
SmartNIC Performance Isolation with FairNIC:
Programmable Networking for the Cloud

Stewart Grant
∗
, Anil Yelam

∗
, Maxwell Bland

†
and Alex C. Snoeren

UC San Diego
†
University of Illinois-Urbana Champaign

ABSTRACT
Multiple vendors have recently released SmartNICs that provide

both special-purpose accelerators and programmable processing

cores that allow increasingly sophisticated packet processing tasks

to be offloaded from general-purpose CPUs. Indeed, leading data-

center operators have designed and deployed SmartNICs at scale

to support both network virtualization and application-specific

tasks. Unfortunately, cloud providers have not yet opened up the

full power of these devices to tenants, as current runtimes do not

provide adequate isolation between individual applications running

on the SmartNICs themselves.

We introduce FairNIC, a system to provide performance isolation

between tenants utilizing the full capabilities of a commodity SoC

SmartNIC. We implement FairNIC on Cavium LiquidIO 2360s and

show that we are able to isolate not only typical packet processing,

but also preventMIPS-core cache pollution and fairly share access to

fixed-function hardware accelerators. We use FairNIC to implement

NIC-accelerated OVS and key/value store applications and show

that they both can cohabitate on a single NIC using the same port,

where the performance of each is unimpacted by other tenants.

We argue that our results demonstrate the feasibility of sharing

SmartNICs among virtual tenants, and motivate the development

of appropriate security isolation mechanisms.

CCS CONCEPTS
• Networks → Network adapters;

KEYWORDS
Network adapters, cloud hosting, performance isolation

ACM Reference Format:
Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C. Snoeren. 2020.

SmartNIC Performance Isolation with FairNIC: Programmable Networking

for the Cloud. In Annual conference of the ACM Special Interest Group on
Data Communication on the applications, technologies, architectures, and
protocols for computer communication (SIGCOMM ’20), August 10–14, 2020,
Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3387514.3405895

∗
These authors contributed equally.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7955-7/20/08.

https://doi.org/10.1145/3387514.3405895

1 INTRODUCTION
Cloud providers have determined that it is inefficient to implement

network processing tasks on host cores, and are deploying custom-

designed SmartNICs at scale to support traffic scheduling, security,

and network virtualization, among others [2, 16]. Enterprises and

service providers have reached similar conclusions, and a host of

manufacturers have introduced commodity, programmable Smart-

NICs to accelerate a large variety of tasks [4, 6, 23]. Unfortunately,

while the efficiency benefits of SmartNICs are contributing to cloud

providers’ bottom lines, tenants are barred from sharing in these

gains because providers do not allow them to download their own

applications onto NIC hardware in virtualized environments.

We explore the potential of opening up the network acceleration

benefits of commodity SmartNICs to cohabitating tenants in cloud

environments. In particular, we seek to enable individual tenants to

run their own, custom on-NIC programs that make use of shared

hardware resources to improve performance [33, 42], decrease host

CPU utilization [16, 36], or both [11, 35]. The key challenge to

running applications from different tenants on shared SmartNIC

hardware is ensuring isolation. In particular, we design isolation

techniques that work within the confines of an existing manufac-

turer’s SDK and do not require SmartNIC programmers to learn a

new language or application framework.

We recognize that production-grade isolation is a very high bar.

In particular, cloud platforms have been shown to exhibit numer-

ous side-channel security vulnerabilities [44]. Given the complexity

and performance overheads inherent in enforcing truly secure iso-

lation [39], we start by considering whether those costs are even

potentially worth incurring. As the first effort to share SmartNICs

between tenants, we defer consideration of deliberate malfeasance,

potential side-channel or other privacy attacks to future work, and

focus exclusively on achieving performance isolation.

In this work, we consider system-on-a-chip (SoC) SmartNICs due

to their relative ease of programmability. While several previous

studies [16, 33] consider FPGA-based SmartNICs, various aspects of

the FPGA design ecosystem (such as the need to globally synthesize,

place and route functionality) complicate use in a multi-tenant

environment [28]. Yet the design of today’s’ SoC SmartNICs also

frustrate our task, as they lack much of the hardware support found

in modern host processors for virtualization and multi-tenancy.

We illustrate the challenge of cross-tenant performance isolation

by studying the behavior of a Cavium LiquidIO 2360 SmartNIC

when running multiple applications concurrently. We demonstrate

that the NIC processing cores, shared caches, packet processing

units, and special-purpose coprocessors all serve as potential points

of contention and performance crosstalk between tenants. Our

681

https://doi.org/10.1145/3387514.3405895
https://doi.org/10.1145/3387514.3405895
https://doi.org/10.1145/3387514.3405895

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Grant, Yelam, Bland, and Snoeren

experiments show that in certain instances, co-location can de-

crease tenant performance by one-to-two orders of magnitude. In

response, we develop isolation mechanisms that enable fair sharing

of each of the contended resources. Our solutions balance the need

to maintain 25-Gbps line-rate processing while leaving as many

hardware resources as possible for tenant use.

We prototype our isolation mechanisms in FairNIC, an extension

of the Cavium Simple Executive for SmartNIC applications. Fair-

NIC provides strict core partitioning, cache and memory striping,

DWRR packet scheduling, and distributed token-based rate limiting

of access to the fixed-function hardware accelerator units. We eval-

uate FairNIC in both micro-benchmarks and realistic multi-tenant

environments. We demonstrate that each of our isolation mecha-

nisms can not only enforce fairness, but even defend against tenants

that would otherwise exhaust shared NIC resources. We implement

two popular SmartNIC-accelerated applications—Open vSwitch

(OVS) and a key/value store—and show that both applications can

coexist on the same SmartNIC while preserving performance iso-

lation. Hence, we conclude that it is indeed worthwhile from a

performance point of view to support SmartNICs in a multi-tenant

environment, and discuss potential next steps toward our vision of

virtualizing commodity SmartNICs in commercial clouds.

2 BACKGROUND
SmartNICs are network interface cards that allow applications to

run offload functionality directly in the data path. Our goal is to

enable safe SmartNIC access for multiple tenant applications, which

necessitates the development of isolation enforcement mechanisms.

The requirements for these isolation mechanisms are influenced by

both the service and deployment models chosen by the datacenter

operator and the capabilities of the SmartNIC hardware itself.

2.1 Service models
We consider the requirements of three common cloud service mod-

els, each in the context of a public cloud (i.e., we assume strict

isolation requirements between tenants), and adapt these models

to the context of SmartNIC multiplexing. This paper addresses per-

formance isolation issues common to all three service models, but

does not fully address the security isolation requirements of any;

we discuss these shortcomings further in Section 7.2.

SaaS: In a software-as-a-service model, we envision SmartNIC

applications are written, compiled and deployed by datacenter op-

erators. Tenants pay for a selection of these applications to be

offloaded onto SmartNICs. Security isolation mechanisms are re-

quired mainly to address potential provider errors, but performance

isolation is necessary for quality-of-service guarantees in multi-

application deployments. These assumptions are similar to those

made by the authors of NIC-A which provides tenant isolation on

FPGA-based SmartNICs [14].

PaaS: In a platform-as-a-service model developers could write

custom SmartNIC applications and submit them to the datacenter

operator for approval and deployment onto SmartNICs. This model

might restrict tenants’ code to allow for easier static checking or

software-based access restrictions to hardware such as coprocessors.

Runtime isolation mechanisms are necessary to the extent they are

not enforced by the platform API and static checking.

ASIC FPGA SoC
Speed Fastest Fast Moderate

Programmability Limited Difficult Straightforward

Table 1: SmartNIC technology trade-offs

IaaS: As with virtual machines, a SmartNIC infrastructure-as-a-

service would provide “bare-metal” SmartNIC ABIs against which

tenants could run SmartNIC programs unmodified. In this deploy-

ment model, performance isolation requires either full hardware

virtualization in software or proper hardware support for isolation

like Intel VT-x. Security isolation is necessary if the tenants are

distrusting, or vulnerable to a malicious third party.

2.2 Types of SoC SmartNICs
SmartNICs are built out of a variety of different technologies in-

cluding ASIC, FPGA, and SoC. Traditional NICs are ASIC-based,

with predefined network semantics baked into hardware. While

these offer the best price/performance, they are generally not

programmable. Some vendors have shipped high-core-count, pro-

grammable ASIC-based SmartNICs [23], but they are famously

challenging to program [8] and have seen limited deployment.

Table 1 overviews the trade-offs between different SmartNIC

technologies. FPGAs provide a flexible alternative with near-ASIC

performance and some hyperscalers already utilize FPGAs in their

datacenters [16]. While FPGAs have the advantage of hardware-like

performance, they are expensive and power-hungry, and program-

ming them requires expert knowledge of the hardware and appli-

cation timing requirements. System-on-a-chip (SoC) SmartNICs

represent a middle ground by combining traditional ASICs with a

modest number of cache-coherent general-purpose cores for much

easier programming and fixed-function coprocessors for custom

workload acceleration. As a result, SoC SmartNICs seem the most

appropriate for tenant-authored applications.

SoC SmartNICs are not homogeneous in design. A key distinction

revolves around how the NIC moves packets between the network

ports and host memory [35]. On one hand, the “on-path” approach

passes all packets through (a subset of) cores on the NIC on the way

to or from the network [6]. In contrast, the “off-path” design pattern

uses an on-NIC switch to route traffic between the network and

NIC and host cores [4]. The variation in designs has trade-offs for

packet throughput, with the former requiring more cores to scale to

higher line rates, and the latter incurring additional latency before

reaching a computing resource. Recently, researchers proposed

switching as a general mechanism for routing between SmartNIC

resources in a hybrid of both architectures [49].

2.3 Cavium architecture
In this paper, we work with “on-path” LiquidIO SoC SmartNICs

from Cavium (now owned by Marvell) [6]. In addition to traditional

packet-processing engines for ingress and egress, the OCTEON

processor employed by the SmartNIC provides a set of embedded

cores with cache and memory subsystems for general-purpose

programmability and a number of special-purpose coprocessors for

accelerating certain popular networking tasks.

Cavium CN2360s have 16 1.5-GHz MIPS64 cores connected to a

shared 4-MB L2 cache and 16 GB of main memory connected via a

682

SmartNIC Performance Isolation with FairNIC SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

0 20 40 60 80 100
Time (seconds)

0

5

10

15

20

25

Gb
ps

App 1 (1024 B)
App 2 (512 B)
App 3 (256 B)

0 20 40 60 80 100
Time (seconds)

0

5

10

15

20

25

Gb
ps

App 1 (1024 B)
App 2 (512 B)
App 3 (256 B)

400 600 800 1000 1200 1400
Packet Size (Bytes)

0

5

10

15

20

25

Gb
ps

App 1 (8 cores)
App 2 (1 core)

400 600 800 1000 1200 1400
Packet Size (Bytes)

0

5

10

15

20

25

Gb
ps

App 1 (8 cores)
App 2 (1 core)

Figure 1: The leftmost plot shows unfair bandwidth allocation between applications due to varying packet sizes. Deficit Round
Robin scheduling addresses the issue in the second plot. The third plot shows a case of head-of-line blocking where two
applications get roughly the same throughput despite disparate core allocations. The rightmost plot shows that by decoupling
ingress queues and buffer pools, application performance is decoupled.

fast consistent memory bus. In its most straightforward use case,

each core runs firmware—known as the Cavium Simple Executive—

written in C that is executed when packets are delivered to it.

While the cores themselves are relatively under-powered, the cards

are equipped with a multitude of coprocessors to assist in packet

processing. These coprocessors range from accelerating common

functions like synchronization primitives and buffer allocation to

application-specific functions such as random-number generation,

compression, encryption, and regular expression matching.

Packet ingress and egress are handled by dedicated processing

units that provide software-configurable QoS options for flow clas-

sification, packet scheduling and shaping. To avoid unnecessary

processing overheads, there is no traditional kernel and the cores

run in a simple execution environment with each non-preemptable

core running a binary to launch its own process, and there is no con-

text switching. In a model familiar to DPDK programmers, the cores

continually poll for packets to avoid the overhead of interrupts.

End-to-end packet processing involves a chain of hardware com-

ponents. A typical packet coming in from the host or network goes

through the packet ingress engine that tags the packet based upon

flow attributes and puts it into pre-configured packet pools in mem-

ory. The packet is then pulled off the queue by a core associated

with that particular pool, which executes user-provided C code.

The cores may call other coprocessors such as the compression unit

to accelerate common packet-processing routines. After finishing

processing, the packet is dispatched to the egress engine where it

may undergo traffic scheduling before it is sent out on the wire or

the PCIe bus to be delivered to the host.

3 MOTIVATION & CHALLENGES
The key challenge to enabling tenant access to the programmable

features of SmartNICs is the fact that these resources lie outside

the traditional boundaries of cloud isolation. Almost all of the vir-

tualization mechanisms deployed by today’s cloud providers focus

on applications that run on host processors.
1
Indeed, network vir-

tualization is a key focus of many providers, but existing solutions

arbitrate access on a packet-by-packet basis. When employing pro-

grammable SmartNICs, even “fair” access to the NIC may result

in disproportionate network utilization due to the differing ways

in which tenants may program the SmartNIC. In this section, we

demonstrate the myriad ways in which allowing tenants to deploy

applications on a SmartNIC can lead to performance crosstalk.

1
Some providers do provide access to GPU and TPU accelerators, but that is orthogonal

to a tenant’s network usage.

3.1 Traffic scheduling
Link bandwidth is the main resource that is typically taken into

consideration for network isolation when working with traditional

ASIC-based fixed-function NICs. Bandwidth isolation for tenant

traffic is usually enforced by some form of virtual switch employ-

ing a combination of packet scheduling and rate-limiting tech-

niques [24, 30]. Because per-packet processing on host CPUs is not

feasible at high link rates, modern cloud providers are increasingly

moving traffic-scheduling tasks to the NIC itself [2, 16].

While this approach remains applicable in the case of Smart-

NICs, one of the key features of programmable NICs is the wealth

of hierarchical traffic-scheduling functionality. Hence, care must

be taken to ensure that a tenant’s internal traffic-scheduling de-

sires do not conflict with—or override—the provider’s inter-tenant

mechanisms. Moreover, because tenants can now install on-NIC

logic that can create and drop packets at will, host/NIC-bus (i.e.,

PCIe) utilization and network-link utilization are no longer tightly

coupled, necessitating separate isolation mechanisms for host/NIC

and network traffic.

3.1.1 Packet egress. Bandwidth isolation requires accounting

for the different packet sizes of different NIC applications—which

may differ from the original packet size when sent by the tenant’s

host-based application. The leftmost portion of Figure 1 shows the

default behavior when we run three on-NIC applications that gen-

erate different packet sizes. Despite equal core and host/NIC traffic

allocations, outgoing packets from the NIC cores to the network are

scheduled on a round-robin basis resulting in unfair link bandwidth

allocation (applications with larger packet sizes consume a larger

share). The second plot shows that fair allocation can be restored by

enforcing appropriate traffic scheduling (deficit round robin in this

case) at the NIC egress—after on-NIC tenant application processing.

3.1.2 Packet ingress. Ingress link bandwidth cannot be isolated

by the NIC itself as hosts are not in control of incoming traffic. Dat-

acenters usually use some form of sender-side admission control

that is out of scope for this paper. Once traffic arrives at the NIC,

however, ingress hardware parses the packets and determines how

to handle them. Traditional NICs generally DMA the packet di-

rectly into tenant host memory, but packets in SmartNICs are likely

destined to on-NIC cores for processing. While the processing rate

of SmartNIC ingress hardware is sufficient to demultiplex incoming

traffic, the effective service rate of the pipeline is gated by how fast

packets are consumed by later stages (i.e., tenant application cores)

683

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Grant, Yelam, Bland, and Snoeren

0 1000 2000 3000 4000 5000
Cycles

0

5

10

15

20

25

Gb
ps

64B
128B
256B

512B
1024B
1500B

Figure 2: Maximum throughput of seven NIC cores for vari-
ous packet sizes as a function of processing cycles per packet

of the pipeline. Because tenants process their packets at different

rates, it is important to separate traffic as soon as possible.

To demonstrate this issue, we generate two distinct traffic flows

destined to different tenants, each one of which is running an on-

NIC OVS application. One tenant’s application is allocated eight

NIC cores while the other uses just one, effectively limiting the

latter flow’s throughput to one-eighth of the first. However, as

shown in the third portion of Figure 1, both flows are processed at

the same rate—namely that achievable by one core—due to head-of-

line blocking: The ingress engine uses a single buffer pool per port

and does not differentiate between tenants. By allocating separate

buffer pools and separating the traffic immediately upon arrival

(see Section 4.2.1), we are able to restore proportional allocation as

shown in the rightmost portion of the figure.

3.2 Core cycles
As discussed in Section 2 general-purpose cores provide the pro-

grammability at the heart of SoC SmartNICs. While other execution

models exist, usually cores perform end-to-end packet processing

wherein each core processes a batch of packets at a time and runs

to completion before moving on. The amount of time each core

spends on a batch determines the effective throughput of the appli-

cation. In particular, the more complicated an application’s logic,

the lower throughput an individual core can deliver. Critically, in-

dividual cores on today’s SoC-based SmartNICs are unable to keep

up with commodity (e.g., 25-Gbps) link rates, and even generous

core allocations may fall short when tenant application processing

is particularly involved.

To characterize the packet processing capabilities of our Smart-

NIC, we measure the throughput of a simple NIC program running

on seven cores that redirects incoming packets back to the net-

work, but incurs a specified amount of artificial overhead for each

packet. We repeat this experiment for various packet sizes and plot

throughput as a function of cycles spent per packet in Figure 2. (Fig-

ures 2–4 of Liu et al. [35] show similar trends for other commodity

SmartNICs.) The plot shows that within a couple of thousand cy-

cles (instructions), core processing replaces link bandwidth as the

limiting resource, even for packet sizes as large as 1 KB. Hence,

appropriate core allocation is critical for application performance,

even with relatively simple processing tasks.

2 4 6 8 10 12
thousand requests per second

0

50

100

150

200

250

300

350

400

m
icr

os
ec

on
ds

Max
Mean
Min

Figure 3: ZIP latency as a function of offered load

3.3 Memory access latency
Programs that process packets at link rate must meet tight timing

requirements which are frustrated by the memory access latencies

of typical SmartNICs (≈60-ns penalty for an L2-cache miss in our

case; see, e.g., Table 2 of Liu et al. [35]). Cavium’s programmers’

guide extensively documents techniques for packet processing in

primarily L1 cache and stresses the criticality of working within

the limits of L2. Even if individual tenant applications are diligent

in their memory locality, however, the L2 cache is typically shared

across cores on a SmartNIC, meaning applications are likely to evict

the cache lines of their neighbors. On the Cavium CN2360, all 16

cores share a single L2 cache, making the issue particularly acute.

The performance degradation from cache interference can clearly

be seen when running a key/value store (KVS) program (described

in Section 6.2.2) alongside a program with poor data locality that

issues a large number of memory accesses, resulting in high cache

pressure. Our KVS program runs on eight cores sharing a total of

5 MB of RAM. The high-cache-pressure application runs on the

other eight cores, stepping over a large allocation of memory at

128-byte intervals to maximize cache-line evictions. As detailed in

Table 2, the throughput of the KVS program drops by over an order

of magnitude (from 23.55 to 3.2 Gbps) in the presence of the cache-

thrashing application, while transaction latency increases by more

than two orders of magnitude (from 65 to over 6700 microseconds).

3.4 Coprocessors
SoC SmartNICs like Cavium’s LiquidIO come with a rich ecosys-

tem of hardware coprocessors. There are a variety of hardware

accelerators that implement common networking tasks such as ran-

dom number generation, secret key storage and access, RAID, ZIP,

and deep packet inspection (regular-expression matching). Each

coprocessor has different performance characteristics and physical

location which can affect a given core’s access latency to the offload.

Each accelerator has a roughly fixed rate at which it can com-

pute; until requests over-saturate that rate no queuing occurs. If all

requests were synchronous and took the same amount of time, core

isolation would imply fair accelerator access. Some operations, how-

ever, incur latencies that are proportional to the size of the input

data so applications issuing larger requests can gain disproportional

access, leading to starvation for coexisting applications.

Figure 3 shows the latency spike that results when the ZIP

(de)compression accelerator is overloaded with very large (16-MB

684

SmartNIC Performance Isolation with FairNIC SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

Secure Key RNG
0.0

0.5

1.0

1.5

2.0

2.5

M
icr

os
ec

on
ds

1 core
16 cores

Gzip
0

100

200

300

400

500

600

Figure 4: Coprocessor latency with(out) contention

in this example) requests. Until around 3,000 requests per second,

the ZIP accelerator is able to meet demand; afterward, requests are

queued. The flat maximum latency is the point at which the eight

cores in the experiment all block on ZIP requests; had more cores

participated in the experiment the latency would be even greater.

We find that the majority of accelerators have similar latency-

response curves, with the exception of accelerators that have

(seemingly) non-deterministic execution times such as the regular-

expression accelerator. Figure 4 shows the minimum and maximum

latency observed for three different accelerators; latency increases

under contention are approximately an order of magnitude.

3.5 Bus arbitration
Others have shown that PCIe bandwidth arbitration can become a

shared bottleneck [27, 34, 40] and propose solutions [40]. We do not

encounter that limit in our current configuration (we use one 25-

Gbps PCIe 3.0 ×8 SmartNIC per host), but commercial clouds may

need to employ appropriate mechanisms to address the contention.

4 ISOLATION TECHNIQUES
FairNIC provides a set of per-resource isolation techniques to ensure

that each resource is partitioned (wherever possible) or multiplexed

according to tenant service-level objectives. In this section, we

introduce our isolation techniques by demonstrating how they

solve the issues discussed in the previous section and then discuss

their costs in the context of our targeted SmartNIC platform.

In our current implementation, SLOs are expressed in terms of

per-resource weights (e.g., fraction of cores or DWRR shares). By

expressly allocating every resource in a packet’s path that could

become a shared point of contention, FairNIC effectively dedicates a

portion of the SmartNIC’s end-to-end packet processing pipeline to

each tenant as shown in Figure 5. Note that individual resourcesmay

be allocated in different proportions depending on the needs of each

tenant. Moreover, we presume that tenants provide their offload

applications to the cloud operator for verification before installation

(i.e., the PaaS model from Section 2.1). The cloud provider may

choose to test the application or employ static analysis to ensure

benign behavior in the common case. In particular, we assume

that the applications are written using our framework, and do not

attempt to circumvent our isolation mechanisms.
2
We discuss the

limitations of these assumptions in Section 7.

2
Cavium’s Simple Executive does not employ hardware memory protection; we leave

support for such traditional isolation mechanisms to future work.

Host

Intel x86 Cores

Host Memory

Hypervisor

VM1

VM0

VM0 VM1

SmartNIC

Security Zip

 Rate-limiting
coprocessors (4.4)

HV

Traffic Scheduling (4.2)Core Partitioning (4.1)

Cache Striping (4.3)

L2 Cache

Main Memory

MIPS Cores
EthPCIe

Figure 5: FairNIC sharing resources between two tenants,
shown in orange and blue. (Some resources are consumed
by FairNIC itself, depicted in pink.)

4.1 Core partitioning
The cornerstone of FairNIC’s isolation is a static partitioning of

cores across tenant applications: each tenant application is assigned

a set of cores that process all of that tenant’s traffic in a non-work-

conserving fashion. Static application-core mappings allow tenant

applications to benefit from instruction locality in the L1 cache

and simplify packet processing. We configure the ingress engine to

group packets by tenant MAC address and directly steer packets to

the cores upon which that tenant’s application is running.

Costs. While time-sharing cores across applications could, in

principle, result in more efficient use of resources, the required

context switches would likely add significant delay to packet pro-

cessing. Our approach fundamentally limits the number of tenant

applications a given SmartNIC can support, but we argue that to-

day’s SmartNICs provide an adequate number of cores (e.g., 16–48

for the LiquidIO boards we consider) for the handful of tenants

sharing a single machine. Moreover, hosts shared by a significant

number of network-hungry tenants are likely to be provisioned

with more than one NIC to deliver adequate link bandwidth.

4.2 Traffic scheduling
Cavium NICs come with highly configurable packet ingress/egress

engines that support a variety of quality-of-service features in hard-

ware. For example, the egress engine provides multiple layers of

packet schedulers and shaper units that can be configured in soft-

ware to build hierarchical packet schedulers [48]. Each of these

units provides a set of scheduling algorithms (typically, a combina-

tion of deficit weighted round robin (DWRR) [47], strict priority

scheduling, and traffic shaping) and schedule packets at line rate.

4.2.1 Ingress. To isolate incoming traffic, we program the

ingress hardware to differentiate between packets from different

tenants and direct each tenant’s traffic to its own separate buffer

pool where it waits for cores to process it. Once these pools fill

up, the ingress hardware starts dropping packets, but only those

belonging to tenants with full buffers.

4.2.2 Egress. We use deficit weighted round robin to ensure

bandwidth isolation for tenant applications. FairNIC implements a

hierarchical scheduler where each tenant gets an independent sub-

tree of packet schedulers (which they can configure in whatever

685

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Grant, Yelam, Bland, and Snoeren

48 0718

Set Index Cache Line

18 714
Prefix Color Size

32 KB

App 1

Cores Prefix Color Size

0
1

0x0
0x1

App 0

2 0x2 16 KB

0x00
0x01
0x02

App 0

0x10
0x11
0x12

Virtual

App 0

App 1

App 0

App 0

App 1

Physical

TLB (0,1)

TLB (2)

16KB

L2

32KB

32KB

16KB

Figure 6: FairNIC inserts TLB entries of various sizes depend-
ing on the number of cores assigned.

manner they like), each of which falls into a DWRR scheduler at the

root, with one input queue for each application and weights (DRR

quanta) on the input queues proportional to their SLOs. One down-

side of DWRR is that it does not provide strong latency guarantees

and may exacerbate tail-latency issues. While there are “better”

schedulers in the literature, DWRR is available in hardware and

runs at line rate; latency is not an issue in our case as we only need

one input queue per application.

Costs. FairNIC’s tenant isolation consumes one of the layers of

packet schedulers/shapers in the egress engine, leaving fewer layers

for other intra-tenant traffic scheduling purposes. Moreover, Fair-

NIC does not at present interpose upon dynamic modifications to

the packet-processing engines, passing the burden of ensuring that

tenant applications do not attempt to reconfigure the scheduling

hardware to circumvent pre-assigned policies to the operator.

4.3 Cache striping
Our solution to L2-cache isolation is to provide each application an

isolated region of physical memory. FairNIC implements this iso-

lation by explicitly constructing each application’s virtual address

space so that its (contiguous) virtual heap is mapped to a (striped)

set of physical memory regions that occupy distinct L2 cache lines.

Cavium CN2360 NICs have a 16-way, 2048-set-associative L2 cache,

with 128-byte cache lines. Cache lines are indexed with address bits

7 to 17. Assuming each core gets an equal-sized memory region (to

which we refer to as a color), with 16 cores, the upper-4 bits (14–17)

of the cache index are a color prefix corresponding to the color of

each core. Each core’s colored memory consists of non-contiguous

stripes of 16-KB chunks.

16-KB chunks are ideal for paging, but the latency induced by

walking a page table is far too great when serving packets at 25

Gbps. Rather than page we statically set TLB entries at calls to

malloc.3 Our malloc allocates a single color of 16-KB chunks of

physical memory on a per-core basis. TLB entries are written to the

calling core which stitches the non-contiguous physical allocation

into a single contiguous virtual allocation. Each core has 255 TLB

entries so FairNIC can support up to 4 MB of colored allocation per

core with a total of 64 MB of isolated memory in the system.

MIPS TLBs allow for variable-sized TLB entries. We utilize this

feature to provide applications running on multiple cores with

proportionally larger stripes of isolated L2 cache. An application

with n cores is allocated (n · 16384)-byte contiguous stripes of

physical memory. As shown in Figure 6, identical expanded TLB

entries of size n ·16384 are mapped to each of the application’s cores.

3
Our implementation does not currently stripe code or stack segments.

Coloring memory in this way fundamentally limits NIC programs

to a small portion of the 16-GB available physical memory. However,

any program wishing to access larger regions of memory is free to

implement its own pager.

Costs. Applications using the Cavium Simple Executive have

their text, stack and fixed-sized heap loaded into a 256-MB con-

tiguous region of physical memory which is mapped into their

virtual address space using three TLB entries. Accesses outside

this pre-configured region (e.g., packet buffers, coprocessors, etc.)

use physical addressing. FairNIC employs virtual addressing for all

references to enforce isolation. Hence, memory references incur up

to one additional cycle of latency for TLB translation that was pre-

viously not needed. On the plus side, FairNIC’s virtual addressing

provides wild-write [9] protection for buggy application code.

4.4 Rate-limiting coprocessor access
FairNIC delivers accelerator performance isolation by rate-limiting

requests to each accelerator to an aggregate rate the unit can sus-

tain without queuing, similar in nature to the queue minimization

strategy of DCTCP [1]. In so doing, FairNIC ensures that any al-

lowed request to an accelerator observes the minimum possible

latency. If an accelerator is over-subscribed, each tenant exceeding

their fair share will be throttled, but the remaining tenants are not

impacted. Because not all tenant applications use each accelerator,

FairNIC also provides a form of work conservation that allows

tenants to divvy up accelerator resources allocated to cores not

currently accessing them.

An ideal implementation might employ a centralized DRR queue

for each accelerator. Unfortunately, there is no hardware support for

such a construct, and our best software implementation of a shared

queue increases the latency of accessing offloads by at least 300 ns.

In some cases—such as the random number generator and secret

key accelerator—that delay dominates accelerator access times.

Instead, FairNIC implements a distributed algorithm, similar in

spirit to distributed rate-limiting (DRL) [43] and sloppy counters [3].

When a core first requests the use of an offload, a token rate-limiter

is instantiated with a static number of tokens. This base rate is

the minimum guarantee per core. When a call to an accelerator

is made, the calling core decrements its local token count. When

its tokens are exhausted, it checks if sufficient time (based on its

predefined limit) has passed for it to replenish its token count. This

mechanism allows for cores to rate-limit accesses without directly

communicating with one another and incurring the additional 100-

ns latency of cross-core communication. Using distributed tokens in

place of a centralized queue has the downside that requests can be

bursty for short periods. The maximum burst of requests is double

a core’s maximum number of tokens. Hence, the burst size can be

adjusted by setting how often tokens are replenished.

Static token allocation is not work conserving: There may be

additional accelerator bandwidth which could be allocated to a

core with no remaining tokens in its given window. To attain work

conservation we allow a core to steal tokens from the non-allocated

pool when they run out. Stolen tokens are counted separately from

statically allocated tokens and are subject to a fair-sharing pol-

icy. Specifically, we implement additive increase, multiplicative

decrease as it allows for cores to eventually reach stability and it is

686

SmartNIC Performance Isolation with FairNIC SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

adaptive to changing loads [10]. To reduce the overhead of sharing,

cores only check the global counter when they run out of tokens

and have consumed them at a rate above their limiter.

We measure the maximum effective throughput of each accel-

erator empirically (see Section 3.4) and set token allocations ac-

cordingly. Unfortunately, not all accelerators run in constant time.

Accelerators such as ZIP and RAID execute as a function of the

size of their input. For these accelerators we dynamically calculate

the number of tokens based on the size of the request to retain

the desired rate of usage. We leave (seemingly) non-deterministic

accelerators such as the regular-expression parser to future work.

Costs. Rate-limiting incurs the overhead of subtracting tokens

from a core’s local cache in the common case. When accessing the

global token cache cores must access a global lock and increment

their local counters (≈100 ns), which is a substantial delay in the

case of the fastest accelerators (e.g., random number generation).

Moreover, applications are limited to an aggregate rate that ensures

the lowest-possible coprocessor access latency, which, due to impre-

cision in calibration, may under-utilize the coprocessor. It is possible

unrestricted access might lead to higher overall throughput.

5 IMPLEMENTATION
Cavium LiquidIO CN2360s come with a driver/firmware package

where the host driver communicates with the SmartNIC firmware

over PCIe. It provides support for traditional NIC functions such

as hardware queues, SR-IOV [12] and tools like ifconfig and

ethtool. FairNIC extends the firmware by adding a shim layer that

operates between core firmware and the applications. The shim

includes an application abstraction which can execute multiple

NIC applications. FairNIC includes an isolation library that imple-

ments core partitioning, virtual memory mapping and allocation,

and coprocessor rate-limiting. The shim provides a syscall-like
interface for applications to access shared resources.

5.1 Programming model
Each NIC application must register itself as an application object.
FairNIC maintains a struct (portions shown in the top part of

Figure 7) that tracks state and resources (like memory partitions

and output queues) associated with each application, along with

a set of callback functions for initialization and packet processing.

At tenant provisioning time, the cloud provider assigns each tenant

application a weight that is used in cache partitioning and token

allocation, a coremask that explicitly assigns NIC cores, and an

(sso_group) ID which is used to tag all of the application’s packets.

FairNIC maintains set of host queues (host_vfs) for interacting
with the tenant VMs on the host, output queues (pko_ports) to
send packets on the wire and memory regions (memory_stripes)
assigned to it. The tenant provides callbacks for traffic from the

host and wire which FairNIC invokes when packets arrive.

5.2 Isolation library
We implement our isolation mechanisms discussed in Section 4 as

a C library and expose methods (shown in the bottom portion of

Figure 7) that applications call to allocate memory, send packets or

access coprocessors per the isolation policy. None of these interfaces

prevent applications from bypassing FairNIC and directly accessing

typedef struct application {
char *name;
uint16_t weight;
coremask_t cores;
uint16_t sso_group;
uint16_t host_vfs[];
uint16_t pko_ports[];
uint64_t dest_mac;
void *memory_stripes[];
int (*global_init) (struct application* app);
int (*per_core_init) (struct application* app);
int (*from_host_packet_cb) (struct application* app,

packet* work);
int (*from_wire_packet_cb) (struct application* app,

packet* work, int *port);
}

void* memory_allocate(application, size);
void memory_free(void* p);
int send_pkt_to_host(application, packet, queue);
int send_pkt_to_wire(application, packet, queue);
int call_coprocessor(application, type, params);

Figure 7: FairNIC provides an application abstraction (top)
and an isolation library which exposes an API for applica-
tions to access NIC resources (bottom).

NIC resources. Moreover, all code runs in the same protection

domain and we do not make any claims of security isolation. We

assume that the application code is not malicious and uses the

provided library for all resource access.

Cache striping. Based on the weight property, each application is
allocated regions of memory during initialization, which are made

accessible through memory stripes. Applications use our memory

API to allocate or free memory, which also inserts the necessary

TLB entries for address translation.

Packet processing. Applications register callbacks for when they

receive packets and send packets to both host and wire using our

provided API. As a proof of concept, we use SR-IOV virtual func-

tions (VFs) to classify host traffic and Ethernet destination addresses

to classify wire traffic. Using the host_vfs property, we dedicate a

set of VFs for each application and tag packets on these VFs with

group ID sso_group. This labeling also allows for allocating sep-

arate buffer pools and sending back-pressure to only certain VFs

(and tenants) as our isolation mechanisms kick in and constrain

their traffic, while other tenants can keep sending.

Coprocessor access. Applications invoke coprocessors via

wrapped calls (not shown) to existing Cavium APIs. Each call

has blocking and non-blocking variants. The wrapped calls first

check the core local token counter for the coprocessor being

called. On the first call, tokens are initialized by setting their value

to the guaranteed rate specified in the application’s context. If

the core has available tokens it decrements its local count and

makes a direct call to the coprocessor. If a core has no tokens, it

checks its local rate-limiter. If enough time has passed since its

last invocation, the local tokens are replenished. Otherwise, the

687

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Grant, Yelam, Bland, and Snoeren

global token cache is accessed. If available, global tokens are then

allocated to the local cache of a core. Global overflow tokens are

single-use, and can only be reclaimed by re-checking the global

cache.

6 EVALUATION
In this section we demonstrate FairNIC’s ability to run multiple

tenant applications simultaneously and evaluate the effectiveness

of core partitioning, cache striping, and coprocessor rate-limiting.

We use our own implementations of Open vSwitch and a custom

key/value store that downloads functionality to the SmartNIC.

6.1 Experimental setup
Our testbed consists of two Intel servers, one equipped with a

Cavium 2360 SmartNIC and the other with a regular 25-Gbps NIC,

connected to each other via a point-to-point SFP+ cable. Each of the

servers sports forty 3.6-GHz x86 cores running Ubuntu 18.04. The

Cavium NIC that hosts our NIC applications features 16 1.5-GHz

MIPS cores, 4MB of shared L2 cache and 16 GB of DRAM. The server

with the SmartNIC hosts tenant applicationswhile the second server

generates workloads of various sizes and distributions using DPDK

pktgen [18]. We emulate a cloud environment by instantiating

tenants in virtual machines (VMs) using KVM [22] and employ

SR-IOV between the VMs and SmartNIC.

6.2 Applications
We implement two applications that are frequently (c.f. Table 3) em-

ployed in the literature to showcase SmartNIC technology: virtual

switching and a key/value store.

6.2.1 Open vSwitch datapath. Open vSwitch (OVS) is an open-

source implementation of a software switch [19] that offers a rich

set of features, including OpenFlow for SDN. OVS has three compo-

nents: vswitchd that contains the control logic, a database ovsdb
to store configuration and a datapath that handles most of the

traffic using a set of match-action rules installed by the vswitchd
component. OVS datapath runs in the kernel in the original imple-

mentation and is usually the only component offloaded to hardware.

We start with Cavium’s port of OVS [7] and strip away the

control components while keeping the datapath intact. For our

experiments, the control behavior is limited to installing a set of pre-

configured rules so that all flows readily find amatch in the datapath.

Unless specified otherwise, each rule simply swaps Ethernet and IP

addresses and sends the packet back out the arriving interface.

6.2.2 Key/value store. We implement a key/value store (KVS)

which has its key state partitioned between the host’s main memory

and the on-NIC storage. The NIC hosts the top-5% most-popular

keys, while the remaining 95% are resident only in host memory.

Due to the complexities involved in porting an existing key/value

store such as Memcached [17] or Redis [5] we developed our own

streamlined implementation that supports the standard put, get,

insert, and delete operations. We modify the open-source version

of MemC3 [15] to run in both user-space and on the SmartNIC.

MemC3 implements a concurrent hash table with constant-time

worst-case look-ups.

HOST

NIC

PCIe

Hypervisor

VFVFVFVF VFVF VFVF

VM

APP

VM

APP

VM

KVS

VM

KVS

OVS
OVS OVS

KVS
OVS

KVS

Figure 8: Tenants (shown in gray) are deployed in KVS VMs
(blue), which can communicate with FairNIC applications
(dark gray) through SR-IOV.

To drive our key/value store, we extend DPDK’s packet generator

to generate and track key/value requests with variable-sized keys.

The workload requests keys using a Zipf distribution.

6.3 Cohabitation
We start by demonstrating FairNIC’s ability to multiplex SmartNIC

resources across a representative set of tenants each offloading

application logic to the SmartNIC. In the configuration shown in

Figure 8 we deploy six tenants across eight virtual machines and

all sixteen NIC cores. Four tenants run our KVS application in one

VM paired with a corresponding SmartNIC application. Two other

tenants run two VMs each and use our OVS SmartNIC application

to route traffic between them. The OVS applications are assigned

three or four NIC cores each, while the KVS applications each run

on two. (The FairNIC runtime executes on the remaining core).

We send traffic from a client machine at line rate (25 Gbps) and

segregate the traffic such that each tenant (app) gets one-sixth of

the total offered load (≈4 Gbps).

As shown in Figure 9, each of the (identically provisioned) KVS

tenants serve the same throughput, while the two tenants employ-

ing OVS obtain differing performance due to their disparate core

allocations. The KVS tenants all deliver relatively higher through-

put and low per-packet latency because most requests are served

entirely by their on-NIC applications, while the OVS tenants’ re-

sponses are much slower as packets are processed through the VMs

on the hosts. Note that whenever an app is not able to service the

≈4-Gbps offered load, it means that the cores are saturated due

to high packet rate which happens at lower packet sizes for all

the tenants. The right-hand plot shows a CDF of the per-packet

latencies experienced by each of the tenants at 1000-B packet size.

OVS tenants experience higher latencies due to queue buildup as

they are overloaded (which is worse for OVS 2 with fewer cores)

while the KVS tenants comfortably service all offered load at this

packet size.

6.4 Performance isolation
We now evaluate the performance crosstalk between two tenants

each running an application on the NIC. The first tenant runs a

well-behaved application that runs in its normal operation mode.

688

SmartNIC Performance Isolation with FairNIC SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

600 800 1000 1200 1400
Packet Size (Bytes)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Gb
ps

OVS 1
OVS 2
KVS 1
KVS 2
KVS 3
KVS 4

102 103 104

Latency (microseconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

OVS 1
OVS 2
KVS 1
KVS 2
KVS 3
KVS 4

Figure 9: Throughput (left) and per-packet latency (right) for six cohabitating tenants using FairNIC: two tenants running
a four and three-core OVS application switching traffic between two VMs each, and four tenants running one VM with a
corresponding KVS application across two cores.

400 600 800 1000 1200 1400
Packet Size (Bytes)

2

4

6

8

10

12

Gb
ps

OVS 1, Alone
OVS 1
OVS 2

400 600 800 1000 1200 1400
Packet Size (Bytes)

2.5

5.0

7.5

10.0

12.5

Gb
ps

OVS 1, Alone
OVS 1
OVS 2

102 103

Latency (microseconds)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Alone

Isolated
Non-Isolated

Figure 10: The left two plots show the throughput of two cohabitating OVS applications without and with FairNIC isolation,
respectively. The rightmost plot shows per-packet latencies for OVS 1 with 1-KB packets.

The other tenant runs a second application in a deliberately antago-

nistic fashion that exhibits various traffic or resource usage/access

patterns in order to impact the performance of the first one.

6.4.1 Traffic scheduling and core isolation. For this experiment,

we run two instances of Open vSwitch, OVS 1 and OVS 2. Both run

the same implementations of our Open vSwitch offload with similar

sets of flow table rules, except for one difference. While OVS 1

has three actions for each flow rule: swap_mac, swap_ip (that swap
Ethernet and IP source and destination addresses, respectively)

and output (send the packet out on the same port)—actions that

effectively turn the packet around—OVS 2 has more core-intensive

packet-processing rules with an extra 100 swap actions per packet

(representative of a complex action). This extra processing reduces

the throughput of OVS 2 compared to OVS 1 (given same number of

cores for each).We send 50/50%OVS 1/2 traffic on thewire, of which

only a portion is returned based on the the effective capacity of each

application which we use to measure throughput and latencies.

We consider three different configurations: alone, where OVS 1
is run by itself on seven cores; non-isolated, where OVS 1 and OVS 2
are run together across 14 cores with each core servicing either

instance depending on the packet it receives; and finally isolated,
where OVS 1 and OVS 2 are each assigned to a distinct set of seven

cores and packets are forwarded directly to the appropriate cores.

The first two plots in Figure 10 show the throughput of OVS 1

and OVS 2 in the non-isolated and isolated scenarios, respectively;

in both cases we plot the performance of OVS 1 alone for reference.

In the non-isolated scenario on the left, the sharing of core cycles

causes OVS 1 and OVS 2 to have same throughput due to head-of-

line blocking on the slower OVS 2 packet processing. Ideally OVS 1

would perform at the throughput level shown in the alone case. This

unfairness is corrected in the core-isolated scenario shown in the

middle graph that decouples the throughput of the two applications

and lets them process packets at their own rates.

Similar effects can be seen for latencies as well. As a baseline,

round-trip latencies for packets that are bounced off the NIC over

the wire fall in the 10–100 µs range. These latencies are amplified

by an order of magnitude the moment receive throughput goes

above what the application can handle and queues build up. While

applications can choose to stay within their maximum throughput

limit, it does not help in the non-isolated case as the throughputs of

both applications are strictly coupled. This effect is demonstrated

in the rightmost plot of Figure 10 which shows OVS 1 latencies in

the alone, non-isolated and isolated cases; it suffers a significant

latency hit in the non-isolated case.

6.4.2 Cache striping. We demonstrate the effectiveness of Fair-

NIC’s cache isolation by running KVS alongside a cache-thrashing

program. The KVS application component is allocated 5 MB of NIC

memory and services requests generated at 23 Gbps (4-byte keys

and 1024-byte values) according to a YCSB-B (95/5% read/write

ratio) distribution: 5 percent of keys are “hot” and requested 95

percent of the time. The experiment has three configurations: alone,
where KVS runs by itself on eight cores, isolated, where we use
FairNIC to run KVS alongside the cache thrasher (assigned to the

other eight cores), and non-isolated, where we turn off FairNIC’s

689

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Grant, Yelam, Bland, and Snoeren

102 103 104

latency microsceonds

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

alone
isolated
non-isolated

Figure 11: Key/value store response latencies alongside an
antagonistic cache-thrashing program, with and without
cache striping.

Experiment Mean Latency Gbps
Alone 65.69 23.55

Isolated 100.52 23.55

Non-Isolated 6764.20 3.2

Table 2: Mean response latency and average bandwidth of
KVS with and without cache coloring.

cache striping. The duration of each experiment is roughly five

minutes or approximately 100M packets. Figure 11 plots CDFs of

the per-request response latency for each of the configurations.

Table 2 reports mean latencies and bandwidths.

Running KVS against the cache thrasher without isolation re-

sults in over a 100× increase in response latency and a bandwidth

reduction of 86.5%. The increase in latency is the result of multiple

factors. First, the vast majority of memory accesses result in an L2

miss and severely impact writes into the Cuckoo hash which can

require many memory accesses when collisions occur and hash

values are pushed to different locations. These delays cause both

queuing and packet loss resulting in poor latency and throughput.

With cache striping turned on response latency increases by only

50% on average, which is appropriate given its resource allocation:

While running alone without FairNIC isolation KVS has free access

to the entire L2 cache. In the isolated case KVS is only allocated

half the L2 cache space (in proportion to its core count).

6.4.3 Coprocessor rate-limiting. We demonstrate the effective-

ness of our distributed coprocessor-rate limiting using the ZIP

coprocessor. We extend our OVS implementation to support IP

compression [45] by implementing compress and decompress ac-

tions. We run two instances of OVS: a benign OVS 1 on eight cores

and an antagonistic OVS 2 on seven cores as in Section 6.4.1. OVS 1

is configured with flow rules that compresses all incoming packets,

while OVS 2 is artificially modified to compresses 10× the data in

each packet to emulate a compression-intensive co-tenant.

We plot throughput as a function of packet size for three dif-

ferent isolation configurations in Figure 12. To provide a baseline,

OVS 1 alone shows the throughput of OVS 1 in the absence of OVS

2 (but still restricted to eight cores). The non-isolated lines show

the performance of both OVS instances when cohabitating with

400 600 800 1000 1200 1400
Packet Size (Bytes)

0

200

400

600

800

1000

1200

1400

M
bp

s

OVS 1, Alone
OVS 1, Isolated
OVS 1, Non-Isolated
OVS 2, Isolated
OVS 2, Non-Isolated

Figure 12: Throughput of two OVS instances using the ZIP
coprocessor with and without rate-limiting.

FairNIC’s traffic, core, and heap isolation enabled. Without copro-

cessor rate-limiting, each instance issues eight parallel requests to

the coprocessor, and OVS 2’s large requests restrict overall copro-

cessor throughput, bringing the performance of OVS 1 down with

it. Coprocessor rate-limiting is enabled for the isolated runs, which

restore the original OVS 1 performance while limiting OVS 2 to its

fair share (half) of the coprocessor’s throughput, or approximately

(coprocessor performance is not quite linear; we leave finetuning

to future work) one-tenth of the performance obtained by OVS 1.

7 DISCUSSION
In this section we address the practicality of FairNIC by outlin-

ing the challenges in selecting—and implementing—appropriate

fairness and security policies for a deployable service model. We

also consider the relevance of the challenges we address, and our

proposed solutions, to other flavors of SmartNIC hardware.

7.1 Fairness policies
Various definitions of fairness have been proposed in the liter-

ature for multi-resource settings like SmartNICs. These include

per-resource fairness (PRF) that extends traditional fair queuing

mechanisms to every resource separately, bottleneck fairness [13]

that implements fairness based on sharing the bottlenecked re-

source, and, more recently, dominant resource fairness (DRF) [20]

that compares and shares resources based on proportional usage

across different flows.

Robustness. While all these policies are “fair” in their own sense,

only DRF is strategy proof. At first glance, FairNIC’s fairness model

may seem like PRF but, strictly speaking, it is not. While PRF tra-

ditionally refers to work-conserving fair queuing implemented

independently at every resource, some of FairNIC’s resources are

allocated statically (i.e., in a non-work conserving fashion) as we

favor low-overhead/low-latency mechanisms. That said, static allo-

cations are strategy proof by definition as flows cannot do anything

(such as inflating their demands) to change their allocation at run

time. It is true, however, that the subset of resources with work-

conserving schedulers in FairNIC may benefit from strategy-proof

fairness models like DRF.

Complexity. DRF, in at least its current implementation [20], re-

quires centralized scheduling based on usage information gathered

690

SmartNIC Performance Isolation with FairNIC SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

from all the resources involved. Apart from the non-trivial chal-

lenges involved in collecting accurate resource usage in real time

(which may be approximated with help of models), a centralized

scheduler implementation would require expensive inter-core com-

munication for scheduling every packet. Recall that our primary

motivation for employing distributed token rate-limiters for ac-

celerators instead of fine-grained implementations like DRR was

precisely to avoid this cost. Furthermore, a complex centralized

scheduler like DRF may be less amenable to hardware implementa-

tion. For example, FairNIC already makes use of a hardware packet

scheduler to fairly share egress bandwidth and readily allows dif-

ferent accelerators to implement in-house fair queuing without any

dependencies on other resources.

In general, the appropriate policy should be guided by what fair-

ness means from an end-user and business perspective. A fairness

policy that adapts usage at all resources to fairly allocate one aggre-

gate metric like end-to-end throughput or latency, while not strat-

egy proof, might be more suitable for inclusion in a business/SLO

model. Moreover, implementing a sophisticated fairness model like

DRF on the SmartNIC that services traffic that likely subsequently

experience some sort of packet scheduling in the network may be

superfluous. Fairness needs to be considered in context, relative to

its end-to-end impact on tenant applications. Our initial prototype

employs a per-resource model as it provides the flexibility to make

individual implementation choices that are low-overhead and fit

naturally with the NIC’s overall design.

7.2 Security isolation
SmartNIC applications propose a potential security threat to co-

tenants, themselves, and the host in which the SmartNIC resides.

This section highlights four general problems of SmartNIC security.

Where appropriate, risks are related to the service model adopted

(i.e., SaaS, PaaS, and IaaS; see Section 2.1). We end with a path

forward for ensuring security under SmartNIC multi-tenancy.

Shared address space. FairNIC’s programmingmodel requires ten-

ant applications to respect address-space bounds (i.e., not to inspect

or write to addresses allocated to other applications). Datacenters

providing SaaS can attempt to ensure address-space safety with rig-

orous testing and review. However, a wide range of memory attacks

have been demonstrated against even highly tested software [50].

In PaaS, code provided by tenants can be inspected to check for

address-space safety using static and dynamic analysis [21]. How-

ever, code obfuscation, imperfect analysis, and unintentional bugs

make ensuring this property is difficult. IaaS only exasperates the

issues of protection, as SmartNIC resources typically have fewer

abstractions than their on-host counterparts. Hardware and soft-

ware (compiler) mechanisms for enforcing address-space safety

would likely correct many of these issues. For example, hardware

rings of protection could be leveraged to implement some kind of

hypervisor for tenant SmartNIC applications.

Shared hardware. Due to limited resources, applications are of-

ten forced to share hardware, creating numerous architecture-

dependent security concerns. For example, in the case of Cavium

CN2360, coprocessor memory is allocated by a shared free pool

allocator (FPA). Thus, a buffer used to ZIP a file can be returned to

the FPA by one application, and then allocated to another, while the

buffer still contains private information. This poses the highest risk

to PaaS services as the buffers may be intentionally read to violate

the privacy of co-tenants, but also in SaaS where programming

bugs can lead to information leaks. It is trivial to zero buffers in

hardware or software; however, there are likely many such security

problems spanning a number of different SmartNIC models. Further

work is needed to understand the extent of this problem.

End-host protection. In the PaaS and IaaS models, the end-

host/SmartNIC interface is another challenge. The concerns are

again too numerous to state, so we provide an example. A Smart-

NIC has access to the IOMMU and the ability to DMA into the

address space of any registered VM through SR-IOV virtual func-

tions. In PaaS and IaaS, VFs should be guarded using capabilities

to protect their access from unprivileged applications. In general,

NICs have unfettered access to the PCIe bus. A first step towards

host-SmartNIC isolation would be the protection of access to all

SmartNIC I/O controllers, however, this is likely but one of many

open problems relating to the end-host/SmartNIC interface.

Side channels. In both SaaS and PaaS, application code may con-

tain privacy-violating side channels. Although enumerating all side

channels is an open problem, existing channels may be mitigated

by diligent code review and software/hardware patches. Current

side channel research will need to be expanded to study Smart-

NIC virtualization platforms, should these platforms be developed.

The well-acquainted reader will appreciate performance isolation

mechanisms such as FairNIC can help address some side channels.

FairNIC’s static cache partitioning, in particular, has been shown

to prevent a class of timing side channels [41].

We do not claim to know what combination of hardware and

software security mechanisms would be optimal to support Smart-

NIC multi-tenancy. The first step toward address space, end-host,

and shared hardware security is likely a comprehensive model for

enforcing protection domains. These protections will require care-

ful design to address performance requirements and will need to

account for security challenges unique to SmartNICs. Protections

must also be broad, including infrastructure for quickly deploying

patches. Finally, we note that many SmartNICs—including the Cav-

ium CN2360—do have mechanisms for enforcing rings of protection.

However, it is unclear whether these mechanisms are acceptably

performant and secure along the dimensions noted above. We leave

such a study to future work.

7.3 Generality of FairNIC
FairNIC’s isolation mechanisms are implemented on the specific

architecture of Cavium LiquidIO CN2360. However, there are other

(SoC) SmartNICs from various vendors [4, 38] that exhibit some

architectural differences from the Cavium’s. At a high level, all

these SmartNICs have processor cores and a memory subsystem

to support programmability, coprocessors and traffic management

hardware; as such, they face similar isolation challenges.

In general, SoC SmartNICs can be categorized as either on-path
or off-path, with eitherwimpy or beefy cores [35]. Our Cavium cards

employ a large number of wimpy cores allowing for high levels

of packet processing parallelism, and perform on-path processing

691

SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA Grant, Yelam, Bland, and Snoeren

which requires every packet sent or received to be delivered to a

core. Other cards like BlueField [38] and Stingray [4], in contrast,

employ fewer but more powerful (ARM) cores with much higher

clock speeds. They also perform off-path processing where packets

first go through a packet switch on the card. Packets with headers

which require NIC processing are matched against forwarding

rules before routing to one of the NIC cores. Those that are not

matched are directly routed across PCIe to the end host CPU. Other

components like the memory subsystem and the coprocessors do

not show any significant architectural differences.

Traffic scheduling. For tenant traffic isolation, FairNIC performs

ingress buffer separation to avoid head-of-line blocking and fair

queuing on egress to account for different packet sizes. On Cavium

NICs, we achieve this with the support of dedicated (programmable)

ingress and egress hardware that sits before and after the cores on

the data path. In off-path designs, the on-chip switch encapsulates

both ingress and egress, and can be programmed to achieve similar

functionality in hardware. A key difference though is that since

host traffic can bypass the NIC cores in off-path designs, packets

coming from both host and NIC cores must be aggregated for each

tenant prior to applying any egress fair queuing among the tenants.

Core/Cache isolation. Figure 10 demonstrates performance inter-

ference in the absence of core isolation, which FairNIC achieves

using static core partitioning. However, this may not be suitable for

NICs with few, powerful cores where traditional time-shared pro-

cess schedulers (Linux/DPDK) may be preferable. These schedulers

represent a trade-off as they use the processor efficiently but incur

the processing overhead associated with scheduling and the latency

cost of context switches. Prior work has explored the CPU efficiency

and latency trade-offs of statically partitioning and dynamically

spreading network traffic on beefy cores [37]. Furthermore, cache

striping for memory isolation may be unnecessary on SmartNICs

with more sophisticated CPUs that support hardware-based cache

isolation techniques such as cache tagging.

Coprocessor isolation. FairNIC’s rate-limiting approach to copro-

cessor isolation is designed to be architecturally independent as it

models coprocessors based solely on their throughput characteris-

tics. While SmartNICs differ in the set of coprocessors they support,

each of these coprocessors can employ a rate-limiter customized

to its performance properties for isolating its tenant workloads.

Moreover, rate-limiting can be turned on or off separately for each

coprocessor, allowing for hardware designs where a subset of co-

processors employ their own scheduling in hardware while the rest

of them continue to use rate-limiting.

8 RELATED WORK
Cloud datacenter virtualization stacks have increasingly focused

on network performance isolation; the work is far too voluminous

to catalog here. We observe, however, that some operators—like

Google—seem focused on software mechanisms. PicNIC [30] uti-

lizes user-specified service-level agreements as criteria for sharing,

and CPU-enforced fair queuing for rate limiting. Others, like Ama-

zon and Microsoft, implement network virtualization functionality

in custom SmartNIC hardware [2, 16]. In all cases, however, they

Paper Program Hardware
Approx FairQ [46] Flow monitor Switch

KV-Direct [32] KV store FPGA NIC

Floem [42] Top-N ranker SoC NIC

ClickNP [33] Rate limiter FPGA NIC

ClickNP [33] Firewall FPGA NIC

AccelNet [16] SDN stack FPGA NIC

NBA [29] Router GPU

E3 [36] Microservices SoC NIC

λ-NIC [11] Microservices ASIC NIC

iPipe [35] KV store SoC NIC

iPipe [35] Lock server SoC NIC

iPipe [35] Analytics SoC NIC

NetChain [25] Chain replication Switch

NetCache [26] KV store Switch

Table 3: Some hardware-accelerated projects
do not currently address performance isolation of programmable

NIC resources found in SoC SmartNICs.

Recent research has shown significant benefits from offloading

certain functions from host CPUs to more targeted hardware. Ta-

ble 3 showcases the variety of these efforts. Most applications are

purpose-built for the particular platform under consideration, and

are not amenable to use in a multi-tenant environment. Moreover,

developers require intimate knowledge of the hardware [16].

In contrast, several recent efforts have focused on developing

programmer-friendly frameworks to facilitate offloading general-

purpose applications to SmartNICs. The authors of Floem [42] note

that state migration between host and SmartNIC is difficult for de-

velopers to reason about and provide an automatic framework for

state migration. Ipipe [35] authors further point out that reasoning

about performance is difficult, and propose automatic scheduling

and migration of tasks between host and NIC based on runtime

performance. Uno [31] identifies that chains of network functions

could behave poorly due to repeated PCIe crossings and provided

automatic support for network function placement. It would be in-

teresting to explore implementing FairNIC’s isolation mechanisms

in the context of one of them.

9 CONCLUSION
We take a first step towards enabling SoC SmartNIC use in multi-

tenant cloud environments. We identify key points of performance

contention such as packet ingress and egress, core assignment,

memory access, and coprocessor usage, and implement low-cost

isolation mechanisms. We show the effectiveness of our Cavium

prototype for two representative cloud applications. FairNIC is lim-

ited to performance isolation; security is beyond our scope. Yet, our

results suggest it may indeed be possible to maintain the perfor-

mance benefits of SmartNICs in a multi-tenant cloud environment.

Hence, complete SmartNIC virtualization remains an important

topic for future study; our work does not raise any ethical issues.

ACKNOWLEDGEMENTS
This work was supported in part by the National Science Founda-

tion (CNS-1564185) and the Advanced Research Projects Agency-

Energy. We are indebted to Shay Gal-On, Weishan Sun, Ugendresh-

war Kudupudi, Jim Ballingal, and others at Cavium/Marvell for

their generous support and assistance, and to Geoff Voelker, the

anonymous reviewers, and our shepherd Anirudh Sivaraman for

feedback on earlier drafts of this manuscript. Ming Liu and Dave

Andersen provided extensive help with their respective codebases.

692

SmartNIC Performance Isolation with FairNIC SIGCOMM ’20, August 10–14, 2020, Virtual Event, USA

REFERENCES
[1] Mohammad Alizadeh, Albert Greenberg, Dave Maltz, Jitu Padhye, Parveen Pate,

Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data Center

TCP (DCTCP). In Proc. ACM SIGCOMM.

[2] Amazon. 2020. AWS Nitro System. https://aws.amazon.com/ec2/nitro/. (2020).

[3] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,

M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2010. An Analysis of

Linux Scalability to Many Cores. In Proc. USENIX OSDI.
[4] Broadcom. 2019. Broadcom Stringray SmartNIC. https://www.broadcom.com/

products/ethernet-connectivity/smartnic/ps225. (2019).

[5] Josiah L. Carlson. 2013. Redis in Action. Manning Publications Co., USA.

[6] Cavium. 2017. Liquid IO II 10/25G Smart NIC Family. (2017).

[7] Cavium. 2017. LiquidIO OVS Software Architecture. (Dec. 2017). https://www.

marvell.com/documents/ocwqbcxlc2ir4o7n16rn/.

[8] Michael K. Chen, Xiao Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu, Tao Liu, and

Roy Ju. 2005. Shangri-La: Achieving High Performance from Compiled Network

Applications while Enabling Ease of Programming. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation.

[9] Peter M. Chen, Wee Teck Ng, Subhachandra Chandra, Christopher Aycock, Gu-

rushankar Rajamani, and David Lowell. 1996. The Rio File Cache: Surviving

Operating System Crashes. In Proceedings of the International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS).

[10] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the Increase and Decrease Algo-

rithms for Congestion Avoidance in Computer Networks. Journal of Computer
Networks and ISDN Systems 17, 1 (June 1989).

[11] Sam Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosenblum. 2019.

λ-NIC: Interactive Serverless Compute on Programmable SmartNICs. (Sept.

2019). http://arxiv.org/abs/1909.11958v1.

[12] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian, and Haibing Guan.

2010. High performance network virtualization with SR-IOV. J. Parallel and
Distrib. Comput. 72, 1–10.

[13] Norbert Egi, Adam Greenhalgh, Mark Handley, Gianluca Iannaccone, Maziar

Manesh, Laurent Mathy, and Sylvia Ratnasamy. 2009. Improved Forwarding Ar-

chitecture and Resource Management for Multi-Core Software Routers. Network
and Parallel Computing Workshops, IFIP International Conference on 0, 117–124.

[14] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark Silberstein. 2019.

NICA: An Infrastructure for Inline Acceleration of Network Applications. In

2019 USENIX Annual Technical Conference (USENIX ATC 19). USENIX Association,

Renton, WA, 345–362.

[15] Bin Fan, David G. Andersen, and Michael Kaminsky. 2013. MemC3: Compact

and Concurrent MemCache with Dumber Caching and Smarter Hashing. In

Proceedings of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI). Lombard, IL, 371–384.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza

Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric

Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack

Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,

Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,

Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug

Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure

Accelerated Networking: SmartNICs in the Public Cloud. In Proceedings of the 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI).

[17] Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux J. 2004, 124
(Aug. 2004), 5.

[18] Linux Foundation. 2015. Data Plane Development Kit (DPDK). (2015). http:

//www.dpdk.org

[19] Linux Foundation. 2020. Open vSwitch. https://www.openvswitch.org/. (2020).

Accessed: 2020-01-31.

[20] Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion Stoica. 2012. Multi-Resource

Fair Queueing for Packet Processing. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM ’12). Association for Computing Machinery, New

York, NY, USA, 1–12.

[21] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis. 2014.

Out of control: Overcoming control-flow integrity. In 2014 IEEE Symposium on
Security and Privacy. IEEE, 575–589.

[22] Irfan Habib. 2008. Virtualization with KVM. Linux J. 2008, 166, Article Article 8
(Feb. 2008), 1 pages.

[23] Intel. 2019. Netronome-Agilio-SmartNICs. (2019). Accessed: 2019-03-22.

[24] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,

Albert Greenberg, and Changhoon Kim. 2013. EyeQ: Practical Network Perfor-

mance Isolation at the Edge. In Presented as part of the 10th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 13). USENIX, Lombard,

IL, 297–311.

[25] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,

Changhoon Kim, and Ion Stoica. 2018. NetChain: Scale-Free Sub-RTT Coordina-

tion. In Proc. USENIX NSDI.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,

Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores

with Fast In-Network Caching. In Proc. ACM SOSP.
[27] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guidelines

for High Performance RDMA Systems. In Proceedings of the USENIX Annual
Technical Conference (ATC).

[28] Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza,

and Christopher J. Rossbach. 2018. Sharing, Protection, and Compatibility for

Reconfigurable Fabric with AmorphOS. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[29] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun Shim, and Sue

Moon. 2015. NBA (Network Balancing Act): A High-performance Packet Pro-

cessing Framework for Heterogeneous Processors. In Proc. ACM EuroSys.
[30] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, YaogongWang, Chong-

gang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster, and Amin

Vahdat. 2019. PicNIC: Predictable Virtualized NIC. In Proc. ACM SIGCOMM.

[31] Yanfang Le, Hyunseok Chang, Sarit Mukherjee, Limin Wang, Aditya Akella,

Michael M. Swift, and T. V. Lakshman. 2017. UNO: Uniflying Host and Smart

NIC Offload for Flexible Packet Processing. In Proc. ACM SoCC.
[32] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew

Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance

In-Memory Key-Value Store with Programmable NIC. In Proc. ACM SOSP.
[33] Bojie Li, Kun Tan, Larry Luo, Renqian Luo, Yanqing Peng, Ningyi Xu, Yongqiang

Xiong, and Peng Cheng. 2016. ClickNP: Highly Flexible and High-performance

Network Processing with Reconfigurable Hardware. In Proceedings of the ACM
SIGCOMM Conference.

[34] Jiuxing Liu, Amith Mamidala, Abhinav Vishnn, and Dhabaleswar K. Panda. 2004.

Performance evaluation of InfiniBand with PCI Express. In Proceedings of Sympo-
sium on High Performance Interconnects.

[35] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and

Karan Gupta. 2019. Offloading Distributed Applications onto SmartNICs using

iPipe. In Proceedings of the ACM SIGCOMM Conference.
[36] Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo

Phothilimthana. 2019. E3: Energy-efficient Microservices on SmartNIC-

accelerated Servers. In Proceedings of the USENIX Annual Technical Conference.
[37] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,

Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve

Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily

Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,

Valas Valancius, XiWang, and Amin Vahdat. 2019. Snap: AMicrokernel Approach

to Host Networking. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP ’19). Association for Computing Machinery, New York,

NY, USA, 399–413.

[38] Mellanox. 2018. Mellanox BuleField SmartNIC. (Dec. 2018). http://www.mellanox.

com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic.

[39] Soo-Jin Moon, Vyas Sekar, and Michael K. Reiter. 2015. Nomad: Mitigating

Arbitrary Cloud Side Channels via Provider-Assisted Migration. In Proceedings
of the ACM Conference on Computer and Communications Security.

[40] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio

López-Buedo, and Andrew W. Moore. 2018. Understanding PCIe performance

for end host networking. In Proceedings of the ACM SIGCOMM Conference.
[41] D Page. 2005. Partitioned Cache Architecture as a Side-Channel Defence Mecha-

nism. (2005).

[42] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Simon Peter,

Rastislav Bodik, and Thomas Anderson. 2018. Floem: A Programming System

for NIC-Accelerated Network Applications. In Proceedings of USENIX Symposium
on Operating System Design and Implementation (OSDI).

[43] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum,

and Alex C. Snoeren. 2007. Cloud Control with Distributed Rate Limiting. In

Proceedings of the ACM SIGCOMM Conference. Kyoto, Japan. Best student paper.
[44] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey,

You, Get Off ofMyCloud: Exploring Information Leakage in Third-Party Compute

Clouds. In Proceedings of the ACM Conference on Computer and Communications
Security. Chicago, IL. Test of Time Award.

[45] Abraham Shacham, BobMonsour, Roy Pereira, andMatt Thomas. 2001. IP Payload
Compression Protocol (IPComp). RFC 3173. Internet Engineering Task Force.

[46] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.

Approximating Fair Queueing on Reconfigurable Switches. In Proc. USENIX NSDI.
[47] M. Shreedhar and G. Varghese. 1996. Efficient fair queuing using deficit round-

robin. IEEE/ACM Transactions on Networking 4, 3 (June 1996), 375–385.

[48] Brent Stephens, Aditya Akella, and Michael Swift. 2019. Loom: Flexible and

Efficient NIC Packet Scheduling. In 16th USENIX Symposium onNetworked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 33–46.

[49] Brent Stephens, Aditya Akella, and Michael M. Swift. 2018. Your Programmable

NIC Should Be a Programmable Switch. In Proc. ACM HotNets.
[50] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. Sok: Eternal war

in memory. In 2013 IEEE Symposium on Security and Privacy. IEEE, 48–62.

693

https://aws.amazon.com/ec2/nitro/
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.broadcom.com/products/ethernet-connectivity/smartnic/ps225
https://www.marvell.com/documents/ocwqbcxlc2ir4o7n16rn/
https://www.marvell.com/documents/ocwqbcxlc2ir4o7n16rn/
http://arxiv.org/abs/1909.11958v1
http://www.dpdk.org
http://www.dpdk.org
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic.
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic.

	Abstract
	1 Introduction
	2 Background
	2.1 Service models
	2.2 Types of SoC SmartNICs
	2.3 Cavium architecture

	3 Motivation & Challenges
	3.1 Traffic scheduling
	3.2 Core cycles
	3.3 Memory access latency
	3.4 Coprocessors
	3.5 Bus arbitration

	4 Isolation Techniques
	4.1 Core partitioning
	4.2 Traffic scheduling
	4.3 Cache striping
	4.4 Rate-limiting coprocessor access

	5 Implementation
	5.1 Programming model
	5.2 Isolation library

	6 Evaluation
	6.1 Experimental setup
	6.2 Applications
	6.3 Cohabitation
	6.4 Performance isolation

	7 Discussion
	7.1 Fairness policies
	7.2 Security isolation
	7.3 Generality of FairNIC

	8 Related Work
	9 Conclusion
	References

