoke detection system using a sim-
ple processor. Such a system can be deployed on drones
or remote monitoring towers where the aim is to consume
as little computation as possible. Reducing the amount of
computation reduces the energy consumption. Therefore, a
drone or a remote station that uses a more energy-efficient
algorithm can operate for longer time. A typical neuron (or
perceptron) in feed-forwarding neural networks carries out
three main tasks to produce an output: (i) an inner product
operationwhich involvesmultiplication of inputs byweights,
(ii) additions of the resultingmultiplication operations (accu-
mulation) and bias addition and (iii) applying nonlinear
activation over the result of the affine transformation. The
multiplication operations are the most computationally con-
suming operation in a typical processor [19]. In this paper, we
describe an addition-based efficient neural network and use
it in video-basedwildfire detection system. In our system, we
use an l1 norm-based neural network, called additive neural
network (AddNet), which replaces the regular multiplication
operator with a new computationally efficient operator called
multiplication-free (mf)-operator. Afrasiyabi et al. show that
mf-operator-based neural networks perform as well as regu-
lar neural networks onMNIST dataset and CIFAR-10 dataset
[20]. Instead of multiplications, the mf-operator performs
sign multiplications and addition operations in a typical neu-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-019-01600-7&domain=pdf
http://orcid.org/0000-0001-9421-3936

676 Signal, Image and Video Processing (2020) 14:675–682

ron. The sign multiplication of two real numbers is a simple
bit operation.

Other solutions to computationally efficient neural net-
works require dedicated software for a specific hardware,
such as neuromorphic devices [21] and Movidius Myraid
architecture [22]. Although these approaches reduce com-
putational consumption and computation amount, they rely
on extra special hardware [23]. AddNets, on the other hand,
can be implemented in ordinary microprocessors and digi-
tal signal processors, which are portable and low cost. The
system needs no other special hardware to deploy and can
implement a well-trained neural network.

In the next section,we review themf-operator anddescribe
the mf-operator-based convolutional neural networks. In
Sect. 3, we describe the AddNet algorithm. We compare it
with a regular convolutional neural network (CNN) and a
binarized weight convolutional neural network.

2 Multiplication-free vector product

Let α and β be two real-valued scalars. We define our
multiplication-free operator as follows:

α ⊕ β = sign(α · β)(|α| + |β|) (1)

where sign(.) is the signum function, defined as follows:

sign(x) =
{

1, x > 0

−1, x � 0
(2)

The multiplication-free operator can also be represented as
follows:

α ⊕ β = sign(α) · β + α · sign(β) (3)

Note that bit-wise operation is very efficient in compu-
tation, and the highest bit of a variable is its sign bit (0 for
positive and 1 for negative), we can achieve the α · sign(β)

with XOR operation, which is much more efficient compare
to the multiplication.

Furthermore, the scalar definition in (1) and (3) can be
extended to the case of real vectors in order to construct a
dot product-like operation. In this regard, let x and w ∈ R

d .
We define the multiplication-free “dot product” as follows:

w ⊕ x =
d∑

i=1

sign(wi xi)(|wi | + |xi |) (4)

Similarly, the above relation can be also expressed as follows:

w ⊕ x =
d∑

i=1

sign(wi)xi + wi sign(xi) (5)

As the dot product induces the �2 norm, the mf-vector oper-
ation induces a scaled version of the �1 norm as follows:

x ⊕ x =
d∑

i=1

sign(xi xi)(|xi | + |xi |) = 2||x||1 (6)

For convenience, we define the corresponding matrix-vector
operation as follows: Let the vector x ∈ R

d and the matrix
W ∈ R

d×k . We then define the matrix-vector mf-operation
as follows:

y = W ⊕ x = [w1 ⊕ x w2 ⊕ x . . . wk ⊕ x]T (7)

where wi is the ith column of W for i = 1, 2, . . . , k and
y ∈ R

k is the resulting vector.

3 Additive neural network withmf-operator
(ADDNET)

3.1 Representation of neurons

In regular neural networks, a dense feed-forwarding pass can
be expressed as follows:

y = φ(WTx + b) (8)

where x ∈ R
d is the input vector, W ∈ R

d×k is the weights
matrix, b ∈ R

k is the bias vector and φ(.) is the element-wise
nonlinear activation. In AddNet, the feed-forwarding pass of
a dense layer can be expressed as follows:

y = φ(a � (W ⊕ x + b)) (9)

where � is the element-wise product between the result
W ⊕ x + b and a vector a ∈ R

k . Note that we introduce
the vector a as a scaling parameter in order to control the
range of the pre-activations resulting from the mf-operation.
It should be pointed out that calculating the element-wise
product is inexpensive since we only carry out d multiplica-
tions compared to k×d multiplication operations in the case
of WTx.

We can construct that AddNet convolutional layers in a
straightforwardmanner by substituting each convolution (dot
product) operation with the mf-equivalent operation.

3.2 Training the AddNet

The standard back-propagation algorithm can be used for
training the AddNet with the need of small approximations.
The partial scalar derivatives of the pre-activation response
with respect to are given as follows:

123

Signal, Image and Video Processing (2020) 14:675–682 677

∂(w ⊕ x)

∂x
= sign(w) + 2wδ(x) (10)

∂(w ⊕ x)

∂w
= 2xδ(w) + sign(x) (11)

where δ(x) is the Dirac-delta function that directly results
from the discontinuity of the signum function at x = 0. If
we omit the delta function from the definitions of the partial
derivatives, we end up with binary derivatives (sign(w) and
sign(x)). However, we found that approximating the Dirac-
delta function provides better convergence since we end up
with smoother derivatives. In this regard, we approximate
the derivative of the signum function to be that of a steep
hyperbolic tangent, as follows:

dsign(x)

dx
≈ dtanh(αx)

dx
= α

(
1 − tanh2(αx)

)
(12)

for a scalar α >> 1. This is reasonable since sign(x) =
limα→∞ tanh(αx). This way the terms associated with the
delta function in the formula (10) and (11) will contribute to
the partial derivatives when the arguments are close to zero.

3.3 Computational efficiency

With an input x ∈ R
d and a weight matrix W ∈ R

d×k , one
needs a total of k · d multiplication operations to realize the
matrix-vector product,which is the case for layers in a regular
neural network.

On the other hand, AddNet substitutes the multiplica-
tion operations inWTxwith addition and bit-wise operation,
which are more efficient in terms of energy and computa-
tion. The realization of the calculation in the mf-operator
is inexpensive because it only involves 1-bit operations and
can be implemented as a logical XOR operation. So AddNet
performs only one multiplication per neuron. The activation
function is ReLU. Therefore, a determines the slope of the
ReLU. Thus, AddNet needs far fewer multiplication opera-
tions that does a regular neural network.

4 Experimental results

4.1 Speed test

In this section,we compare the speed ofCNNkernel, AddNet
kernel and binary CNN kernel by creating two 256 × 256
matrices, two 512 × 512 matrices and two 1024 × 1024
matrices with random entries and then performing kernel
operations, respectively. Thesematrices sizes arewidely used
in convolutional neural networks design. We compare their
speed inmatrices operation instead of testing the trained neu-
ral networks speed on the dataset is because other operations
like images loading, activation functions also take time, and

the time required by these operations differs each time due
to different computer statuses. It is much clearer to show
the acceleration of AddNet without those unrelated opera-
tions. Moreover, because we apply same activation function
(ReLU)CNN,AddNet and binaryCNNmodels in Sects. 4.3–
4.7, we only test the time requirement without any activation
function.

For CNN kernel, we do regular element-wise matrices
product, for AddNet kernel, we replace the multiplication
between elements with our mf-operator, and for binary CNN
kernel, we replace it with α · sign(β). As we all know, fire
detection is a real-world application. It is important to lower
the cost of the equipment asmuch as possible.However,GPU
is powerful but very expensive. We should employ GPU to
train the neural networks, but it is unwisely to deploy thewell-
trained networks also on a device with GPU. Thus, we only
interest in CPU speed performance. We use G++ compiler to
compile the speed test code with optimization-level O3 and
then run the executable file on the Ubuntu system on a single
thread. Since background appsmay interfere with the timing,
we run the operations 10 times and compare the minimum
time, respectively.

The speed test results are listed in Table 1. From the speed
test on 1024×1024 matrices, CNN kernel takes 268.123 ms,
AddNet kernel takes 234.825 ms, and binary CNN kernel
takes 210.935 ms. So the AddNet kernel saves 33.298 ms
(12.419%), while the binary CNN kernel saves 57.188 ms
(21.329%). Thus, the AddNet kernel is a trade-off between
the binary kernel and the regular CNN kernel.

4.2 Dataset augmentation

We train the neural networks with various wildfire images.
We also augment our data during training by shifting and
translating wildfire images, and we fill the images by reflect
translation. The reason for using such an augmentation
scheme is to ensure that the classifier will see examples in
which wildfire starts from different locations during training.

4.3 Dataset 1: images from the internet

We first build a forest fire dataset with 4000 images (2000
forest images with fire and 2000 forest images without fire)
collected from the Internet. They are resized into 150 by 150
pixels, and they are divided into 3000 training images and
1000 test images. In each dataset, the amount of fire images
is equal to the amount of no fire images. Figure 1 shows an
example of awild fire image and a no fire image, respectively.

4.4 Trainingmodels for dataset 1

Here, we train three neural networks: a regular CNN, an
AddNet and a binary CNN all with same architecture for

123

678 Signal, Image and Video Processing (2020) 14:675–682

Table 1 Speed test results

Matrix size CNN 1© (ms) AddNet 2© (ms) Binary CNN 3© (ms) 1©− 2© (ms) 1©− 3© (ms) 2©’s saving (%) 3©’s saving (%)

256 3.672 3.138 2.717 0.534 0.955 14.542 26.008

512 30.914 26.912 23.647 4.002 7.267 12.946 23.507

1024 268.123 234.825 210.935 33.298 57.188 12.419 21.329

Fig. 1 Example images in dataset 1

Table 2 Architecture of the neural network

Layer Layer specification

Input layer 150 × 150 × 3

Convolutional layer 64 5 × 5 filters, stride = 3

Batch normalization –

Max pooling Strides: 2 × 2

Convolutional layer 64 3 × 3 filters

Batch normalization –

Max pooling Strides: 2 × 2

Convolutional layer 96 3 × 3 filters

Batch normalization –

Max pooling Strides: 2 × 2

Fully connected layer Output size: 1536

Fully connected layer Output size: 128

Output layer Output size: 1

the task of forest fire detection using TensorFlow-Keras deep
learning library on a computerwithNVIDIAGPU.The archi-
tecture is shown inTable 2 and Fig. 2.We use ourmf-operator
in AddNet in all layers except for the output layer. Similarly,
we use binary weights in all layers except for the output layer
in binary CNN.

Test performance is shown in Table 3. All three networks
reach very high accuracy, while the AddNet and the binary
CNN have a little lower true-detected accuracy than the reg-
ular CNN, and the binary CNN has much higher false alarm
rate.

Fig. 2 Architecture of the neural network

4.5 Dataset 2: frames from forestry surveillance
videos

Nowadays, with the development of technology, we can
obtain forestry surveillance videos in 1080P (1920 × 1080)
or higher resolution. However, if we design the input of the
neural network in these so high resolutions, the network will
be too huge to train. The most common method to solve
this problem is to resize and down-sample the images, but if
we resize the whole frames into the input size of the neural
network, little smoke will be too small to be detected. To
overcome this problem, we divide the frames into many tiles
as Fig. 3. The videos are in 1080P, and we divided them into
many 180 × 180 tiles, and each four tiles (2 × 2) consist a
window (360× 360). The score is the forest fire rate in each
window, and composed of the tile has score and its bottom,
right and bottom-right tiles, rather than the forest fire rate of
each tile. This is the reason that the most right and the most
bottom tiles have no score. In this way, if the smoke exists
at the edge of one window, it will also exist at the center of
its neighbor window. Then, we resize each window into the
input size and feed them to the network.

In this section, we use the whole dataset 1, dataset of
forestry surveillance videos for the task of smoke detec-
tion [18] and some 1080P forestry surveillance videos for
training, and then, we test the network on some other 1080P
videos. Videos in [18], shown in Fig. 4, are in relatively low
resolution and quality, and it has some text on the frames, so
we crop out the text part, then resize and label the remains.
As for these 1080P videos, we label the frames by windows.
Each video corresponds to a different surveillance camera
scenery. Some videos have wildfire eruption events, whereas
others have no wildfire occurrence. We split the videos into
frames at each time instance and constructed our data from
RGB images.

123

Signal, Image and Video Processing (2020) 14:675–682 679

Table 3 Test performance of
three models

Rate name CNN (%) AddNet (%) Binary CNN (%)

True-detected rate 96.0 95.6 92.4

False alarm rate 0.6 0.6 0.8

Fig. 3 1080P detection results

4.6 Trainingmodels for dataset 2

Because dataset 2 is much more challenging than dataset 1,
we use global average pooling to prevent overfitting [24] in
this section. The architecture is shown in Table 4 and Fig. 5.
Similarly, we used the mf-operator in AddNet and binary
weights in binary CNN in all layers except the output layer.

To lower the false alarm rate, we increase the threshold
of the fire category. Test accuracy on windows with smoke
is shown in Table 5, and false alarm test rate on windows

Fig. 4 Low-quality frames in training dataset

Table 4 Architecture of the neural network

Layer Layer specification

Input layer 150 × 150 × 3

Convolutional layer 64 5 × 5 filters, stride = 3

Batch normalization –

Max pooling Strides: 2 × 2

Convolutional layer 64 3 × 3 filters

Batch normalization –

Max pooling Strides: 2 × 2

Convolutional layer 96 3 × 3 filters

Batch normalization –

Max pooling Strides: 2 × 2

Convolutional layer 128 1 × 1 filters

Batch normalization –

Global average pooling –

Fully connected layer Output size: 128

Output layer Output size: 1

123

680 Signal, Image and Video Processing (2020) 14:675–682

Fig. 5 Architecture of the neural network

Table 5 True-detected rate on windows with smoke

Videos Total CNN (%) AddNet (%) Binary CNN (%)

Video 1 36 77.78 66.67 66.67

Video 2 32 78.13 68.75 65.63

Video 3 38 55.26 47.37 44.74

Video 4 24 66.67 83.33 91.67

Video 5 21 4.76 47.62 76.19

Video 6 18 77.78 44.44 33.33

Video 7 168 72.62 83.33 86.90

Video 8 121 98.35 99.17 99.17

Video 9 12 58.33 66.67 58.33

Video 10 40 80.00 65.00 65.00

Video 11 30 70.00 43.33 26.67

Video 12 72 69.44 65.28 62.50

Video 13 48 89.58 87.50 77.08

Average 75.61 75.45 75.00

without smoke is shown in Table 6. The average detection
true-detected rate of the AddNet is very close to the regular
CNN, but the binary CNN performs much worse. It should
be noted that the regular CNN has a dismal performance
on Video 5. It only detected about 4% of frames contain-
ing smoke. On the other hand, the AddNet detected 47% of
smoke frames in this difficult video clip.

4.7 Robustness test

In real-world application, camera lenses cannot always keep
clean after a long period usage. Although there exist some
methods to recover the images captured by cameraswith dirty
lenses [25], they require suitable parameters which need to
be set manually. It will be helpful if the neural networks can
distinguish dirt from smoke from raw images.

In this section, we add camera dirt effect on the test
frames, then test and compare three models’ robustness. This
is because cameras get dirty over time. Jinwei et al. show
that an image I (x, y) captured by the camera consists of two
components, attenuation where the radiance emitted from
the target scene is attenuated by the intermediate layer and
intensification where the intermediate layer itself contributes
some radiance to the camera, by either scattering light from

Table 6 False alarm rate on normal windows

Videos Total CNN (%) AddNet (%) Binary CNN (%)

Video 0 1377 7.33 6.03 7.55

Video 1 999 9.91 8.21 9.91

Video 2 837 1.79 4.18 2.63

Video 3 747 6.69 10.84 13.25

Video 4 972 1.54 3.60 2.26

Video 5 1125 4.09 3.20 3.64

Video 6 945 6.46 4.44 5.40

Video 7 279 5.73 11.47 5.02

Video 8 729 10.84 8.78 11.25

Video 9 1107 8.94 7.41 8.94

Video 10 567 2.65 6.17 3.88

Video 11 810 1.48 2.59 1.36

Video 12 810 6.17 10.00 12.22

Video 13 1062 8.95 7.72 9.32

Average 6.09 6.40 6.99

Fig. 6 Image formation model

other directions in the environment or reflecting light from
its surface [25]. Suppose I0(x, y) is the radiance of the target
scene,α ∈ [0, 1] is the attenuation pattern of the intermediate
layer, i.e., the fraction of light transmitted (0 means blocked
completely and 1 means passed completely), and Iα(x, y) is
the intensification term. The final image I is the sum of the
attenuated light from the background after the defocus blur
I0 · (α ∗ k) and the light emitted from the intermediate layer
itself Iα ∗ k.

As shown in Fig. 6, the image formation model we used
in this section is:

I = I0 · (α ∗ k) + Iα ∗ k (13)

where k(x, y) is the defocus blur kernel for the intermediate
layer.

123

Signal, Image and Video Processing (2020) 14:675–682 681

Fig. 7 1080P image, dirt feature and fused image

Figure 7 shows a sample image without and with dirt fea-
ture. Dirty feature in Fig. 7 is amplified 4 times as its original
values to show here for better display, and we fill it into entire
frame.We fuse all test frames with the dirt feature in this way
and then test the performance of three models on them.

The results are shown in Tables 7 and 8. Compared to
Tables 5 and 7, it seems that influence of dirt feature on true-
detected rate is slight and uncertain. Some videos (video 3–6,
8–9, 11 for CNN; video 5–7, 11, 13 for AddNet and video 1–
2, 5, 10–12 for binary CNN) return higher true-detected rate,
while some others (video 1, 7, 10, 12–13 for CNN; video 1,
4, 8, 10, 12 for AddNet and video 3, 9, 13 for binary CNN)
return lower true-detected rate. All wildfire events in videos
are successfully detected, and therefore, all the methods are
robust to camera dirt.

On the other hand, however, compared to Tables 6 and 8,
we find that the false alarm rates of all three models on each
video increase or remain the same, and all three average false
alarm rates rise a little (2.25% for CNN, 2.05% for AddNet
and 1.62% for binary CNN). This is because dirt in the clear
region makes the region looks like with smoke, which is
confusing for the neural networks to distinguish since we
have not trained them on images with dirt feature, so these
losses are allowable in the real-world application. In spite of
the average difference of the binary CNN is smaller than the
CNN and the AddNet, its false alarm rate is still the highest.

5 Conclusion

In this paper, we proposed a multiplication-free neural net-
work (AddNet) architecture. We applied AddNet to the

Table 7 True-detected rate on windows with smoke with dirt feature

Videos Total CNN (%) AddNet (%) Binary CNN (%)

Video 1 36 66.67 52.78 69.44

Video 2 32 78.13 68.75 68.75

Video 3 38 63.16 47.37 34.21

Video 4 24 83.33 79.17 91.67

Video 5 21 14.29 66.67 95.24

Video 6 18 83.33 55.56 33.33

Video 7 168 70.83 84.52 86.90

Video 8 121 100.00 95.87 99.17

Video 9 12 66.67 66.67 50.00

Video 10 40 77.50 62.50 70.00

Video 11 30 73.33 46.67 33.33

Video 12 72 59.72 63.89 63.89

Video 13 48 87.50 89.58 66.67

Average 75.30 75.15 75.15

Table 8 False alarm rate on normal windows with dirt feature

Videos Total CNN (%) AddNet (%) Binary CNN (%)

Video 0 1377 9.73 7.70 9.08

Video 1 999 12.11 11.11 12.71

Video 2 837 2.39 5.97 4.18

Video 3 747 8.43 13.52 15.80

Video 4 972 4.63 5.25 3.40

Video 5 1125 8.89 3.29 3.82

Video 6 945 9.31 4.76 5.82

Video 7 279 5.73 16.13 7.89

Video 8 729 11.93 12.76 13.85

Video 9 1107 10.93 10.03 10.75

Video 10 567 4.59 8.99 6.17

Video 11 810 3.21 3.95 1.73

Video 12 810 8.40 12.47 14.69

Video 13 1062 10.92 10.45 11.21

Average 8.34 8.45 8.61

problem ofwildfire smoke detection task, inwhich case com-
putationally efficiency and low false alarm rates are critical.
We compared the results with those of a regular CNN and a
binary CNN. It turns out that AddNet and CNN detect all the
wildfires, but binary CNN fails in some cases in our dataset.
AddNet can be also applied to three-dimensional wildfire
detection schemes such as [6]. Moreover, a 3D extension
of the AddNet can be also employed to process videos in
time domain like regular CNN does [26], and the gain with
the AddNet respect to the regular 3D CNN would be higher
in terms of computational time. However, we have no plan
about it in this paper due to the time limitation. We also car-
ried our time analysis for inference over a PC. We found

123

682 Signal, Image and Video Processing (2020) 14:675–682

that the speed of AddNet is between regular CNN and binary
CNN. We conclude that AddNet resembles binary CNN in
terms of its computational efficiency because they do not
need expensive matrix multiplication.

Acknowledgements The research is supported by National Science
Foundation, (No. 1739396) 2017. We also thank NVIDIA company
for providing a GPU and the developers of TensorFlow for publishing
a so powerful machine learning library.

References

1. Töreyin, B.U., Dedeoǧlu, Y., Güdükbay, U., Cetin, A.E.: Computer
vision based method for real-time fire and flame detection. Pattern
Recognit. Lett. 27(1), 49–58 (2006)

2. Töreyin, B.U., Dedeoğlu, Y., Cetin, A.E.: Wavelet based real-time
smoke detection in video. In: 2005 13th European Signal Process-
ing Conference, pp. 1–4. IEEE (2005)

3. Habiboğlu, Y.H., Günay, O., Çetin, A.E.: Covariance matrix-based
fire and flame detection method in video. Mach. Vis. Appl. 23(6),
1103–1113 (2012)

4. Habiboglu, Y.H., Gunay, O., Cetin, A.E.: Real-time wildfire detec-
tion using correlation descriptors. In: 2011 19th European Signal
Processing Conference, pp. 894–898. IEEE (2011)

5. Töreyin, B.U.: Smoke detection in compressed video. In: Appli-
cations of Digital Image Processing XLI, vol. 10752, p. 1075232.
International Society for Optics and Photonics (2018)

6. Aslan, S., Güdükbay, U., Töreyin, B.U., Çetin, A.E.: Early wildfire
smoke detection based on motion-based geometric image transfor-
mation and deep convolutional generative adversarial networks. In:
ICASSP 2019: 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8315–8319. IEEE
(2019)

7. Borges, P.V.K., Izquierdo, E.: A probabilistic approach for vision-
based fire detection in videos. IEEE Trans. Circuits Syst. Video
Technol. 20(5), 721–731 (2010)

8. Çelik, T., Özkaramanli, H., Demirel, H.: Fire and smoke detection
without sensors: image processing based approach. In: 2007 15th
European Signal Processing Conference, pp. 1794–1798. IEEE
(2007)

9. Celik, T., Demirel, H.: Fire detection in video sequences using a
generic color model. Fire Saf. J. 44(2), 147–158 (2009)

10. Yuan, F.: A fast accumulative motion orientation model based on
integral image for video smoke detection. Pattern Recognit. Lett.
29(7), 925–932 (2008)

11. Guillemant, P., Vicente, J.: Real-time identification of smoke
images by clustering motions on a fractal curve with a temporal
embedding method. Opt. Eng. 40, 554–563 (2001)

12. Vicente, J., Guillemant, P.: An image processing technique for
automatically detecting forest fire. Int. J. Therm. Sci. 41(12), 1113–
1120 (2002)

13. Gomez-Rodriguez, F., Arrue, B.C., Ollero, A.: Smoke monitoring
and measurement using image processing: application to forest

fires. In: Automatic Target Recognition XIII, vol. 5094, pp. 404–
411. International Society for Optics and Photonics (2003)

14. Krstinić, D., Stipaničev, D., Jakovčević, T.: Histogram-based
smoke segmentation in forest fire detection system. Inf. Technol.
Control 38(3), 237–244 (2009)

15. Luo, Q., Han, N., Kan, J., Wang, Z.: Effective dynamic object
detecting for video-based forest fire smog recognition. In: 2009
2nd International Congress on Image and Signal Processing, pp.
1–5. IEEE (2009)

16. Toreyin, B.U., Cetin, A.E.: Computer vision based forest fire detec-
tion. In: 2008 IEEE 16th Signal Processing, Communication and
Applications Conference, pp. 1–4. IEEE (2008)

17. Toreyin, B.U., Cetin, A.E.: Wildfire detection using LMS based
active learning. In: 2009 IEEE International Conference on Acous-
tics, Speech and Signal Processing, pp. 1461–1464. IEEE (2009)

18. Gunay, O., Toreyin, B.U., Kose, K., Cetin, A.E.: Entropy-
functional-based online adaptive decision fusion framework with
application to wildfire detection in video. IEEE Trans. Image Pro-
cess. 21(5), 2853–2865 (2012)

19. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and
connections for efficient neural network. In: Advances in Neural
Information Processing Systems, pp. 1135–1143 (2015)

20. Afrasiyabi, A., Nasir, B., Yildiz, O., Vural, F.T.Y., Cetin, A.E.:
An energy efficient additive neural network. In: 2017 25th Signal
Processing and Communications Applications Conference (SIU),
pp. 1–4. IEEE (2017)

21. Ionica,M.H.,Gregg,D.: Themovidiusmyriad architecture’s poten-
tial for scientific computing. IEEE Micro 35(1), 6–14 (2015)

22. Essera, S.K., Merollaa, P.A., Arthura, J.V., Cassidya, A.S.,
Appuswamya, R., Andreopoulosa, A., Berga, D.J., McKinstrya,
J.L., Melanoa, T., Barcha, D.R., di Nolfoa, C.: Convolutional net-
works for fast energy-efficient neuromorphic computing. Proc.Nat.
Acad. Sci. USA 113(41), 11441–11446 (2016)

23. Painkras, E., Plana, L.A., Garside, J., Temple, S., Galluppi, F., Pat-
terson, C., Lester, D.R., Brown, A.D., Furber, S.B.: SpiNNaker: a
1-W 18-core system-on-chip for massively-parallel neural network
simulation. IEEE J. Solid State Circuits 48(8), 1943–1953 (2013)

24. Lin, M., Chen, Q., Yan, S.: Network in network (2013).
arXiv:1312.4400

25. Gu, J., Ramamoorthi, R., Belhumeur, P., Nayar, S.: Removing
image artifacts due to dirty camera lenses and thin occluders. ACM
Trans. Graph. (TOG) 28(5), 144 (2009)

26. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals,
O., Monga, R., Toderici, G.: Beyond short snippets: deep networks
for video classification. In: Proceedings of the IEEEConference on
Computer Vision and Pattern Recognition, pp. 4694–4702(2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1312.4400

	Additive neural network for forest fire detection
	Abstract
	1 Introduction
	2 Multiplication-free vector product
	3 Additive neural network with mf-operator (ADDNET)
	3.1 Representation of neurons
	3.2 Training the AddNet
	3.3 Computational efficiency

	4 Experimental results
	4.1 Speed test
	4.2 Dataset augmentation
	4.3 Dataset 1: images from the internet
	4.4 Training models for dataset 1
	4.5 Dataset 2: frames from forestry surveillance videos
	4.6 Training models for dataset 2
	4.7 Robustness test

	5 Conclusion
	Acknowledgements
	References

