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SUMMARY

We consider scenarios in which the likelihood function for a semiparametric regression model
factors into separate components, with an efficient estimator of the regression parameter avail-
able for each component. An optimal weighted combination of the component estimators, named
an ensemble estimator, may be employed as an overall estimate of the regression parameter, and
may be fully efficient under uncorrelatedness conditions. This approach is useful when the full
likelihood function may be difficult to maximize but the components are easy to maximize. It
covers settings where the nuisance parameter may be estimated at different rates in the com-
ponent likelihoods. As a motivating example we consider proportional hazards regression with
prospective doubly-censored data, in which the likelihood factors into a current status data like-
lihood and a left-truncated right-censored data likelihood. Variable selection is important in such
regression modelling but the applicability of existing techniques is unclear in the ensemble ap-
proach. We propose ensemble variable selection using the least squares approximation technique
on the unpenalized ensemble estimator, followed by ensemble re-estimation under the selected
model. The resulting estimator has the oracle property such that the set of nonzero parameters
is successfully recovered and the semiparametric efficiency bound is achieved for this parameter
set. Simulations show that the proposed method performs well relative to alternative approaches.
Analysis of a multicenter AIDS cohort study illustrates the practical utility of the method.
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1. INTRODUCTION

Efficient estimation via the averaging of estimators has been suggested for many statistical
models. Keller & Olkin (2004) and references therein studied combining estimators of the mean
of a normal distribution from different sources. In meta-analysis, estimators from multiple stud-
ies are commonly aggregated to construct an efficient estimator (Borenstein et al., 2009). Lin &
Zeng (2010), Liu et al. (2015) and Slud et al. (2018) proposed a method of combining estimators
of a common parameter across independent studies, where the joint likelihood is decomposed
into independent component likelihoods. Cox (2001) considered a parametric model based on a
factorizable likelihood, a simple example of which is a statistical model for two or more indepen-
dent studies. As a general approach for combining information, he suggested a generalized least
squares estimator as an overall estimator, which optimally combines the component estimators
with weights calculated from the inverse of their estimated covariance matrices. This estima-
tor is especially useful when component likelihood maximization is straightforward while full
likelihood maximization is computationally demanding.

We investigate combining efficient component estimators of the regression parameter in semi-
parametric regression models, where the full likelihood is factorizable, similarly to Cox (2001).
In our so-called ensemble estimation procedure, we optimally combine the estimators of the
finite-dimensional regression parameter to obtain an overall estimator which is semiparametric
efficient under uncorrelatedness conditions. These results are valuable when estimation of the
infinite-dimensional nuisance parameter, which may not be achievable at the usual parametric
rate, is challenging, complicating the full likelihood analysis.

The motivation for this work arises from survival analysis of prospective cohort studies using
the age scale. Many subjects may have already experienced the event at the time of study en-
rollment while those who did not may not experience the event during the course of follow-up.
This doubly-censored data, including both left- and right-censored times, may be analysed using
a full likelihood analysis of the proportional hazards model (Cox, 1972). Kim et al. (2013) and
Su & Wang (2016) developed approximate expectation-maximization algorithms for Cox model
with doubly-censored data by considering the left-censored data as missing. While the theoret-
ical properties of the procedures were established, its practical usage is hampered by computa-
tional inefficiency and instability. An alternative analysis is to only use data on those subjects
that are event-free at enrollment, left-truncating using the age at enrollment. However, data on
subjects who had the event prior to enrollment is not utilised, resulting in a loss of information.
Most prospective cohort studies collect information related to participants’ age of enrollment. We
make novel use of the age at enrollment as a left truncation time, which differs from the standard
doubly-censored data. We refer to this set-up as prospective doubly-censored data. It is shown
in Section 3 that the full likelihood for such data may be decomposed into a current status data
likelihood based on event status at enrollment and a left-truncated right-censored data likelihood
based on subjects who did not have the event at enrollment. Both component likelihoods have
been well studied, with theoretical and computational issues addressed rigorously. The ensemble
estimation may be performed based on the component estimators, simplifying both computation
and inference. We utilise the likelihood equivalence between prospective doubly-censored data
and doubly-censored data, which Su & Wang (2016) also recognized but did not utilise.

Variable selection in semiparametric regression is an important practical issue, e.g., when
identifying risk factors in cohort studies for HIV infection. Penalization is a popular variable
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selection technique, originating in the seminal work of Tibshirani (1996) and Fan & Li (2001)
for parametric regression models. Penalization techniques have been adapted to semiparametric
regression models. A well-known example is penalized partial likelihood estimation of the re-
gression parameters in the proportional hazards model with right-censored data, yielding results
similar to those for parametric models (Tibshirani, 1997; Fan & Li, 2002). When simultaneous
estimation of both regression and nuisance parameters is needed, model-specific penalization
approaches based on modified likelihoods have been proposed (Cai et al., 2005; Du et al., 2010;
Liu & Zeng, 2013). Such penalized estimation is complicated, owing to theoretical and compu-
tational difficulties. For semiparametric factorizable likelihoods, we suggest ensemble variable
selection, in which the approximation technique in Wang & Leng (2007) is employed to con-
struct sparse estimators, with some regression coefficients being exactly zero (Lu et al., 2012).
The main idea is to approximate the profile likelihood of the regression parameter by a least
squares criterion centered at the unpenalized ensemble estimator.

The proposed ensemble estimation and variable selection procedure offers a general method-
ology for regression parameter estimation in semiparametric regression models with factorizable
likelihoods. The main requirement is the existence of efficient regression estimators for each
component. The nuisance parameter may be estimated at different and potentially slower than
parametric rates in the component likelihoods, as happens with prospective doubly-censored
data. In Section 2, theoretical properties are established under uncorrelatedness conditions on
the component likelihoods with weak conditions on the component estimators. For variable se-
lection with a fixed-dimensional regression parameter, it is shown that the penalized estimator
is sparse and correctly selects the true nonzero parameters as the sample size increases. The re-
sulting estimator has the oracle property: its limiting distribution is normal and its asymptotic
covariance matrix is the same as that of the efficient estimator with the true nonzero parameters
known a priori.

2. ENSEMBLE FRAMEWORK
2.1.  General Methodology

Consider a semiparametric regression model with a finite-dimensional regression parameter, 6,
and an infinite-dimensional nuisance parameter, A. Denote (6y, Ag) as the true parameter value.
The regression parameter is in a fixed p-dimensional parameter space, © C RP. Without loss of
generality, denote 0y = (01, 03,) T, where 61 is an s-dimensional nonzero regression coefficient
and 629 = 0. We consider a sparse regression parameter where s is a fixed number less than p.
The goals are efficient estimation of 0y, identification of 65, and oracle estimation of 6.

The data consist of n independent and identically distributed observations, (z1, ..., 2,) from
Py, .n, € P, where P is a set of probability measures on the sample space (£2, F). Suppose
the log likelihood for the semiparametric model based on these data is denoted by 1,,(6, A) =
Yoy lo.a(zi), where lg o (z;) is the log likelihood of the ith observation. It is assumed that the log
likelihood separates into K component likelihoods, I} (6, A), ..., 15 (0, A), where K is a fixed
number and 6 is a common parameter to all component likelihoods. That is, the log likelihood
is the summation, 1,(6, A) = Y1 1%(6, A). Such likelihoods are referred to as factorizable.
The same true parameter value applies to all component likelihoods as they are stemmed from
(0, A).

Denote by Lo(Py, r,) the space of all functions g:Q — R with [ gdPy, r, =0 and
J 92dP907A0 < 00. Throughout the paper, we omit the subscripts (6y, Ag) denoting the base
point. The score function for 6 is defined as the derivative of the log likelihood with respect
to 6 with fixed Ag, i.e., lg(2;) = dlg.p,(2:)/(360)|9=p,- We consider one-dimensional paramet-
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ric submodels of A, denoted by A(t), which approach Ay as t — 0 (Kosorok, 2007; van der
Vaart, 2000). The score function for the submodel of A is defined as dlgy x()(2i)/(0t)[i=0
(Bickel et al., 1993). A collection of score functions for one-dimensional submodels is called
a tangent set for A. The tangent space for A is defined as the closed span of the tangent set,
and is denoted as Pp C Ly(P). The scores are pointwise (Gateau) derivatives with respect to
a scalar parameter component rather than mean-square derivatives. The efficient score func-
tion for @ is defined as the residual of the projection of lg onto Pp in LQ( ) (B1ckel et al.,
1993). Specifically, the efficient score function for 6 is written as lp=1lp— ng, where []
is the projection onto Pp in Lg(P) The efficient information matrix is the variance of the
efficient score function, i.e., Iy = E{lg(lg)T} which is assumed to be positive definite. The
semiparametric efficiency bound for 6 is Iy, where (Ig) is the smallest asymptotic variance
among all regular estimators of 6 in the semlparametrlc model. For the kth likelihood com-
ponent, the score function for 0 is 5(z;) = Ol% Ao (2i)/(00)|p=p, and the score function for
the submodel of A is 8[50’ A t)(zi) /(1) |i=o. By likelihood factorization, lg(z;) = S b, 15(z;)
and Olgy a(1)(2i)/(0t)]1=0 = Zszl 0l§O’A(t)(zi)/(8t)|t:0, which are called score function ad-
ditivities for 6 and A(¢). Similarly to the full likelihood, we define a componentwise tan-
gent set and tangent space for A. The kth component nuisance-parameter tangent space is
denoted as P C Lo(P), the projection onto which is denoted by [],. The component effi-
cient score function for 6 is l~’§ = 175’ -1 ig , and the component efficient information matrix
is I g = E{ig(ig)T} All the efficient scores and information matrices introduced correspond to
single observations. See Bickel et al. (1993); van der Vaart (2000); Kosorok (2007) for more
precise illustrations of the efficient score and information.

The ensemble estimation we propose is an extension of the efficient combination of the compo-
nent regression estimators, which Cox (2001) suggested for parametric factorizable likelihoods,
to semiparametric factorizable likelihoods. Let 9’“ denote an efficient estimator of 6 based on the
kth component likelihood, I (6, A), k = 1,. K Denote an inverse asymptotic covariance esti-
mator of I} by I%. We suggest an ensemble estimator which minimizes S (0 — 08T (6 —
§%), and has a closed-form expression, f = (S5 T5)=1(SK [k 4k ). Tts asymptotic inverse
covariance matrix is estimated by Ip = Zszl I ’} The intuition for the procedure is that the log
profile likelihood of 6 is asymptotically equivalent to the sum of quadratic forms which are cen-
tered on the efficient component estimators. The ensemble estimation is extremely useful when
an efficient estimator of 6 from the full likelihood is computationally very difficult to obtain
while the efficient estimators from the component likeihoods can be easily obtained.

Ensemble variable selection applies the least squares approximation approach of Wang & Leng
(2007) for efficient variable selection to the ensemble estimator. A least squares approximation
replaces the unpenalized objective function based on the preliminary ensemble estimator and
is regularized by an adaptive lasso penalty (Zou, 2006). The intermediate estimator with the
ensemble variable selection, 0 E,\,» 18 obtained by minimizing

n?

Q(0) = (0 — )T I (0 — Op) + An Y 10;1/10r,1,

J=1

where \,, is a non-negative tuning parameter. Following Wang & Leng (2007), we select the
optimal tuning parameter by minimizing the modiﬁed Bayes information criterion: BIC), =

(O, —0r) Ir(0p., — 0F) + (logn/n) L I(@g, ; #0). The selected model is de-
notedas A = {j : Oy, ; # 0} C {1,... ,p}. Denote a subspace of O supported on the selected
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model as M = {# € © : ; = 0, forall j € A°}. The least angle regression algorithm (Efron et
al., 2004) can be directly applied, simplifying the implementation of the optimization.

Next, we recalculate each component estimator based on the ensemble variable selected
model and compute an overall estimator using the ensemble estimation approach. Denote the
refitted estimator for the kth component as 6% € M C RP and its subvector indexed by the
ensemble variable selected model as 0% = (é;“, j e A) e R We also estimate the asymp-

totic inverse covariance matrix of éiﬁt as a submatrix of f k associated with A, denoted by f k
Refitting restricted to M can be conveniently performed similarly to the initial fittings for
9’f Ensemble re-estimation prov1des a closed form of the resulting estimator, 6 € R?, where

04 = (zl{le 1 A) (ZkK 1 9’“ ") € RMI and  4¢ = 0. The asymptotlc inverse covariance ma-
trix estimator of the resulting estimator restricted to A is given as Is= Zszl I* u € RMI x RIHAI,

2.2.  Uncorrelatedness Conditions

Cox (2001) showed asymptotic efficiency of ensemble estimation in parametric factorizable
likelihoods under a second-order validity condition that makes the component score functions
uncorrelated under mild regularity conditions. Along the same lines, we assume the following
conditions for semiparametric factorizable likelihoods:

Condition 1. Component score functions for # are pairwise uncorrelated, i.e., E{Zg(iel)T} =
0,k #K.

Condition 2. Component tangent spaces for A are pairwise orthogonal, 731]3 LPE k#£K.

Condition 3. Component score functions for 6 are orthogonal to all other component nuisance-
iy -
parameter tangent spaces, i.e., lg 1LPE k#K.

Without loss of generality, we consider a decomposition into two component likelihoods. When
13(2;) and 81507A(t)(zi)/(8t)\t:0 are uncorrelated with [2(z;) and GlgmA(t)(zi)/(@tﬂt:o, Condi-
tions 1-3 are met. These facts, along with the score function additivity for § and for the submodel
of A, yield that the full efficient score function may be factored into the uncorrelated component
efficient score functions, as shown in Proposition 1.

PROPOSITION 1. Under Conditions 1-3, the full efficient score funcnon for 0 is the summatlon
of uncorrelated component efficient score functions, i.e., lp = S 1, 1%, and E{I5(15)T} =0,
k # k'. Consequently, the Jull eﬁ‘iczent information is exclusively divided into component efficient
information matrices, i.e., Iy = 1y [k

The efficient information additivity 1mphes that the ensemble estimation attains the full efficiency
bound. See the Supplementary Material.

Consider data consisting of n independent and identically distributed observations of
(Z;i, Wi, X;), where X is a covariate. There is a semiparametric regression model with param-
eters (6, A) which leads to a full log likelihood, denoted as Y . lp a(Z;, W;|X;). The dis-
tribution of X is independent of the model parameters. The full log likelihood may be decom-
posed into the sum of marginal and conditional log likelihoods, which are > " | lé, A (Wi X;) and
> i1 5 A(Zi|W;, X;) respectively. Condition 1 is satisfied as E{I (Wi X)3(Z:)Wi, Xi) T} =
0 by conditioning and zero expectations of lg(ZﬂWi, X;) with respect to the conditional dis-
tribution. The same argument applies to verify Conditions 2-3. Thus, Conditions 1-3 are met.
The main point is that conditioning and marginalizing are used to establish the decomposition
into the marginal and conditional efficient scores and their uncorrelatedness. A special case of
this decomposition is the likelihood for prospective doubly-censored data. The full likelihood
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is decomposed into the conditional likelihood of left-truncated and right-censored data and the
marginal likelihood of current status data. This is discussed in Section 3. Similarly, Newey (1990)
discussed the uncorrelatedness between a marginal density and a conditional density in semi-
parametric additive regression models, where the marginal density is ancillary to a parameter of
interest. The uncorrelatedness provided theoretical justification for estimation solely based on
the conditional density.

2.3. Theoretical Properties

We now investigate theoretical properties of the full ensemble estimator and the resulting
refitted ensemble estimator. Throughout this section, we will assume that the uncorrelatedness
conditions are satisfied. Key assumptions and results are stated below, with the proofs relegated
to the Supplemental Material.

Assumption 1. For every k=1,... K, é’f; is regular, asymptotically linear and semi-
parametric efficient with respect to the component likelihoods such that n'/ 2(9% —by) =
V23 (IF) 7 E(2) 4 0p(1), and n'/2 (6% — 65) converges in distribution to N (0, (I§)™1).

Assumption 2. A consistent estimator of I g, I fp existsfork=1,..., K.

Assumption 1 indicates that the estimators of the finite-dimensional parameter have the usual
n'/2-convergence rate with the component likelihoods. Assumptions 1 and 2 may require con-
sistent estimation of the nuisance parameter, potentially converging at different and slower than
n'/2-rate (Groeneboom & Wellner, 1992; van der Vaart, 2000). The implication is that the ex-
act convergence rates of the nuisance parameter for the component likelihoods are not needed
to theoretically justify the ensemble method in the regression parameter estimation. By the un-
correlatedness of the component efficient scores, the component estimators are asymptotically
uncorrelated, i.e., cov{n'/2(6% — 6y),n'/2(8% — 6p)} — 0asn — oo, k # k'.

THEOREM 1| (ASYMPTOTIC EFFICIENCY). Suppose that Assumptions 1-2 hold. Then,
n'/2(0F — 0o) = O,(1) and its asymptotic distribution is N (0, (I5)™").

Theorem 1 states that the full ensemble estimator is n'/2-consistent and asymptotically normal

with the semiparametric efficiency achieved. The decomposition of the full efficient score into
the uncorrelated component efficient scores is the key to establishing the asymptotic efficiency.

Similarly to 6, one may write § = (6], 65 )T, where 6; corresponds to the s nonzero com-
ponents and 6 corresponds to the zero components. Define the kth component oracle estimator
of @ as a hypothetical estimator based on X {(67,0T)™, A} by using the initial fitting method,
denoted by 9’f eR, k=1,...,K.

Assumption 3. For every k=1,... K, é’f is regular, asymptotically linear and semi-
parametric efficient with n'/2(6F — 010) = n=1/2 Z?:l(lgl)_lllgl(zi) + 0,(1), and n!/2(0F —
010)—>N(Q, (fgl)*l), where Zgl (2;) is a subvector of [§(z;) associated with 614 and 1:51 is a sub-
matrix of [ é‘“ associated with 6.

Assumption 3 is an oracle version of Assumption 1, which states that semiparametric effi-
ciency of the component oracle estimators. That is, the asymptotic variances of the component
oracle estimators attain the semiparametric efficiency bound with respect to their component like-
lihoods. Assumptions 1-3 follow the assumptions in Wang & Leng (2007). Write 6 = (61,67)7,
where él € R® and ég € RP—5,
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THEOREM 2 (SELECTION CONSISTENCY). Suppose that Assumptions 1-3  hold. If
n2\,—0 and n\,— 00, then n*/?(0 — 0y) = O,(1) and pr(fy = 0) — 1.

THEOREM 3 (ORACLE PROPERTY). Suppose that Assumptions 1-3 hold. If n'/2\,—0 and
NAp—+00, n'/2(0y — 010) converges in distribution to N (0, (I,)~"), where Iy, is a submatrix of
Iy associated with 0.

Theorem 2 demonstrates that the resulting estimator is n'/2-consistent and selection consistent.

With probability tending to 1, the estimator successfully recovers the true sparse model. Theorem
3 states that the resulting estimator of the nonzero coefficients is asymptotically normal with
“oracle” variance, (igl)_l. These theoretical properties are maintained with a different penalty
other than the adaptive lasso when the tuning parameter conditions of Wang & Leng (2007) hold.

3. PROSPECTIVE DOUBLY-CENSORED DATA
3.1. Likelihood Construction and Factorization

Suppose a prospective cohort study monitors n independent individuals. Each subject has a
quadruplet of random variables: the enrollment time, the failure time, the study termination time,
and the covariate, which is denoted by (C;, T;, R;, z;), i = 1, ..., n. By definition, C; < R;. Our
interest is the conditional distribution of the failure time given x;, denoted by F'(T; = t|x;). The
observed data is prospective doubly-censored. One observes whether subjects experienced the
event before enrollment at time C;. If not, one continues observing whether an event occurred
during follow-up to time R; and the failure time at which such event occurred. Denote the left
censoring status at enrollment and the right censoring status with two indicators, §; = I(T; < C;)
and v; = I(T; < R;) respectively. The censoring indicator pair has three possible values: (0, 0),
(0, 1), and (1, 1). Assume that T; and (C;, R;) are independent given x;. The joint distri-
bution of (C;, R;) is assumed free of parameters in the conditional distribution of 7;. Denote
the minimum of the failure time and the right censoring time as Y; = 7T; A R;. The observed
data of each subject is (C;, C; V'Y;, d;, v;, ;). Contrary to conventional doubly-censored data,
where the left censoring time C; is only observed on subjects with T; < C;, with prospectively
doubly-censored data, C; is always observed.

The likelihood function for prospective doubly-censored data is

n
[T F(Cilan)’ F(Ci v Vi) 001 = F(Ci v Yyl 30000,
i=1
The likelihood contains the same information as the likelihood for conventional doubly-censored
data since C; = C; V' Y; for subjects who already had the event at enrollment. The use of the
enrollment time, C;, on all subjects facilitates the decomposition of the likelihood as follows:

n n F(Yis) vi(1=6:) 1 — F(Yi|a:) (1—v3)(1=63)
F(C:2)0 11 — F(C: |z ) 1% _ STl B Sl e VA )
The first component is the likelihood of current status data at enrollment, in which each individual
has (Cjy, 0;, ;) as its observed triplet. The second component is the likelihood of left-truncated
right-censored data for the subjects who did not have the event prior to enrollment, in which each
individual has (C;, Y;, v;, x;) as its observed quadruplet.
We employ the proportional hazards model for the distribution of 7; given x;. The conditional
hazard rate is assumed to satisfy h(t|z) = h(t)exp(z3), where h(t) is the baseline hazard at
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8 S. SHIN ET AL.

time ¢ and 3 is the regression parameter. The parameter space © of the regression parameter is a
known compact subset of RP. The baseline hazard rate can be an arbltrary nonnegative function
of t. We define the baseline cumulative hazard function by H (¢ fo u)du. The true regres-
sion parameter and the true baseline cumulative hazard functlon are denoted as B and Hy. With-
out of loss of generality, write Sy = (ﬁITO, B;FO)T € RP, where 319 is an s-dimensional nonzero
parameter vector and (29 is a (p — s)-dimensional zero parameter vector. The corresponding log
likelihood is expressed as:

n

IPPCD (3 H) = Z Silog[1 — exp{—exp(z; B)H(C;)}] — Z(l — &;)exp(z; B)H (Cy)

i=1 i=1

+> vl = 6:){x] B+ logh(Yi) — exp(a B)H(Y;) + exp(a B)H (C)}
i=1

+Z(1_”i 5i){—exp(a] B)H(Y;) + exp(a] B)H(Ci)} (1)

_Zl (Cs, 04|;) +ZZLTRC Y, vi|Ci, 05, x5)

=l§s<ﬁ, H)+ Z%LTRC(ﬁ, >- )

The first two terms of (1) correspond to the log likelihood for current status data while the re-
maining two terms of (1) correspond to the log likelihood for left-truncated right-censored data.
The full efficient score and information for /3 are denoted as I and Is = E{lg(l5)T}. The effi-
cient score and information for the current status component are 195 and jgs = E{lgs(lgs)T},

respectively. Similarly, denote the efficient score and information for the left-truncated right-
censored data component as %TRC and I};TRC =F {Z%TRC ([I[;TRC)T}.

3.2.  Application of Ensemble Methodology

We apply the ensemble estimation and selection procedure for Cox model with prospective
doubly-censored data based on the likelihood decomposition into the likelihood for the current
status data and the likelihood for left-truncated right-censored data. Maximum likelihood esti-
mation of both the regression parameter and the baseline hazard function has been extensively
studied for both components (Andersen et al., 1997; Klein & Moeschberger, 2003; Huang, 1996;
Sun, 2007), yielding efficient estimators for 5 which aid the application of the ensemble method-
ology.

For the current status data, denote the maximum likelihood estimator of the regression
parameter and the baseline cumulative hazard function from lgs(ﬁ,H ) by ﬁgs and ﬁgs.
We maximize the current status data likelihood using the iterative convex minorant algo-
rithm (Murphy & van der Vaart, 2000 Pan 1999) A covariance estimator is obtained
by bootstrap, denoted by (I5)~1=B1SF {5S5(b) — B-1 00 BSS(b) MBS (b) —
B~'00 | BSS(0)}T, where 3°5(b) is the bootstrap regression estimate from the bth bootstrap
sample (Pan, 1999; Cheng & Huang, 2010).

Since left-censored subjects have no contribution to the likelihood with left-truncated right-
censored data, the likelihood for Cox model may be rewritten with only left-uncensored subjects.
Partial likelihood may be used to obtain the maximum likelihood estimator of the regression pa-
rameter with left-truncated right-censored data, without simultaneous estimation of H (Klein
& Moeschberger, 2003). Denote the estimator of the regression parameter by BZETRC. The neg-
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ative second derivative of the log partial likelihood is used to estimate the asymptotic inverse
covariance matrix for ﬁ%TRC. We scale the negative second derivative by the proportion of left-
uncensored subjects to address the zero contribution of left-censored subjects. The estimator is
denoted by f}%TRC (Klein & Moeschberger, 2003).

We now illustrate the ensemble estimation and variable selection procedure. First, ensemble
estimation is performed with the initial estimators, 55, BETRC, 1S and TETRC. The full ensem-
ble estimator is 3y = (I€5 4 TEIRCY—1(1SS Bgs + IETRC B};TRC) and its inverse covariance es-
timator is Ip = I gs + f};ﬂTRC. The ensemble variable selection is implemented by computing:

p
BEr, = aggfé}in(ﬁ — Br) Ip(B = Br) + An > 1B51/18F;l, 3
€RP =

where A, is a tuning parameter. The tuning parameter minimizing modified BIC is chosen.
The selected model is denoted as M = {j : B, ; # 0}. Then, to obtain the refitted estima-
tors, we maximize the component likelihoods over a parameter subspace, L = {§ € R?, 3; =
0, forall j ¢ M} C RP. The subvectors of the refitted estimators indexed by M are denoted as
B/(\j,f’ = (BJCS, j € M) and B/L\/TlRC = (B]LTRC, Jj € M). We estimate their asymptotic covariance
matrices in a similar manner to estimating the unpenalized asymptotic covariance matrices, and
denote them by I/(\JAS and IHRC respectively. Alternatively, We may use submatrices of [ gs and

I}TRO associated with M. The refit ensemble estimator restricted to L is a weighted combina-

tion of the refitted estimators, denoted by 3 € RP, where S = (IA/(\J/[S + fHRC)_l(f/(\j/tS B/(\j/ls +
TETROBETRC) and By4c = 0. The inverse of its covariance matrix restricted to M is estimated

by I = (I + IFRO).

3.3. Theoretical Properties

The likelihood decomposition with prospective doubly-censored data for Cox model is an
exemplary case of the marginal and conditional likelihood decomposition introduced in Section
2.2. The full data likelihood for Cox model is the product of the marginal current status data
likelihood and the conditional left-truncated right-censored data likelihood for Cox model as in
(2). By defining Z = (Y,v), W = (C,J), the uncorrelatedness conditions are met as a special
instance of the decomposition into marginal and conditional likelihoods, which is discussed in
Section 2.2. Hence, under Proposition 1, [3, is the sum of the uncorrelated lgs and [§TRC,

Under additional regularity conditions on the component estimation procedures, such that As-
sumptions 1-2 hold, consistency, asymptotic normality, and semiparametric efficiency of the full
ensemble estimator are achieved following Theorem 1.

COROLLARY 1. Under Conditions 4-10 of the Supplementary Material, nl/2 (BF — Bo) con-
verges in distribution to N (0, (I5)~1).

The Conditions 4-10 in the Supplementary Material are regularity conditions that allow semi-
parametric efficient estimation of the regression parameter and consistent estimation of the
asymptotic inverse variance for both of the component data likelihoods. For details, see An-
dersen et al. (1997), Huang (1996), Murphy & van der Vaart (1999), Cheng & Huang (2010)
and van der Vaart (2000). Both of the component oracle estimators achieve semiparametric effi-
ciency bound (Assumption 3) as both log likelihoods are functions of the linear predictor, :cZT B.

Similarly to 3o, write 3 = (BIT, BQT)T, where 3; € RP, and 3, € RP~.

COROLLARY 2. Under Conditions 4-10 of the Supplementary Material, if nY/2)\, — 0 and
n\, — 0o, then n'/?(B — By) = O,(1) and pr(By = 0) — 1.
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COROLLARY 3. Under Conditions 4-10 of the Supplementary Material, ifn1/2>~\n — 0 and
n\, — oo, then n'/2(By — Bro) converges in distribution to N (0, (I5,)™1), where I, is a sub-
matrix of Ig associated with [31o.

Corollary 2 establishes that the resulting estimator has n'/?-consistency and consistency in
variable selection. Corollary 3 shows that the resulting estimator restricted to the nonzero pa-
rameters is asymptotically normally distributed and achieves semiparametric efficiency bound.

A practical approach to estimating H may be to use Breslow’s estimator with the left-truncated
right-censored data, denoted as H %TRC. The estimator achieves the regular convergence rate of
n'/2 since the left-truncated right-censored data contain the informative left-uncensored samples
observed to experience the event during the study period as do the prospective doubly-censored
data (Chang & Yang, 1987; Kim et al., 2010). Since the current status data lack the samples with
the exact event time observed, the convergence rate of H gs is nt/3 , which is slower than the
regular convergence rate.

4. SIMULATION STUDIES

Extensive simulation experiments were conducted to evaluate the finite sample performance
of estimators of the regression parameters from our ensemble procedure. We consider estimators
not only based on prospective doubly-censored data but based either on current status data or on
left-truncated right-censored data for comparison. The component likelihood-based estimators
include the component maximum likelihood estimators, least squares approximation estimators
(Wang & Leng, 2007), and refit least squares approximation estimators. Since the expectation-
maximization algorithms of Kim et al. (2013) and Su & Wang (2016) are not available in soft-
ware packages, comparisons of our method to those methods based on the full likelihood were
not attempted. We fit the current status data and left-truncated right-censored data using intcox
and survival R packages. We use 1000 bootstrap replicates to estimate the variance matrix with
current status data.

We consider the following exponential hazard model:

h(t|z) = exp(z'B), 4)

where 5 = (0.8,0,0,1,0,0,0.6,0,0,0). The covariates, x, were generated from a multivariate
normal distribution, N (0, X)), where ¥;; = 0.5/7=71, The enrollment time follows an exponential
distribution and the right censoring time follows an exponential distribution shifted by the corre-
sponding enrollment time. Results are given based on 500 simulated datasets. We consider two
settings on left and right censoring rates: (20%, 20%) and (30%, 30%).

Table 1 summarizes the simulation results with sample size of 250 and 500 respectively.
In component estimation based on current status data or left-truncated right-censored data,
both least squares approximation and refit least squares approximation simultaneously per-
form variable selection and parameter estimation. Each least squares approximation estimate
is a benchmark for the variable selection of the refit least squares approximation estimate, thus
both share the same average number of true positives and false positives, and proportion of
over/underfittings. The refitting increases efficiency in most cases. Left-truncated right-censored
data based estimation has a superior performance over current status data based estimation in
terms of efficiency and variable selection, which is attributable to the fact that 75% of left-
uncensored samples have the exact failure time observed. The ensemble oracle estimator is
an efficient combination of the oracle estimators of both current status data and left-truncated
right-censored data, which is a practical proxy to the oracle estimator with prospective doubly-
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Table 1. Comparison of the ensemble method and the component-based methods

Censoring rates (20%, 20%) (30%, 30%)
RMSE TP FP UF CF OF RMSE TP FP UF CF OF
n = 250
CS
Oracle 22.80 3.00 0.00 0 100 0 3469 3.00 0.00 0 100 0
MLE 4.41 3.00 7.00 0 0 100 8.26 3.00 7.00 0 0 100
LSA 5.16 240 0.19 36 48 11 1222 281 022 12 68 18
Refit LSA 5.78 240 0.19 36 48 11 1478 281 022 12 68 18
LTRC
Oracle 7345 3.00 0.00 0 100 0 6346 3.00 0.00 0 100 0
MLE 16.56  3.00 7.00 0 0 100 13.53 3.00 7.00 0 0 100
LSA 48.73  3.00 0.21 0 82 18 3553 3.00 0.34 0 73 27
Refit LSA 49.31 3.00 0.21 0 82 18 36.29 3.00 0.34 0 73 27
Ensemble
Oracle 100 3.00 0.00 0 100 0 100 3.00 0.00 0 100 0
Initial Ensemble  22.78  3.00 7.00 0 0 100 23.78 3.00 7.00 0 0 100
EVS 63.04 3.00 O0.11 0 90 10 5737 3.00 0.12 0 89 11
CS Refit 20.80 3.00 0.11 0 90 10 30.62 3.00 0.12 0 89 11
LTRC Refit 58.59 3.00 0.11 0 90 10 53.13  3.00 0.12 0 89 11
Refit Ensemble 75.68 3.00 0.11 0 90 10 7840 3.00 0.12 0 89 11
n = 500
CS
Oracle 2427  3.00 0.00 0 100 0 39.80 3.00 0.00 0 100 0
MLE 5.38 3.00 7.00 0 0 100 9.51 3.00 7.00 0 0 100
LSA 9.79 298 0.27 2 76 22 16.55 3.00 0.25 0 79 21
Refit LSA 13.08 298 0.27 2 76 22 2372  3.00 0.25 0 79 21
LTRC
Oracle 77.02  3.00 0.00 0 100 0 60.45 3.00 0.00 0 100 0
MLE 1840 3.00 7.00 0 0 100 15,59 3.00 7.00 0 0 100
LSA 54.87 3.00 0.17 0 86 14 42.19  3.00 0.17 0 86 14
Refit LSA 52.54  3.00 0.17 0 86 14 44.02  3.00 0.17 0 86 14
Ensemble
Oracle 100 3.00 0.00 0 100 0 100 3.00 0.00 0 100 0
Initial Ensemble  24.08 3.00 7.00 0 0 100 2496 3.00 7.00 0 0 100
EVS 66.67 3.00 0.07 0 93 7 5745 3.00 O0.11 0 90 10
CS Refit 21.12  3.00 0.07 0 93 7 32.08 3.00 0.11 0 90 10
LTRC Refit 66.31 3.00 0.07 0 93 7 52.60 3.00 0.11 0 90 10
Refit Ensemble 7799  3.00 0.07 0 93 7 7397 3.00 O0.11 0 90 10

CS denotes analyses based only on the current status data, LTRC denotes analyses based only on the left-truncated
right-censored data, and Ensemble denotes analyses based on the ensemble procedure. Initial Ensemble is the full
ensemble estimation, and EVS is the ensemble variable selection procedure. Refit on LTRC/CS denotes the refit-
ting based on LTRC/current status data, and Refit Ensemble denotes the ensemble re-estimation. RMSE denotes
relative mean squared errors (%) of the estimators to the ensemble oracle estimator. Larger RMSE correspond
to higher efficiency. Ensemble oracle estimator has RMSE of 100%. TP/FP stand for average number of true
positives/false positives, respectively. UF, CF, and OF indicate percentages of underfitting, correct fitting, and
overfitting to the true model.

censored data. The ensemble variable selection procedure successfully specifies the correct
model in over 90% of the simulations, with reduced selection of true zero covariates than compo-
nent estimation. The intermediate refitting lowers efficiency in estimation. However, the resulting
estimators have resilience and is most efficient among all but the ensemble oracle estimators. As
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the sample size increases, all procedures have higher accuracy in estimation and variable selec-
tion.

We also examine the finite sample performance of the asymptotically valid variance estimators
of the regression parameter estimators with comparison to empirical variances. In Supplementary
Table 1, average estimated standard errors of 3; obtained throughout the procedure for 51 = 0.8
are in good agreement with empirical standard errors of 5 with sample size 250 and 500 ex-
cept current status data based estimation. The noticeable discrepancy between average estimated
standard errors and empirical standard errors of the current status data based estimation is mainly
driven by poor variable selection performance for 31 of least squares approximation technique.
The average estimated standard errors of the refitted ensemble estimators are within +6% of
the corresponding empirical standard errors. The 95% empirical coverage probabilities of 3 for
(1 from the ensemble procedure are generally close to the nominal 95% level. Other results are
quite similar and are omitted.

Further, we empirically computed covariances between Bgs and B%TRC, which are asymp-
totically zero matrices. Supplementary Table 2 reports Frobenius norm, Spectral norm, and L
norm of the empirical covariances from all scenarios we consider. The norms are rather small
and decrease in magnitude as the sample size increases.

5. MULTICENTER AIDS COHORT STUDY

Multicenter AIDS cohort study was initiated to elucidate the natural history of HIV (Kaslow
et al., 1987). Nearly 5619 homosexual and bisexual men were enrolled across the United States.
Every six months, the participants underwent a physical exam and completed questionnaires and
laboratory testing. The studies collected extensive information on participants’ demographics,
sexual behaviours, and medical histories. We considered the information from their first visit
as possible risk factors. The seropositivity for HIV type 1 was determined by positive enzyme-
linked immunosorbent assays with confirmatory Western blots (Kaslow et al., 1987). We anal-
ysed the time to HIV infection on the age scale. Subjects with information missing or record
errors were dropped from the analysis. We also excluded subjects whose time gap between the
last negative seroconversion visit and the first positive seroconversion visit exceeded 4 years.
The analytic dataset included 5102 subjects; 2038 were HIV infected prior to their first visit,
448 became infected during the course of the study, and 2616 were not infected either prior to
the study or during follow-up. The risk factors considered are participants’ sexual behaviour,
medical histories, smoking and drinking behaviour, drug usage, and socioeconomic status.

Table 2 presents the analysis results from the entire ensemble procedure. For comparison, in
Supplementary Table 3, we reported the results of the unpenalized maximum likelihood estima-
tion, least squares approximation, and refit least squares approximation based either on current
status data or on left-truncated right-censored data. While the left-truncated right-censored data
analysis concludes that the highest educational risk group is people who have attended college
with no degree, both the current status data based estimation and the refitted ensemble esti-
mation conclude that less educated people have higher HIV risk, which agrees with previous
findings (Catania et al., 2001; Simard et al., 2012). Further, these analyses select genital warts,
cocaine use, and Hispanic ethnicity as risk factors, contrary to the left-truncated right-censored
data based estimation. These differences may be explained by the fact that roughly 40% of sub-
jects were HIV infected before enrollment and only 9% of participants without HIV at enrollment
contracted HIV during the study period. This suggests that the current status data is more infor-
mative than the left-truncated right-censored data, as reflected in the ensemble results. Based on
the ensemble procedure, anal receptive sex is strongly associated with HIV infection with a 77%
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Table 2. Results from the ensemble method on multicenter AIDS cohort study

Covariates  Initial Ensemble (SE) EVS LTRC Refit (SE) CS Refit (SE) Refit Ensemble (SE)
REC2P 0.58 (0.05) * 0 0.58 0.44 (0.12) 0.59 (0.05) 0.57 (0.05)
REC2Y 0.06 (0.05) . . . .
CON2P 0.07 (0.23)

CON2Y -0.24 (0.21)
DIABE -0.23 (0.29) . . . .
GONOE 0.53 (0.08) * 050 0.55 (0.10) 0.50 (0.14) 0.62 (0.08)
RADTE -0.03 (0.21) . . . .
WARTE 0.37 (0.05) *0.33 0.05 (0.11) 0.39 (0.05) 0.34 (0.05)
NDRNK -0.02 (0.01)
PACKS -0.03 (0.03) . . . .
NEEDL 0.54 (0.10) * 048 0.84 (0.22) 0.45 (0.12) 0.57 (0.10)
COK2Y 0.49 (0.06) * 0 0.52 0.11 (0.10) 0.55 (0.09) 0.41 (0.07)
HAS2Y 0.12 (0.08) * . . . .
MSX2Y 0.31 (0.08) * 0 0.28 0.56 (0.14) 0.27 (0.09) 0.24 (0.07)
OPI2Y -0.05 (0.12)
UNEMP 0.19 (0.09) . . . .
BLACK 0.71 (0.08) * 0.66 0.52 (0.18) 0.69 (0.08) 0.70 (0.08)
HISPA 0.28 (0.10) * 0.16 0.18 (0.22) 0.32 (0.13) 0.20 (0.11)
OTHER 0.06 (0.20)
PRECOL -0.16 (0.07) * . . . .
COL -0.31 (0.08) *-0.13 -0.31 (0.13) -0.20 (0.06) -0.24 (0.06)
POSTCOL -0.44 (0.07) *-0.30 -0.10 (0.12) -0.43 (0.11) -0.29 (0.07)

REC2P, REC2Y: whether participants had anal receptive/insertive sex; CON2P, CON2Y: whether participants
had anal receptive/insertive sex with condom; DIABE: diabetes; GONOE: gonorrhea; RADTE: radiation ther-
apy/treatment; WARTE: genital/anal warts; NDRNK: number of drinks per day; PACKS: number of cigarette packs
smoking per day; NEEDL: needle sharing; COK2Y: cocaine use; HAS2Y: marijuana/hashish use; MSX2Y: drugs
with sex; OPI2Y: heroin/other opiates use; UNEMP: current unemployment; BLACK: black ethnicity; HISPA:
hispanic ethnicity; OTHER: the other ethnicities; PRECOL: college attendance with no degree; COL: bachelor’s
degree; POSTCOL: master’s degree and above; White ethnicity and high school diploma were used as base cate-
gories.

Based on the initial ensemble estimator, significant covariates are marked with * at level 0.05.

increase in risk. The high risk of HIV infection for anal receptive sex without a condom has been
well documented (Ekstrand et al., 1999; Sullivan et al., 2009). Subjects who have had sexual
diseases such as gonorrhea and genital warts are also seen to be at higher risk, by 86% and 40%
respectively. In addition, as expected, needle sharing, cocaine use, and drug use with sex increase
HIV infection risk, by 77%, 51%, and 27% respectively. African Americans and poorly educated
subjects have similar expected increases in HIV risk.

6. DISCUSSION

The ensemble methodology for semiparametric factorizable likelihoods has merits in both
reducing computational burden and simplifying asymptotic inference. The theoretical results
were established in a paradigm where the sample size increases while the number of covariates
is fixed. Of course, such results are not applicable when the number of covariates grows with
the sample size, as in high-dimensional data applications. As the Associate Editor pointed out,
in the presence of several nonzero parameters whose values are less than the order of n=1/2, the
ensemble variable selection might not succeed in identifying the correct model, which leads to
efficiency loss in the follow-up ensemble estimation. Further work is needed in this area.
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For prospective doubly-censored data, the likelihood factorization readily accommodates
models other than the proportional hazards model where efficient estimators and consistent vari-
ance estimators exist. Efficient estimation of the regression parameter and consistent estimation
of the asymptotic variance in the accelerated failure time model have previously been studied
with left-truncation and right-censoring by Lai & Ying (1991) and with current status data by
Shen (2000). Such methods might be employed to construct a fully efficient ensemble estima-
tor of the regression parameter in this model. As another example, efficient estimation of the
regression parameter and consistent estimation of the asymptotic variance in a general class of
transformation models, including the proportional hazards model, is, in principle, accomplished
with left-truncated right-censored data using the counting process likelihood estimators in Zeng
& Lin (2007). Efficient estimation of transformation models with current status data has been
rigorously studied in Zhang et al. (2013). The ensemble methodology might be utilised in con-
junction with these component estimators for fully efficient estimation of the regression param-
eter in the transformation model. Implementations of these ensemble procedures are important
topics for future research.

The ensemble methodology is similar in spirit to meta-analysis, where one combines infor-
mation across a fixed number K component likelihoods. Although there is growing interest in
meta-analysis using individual level data, such data may not be available for many of the small
biomedical studies reported in the literature. Lin & Zeng (2010), Liu et al. (2015) and Slud et
al. (2018) addressed the issue by leveraging efficient study specific estimates. Similarly, our pro-
posed methods are potentially useful in these applications, if one assumes the number of studies
is fixed, with the number of observations in each study tending to infinity. Frequently, the number
of studies is small relative to the sample sizes within studies in meta-analysis (Riley at al., 2010).
The ensemble procedure yields efficient overall estimates of regression parameters by optimally
combining efficient study specific estimates.

The ensemble procedure provides efficient and oracle estimators of regression parameters with
minimal assumptions on estimation of the nuisance parameter. The regularity conditions permit
nonstandard and potentially different rates of convergence for the component estimators of the
nuisance parameter, as with the Cox model with prospective doubly-censored data. A challeng-
ing topic which merits further investigation is whether “optimal” estimation of the nuisance
parameter might be achieved by combining component estimators.
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