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Abstract: Genes that affect adaptive traits have been identified, but our knowledge of the genetic
basis of adaptation in a more general sense (across multiple traits) remains limited. We combined
population-genomic analyses of evolve-and-resequence experiments, genome-wide association
mapping of performance traits, and analyses of gene expression to fill this knowledge gap, and
shed light on the genomics of adaptation to a marginal host (lentil) by the seed beetle Callosobruchus
maculatus. Using population-genomic approaches, we detected modest parallelism in allele frequency
change across replicate lines during adaptation to lentil. Mapping populations derived from each
lentil-adapted line revealed a polygenic basis for two host-specific performance traits (weight and
development time), which had low to modest heritabilities. We found less evidence of parallelism
in genotype-phenotype associations across these lines than in allele frequency changes during the
experiments. Differential gene expression caused by differences in recent evolutionary history
exceeded that caused by immediate rearing host. Together, the three genomic data sets suggest that
genes affecting traits other than weight and development time are likely to be the main causes of
parallel evolution, and that detoxification genes (especially cytochrome P450s and beta-glucosidase)
could be especially important for colonization of lentil by C. maculatus.

Keywords: Plant-insect interaction, host shift, parallel evolution, detoxification, experimental
evolution, population genomics, genome-wide association mapping, gene expression, Callosobruchus
maculatus

1. Introduction

Genomic approaches have identified genes responsible for adaptive evolution in natural
populations and experimental lines [1]. Examples include genes with large effects on defensive armor in
sticklebacks (Eda and Pitx-1) [2,3], coat color in mice (Agouti and Mc1r) [4,5], wing pattern in Heliconius
butterflies (Optix and WntA) [6-8], and diapause in Drosophila (the insulin-requlated PI3 kinase gene and
Timeless) [9,10]. Although genomic approaches have been less successful at determining the specific
genes affecting highly polygenic traits, these methods still can elucidate trait genetic architecture,
such as the number of quantitative-trait loci (QTL) or causal variants, trait heritabilities, and genetic
covariances among traits [11-13]. Summaries of trait genetic architecture can help explain patterns and
dynamics of evolutionary change (e.g., [12,14,15]). Nonetheless, most empirical work on the genetics
of adaptation comes from a modest number of model systems, and even in these systems the genetic
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basis of the full suite of traits selected during a bout of adaptation is rarely analyzed. Consequently,
generalizations about the relative importance of standing variation versus new mutation, partial versus
complete selective sweeps, the number and effect sizes of genes responsible for adaptation, and the
repeatability of adaptive evolution remain preliminary and contentious (e.g., [1,16-19]).

A major ongoing debate concerns when, whether, and to what extent the same genes or mutations
are selected when multiple populations or species adapt to the same or similar environment, i.e., how
parallel is evolution at the genetic level [20]. Numerous examples of parallel, adaptive genetic changes
have been documented (e.g., [21-26]), but parallelism is rarely complete and there are numerous
counter-examples of more idiosyncratic or unpredictable evolution (e.g., [27-29]). Several factors could
limit parallelism at the genetic level, including differences in trait genetics or selective pressures. For
example, populations may harbor different standing genetic variation for traits and different specific
mutations may arise during adaptation [30,31]. Evidence for non-parallel mechanisms includes finding
different QTL for the same traits across populations or environments [32]. Even when the same genes
affect traits in multiple populations, the same genetic changes might not be observed if selection varies
because of large or small environmental differences. For these reasons, experimental evolution serves
as a well-controlled means to assess the degree of parallelism underlying adaptation (this differs from
using parallelism as a test for selection, e.g., [33]).

More generally, studies that combine population-genomic analyses with trait genetic mapping
provide powerful opportunities to shed light on the genetic basis of adaptation, including potential
constraints on parallel evolution [19]. Population-genomic approaches include genome scans for
detecting selection and the use of evolve-and-resequence (E&R) experiments (e.g., [34-36]). These
approaches are similar in that they examine the outcomes of evolution and thus inherently integrate
across the various sources and targets of selection [37,38]. Experimental evolution studies typically
include replication, precise control of environmental conditions, known demographic conditions, and
temporal sampling, all of which aid in identifying genes responsible for adaptation (e.g., [33,39-42]).
This tractability of course comes at the cost of ambiguous relevance to natural populations. Moreover,
these population-genomic approaches often do not explicitly connect adaptive genetic changes to
specific traits (but see, e.g., [43,44]).

Genotype-phenotype association mapping, either in natural populations or experimental crosses,
provides a more direct way to determine the genetic basis of trait variation within or between
populations (e.g., [12,45,46]). With such methods, the genotype-trait connection is explicit, albeit
for only a subset of possible adaptive traits. Mapped populations might not experience the same
environmental conditions as natural populations (or even experimental lines), and thus might not
exhibit the same genotype-phenotype associations if these are environment-dependent (e.g., [47]). Thus,
population-genomic analyses and trait mapping approaches should be viewed as complementary, and
combining the two methods is especially likely to reveal the genetic and phenotypic bases of adaptation
(e.g., [48-53]). Lastly, an even more comprehensive analysis would be to combine gene-expression data
and genetic manipulations (e.g., RNA interference or genome editing) with population-genomic or
trait-mapping data [54-56]. Gene expression data and genetic manipulations add a more mechanistic
understanding to the link between genotype and phenotype [57-59], and in some cases can identify
which genotype-phenotype associations are causal (e.g., [60]).

Here, we combine E&R experiments, genome-wide association (GWA) mapping, and analyses of
gene expression to examine the genetic basis of adaptation to a marginal host plant by the seed beetle
Callosobruchus maculatus. The E&R experiments and GWA mapping consider three distinct selection
lines, and thus allow us to assess parallelism in terms of both patterns of evolutionary change and
genotype-phenotype associations. The gene-expression data are not similarly replicated, but provide
additional functional information to complement the population-genomic and mapping analyses.

The cowpea seed beetle Callosobruchus maculatus infests human stores of grain legumes. It has
long served as a model system for investigating the evolution of insect-plant interactions [61-63], and
has been used more recently to examine a variety of questions in evolutionary biology, especially
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those involving sexual selection and sexual conflict (e.g., [64-68]). Because of current advances in
genomic resources, this system is poised as an emerging model system for evolutionary genomics as
well [38,69,70].

Female beetles attach eggs to the surface of legume seeds. Hatching larvae burrow into the seed
and must complete development in the single, natal seed. Because C. maculatus has been associated
with stored legumes for thousands of years, laboratory conditions are a good approximation of its
“natural” environment [71]. Beetle populations mainly attack grain legumes in the tribe Phaseoleae,
particularly those in the genus Vigna [72]. Lentil (Lens culinaris), a member of the tribe Fabeae, is a very
poor host for most C. maculatus populations, as larval survival in seeds is typically <5% [38,73-75].
Nonetheless, lentil is used as a host by a few unusual ecotypes in certain regions [76,77].

Attempts to establish laboratory populations on lentil have often resulted in extinction [76],
but in a minority of cases experimental lines have rapidly adapted to this host [38,74]. In a South
Indian C. maculatus population (denoted M) that was collected from and maintained on mung bean
(Vigna radiata), survival on lentil in four experimental lines increased from <5% to >80% within 20
generations, with much of the change occurring in the first five generations [38,74]. This increase
in survival was accompanied by increased adult weight and decreased development time on lentil
(two other metrics of performance) [74]. Rapid adaptation caused evolutionary rescue; the four lines
(previously denoted as L1, L2, L3, and L14) rebounded demographically and have since persisted
on lentil, which is now nearly as suitable as the ancestral host, mung bean. Population-genomic
analyses of these lines showed a mixture of parallel and idiosyncratic allele frequency changes driven
by selection on lentil [38,41]. We found evidence of genetic trade-offs, whereby alleles favored by
selection on lentil were selected against on mung bean, and of multiple genetic regions associated with
adaptation to lentil [38,41]. Our analyses of a fine-grained, population-genomic time series from one of
these lines (L14) documented strong selection and rapid evolution at multiple loci with allele frequency
changes of ~0.4 in a single generation, with some initially uncommon alleles fixing (or nearly fixing)
in as few as five generations [38]. This past work was based on a highly fragmented genome assembly,
and did not connect selection in the E&R experiments to trait or functional information. Thus, much
remains unknown about the genomic basis of rapid adaptation to lentil.

In the current study, we build on past work by re-analyzing population-genomic data from the
E&R experiments in the context of an improved genome assembly and annotation [70]. We combine
this reanalysis with genome-wide association mapping of two performance traits (adult weight and
development time) and with gene-expression data. We ask the following specific questions: (i) How
are genetic regions that evolved rapidly during lentil adaptation distributed across the genome, and
how does this vary across replicate lines?, (ii) Do the same loci affect adult weight and development
time in different lentil lines, and do these two performance traits share a common genetic basis?, (iii)
To what extent do loci associated with weight and development time occur in parts of the genome
known to have evolved rapidly during lentil adaptation?, and (iv) To what extent do differences in
host environment and evolutionary history (i.e., genetics) result in differences in gene expression, and
do differentially expressed genes co-localize with SNPs associated with weight and development time
or with genetic regions of rapid evolution during lentil adaptation? By integrating these three sets of
genomic data, we are able to quantify parallelism in terms of the genetic basis of performance traits
and allele-frequency change during adaptation (we test for parallelism in each of these patterns rather
than using parallelism as a test for the process of selection), and obtain a more complete understanding
of the genes and traits that allow C. maculatus to adapt to and persist on a marginal host plant. In terms
of the latter, we specifically test for roles of digestive enzymes and detoxification genes as these types
of genes have been implicated in host-plant adaptation in other systems [55,78,79].

2. Materials and Methods

We analyzed six experimental lines in the current study: the M line, which was originally collected
from South India and has since been maintained in the lab on its ancestral mung-bean host [80,81],
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three lentil-adapted lines (L1, L2, and L14, each independently derived from M), and two reversion
lines (L1IR and L2R) that were switched back to mung bean after many generations on lentil (Fig.
1, Table S1). The South India M line has been maintained at a census population size of 2000-2500
individuals for >300 generations; past genetic analyses suggest a variance effective population size
of ~1149 [41]. Details on the establishment of L1, L2 and L14 can be found in [41,74] (L1 and L2)
and [38] (L14). The reversion lines, L1R and L2R, were initiated to test for genetic trade-offs between
performance on mung bean versus lentil. These lines were shifted back onto the ancestral host in order
to examine whether there would be a decrease in the ability to use lentil (as predicted by a trade-off
hypothesis) [82]. Thus, allele frequency change in the lentil lines should reflect adaptation to lentil
(and genetic drift), whereas changes in the reversion lines relative to their source lentil lines should
reflect adaptation back to mung bean (and perhaps drift to a lesser extent) (past work has attempted
to parse the roles of selection and drift [38,41], but here we simply focus on change). Herein, we
analyze patterns of genome-wide allele frequency change for combinations of all six of these lines (we
ignore two additional lines, L3 and L3R, as we lack trait-mapping data for these lines). Trait-mapping
data come from backcross mapping populations created by crossing M with L1, L2 and L14 (denoted
BC-L1, BC-L2, and BC-L14). Gene expression data comes from M, L1 and L1R, that is from the source
mung bean line, a lentil line, and its corresponding reversion line. We measured gene expression in all
three lines when reared in mung bean (LM, L1IRM, MM), and for L1 and L1R when reared in lentil
(L1%, L1RY) (rearing the M line on lentil for expression data was not possible given the extremely low
survival rates).

2.1. Evolve-and-resequence experiments

Each lentil-adapted line was established using the same protocol described by [74]. Briefly, a
line was formed by adding >2000 (L1) or >4000 (L2, L14) adults to 1500 g of lentil seeds. All lines
experienced a severe initial bottleneck, with an initial survival within seeds of 1-2% [38,74]. Whereas
most attempts to establish beetle populations on lentil failed, survival rates increased rapidly in
these three lines. After census population sizes recovered from the initial bottleneck, each successive
generation for each line was formed by adding >2000 adults to 750 g of lentil seeds [38,74]. Lines L1
and L2 were formed in 2004, but beetles were not used for DNA sequencing until much later (after
>70 generations had elapsed). In contrast, the L14 line was formed in 2014, and we sampled and
sequenced beetles during each generation throughout the early stages of lentil adaptation. L14 was
split into two sublines (L14A and L14B) after the F4 generation. The two sublines exhibited highly
parallel evolutionary changes in allele frequencies, and here we focus primarily on L14A [38].

Reversion lines, in which lentil-adapted lines were reverted back to mung bean, were established
once the lentil-adapted populations had reached a plateau in fitness on lentil (as measured by survival
during performance assays [74,82]). Lentil lines were reverted to mung bean at F62 for L1, and at
F48 for L2 (Fig. 1, Table S1). The difference in time of reversion was simply due to L1 having been
established earlier than L2. Each reversion line was generated by transferring >2000 adults to 750 g of
mung beans, and the same protocol was used for each successive generation. In this manner, successive
generations of both lentil (non-reverted) and reverted lines were formed in the same fashion.

We obtained partial genome sequences from line samples (992 beetles from 22 line X generation
combinations, where lines denote the different lentil or reversion lines each founded as described
above) using our standard genotyping-by-sequencing approach [83]. With this approach, sequence
data can be associated with individual beetles. This includes a total of 1.3 billion, 100 bp single-end
DNA sequences. These archived data were used in the current manuscript (NCBI SRA PRJNA480050).

2.2. Trait mapping experiment

Lines L1, L2, and L14A were used in the creation of the backcross (BC) mapping populations. To
generate each population, 12 newly-emerged, unmated females from each lentil line were isolated and
each was paired with a newly-emerged adult male from the M line (i.e., each of the 12 pairs comprised
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an unmated female and a newly-emerged male). We obtained unmated lentil-line females by isolating
a few hundred lentil seeds from each stock culture in 4-ml vials. Hybrids were formed when the L1,
L2, and L14A lines had spent 146, 135, and 38 generations on lentil, respectively.

Individual pairs of unmated females from the L lines and males from the M line were placed
in 60-mm Petri dishes with a single layer of mung beans (about 100 seeds). Dishes were kept in a
growth chamber at standard conditions of 25°C and constant light. Pairs were allowed to mate and lay
eggs for 48 hours. After 10 days, we inspected the dishes and collected several seeds bearing a single
hatched egg (one hybrid larva within the seed) per dish. Seeds were then isolated in 4-ml vials for
each cross type.

Newly-emerged, unmated F1 hybrid females were then backcrossed to L1, L2 or L14A males.
Isolated pairs (hybrid females and lentil-line males) were allowed to mate and oviposit in dishes
containing approximately 100 lentil seeds for 48 hours. After 10 days, several hundred lentil seeds
bearing a backcross larva (indicated by a single hatched egg on the seed surface) were isolated
in 4-ml vials for each cross type. Once backcross adults were about to emerge, we checked vials
for emerging adults daily. Emerged adults were sexed and weighed on a Mettler Toledo XPE105
analytical microbalance (Mettler Toledo) to the nearest 0.01 mg. Development time was measured as
the number of days between the removal of each parental pair and the emergence of the backcross
progeny. Vials were checked until two weeks after the last adult emerged to ensure that the backcross
generation had finished emerging. We collected a total of 476, 760 and 529 BC adults from backcrosses
to L1, L2, and L14A, respectively (weight and development time data are available from Dryad,
https:/ /doi.org/10.5061/dryad.3j9kd51dw). In the subsequent trait-mapping analysis, we only used
females to avoid sex effects and hemizygosity for sex chromosomes.

Beetles were then stored at -80°C prior to DNA extraction. We isolated DNA from 748 female BC
beetles: 241 from BC-L1 (mean per family = 20.08, s.d. = 15.81), 256 from BC-L2 (mean per family =23.27,
s.d. =20.70), and 251 from BC-L14 (mean per family = 20.2, s.d. = 15.78). We used Qiagen’s DNeasy
96 Blood & Tissue Kit (Qiagien Inc.). DNA fragment libraries for genotyping-by-sequencing (GBS)
from each beetle were prepared using methods described in [83]. Briefly, we used the endonucleases
EcoRI and Msel to digest beetle genomes. We ligated adaptor oligos with internal 8-10 bp barcode
sequences and Illumina primer sites using T4 DNA ligase. PCR was used to amplify the restriction
fragment libraries. Pooled, barcoded libraries (two pools with half of the beetles in each pool) were
purified and size-selected using a BluePippin (Sage Science, Beverly, MA, USA) to retain 250-350
bp fragments. Whereas DNA libraries were pooled, sequences from each beetle could be uniquely
identified from individual, internal barcode sequences. These libraries were sequenced over two full
runs on an Illumina NextSeq with 150 bp single-end reads. DNA sequencing was performed by the
Genomics core lab at Utah State University (Logan, UT, USA). These DNA sequence data have been
archived on NCBI's SRA (PRJNA616195).

2.3. Gene expression experiment

We established five treatments, L1-, L1M, L1IRE, L1IRM, and MM, for generating gene-expression
data, where each superscript denotes the larval rearing host, lentil or mung bean. At the time of
sampling for RNA analysis, the L1" line has spent 107 generations on lentil, and the L1M line was
switched to mung bean for one additional generation. The reverted L1RM line had spent 55 generations
on mung bean, and the L1R" line was switched to lentil for one additional generation. The MM line
had been continuously reared on mung bean for >300 generations.

To obtain actively feeding larvae, we closely monitored the appropriate stock culture to determine
when the population consisted of mainly 4th-instar (last instar) larvae within seeds. Determining the
developmental stages of larvae was accomplished by gently cracking seeds with a small hammer to
separate the cotyledons and expose the open larval burrows at the center of the seed. We targeted
4th-instar larvae because that stage is characterized by highly active feeding, just before the prepupal
stage. When larvae in a given culture were mostly in the appropriate stage, we again used a small
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hammer to open seeds. We immediately placed each exposed, feeding larva into a labeled, perforated,
1.5 ml Eppendorf tube, and immersed the tube in thermos filled with liquid nitrogen. After a batch of
tubes had been submerged, we poured the liquid nitrogen into a strainer submerged in dry ice, and
immediately transferred each tube to a freezer at -80°C.

We extracted total RNA from five biological replicates of three pooled larvae from each of the
five lines (L1%, L1M, L1RF, L1IRM, and MM) using RNeasy Mini kits (Qiagen, Inc.) according to the
manufacturer’s protocol. RNA was eluted in 50 ul of water and stored at -80°C. Quality and quantity
was evaluated on a TapeStation System (Agilent, Inc) at the Utah State University Center for Integrated
Biosystems.

RNA libraries were prepared with the TruSeq Stranded mRNA Library Construction kit (Illumina,
CA) at the Roy J. Carver Biotechnology Center at the University of Illinois at Urbana-Champaign.
RNAseq libraries were quantitated by gPCR and sequenced on two lanes of a HiSeq2500 for 101 cycles
from each end of the fragments (100 nt paired-end reads) using a HiSeq SBS kit version 4. Fastq files
were generate and demultiplexed with the bc12fastq v1.8.4 Conversion Software (Illumina, CA). We
generated 880,655,484 reads, with a mean =+ s.d. of 35,226,219 + 3,061,575 reads per library. These
RNA sequence data have been archived on NCBI's SRA (PRJNA616195).

2.4. DNA sequence alignment and variant calling

We first filtered the backcross lines’ fastq files to remove PhiX sequences and trim poly G tails,
which arise from missing signal with the 2-dye chemistry used for NextSeq sequencing. We then
demultiplexed the fastq files using custom per1l scripts (these scripts are available from Dryad, https:
//doi.org/10.5061/dryad.3j9kd51dw). We used the mem algorithm from bwa (version 0.7.17-r1188) [84]
to align the 936 million, 150 bp DNA sequences from the backcross lines to a recently published, C.
maculatus genome assembly [70]. We also aligned the fastq files from our older beetle data sets (L1, L1R,
L2, L2R, L14A, L14B, M) to the recent assembly. Default parameters were used for the mem algorithm
with the exception of minimum seed length (-k 20) and re-seed threshold (-r 1.3). The new C.
maculatus genome assembly is a substantial improvement over previous resources for this species (e.g.,
[38]), with a total size of 1.01 gigabases and N50 of 149 kilobases [70]. Additionally, BUSCO estimates
of completeness from sets of preserved proteins are high (75% complete, 10% partially complete).
Nonetheless, because of the highly repetitive nature of this genome (>63% repeat content), the genome
remains fragmented with many small, sub-chromosomal scaffolds (15,778 scaffolds total).

We ran two sets of variant calling on the alignments, one with all of the samples from the E&R
experiments and the BC mapping populations and one without the mapping populations. We used
the former for genome-wide association mapping, and the latter for population genomic analyses of
the E&R experiments. We used the Bayesian multiallelic/rare variant caller option implemented in
samtools (version 1.5) and bcftools (version 1.6). The -C 50 command was used, as recommended
for llumina HiSeq data. Bases with a quality score <30 and reads with a mapping quality <20 were
ignored. The prior for 6 was set to 0.001 and we only called SNPs when the posterior probability that a
nucleotide was invariant was <0.01 (compared to the default, much less stringent option of 0.5).

We then filtered each SNP set to only retain SNPs with minimum coverage ~2X (per beetle),
a minimum number of 10 reads supporting the non-reference allele, a minimum mapping quality
of 30, no more than 25% of individuals with missing data, and minimum minor allele frequency of
~0.005. We chose a minimum of 2X coverage to be consistent with past work, and because even with
2X coverage allele frequencies can be estimated very accurately, especially when using models that
account for finite coverage and sequence error when inferring genotypes and allele frequencies as we
do (see below) [85]. The cut-off for missing data was chosen to minimize locus drop-out and drop-in,
and we allowed for a low minor allele frequency to capture rare variants that can be informative for
GWA mapping (e.g., [86]). A second round of filtering was done that filtered by maximum coverage
(mean coverage + 2 s.d.) to avoid possible paralogs. We retained 17,098 and 20,376 SNPs after filtering
for the set that contained all lines and the set that excluded the BC samples, respectively.
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2.5. Measuring evolutionary change during the evolve-and-resequence experiments

We first quantified the extent of evolutionary change (change in allele frequencies) in the
evolve-and-resequence (E&R) experiments. We estimated allele frequencies for each line and sample
using a hierarchical Bayesian model (as in [87]). This approach accounts for uncertainty in genotypes
(as captured by the genotype likelihoods output from bcftools) when estimating population allele
frequencies. We specifically obtained allele frequency estimates with the program popmod (version 0.1,
Dryad doi: 10.5061/dryad.7b5m?7; [88]) using a Markov chain Monte Carlo (MCMC) algorithm with a
burn-in of 1000 iterations, followed by 10,000 sampling iterations with a thinning interval of 5.

We then focused on evolutionary change between five specific pairs of lines and samples: (i) M to
L1 F100 (change during lentil adaptation for L1), (ii) M to L2 F87 (change during lentil adaptation for
L2), (iii) L1 F91 to L1R F46 (change in the L1 reversion line relative to L1), (iv) L2 F78 to L2R F45 (change
in the L2 reversion line relative to L2), and (v) L14 P to L14A F16 (change during lentil adaptation for
L14). We chose these specific samples as in each case the first sample (hereafter ‘ancestral sample’) is
our best approximation of the ancestor of the second, and the second population (hereafter ‘derived
sample’) represents our endpoint (given available data) for each selection line. In some cases the first
population is the actual ancestor (L14 P), but in most it is a descendant of the ancestor (in these cases
the ancestral line had been on the same host, mung bean or lentil, for a sufficient amount of time to
be well adapted to that host). The parallel evolution hypothesis predicts correlated patterns of allele
frequency change across comparisons (i), (ii) and (v) (i.e., adaptation to lentil), and across comparisons
(iii) and (iv) (i.e., reversion on mung bean).

We do not attempt to estimate selection coefficients from these data (this was the focus of past
work, e.g., [38,41]), but rather to identify contiguous sets of SNPs exhibiting exceptionally high amounts
(or rates) of evolutionary change (see for example [89]), which we then compare with genetic regions
associated with performance traits or differential gene expression between hosts and lines (see below).
Note, however, that past tests of selection based on parameterized models of genetic drift showed that
natural selection contributed to evolutionary change in the lentil and reversions lines, especially at loci
exhibiting the greatest allele frequency changes [38,41]. To this end, we first estimated standardized

pi-p!
,/Z*p?*(lfp?)
denote the Bayesian estimates of the allele frequencies in the derived (second) and ancestral (first)
sample for each pair of lines and samples given above (the superscripts here are indexes not exponents).
The denominator is proportional to the ancestral population expected heterozygosity and the expected
variance in allele frequency, and thus to the expected change by drift or selection (conditional on N
and the strength of selection). Thus, this standardizes observed change by the genetic variation at a
locus and aids in comparisons across loci. However, because the lines and samples differ in N, and in
the time elapsed [38,41], values are not directly comparable across the different line and sample pairs.

We fit hidden Markov models (HMMs) to estimates of standardized allele frequency change to
identify sets or runs of linked SNPs exhibiting exceptional rates of change for a given line and sample
pair. We defined two hidden states, average change and exceptional change, and assumed that the
estimates of standardized allele frequency change followed a normal distribution with a mean and
standard deviation dictated by the hidden states. We set the means of the hidden states to the median
(average change state) and 99.5th percentile (exceptional change state) of the change estimates for each
pair of lines and samples. The empirical standard deviation was used as the standard deviation for
each state. We used the R (version 3.6.2) package HiddenMarkov (version 1.8.11) [90] to fit the models,
but modified the Mstep function to allow for these fixed parameter values (script available from
Dryad, https://doi.org/10.5061/dryad.3j9kd51dw). Doing so allowed us to focus on hidden states of
interest for detecting exceptional change. We used the Baum-Welch algorithm with 500 iterations and
a tolerance of 1e~* to estimate the transition matrix between hidden states and the Viterbi algorithm to
estimate the hidden states (average change versus exceptional change). This was repeated twice for
each comparison to ensure consistency of the results.

allele frequency change for each locus and pair of samples as Ap; = , where p! and p!
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2.6. Multilocus genome-wide association mapping

We first estimated the among family variance in adult weight and development time for each
BC mapping population by fitting linear mixed-effect models using a restricted maximum likelihood
approach (REML). In our models, no fixed effects were included except for the grand mean (only
females were analyzed, so sex was not included in the model). This was done with the 1mer function
in the 1me4 R package (package version 1.1.19, R version 3.4.4; [91]). We tested whether among-family
variance significantly deviated from a null expectation of 0 using an exact restricted likelihood ratio
test based on 10,000 simulated values ([92,93]. This was done with the exactRLRT function in the
RLRsim package in R (version 3.1.3; [94]).

We then fit Bayesian sparse linear mixed models (BSLMMs; [95]) with gemma (version 0.98) to
estimate the genetic contribution to variation in adult weight and development time in the BC mapping
populations, and to identify specific SNPs associated with variation in these performance traits (again,
only female beetles were sequenced and analyzed, so sex was not included in the models). Whereas
traditional genome-wide association (GWA) mapping methods test one SNP at a time, this polygenic
GWA method fits a single model with all SNPs simultaneously and thus mostly avoid issues related
to testing large numbers of null hypotheses. Moreover, unlike standard QTL mapping approaches,
this method readily handles mapping populations comprising multiple, heterogeneous families, with
functional genetic variants potentially segregating within and among families and parental lines. This
feature is highly desirable given our experimental design.

Trait values (weight and development time) are modeled as a function of a polygenic term and a
vector of the (possible) measurable effects of each SNP on the trait (8) [95]). A Markov chain Monte
Carlo (MCMC) algorithm with variable selection is used to infer the posterior inclusion probability
(PIP) for each SND, that is, the probability that each SNP has a non-zero effect, and the effect conditional
on it being non-zero [96]. The polygenic term defines each individual’s expected deviation from the
grand phenotypic mean based on all of the SNPs. This term accounts for phenotypic covariances
among individuals caused by their relatedness or overall genetic similarity (i.e., observed kinship) [95].
The kinship matrix also serves to control for population structure and relatedness when estimating
the effects of individual SNPs () along with their PIPs. Similarly, SNPs in linkage disequilibrium
(LD) with the same causal variant effectively account for each other, such that only one or the other is
needed in the model, and this is captured by the PIPs.

The hierarchical structure of the model provides a way to estimate additional parameters that
describe aspects of a trait’s genetic architecture [12,95,96]. These include the proportion of the
phenotypic variance explained (PVE) by additive genetic effects (this includes B and the polygenic
term, and should approach the narrow-sense heritability), the proportion of the PVE due to SNPs with
measurable effects or associations (this is called PGE and is based only on ), and the number of SNPs
with measurable associations (n-7). All of these metrics integrate (via MCMC) over uncertainty in the
effects of individual SNPs, including whether these are non-zero. Using this BSLMM approach, it is
also possible to obtain genomic-estimated breeding values (GEBVs), that is, the expected trait value for
an individual from the additive effects of their genes as captured by both B and the polygenic term
[12,13].

We fit BSLMMs for adult weight and development time using gemma [version 0.98; 95]. Trait
values for each BC line were normal-quantile transformed prior to analysis. Genotypes were inferred
using the admixture model in entropy (version 1.2) [83]. This works with the genotype likelihoods
from beftools and applies locus specific prior information on allele frequencies while accounting for
uncertainty in the source population (ancestry) of each allele. entropy was run on the full SNP data
set for each BC line and reference source populations (assuming k = 2) source populations (M and L1
F100, L2 F87 or L14A F16 for BC-L1, BC-L2 and BC-L14, respectively). We ran three MCMC chains
each comprising a 5000 iteration burn-in, and 10,000 sampling steps with a thinning interval of five.
Point estimates of genotypes were then obtained as gj; = Y-, Pr(g;; = x)x, where g;; is the count (0, 1,
or 2) of the non-reference allele, and Pr(g;; = x) is the posterior probability that the genotype = x. We
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fit the BSLMMSs based on these estimated genotypes and the transformed trait values with 10 MCMC
chains (for each trait and line), each with a 1 million iteration burn-in followed by 1 million sampling
iterations with a thinning interval of 20. SNPs with minor allele frequencies less than 0.001 in a given
mapping population were dropped from the analysis.

2.7. Gene expression

We used RCorrector [97] to detect unfixable k-mers in the RNA sequences and correct these
k-mer based read errors. RCorrector compares k-mer based error correction tools, and identifies
whether the read has been corrected or has been detected as containing an uncorrectable error. We then
used a custom python script to discard unfixable reads identified by RCorrector. Reads were then
trimmed using TrimGalore! (version 0.3.3) [98] to remove [llumina adapter sequences. Filtered and
quality-checked paired-end reads were aligned to an existing, annotated transcriptome of C. maculatus
using STAR (version 1.5.2) [99]. STAR alignment rate ranged between 62-77% for all sample libraries. We
converted STAR alignments to gene count data for each sample using featureCounts (version v2.0.0)
[100].

We performed filtering and normalization of count data using the edgeR [101] library in R version
3.4.2. We removed genes with low expression levels using edgeR. Specifically, we first normalized
our data by calculating counts per million values for each gene (using the cpm function in edgeR) and
then retained genes with counts per million values >0.5 in at least two samples. We thus retained
10,802 genes for downstream analyses. We visualized expression variation based on these counts
per millions with non-metric multidimensional scaling (NMDS) using the plotMDS function and the
heatmap function in R.

We conducted differential expression analyses using the limma library [102] in R. We first
performed variance stabilizing normalization of the data using the voom [103] library in R and
used a design matrix corresponding to the specific linear model used for the analysis. We used
the model .matrix function to fit model design matrices using the host and line as factor combinations
and then extracted the comparisons of interests as contrasts using the function makeContrasts. We
calculated the significance of model effects using voom precision weights and the eBayes function. We
then used the decideTests function to decide if a model effect was significant and retained effects if
their Benjamini—-Hochberg false-discovery rate corrected P-value was less than 0.05. We made contrasts
in voom for the following nine pairs of comparisons: (i) L1" versus L1RY, (ii) L1T versus L1M, (iii) L1-
versus LIRM, (iv) L1 versus MM, (v) MM versus L1M, (vi) MM versus LIRE, (vii) MM versus L1RM,
(viii) LIR" versus L1RM, and (ix) L1M versus L1IRM. We used these contrasts to identify the genes
which show significant difference in gene expression for each pair of comparison. We then asked
whether each of three specific classes of genes were over-represented among differentially expressed
genes assuming binomial sampling: cytochrome P450s (known to be involved in detoxification of
plant secondary chemicals [55,104]) and two classes of putative digestive enzymes, proteases and
carboxylases. We classified genes as likely digestive proteases and carboxylases following the annotated
genome provided by [105] (proteases = serine protease, trypsin, chymotrypsin, cathepsin, aspartic
proteinase, lysosomal aspartic protease, cysteine protease or proteinase [88 genes]; carboxylases =
amylase, cellulase, glucosidase or maltase [29 genes]).

2.8. Comparisons across data sets

We next turned to comparisons of genomic signals of host use across the three data sets, that is,
change from the E&R experiments, genotype-phenotype (weight and development time) associations,
and patterns of differential gene expression. We first asked whether and to what extent the density
(estimated number of QTL per SNP) for performance traits was greater in SNPs showing exceptionally
high allele frequency change than in other parts of the genome. We specifically compared weight and
development time mapping results for BC-L1 to change between (i) M and L1 F100 and (ii) L1 F91
and L1R F46, BC-L2 mapping to change between (iii) M and L2 F87 and (iv) L2 F78 and L2R F45, and
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BC-L14 mapping to change between (v) L14 P and L14A F16. Thus, each comparison was between the
mapping results from a given backcross line and the E&R experiment involving the same lentil line.
In each case, we calculated the density of QTL across exceptional-change SNPs (based on the HMM
hidden states) by calculating the mean PIP for weight or development time over these SNPs. We then
obtained null expectations by randomizing the location of the exceptional-change SNPs in the genome
and repeating the QTL density calculation. Randomizations involved shifting the SNP coordinates
to retain patterns of autocorrelation along genome scaffolds in the original data. We conducted 1000
randomization for each of the five comparisons enumerated above. Calculations and randomizations
were conducted in R (version 3.6.2).

We then asked whether differentially expressed genes contained an excess of exceptional-change
SNPs (from the HMM and E&R experiments) or an elevated density of performance-trait QTL. We
focused on the five gene expression comparisons most relevant for host adaptation: (i) L1M versus
L1* (plasticity in L1), (ii) LIRM versus L1RY (plasticity in L1R), (iii) L1" versus L1R" (evolved, genetic
differences for expression on lentil), (iv) MM versus L1M (evolved, genetic differences for expression
on mung), and (v) L1M versus L1IRM (evolved, genetic differences in expression on mung). For
comparisons with allele frequency change in the E&R experiments, we considered change from M to
L1 F100 and from L1 F91 to L1R F46 (i.e., the same lines used for gene expression). We determined
the number of exceptional-change SNPs within differentially expressed genes, and computed null
expectations for overlap using a randomization test (1000 randomization). Randomizations were
conducted by shifting the HMM states across SNPs to retain autocorrelation in state. This procedure
was repeated for each of the five expression comparisons each of the two evolutionary change
comparisons. A similar procedure was used to test for higher QTL density in differentially expressed
genes. We focused on the same gene expression comparisons, and considered SNP PIPs for adult
weight and development time in BC-L1 (as the expression data were from L1 and L1R). We computed
the density of QTL from the SNP PIPs in differentially expressed genes, and compared this to null
expectations from 1000 randomizations of the PIPs as described above for the E&R results.

3. Results

3.1. Evolutionary change

Lines differed in the extent and variability of allele frequency change during the E&R experiments
as expected given the differences in N, and generations elapsed [38,41] (Fig. 1). Average allele frequency
changes were 0.351 (M to L1 F100, s.d. = 0.465), 0.287 (M to L2 F87, s.d. = 0.377), 0.210 (L1 F91 to L1R
F46, s.d. = 0.357), 0.186 (L2 F78 to L2R F45, s.d. = 0.253), and 0.313 (L14 P to L14A F16, s.d. = 0.409).
Parallel (similar) patterns of change, as captured by correlations in standardized allele frequency
changes, were observed in some cases (Fig. S1). Parallelism was most evident in patterns of change for
M to L1 F100 and L14 P to L14A F16 (Pearson r = 0.46, 95% CI = 0.45-0.47), whereas correlations in
standardized change were lower for comparisons between lines adapting to lentil and reversion lines
evolving on mung bean.

Based on the HMM fit of standardized allele frequency changes (Ap;), less than 1% of SNPs were
assigned to the exceptional change state in each pair of lines and samples (minimum = 0.5% in M
to L2 F87, maximum = 0.9% in L1 F91 to L1R F46) (Fig. 2). Exceptional-change SNPs were widely
dispersed across the genome with 87 (M to L1), 83 (M to L2), 118 (L1 to L1R), 97 (L2 to L2R) and 95
(L14) contiguous regions comprising 1.3, 1.3, 1.5, 1.5, and 1.3 SNPs on average, respectively. The small
size of these HMM regions is consistent with our high estimates of transition rates between hidden
states (Table S2). Akin to patterns of parallelism described above, the greatest correlation in HMM
states was for change in M to L1 F100 versus L14 P to L14A F16 (Pearson r = 0.27, 95% CI = 0.26-0.28)
(Fig. 52). We detected an excess of exceptional-change SNPs on the X sex chromosome in M to L2 F87
(randomization test, obs. = 16, expected = 8.9, P = 0.004) and L14 P to L14A F16 (obs. = 20, expected =
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9.7, P =0.001), but not in the other comparisons. In fact, in the L2 F78 to L2R F45 reversion comparison,
we detected a deficit of exceptional-change SNPs on the X (obs. = 4, expected = 12.2, P = 0.005).

3.2. Multilocus genome-wide association mapping

Female beetles from the BC-L1 and BC-L14 mapping populations were larger but developed more
slowly than those from BC-L2. Mean weight at emergence for BC-L2 was 3.95 mg (s.d. = 0.568) versus
4.13 mg (s.d. = 0.726) and 4.18 mg (s.d. = 0.653) for BC-L1 and BC-L14. Mean development time for
BC-L2 was 24.36 d (s.d. = 3.123) versus 25.46 d (s.d. = 2.981) and 25.49 d (s.d. =3.061) for BC-L1 and
BC-L14. For each of the three mapping populations, between 7.4 (BC-L1 and BC-L2) and 9.7% (BC-L14)
of the variation in adult weight was partitioned among mapping families (Table S3). However, only
BC-L1 exhibited a non-trivial amount of among-family variation in development time (6.6%).

Genetic variation in the backcross mapping families explained 14-38% of the phenotypic variation
in female weight, but only 8-9% of the variation in development time (Fig. 3, Table 54). We detected
the greatest contribution of genetic variation to adult weight in BC-L1 (PVE = 38%, 95% equal-tail
probability interval [ETPI] = 16-61%), whereas phenotypic variation in weight in the other two lines
and development time in all lines had smaller genetic components. We failed to clearly parse the
relative contributions of genetic loci with infinitesimal versus measurable effects (see the large 95%
ETPIs on PGE in Table 54).

Point estimates of the number of causal variants or QTL ranged from 11 to 35, but also exhibited
substantial uncertainty (Table S4). We found little evidence of SNPs/QTL with highly credible, large
effects on either weight or development time, with a slight exception of weight in BC-L2 (Fig. S3).
Consistent with this, there was a strong relationship between the estimated number of causal variants
or QTL on each genome scaffold and the size of the genome scaffold, with the latter explaining >95%
of the variation in the former in all cases except BC-L2 (77.7%) (Fig. 4). Such patterns are expected for
highly polygenic traits that lack major effect loci [12]. The number of QTL within genes and on the X
sex chromosome (based on the sum of PIPs for these regions) were consistent with null expectations
from randomization tests (all P > 0.1) (see Table S5 for genes overlapping with exceptional-change
SNPs in multiple lines).

Genetic correlations based on GEBVs were negative for adult weight versus development time
in all lines: » = —0.568 for BC-L1 (95% confidence interval [CI] = —0.650, —0.473), r = —0.652 for
BC-L2 (95% CI = —0.718, —0.574), and r = —0.764 for L14 (95% CI = —0.811, —0.707). Correlations
in estimated effects, both between traits within lines and for either trait across lines, were generally
much lower (Fig. 54). However, in some cases, breeding values estimated from genotype-phenotype
associations in different mapping populations were correlated to a non-trivial extent (Tables S6 and
S7). Some of these correlations were positive, but others were negative, which might be expected if the
same causal variants existed in multiple mapping populations and were in LD with the same SNP loci,
but not necessarily associated with the same SNP alleles.

3.3. Gene expression

Between 10 and 15 million reads were uniquely mapped by STAR for each of the 25 samples.
Following filtering of genes in edgeR based on counts per million values, we retained 10,802 genes
for downstream analyses. Samples from some line x host combinations clustered together based on
NMDS, most notably the M line on mung bean (MM) (Fig. 5A). LIR on mung also formed a tight
cluster, whereas expression for samples reared on lentil (L1" and L1R") was more variable.

A subset of genes were differentially expressed between each host and line combination (Figs.
5B, S5, 56, 57, S8, and 59). We detected the greatest number of differentially expressed genes between
the M line and L1 or L1R (> 1000, with the exception of MM versus L1M), with considerably fewer
differentially expressed genes between host treatment for either L1 or L1R (Fig. 5B). Thus, differential
expression mostly resulted from evolved differences between lines rather than from plasticity caused
by the host environment. However, cytochorome P450s (which commonly function in detoxification)
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were over-represented among differentially expressed genes between hosts in both the L1 and L1R
lines (Table 1).This was not true for contrasts between lines on the same host. We saw only suggestive
evidence of proteases being over-represented among differentially expressed genes, specifically in
comparisons of M to LIM (P = 0.07), L1RM (P =0.11) and LIR" (P = 0.11) (Table S8). This signal mostly
involved cathepsin genes, and to a lesser extent chymotrypsin and serine proteases. Likewise, there
was suggestive evidence of excess differential expression of carboxlyases between M versus LIR" (P =
0.06). This was driven almost entirely by glucosidases (P = 0.033 for glucosidases as a single category),
especially B-glucosidase (see the Discussion).

Table 1. Summary of differential expression of cytochrome P450 enzymes. For each comparison, we
report the number of differentially expressed cytochrome P450s, the expected number of differentially
expressed cytochrome P450s given the number of differentially expressed genes in all and the
proportion of genes classified as cytochrome P450s, and the binomial probability of having the observed
number of differentially expressed cytochrome P450s by chance. The first three comparisons correspond
to genetic differences in expression, the next two to plastic (host) differences in expression, and the
final four include genetic and plastic differences.

Comparison ‘Observed Expected P

MM x LM 0 0.85 042
MM x L1RM 3 493 0.14
L1l x L1RL 0 057 057
LM x L1t 2 0.17 0.01
L1RM x LIRL 6 1.67 0.01
MM x L1t 7 451 0.08
MM x L1RL 6 224 012
L1M x L1RM 0 0.07 093
L1t x L1IRM 1 0.28 0.21

3.4. Comparisons across data sets

We found an excess of adult weight and development time QTL from the BC-L1 mapping
population among the exceptional-change SNPs in the M to L1 F100 E&R experiment (weight, mean
PIP per SNP = 0.0054, randomization P = 0.002; dev. time, mean PIP per SNP = 0.0038, randomization
P =0.006) (Fig. 6). But the same did not hold for the L1 reversion line or for any of the other
E&R lines. Similarly, we found an excess of exceptional-change SNPs for M to L1 F100 among the
set of differentially expressed genes between L1 on mung bean versus lentil (i.e., LIM versus L1%,
obs. = 3 SNPs, null = 0.24 SNPs, P = 0.017), but not for other comparisons (Table S9). All three
exceptional-change SNPs from the HMM fit occurred within the same gene, 5-oxoprolinase (such
autocorrelation is accounted for in our randomization test), which was previously shown to be affected
by the presence of a secondary metabolite in the diet of C. maculatus and is known to be involved in
metabolism [106]. Randomization tests showed that the density of adult weight and development time
QTL for BC-L1 within differentially expressed genes did not exceed null expectations (Table S10).

4. Discussion

Predicting phenotypes from genotypes has been a central, albeit elusive aim in genomics and
evolutionary biology [17,107,108]. Obtaining a comprehensive understanding of the genetic basis
of adaptation is even more difficult, as it requires considering many traits and moving from a
genotype-phenotype map to a genotype-phenotype-fitness map. Because host shifts in the lab are
a good approximation of host shifts by C. maculatus in nature and host is a key component of the
environment, host adaptation in C. maculatus has the potential to serve as a relatively tractable
system for uncovering the genetic basis of adaptation. In the current study, we combined population
genomic analyses of E&R experiments, genotype-phenotype association mapping, and analyses of
differential gene expression to make some progress towards this goal by investigating the genetic
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basis of adaptation to a marginal host plant. We found mostly different genetic loci associated
with adult weight and development time in different lines, and only in some cases were such
loci over-represented among genomic regions that evolved rapidly during adaptation to lentil. In
fact, we detected more parallelism (i.e., repeatability) across lines (on average) in patterns of allele
frequency change during lentil adaptation than in the genetic architecture of these two traits. Likewise,
differential gene expression was mostly (but not entirely) unrelated to population genomic patterns or
genotype-phenotype associations. Nonetheless, these combined data sets identified several candidate
genes or classes of genes likely affecting the ability of C. maculatus to use lentil (e.g., detoxification
genes). We discuss and interpret these findings below, with an emphasis on constraints on parallelism
and the multifaceted nature of adaptation to a novel host environment.

4.1. Genetics of performance traits

Heritabilities for adult weight and development of C. maculatus reared on lentil were modest
to low in the BC mapping populations (i.e., PVE = 0.08 to 0.38). Similarly low heritabilities for
host-specific performance traits have been documented in other plant-insect systems [88], but larger
heritabilities were expected here given the degree of adaptive divergence between M and the L lines
[38,74]. Development time, and to a lesser extent adult weight, in each BC mapping population was
considerably more similar to that of lentil-adapted lines than M line beetles reared on lentil [74]. This
result is not entirely unexpected as each backcross was to a lentil line, but the degree of phenotypic
similarity between the lentil and backcross lines exceeds additive expectations and suggests dominance
of adaptive L-line alleles. Past work with line crosses suggested a mostly additive genetic architecture
of survival in lentil with some dominance effects toward either the M (in L1 crosses) or L lines (in
L2 crosses), but low survival of M-line beetles in lentil precluded estimates of dominance effects
[109]. Moreover, reversals of dominance between sexes have been detected in C. maculatus for alleles
associated with adaptation and life history [66]. Strong dominance effects for performance traits
have been documented in other systems and are consistent with scenarios where a threshold level of
enzymatic activity is necessary for detoxification or metabolism of a host plant (e.g., [110,111]). Future
work with trait mapping in more variable mapping populations (e.g., M x L hybrid swarms) could
better resolve the contributions of additive versus dominance effects to these performance traits.

Our results suggest that adult weight and development time had a polygenic basis in the
BC mapping populations, with a lack of major effect loci, except perhaps for weight in BC-L2. A
polygenic architecture is not unexpected given the quantitative and complex nature of weight and
development time, and similar results have been observed in other systems (e.g., [13,88]). We found
negative correlations between effect estimates for adult weight and development time, such that SNPs
associated with increased weight were also associated with slower development (consistent with [65]).
Correlations were especially large in BC-L1 and BC-L14 (i.e., |r| > 0.5). These high genetic correlations
suggest many causal variants with pleiotropic effects on both performance traits or tight linkage and
high LD between variants affecting the two traits. Distinguishing between these two possibilities
is difficult, and from a functional and analytical perspective, true pleiotropy is best viewed as an
endpoint on a continuum from loose to tight linkage [13].

In contrast, correlations in model-averaged effects for either trait between mapping populations
were low. Genetic correlations based on genomic-estimated breeding values were sometimes higher,
e.g., the genetic correlation between breeding values in BC-L14 based on the BC-L1 versus BC-L14
genotype-phenotype map was 0.17 for adult weight, but they were also idiosyncratic, with negative
correlations occurring as often as positive ones. These results suggest that mostly different causal
variants were segregating in the three mapping populations, or that causal variants were mostly in
LD with different subsets of the sequenced SNPs or with different alleles at the SNP loci (negative
genetic correlations indicate the latter was likely true in at least some cases). Another possibility is that
epistatic interactions between genetic variants affecting weight or development time are prevalent,
such that different combinations of alleles are favored at some of the same loci by selection on lentil (as



Version August 25, 2020 submitted to Genes 14 of 39

in, e.g., [112-114]). Additional, larger crosses using populations with variable genetic backgrounds
will be needed to evaluate these alternative (but not mutually exclusive) hypotheses. We discuss the
implications of these findings for parallel evolution below.

4.2. Parallelism in change versus traits

Population genomic analyses revealed considerable parallelism in patterns of genome-wide
allele frequency change, and to a lesser extent in the specific SNPs exhibiting the highest rates of
standardized allele frequency change, with notably higher parallelism between L1 and L14A than
between either of these and L2. This is consistent with previous analyses of these experiments focused
on estimating selection and testing for parallelism in selection [38,41], and with other studies where
adaptation occurs from standing genetic variation (e.g., [21,27,29,115,116]). We observed considerably
lower parallelism in allele frequency change in the reversion lines and in the genotype-phenotype
associations for weight and development time. Lower parallelism in the reversion lines could be
explained by weaker selection on mung bean or by greater differences in standing genetic variation, as
each reversion line was derived from a distinct lentil line [117]. Notably, L1R and L2R show a lack of
parallelism in loss of performance on lentil, with much lower survival rates in L1R than L2R [41,82].

Lower parallelism in the genetic architecture of the performance traits than in patterns of
evolutionary change would not generally be expected because selection should only cause repeated
patterns of change if the same genes or alleles affect traits under selection (whereas parallelism or
repeatability if sometimes used as a test of selection, especially in E&R experiments, e.g., [33], selection
does not necessarily result in parallelism and other means exist to detect selection, e.g., [41,118]). We
think there are several, complementary explanations for this seemingly paradoxical result. First, other
performance traits, most notably survival, evolve during rapid adaptation and could be the cause of
parallel genetic changes. Support for this hypothesis comes from the limited overlap between SNPs
associated with the measured performance traits and exceptional change genomic regions from the
E&R experiments. Indeed, these sets of SNPs only overlapped more than expected by chance in the L1
line. Unfortunately, beetles that do not survive often die early, as small 1st instar larvae, and retrieving
these beetles for genomic work is not practical, though alternative experimental designs are possible.
Second, we likely captured (via LD) only a subset of the genetic variants affecting performance and
weight in each mapping population, and missing causal variants (i.e., those not in LD with our SNPs)
could be shared across lines. GWA studies commonly fail to detect causal variants, especially when
sample sizes are not extremely large [119,120], and this limitation could be compounded here by
possible dominance of lentil alleles (see above). Lastly, if genes harbor multiple functional variants in
the source M population, the specific variants (and their effects) that are retained through the severe
bottleneck that precedes lentil adaptation could vary across lines, and yet many of the same genes (or
regions of the genome) could still be affected in a repeatable manner by selection. In other words, trait
genetic architectures could be more sensitive to initial conditions set by the bottleneck (i.e., they could
be more chaotic) than subsequent patterns of evolutionary change.

4.3. Genomics of host use and adaptation

We found more evidence of evolved differences in gene expression among the M, L1 and L1R
lines than of plastic differences caused by the host environment. Nonetheless, we detected consistent
differences in expression of cytochrome P450s between mung bean and lentil treatments. Cytochrome
P450s are known to play a role in detoxification of plant secondary metabolites and insecticides [55,104,
121,122], and this finding is consistent with a general pattern of increased plasticity of detoxification
genes in herbivorous insects [79,123]. Because mortality is high for the M line when reared in lentil,
we do not know if adaptation to lentil involved the evolution of increased plasticity of cytochrome
P450s or if this differential expression was present in the ancestral M line and thus is mostly incidental
to lentil adaptation. But some role of cytochrome P450s in lentil-adaptation is likely, as cytochrome
P450 4d2 is among the genes showing evidence of parallel exceptional change across multiple lentil
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lines (L1 and L14A). There was some idiosyncratic and weak evidence of evolved differences in
expression of digestive enzymes, which is again consistent with an emerging trend in analyses of
herbivorous insects [79]. Moreover, C. maculatus has been shown to increase expression of proteases,
including inhibitor-insensitive proteases, in response to plant protease inhibitors [78]. However, the
gene with the most compelling signal was beta-glucosidase, which is involved in metabolism but also
in detoxification because of its role in converting cyanogenic glycosides to toxic compounds [124].
Interestingly, lower enzymatic activity of a beta-glucosidase gene was shown to be associated with
adaptation of C. maculatus to fava bean (Vicia faba, which is in the same tribe, Fabeae, as lentil) [125].
Specifically, low enzymatic activity of beta-glucosidase reduced conversion of vicine (a phytochemical
produced by fava bean) to toxic aglycone. Exceptional change occurred in parallel (especially for L1
versus L14) in numerous other genes, some but not all of which are associated with metabolism or
detoxification in C. maculatus (e.g., 5-oxoprolinase [106]).

In most cases, differentially expressed genes did not overlap more than expected with genetic loci
associated with the performance traits or with regions of exceptional change during lentil adaptation
(or reversion). The most notable exception was that genetic regions that showed exceptional changes
in allele frequency during lentil adaptation in L1 overlapped more than expected by chance with genes
showing plastic differential expression in L1 when reared in mung bean versus lentil. This is consistent
with a role for the evolution of plasticity in host adaptation (as in, e.g., [57,123]). However, the lack of
(excess) overlap among these three genomic data sets (allele frequency change, genotype-phenotype
associations, and differential gene expression) is perhaps even more notable. This result suggests that
the genetic basis of host adaptation, which is arguably most completely measured by genetic changes
during adaptation, is not equivalent to the genetic architecture of performance traits or differential
gene expression. Instead, each of these data sets provides a distinct and incomplete window into
the genetics of adaptation. A lack of concordance among the different approaches is sobering. It
may not be surprising because adaptation to lentil likely involves selection on numerous traits (or
trait combinations), with each affected by multiple (and sometimes overlapping) genes, as well as
by random changes in genes and traits during the extreme initial bottleneck on such a marginal host.
Future experiments and genomic analyses in this system will build on the results presented here,
with the eventual aim of producing a predictive genotype-phenotype-fitness map for C. maculatus
adapting to lentil. Comparisons with other systems, especially those where host adaptation does
not involve high mortality and a severe bottleneck or where host shifts also include interactions
with competitors, mutualists, or predators (e.g., [126-128]), could help determine what aspects of the
genotype-phenotype-fitness map are general versus specific to this system.
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Figure 1. Illustration of the history of the C. maculatus lines discussed in this manuscript (i.e., L1, L2,
L1R, L2R and L14) along with the South Indian mung line (denoted M). The number of generations
that elapsed between the origin of each line and our final sample for population genomic analyses is
shown. Details on additional samples including those used for the backcross mapping families and
gene expression experiments can be found in S1.
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Figure 2. Manhattan plots show standardized allele frequency change for each of 20,376 SNPs for
five pairs of lines and samples (that is, allele frequency change relative to the ancestral, expected
heterozygosity). Results are shown for (A) M to L1 F100, (B) M to L2 F87, (C) L1 F91 to L1R F46,
(D) L2 F78 to L2R F45, and (E) L14 P to L14A F16. Points denote change for individual SNPs, which
are organized along the x-axis by scaffold and position within scaffold. The shaded region denotes
putative X-linked SNPs, whereas SNPs to the left or right of this region are autosomal or Y-linked.
Points are colored to reflect their hidden state from the HMM, with gray for average change and red
for exceptional change.
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Figure 3. Bayesian estimates of the percent of variance in weight and development time explained
(PVE) by the additive effects of genetic variants as captured by the SNP data set for each of the three
back-cross lines (BC-L1, BC-L2, and BC-L14). Colored bars denote point estimates of the PVE, and
vertical lines denote 95% equal-tail probability intervals. The darker portion of each bar indicates a
point estimate of the portion of the PVE attributable to genetic variants with individually measurable
effects.
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Figure 4. The scatter plots depict Bayesian estimates for the number of QTL (i.e., causal variants) on

each scaffold as a function of scaffold size (here measured as the number of SNPs). Results are shown
for each back-cross line (BC-L1, BC-L2 and BC-L14) and trait (weight and development time). Points
representing X-linked scaffolds are denoted with dark outlines. A best fit line from linear regression

is given and the coefficient of determination (r?) is reported. Points that fall well-above the best fit

line harbor more QTL than expected given their size and a highly polygenic architecture of very small

effect variants scattered evenly across the genome.
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(B) Barplot for differentially expressed genes
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Figure 5. Summary of gene expression results. Panel (A) shows a NMDS ordination of the samples
based on transformed count data. Points are labeled by line and host treatment. Barplots in panel
(B) depict the number of differentially expressed genes for each comparison, with colored regions
denoting the number of upregulated versus downregulated genes in each contrast. Here, upregulated
means that expression was higher in the first sample listed than in the second, and vice a versa for
downregulated.
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Figure 6. Performance-trait QTL density (number of QTL per SNP) for SNPs exhibiting exceptional
allele frequency change in the E&R experiments. Results are shown for adult weight and development
time for each pair of lines or samples (see main text for details). Red dots denote the observed density.
Black dots (median) and vertical lines (2.5th to 97.5th percentile) denote the null expectations from
randomization tests.
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Table S1. Summary of data sets used in this study. Analyses and sample size for each C. maculatus line

and generation are denoted. Gene expression samples comprise 30 larvae, with 15 reared on each host

plant, and with sets of three larvae pooled for sequencing. Generation numbers for backcross (BC)

mapping populations indicate the generation of the lentil line used to create the backcross. We have

not maintained a generation counter on the south Indian line (M), but it has been in the lab for at least

300 generations.

Line Generation N  Var calling Change Mapping Expression
L1 Fo1 40 X

L1 F100 40 X X X
L1 F107 30

LIR F35 40 X

L1IR F46 40 X X

LIR F55 30

BC-L1 F146 241 X X
L2 F78 40 X

L2 F87 40 X X X
L2R F35 40 X

L2R F45 40 X X X
BC-L2 F135 256 X X
L14 P 48 X X

L14 F1 48 X

L14 F2 48 X

L14 F3 48 X

L14 F4 48 X

L14A F5 48 X

L14A F6 48 X

L14A F7 48 X

L14A E8 48 X

L14A Fl6 48 X X X
L14B F5 48 X

L14B F8 48 X

L14B Fl6 48 X

BC-L14 F38 251 X X
M n/a 48 X X X
M n/a 15

Table S2. Maximum likelihood estimates of hidden state transition probabilities from the HMM
analyses. Here, states 1 and 2 denote the average and exceptional change states, and — indicates the

direction of the transition.

Lines 1-1 122 251 22
M to L1 F100 0996 0.004 0.764 0.236
M to L2 F87 0.996 0.004 0.759 0.241
L1F91toL1IRF46 0994 0.006 0.680 0.320
L2F87to L2RF45 0995 0.005 0.654 0.346
L14PtoL14AF16 0995 0.005 0.778 0.222
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Table S3. REML estimates of the proportion of variation in adult weight and development time

partitioned among families in each BC mapping population. The likelihood ratios (LR) and P-values

from the null hypothesis test of no family variance are reported.

Line Trait ‘ Prop. var. LR p
BC-L1  Weight 0.074 10.418 0.0004
Development Time 0.066 2551 0.0374
BC-L2  Weight 0.074 2169 0.0494
Development Time 0.001  0.005 0.3733
BC-L14 Weight 0.097 11.113 0.0001
Development Time 0.004 0.0443 0.3429

Table S4. Bayesian estimates of performance trait genetic architecture parameters, including the

proportion of the trait variation explained by genetic effects (PVE), the proportion of the PVE

attributable to genetic variants with measurable effects (PGE) and the number of causal variants

or QTL (ny). Point estimates (posterior median) and 95% equal-tail probability intervals (ETPIs) are

given.

Trait Line ‘ PVE ETPI PGE ETPI n, ETPI
Weight BC-L1 038 0.16,061 026 0.00,087 35 0,260
Weight BC-L2 0.14 0.02,0.37 046 0.00,094 11 0,129
Weight BC-L14 | 0.17 0.05,033 030 0.00,0.90 28 0,215
Dev. time BC-L1 0.08 0.01,0.27 035 0.00,092 16 0,232
Dev. time BC-L2 0.09 0.01,024 040 0.00,094 17 0,224
Dev. time BC-L14 | 0.08 0.01,0.23 034 0.00,092 16 0,239

Table S5. Gene identifications for genes containing exceptional-change SNPs in more than one of

the five comparisons. ‘X’ denotes comparisons where each gene contained exceptional-change SNPs.

Comparisons are referred to by the second (derived) sample for each line and sample comparison (e.g.,

L1 F100 denotes change from M to L1 F100).

Gene

L1 F100

L2 F91

L1IRF46 L2R F45

L14A F16

Armadillo repeat-containing protein 5

X

Carbonic anhydrase 9

X

Chromodomain-helicase-DNA-binding protein 9

Cytochrome P450 4d2

Dynein heavy chain 7%2C axonemal

E3 ubiquitin-protein ligase MYCBP2

K| X[ X[ X| X[ >x

x| <[ X

F-box/LRR-repeat protein 2

Haloacid dehalogenase-like hydrolase domain-containing prot. 2

NADH dehydrogenase [ubiquinone] flavoprotein

Nuclear pore complex protein Nup155

Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase

Synaptic vesicle membrane protein VAT-1 homolog-like

Transmembrane GTPase Marf

TWiK family of potassium channels protein 7

U3 small nucleolar RNA-associated protein 15 homolog

X[ X[ XX X| X[ X<

X[ X[ X[ X[ X[ X[ X[ <
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Table S6. Genetic correlations for adult weight breeding values estimated in each backcross mapping
population based on the GWA mapping results from each pair of mapping populations. For example,
the first row shows the genetic correlation for breeding value estimates of adult weight in BC-L1 given
genetic SNP x weight associations in BC-L1 versus BC-L2. Pearson correlations, 95% confidence
intervals (Cls) and associated P-values are reported.

Line GWA | T 95% CI P

L1 L1 x L2 -0.11  -0.22,-0.01 0.04
L1 x L14 | -0.01 -0.11,0.10 0.92
L2 x L14 0.22 0.11,0.32 <0.01
L2 L1 x L2 -0.17  -0.27,-0.07 <0.01
L1 xL14 | -0.03 -0.14,0.07 0.56
L2 xL14 | -0.02  -0.13,0.08 0.67
L14 L1 x L2 0.05 -0.06,0.15 0.35
L1 x L14 0.17 0.06,0.27  <0.01
L2 xL14 | -0.04 -0.15,0.06 0.42

Table S7. Genetic correlations for development time breeding values estimated in each backcross
mapping population based on the GWA mapping results from each pair of mapping populations. For
example, the first row shows the genetic correlation for breeding value estimates of development time
in BC-L1 given genetic SNP x weight associations in BC-L1 versus BC-L2. Pearson correlations, 95%
confidence intervals (CIs) and associated P-values are reported.

Line GWA ‘ r 95% CI P

L1 L1 x L2 -025 -0.35,-0.15 <0.01
L1 xL14 | -0.17 -0.27,-0.06 <0.01
L2 x L14 0.06  -0.05,0.17 0.27
L2 L1 x L2 -0.31 -041,-021 <0.01
L1 xL14 | -0.15 -0.25,-0.04 0.01
L2 x L14 | -0.04 -0.14,0.07 0.52
L14 L1 x L2 0.15 0.04,0.25 0.01
L1 x L14 | -0.07  -0.17,0.04 0.20
L2 xL14 | -0.16 -0.26,-0.06  <0.01

Table S8. Summary of differential expression of putative digestive enzymes. For each comparison, we
report the number of differentially expressed proteases and carboxylases, and the binomial probability
of having the observed number of each by chance. We classified genes as likely digestive proteases and
carboxylases following [105]. protease = serine protease, trypsin, chymotrypsin, cathepsin, aspartic
proteinase, lysosomal aspartic protease, cysteine protease or proteinase (88 genes); carboxylase =
amylase, cellulase, glucosidase or maltase (29 genes). The first three comparisons correspond to genetic
differences in expression, the next two to plastic (host) differences in expression, and the final four
include genetic and plastic differences.

Protease Carbohydrase
Comparison Obs. P | Obs. P
MM x LM 3 007 0 0.70
MM x LIRM 8 0.11 2 0.28
L1 x L1RE 0 049 0 0.79
L1M x L1t 0 081 0 0.93
LIRM x L1RE 1 026 0 0.50
MM x L1k 6 016 2 0.28
MM x L1RE 7 011 4 0.06
LM x L1RM 0 091 0 0.97
L1t x L1RM 0 070 1 0.10
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Table S9. Summary of randomization tests results for the number of exceptional-change SNPs in M to
L1 F100 or L1 F91 to L1R F46 among differentially expressed genes.

E&R Dif. express. ‘ Observed  Null P
M—L1 F100 LIM x L1k 3 0243 0.017
LRIM x LR1- 4 2180 0.203
L1t x LIRE 2 0600 0.141
MM 5 LM 3 1124 0.138
LIM x L1RM 0 0047  1.00
L1F91—L1RF46 L1M x L1t 0 029 1.00
LRIM x LR1- 1 2185 0.801
L1t x LIRE 0 0568  1.00
MM x LIM 9 1.090 1.00
L1M x L1RM 0 0.056 1.00

Table S10. Summary of randomization tests results for the density of adult weight and development
time QTL (mean PIP across SNPs) within differentially expressed genes.

Trait Dif. express. | Observed Null P
Weight LM x L1t 0.0044 0.0044  0.4300
L1RM x L1RF 0.0044 0.0044 0.4740
L1t x LIRE 0.0044 0.0044 0.3500
MM x LM 0.0043  0.0044 0.8230
L1M x L1RM 0.0046 0.0044 0.1100
Dev. time  L1M x L1F 0.0033  0.0035 0.8170
L1RM x L1RF 0.0035  0.0035 0.4120
L1t x LIRE 0.0034 0.0035 0.7260
MM x L1IM 0.0035 0.0035 0.3850
LIM x L1RM 0.0035 0.0035 0.2270

L1 0.46

L2

L1R

L2R

L14A

%

/|

Figure S1. Correlogram summarizing correlations in evolutionary change across SNPs for pairs of
lines. Names of the derived line in each pair are given along the diagonal. The direction and intensity
(by shading) are depicted visually in the lower triangle, and the Pearson correlation coefficient for each
pair of lines is given in the upper triangle
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L1

L2

L1R

L2R

L14A

Figure S2. Correlogram summarizing correlations in hidden Markov model (HMM) state across SNPs
for pairs of lines. HMM state refers to whether or not each SNP was classified as being in an exceptional
change genetic region based on standardized allele frequency change. Names of the derived line in
each pair are given along the diagonal. The direction and intensity (by shading) are depicted visually
in the lower triangle, and the Pearson correlation coefficient for each pair of lines is given in the upper
triangle
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Figure S3. The Manhattan plots show posterior inclusions probabilities (PIPs) for SNPs for each
back-cross line (BC-L1, BC-L2 and BC-L14) and trait (weight and development time). SNPs are ordered

by scaffold and the gray shaded area denotes X-linked SNPs.
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Figure S4. Correlogram summarizing correlations between model-averaged effect estimates for pairs
of lines and traits. Back-cross lines (denoted L1, L2 and L14 for brevity) and traits (Wt = weight, DT =
development time) are given along the diagonal. The direction and intensity (by shading) are depicted
visually in the lower triangle, and the Pearson correlation coefficient for each pair of lines and traits is
given in the upper triangle.
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Figure S5. Hierarchical clustering and heatmap of the 50 most variably expressed genes across the
entire data set for each sample. Sample IDs include a unique identifier for each pool of three larvae
followed by the line (L1, L1R or M) and host treatement (L or M).
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Figure S6. Mean differential expression plots for changes in gene expression between different pairs
of contrasts. In the plot legends, 0 = genes that show no significant difference in expression between
the contrast groups, 1 = genes that show significant upregulation in expression between the contrast

groups,and -1 = genes that show significant downregulated in expression between the contrast groups.

Each group is labeled by line and host.

(B) L1.L - L1.M

Upregulated
® No difference

B B . o Downregulated

Average log—expression

(D) L1.L - M1.M

Average log—expression

(F) L1.M - L1R.M

Average log—expression

36 of 39



Version August 25, 2020 submitted to Genes

-log10(P value)

-log10(P value)

(A)L1.L - L1R.L

log10(Fold change)

(C)L1.L - L1R.M

-6 -4 -2 0 2 4 6

log10(Fold change)

(E) L1R.L - L1R.M

-6 -4 -2 0 2 4 6

log10(Fold change)

(B)L1.L -L1.M

-6 -4 -2 0 2 4
log10(Fold change)
(D) L1.L - M1.M

-6 -4 -2 0 2 4

log10(Fold change)

(F) L1.M - L1R.M

log10(Fold change)

37 of 39

Figure S7. Volcano plots show gene expression ratios (log10 fold change) plotted against the negative
transformed P-values generated from decideTests function from voom between different pairs of

contrasts. Colored dots represent genes with a statistically significant (P < 0.05) fold change of > 1.

Each group is labeled by line and host.
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Figure S8. Mean differential expression plots for changes in gene expression between different pairs
of contrasts. In the plot legends, 0 = genes that show no significant difference in expression between
the contrast groups, 1 = genes that show significant upregulation in expression between the contrast
groups,and -1 = genes that show signifi in expression between the contrast groups.
Each group is labeled by line and host.
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Figure S9. Volcano plots show gene expression ratios (log10 fold change) plotted against the negative
transformed P-values generated from decideTests function from voom between different pairs of
contrasts. Colored dots represent genes with a statistically significant (P < 0.05) fold change of > 1.
Each group is labeled by line and host.
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