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Gravitational wave astrophysics relies heavily on the use of matched filtering both to detect signals in
noisy data from detectors and to perform parameter estimation and tests of general relativity on those
signals. Matched filtering relies upon prior knowledge of the signals expected to be produced by a range of
astrophysical systems, such as binary black holes. These waveform signals can be computed using
numerical relativity techniques, where the Einstein field equations are solved numerically, and the signal is
extracted from the simulation. Numerical relativity simulations are, however, computationally expensive,
leading to the need for a surrogate model which can predict waveform signals in regions of the physical
parameter space which have not been probed directly by simulation. We present a method for producing
such a surrogate using Gaussian process regression which is trained directly on waveforms generated by
numerical relativity. This model returns not just a single interpolated value for the waveform at a new point,
but a full posterior probability distribution on the predicted value. This model is therefore an ideal
component in a Bayesian analysis framework, through which the uncertainty in the interpolation can be
taken into account when performing parameter estimation of signals.

DOI: 10.1103/PhysRevD.101.063011

I. INTRODUCTION

The first detection of gravitational waves in September
2015 was the result not only of advanced detector develop-
ment, but also the development of data analysis techniques
which were capable of detecting and characterizing weak
signals in noisy data. The most sensitive of these techniques
rely on matched filtering to identify signals, and these
techniques are most effective when accurate and efficient
waveform models are available to produce template banks.
The production of high-accuracy waveforms is possible

thanks to advances in the field of numerical relativity (NR),
in which the full set of Einstein equations are solved
numerically. This can be done reliably for the low-mass
compact binary systems of interest to the current generation
of ground-based gravitational wave observatories; how-
ever, these simulations are computationally expensive and
can require thousands of CPU hours to run in situations
where the mass ratios and spins of the black holes are small.
A simulation of a full 350-cycle gravitational waveform
spanning the entire advanced LIGO band has been

produced [1]; however, this required several months of
high-performance computing to complete [2], despite
employing numerous techniques to reduce wall-clock
computation time. As a result, only around 1000 NR
waveforms are available, and most of these are much
shorter than 350 cycles long. Binary black hole (BBH)
coalescences are described by a number of physical
parameters: the ratio of the two component black holes’
masses, q; the vector of each component’s spin, s1 and s2;
and the time, t, relative to a fixed reference time, for
example, the time of coalescence of the binary.
This results in a parameter space with eight dimensions

which is very sparsely sampled. As a result, NR waveforms
alone are not a practical way to form the template banks
required for precise signal parameter estimation. In addi-
tion, the high cost of producing new simulations is unlikely
to significantly change this situation in the near future.
To overcome this problem, there have been significant

efforts to inform analytical models of nonspinning black
hole coalescences with the results of NR simulations of
spinning systems to produce an analytical, phenomeno-
logical approximant which can be rapidly evaluated. There
are two major implementations of analytical models which*daniel.williams@glasgow.ac.uk
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are calibrated against NR-derived waveforms, the Phenom
and SEOBNR families of approximants. The Phenom
family has developed from IMRPhenomA [3], which was
capable of producing waveforms for nonspinning binaries,
through to IMRPhenomD [4], which models spinning, non-
precessing binaries.
The Phenom family of waveforms has been developed

to incorporate support for precessing systems through
the IMRPhenomP codes; the latest edition of this is
IMRPhenomPv3 [5], although in this work we will make
use of the slightly older IMRPhenomPv2 [4], which has
extensive support within the PyCBC [6–8] library used in
the preparation of this work. This is composed of a post-
Newtonian approximation to the inspiral period of the
waveform and a phenomenological ansatz for the merger
and ringdown periods. The approximant is calibrated
against 19 NR-derived waveforms to produce a model
which has a low mismatch [defined in Eq. (8)] with the
calibration data.
The SEOBNR family provides an alternative approach to

that taken by the IMRPhenomP models, using an effective
one-body approach [9–11] to map the dynamics of a binary
into those of a single test particle in a deformed Kerr metric.
In contrast to the piece-wise approach to building the
waveform from the inspiral, merger, and ringdown of
the IMRPhenomP models, the SEOBNR models construct
the waveform through a single process [12]. A number of
models based on the effective one-body approach exist,
ranging from EOBNR which model nonspinning systems
[12,13] to the SEOBNR families of model, which can
model spinning systems [14–16], and precession effects
[17]. Similarly to IMRPhenom, these models are calibrated
against NR waveforms: for SEOBNRv3, five waveforms are
used for this calibration.
These models can be evaluated quickly and are thus

suitable for the rapid parameter estimation tasks required
for the detection and characterization of gravitational
waves. However, both the Phenom and SEOBNR models
are affected by systematic uncertainties which are difficult
to quantify in regions of the BBH parameter space which
are not calibrated against NR simulations.
The NRSur family of surrogate models, developed by

Blackman et al. [18–20], employs spline interpolation to
waveforms generated by the SpEC NR code. The two
analysis-ready versions of this model, NRSur4d2s and
NRSur7d2s, are capable of producing waveforms for systems
with a mass ratio< 2 and an effective spin parameter< 0.8.
In contrast to phenomenological models, the NRSur
models are currently capable of producing only a small
number of cycles of the waveform, being limited by the
length of the NR waveforms off which they are condi-
tioned. Recent efforts have been made, however, to produce
similar surrogate models which are conditioned on hybrid-
ized waveforms [21]. The number of waveforms required to
produce the surrogate model is also considerably larger

than those required for the phenomenological models, with
NRSur7d2s being conditioned on 744 NR waveforms.
Efforts to account for the systematic uncertainty between

NR waveforms and waveforms produced by phenomeno-
logical models have been proposed in which the uncer-
tainties are modeled by Gaussian process regression (GPR)
[22,23]. This allows the uncertainty in the interpolation to
be calculated from the posterior predictive distribution of
the GPR. This probability distribution, derived from GPR,
can be used to marginalize the likelihood of the observed
gravitational wave (GW) data over waveform uncertainty.
This approach was shown to provide a significant reduction
in biases in parameter estimation (PE) compared to using
phenomenological methods with no attempt to account for
the uncertainty [22,23].
These previous efforts suggested using GPR to model the

difference between NR waveforms and phenomenological
models. We propose to extend this approach by producing a
model of the entire gravitational waveform using GPR as a
surrogate model conditioned only on numerical relativity
simulations, without any reference to a phenomenological
model. In comparison to the NRSur families of surrogate,
GPR is capable of not only producing an approximant for
the waveform throughout the parameter space, but also an
uncertainty on that estimate. We note that our model is not
the first to attempt to predict BBH waveforms using GPR,
but it is the most complete. A previous model [24] used
GPR, but this was conditioned on waveforms generated
from the IMRPhenomPv2 phenomenological approximant, and
not NR data, and is not capable of producing generically
spinning waveforms.
GPR is a Bayesian regression technique which relies on a

Gaussian process (GP) prior distribution. A GP can be
considered as a prior over a space of functions, each of
which is considered a potential fitting function to some set
of data. The GP model assumes that the values of the
function evaluated at a certain finite set of points are draws
from a multivariate Gaussian distribution. The GP prior
is itself defined by a number of assumptions about the
behavior of these functions (e.g., their smoothness). When
the GP prior model is conditioned on data from existing
simulations (potentially allowing for uncertainties in each
of the simulations), the resulting posterior provides a
distribution of functions which could represent the true
model. The mean of this posterior distribution can be used
analogously to the single fitting function which is produced
by more conventional regression techniques, while the
variance of the distribution provides a measure of the
goodness-of-fit.
The structure of this publication is as follows. In Sec. II,

we explain the process used for the production of a
waveform surrogate model and the choice of covariance
function for our model in Sec. II A. Our new model, named
Heron, is introduced in Sec. III, with the waveforms used to
train the model described in Sec. III A, and a discussion of
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the complications introduced by using a large quantity of
data is provided in Sec. III B. An overview of the testing
procedures which we used to verify the output of the model
is included in Sec. IV, with both the results of these tests,
and a number of example waveform outputs are presented
in Sec. V.

II. GAUSSIAN PROCESS REGRESSION

A GP represents a distribution of potential functions
which can explain a set of training data ðX ;YÞ, composed
of observations, Y, made at locations, X , within the
parameter space of the problem, such that the function
values

y ¼ fðxÞ

(for each x ∈ X , y ∈ Y), are modeled as being drawn from
a multivariate normal distribution. As such, the GP is fully
characterized by its mean function, μðxÞ, and a covariance
function, kðx; x0Þ, which describes the similarity between
two function values at two points in the parameter space.
A GP can be defined with any positive-definite covariance
function, the form of which encodes prior assumptions
about the data, for example, its smoothness and stationarity.
Popular choices of covariance function include the squared
exponential covariance functions and Matérn covariance
functions [23,25].
It is common to assume the training samples have mean

zero. This causes the mean of the GP to be zero outside the
training set, which, while unphysical, is a reasonable
assumption given a lack of data; within the region described
by the training set, the mean of the function is defined by
the training data. Making this assumption allows the mean
squared properties of the data to be determined entirely
through the covariance function.
When defining the covariance function for the GP, it is

often desirable to specify a number of free hyperpara-
meters, θ, which allow the properties of the covariance
function (and hence the GP) to be adapted based on the
training data. Bayesian model comparison can be used to
select the GP which optimally describes the data, or to
obtain a posterior distribution on appropriate values of the
hyperparameters. The log-probability that a given set of
function values were drawn from a GP with zero mean and
a covariance matrix Kij ¼ kðx; x0Þ is

logðpðyjXÞÞ ¼ −
1

2
yTK−1y −

1

2
log jKj − n

2
log 2π: ð1Þ

With n, the total number of points in the training data.
This quantity is normally denoted as the log-evidence or
the log-hyperlikelihood. The model which best describes
the training data may then be found by maximizing the
log-hyperlikelihood with respect to the hyperparameters, θ
of the covariance function.

Once the GP has been conditioned on the training data
and the optimal covariance function identified through
model comparison, it is possible to exploit it as a predictive
tool, allowing the interpolation of function outputs between
training data. In order to make a prediction using the GP
model, we require a new input point at which the prediction
should be made, which is denoted x�. In order to form the
predictive distribution, we must then calculate the covari-
ance of the new input with the existing training data, which
we denoteKx;x� , and the autocovariance of the input,Kx�;x� .
We then define a new covariance matrix, Kþ, which has the
block structure

Kþ ¼
�
Kx;x Kx;x�

Kx�;x Kx�;x�

�
ð2Þ

for Kx;x the covariance matrix of the training inputs,
and Kx�;x ¼ KT

x;x� .
The predictive distribution can then be found as

pðy�jx�;DÞ ¼ N ðy�jKx�;xK−1
x;x y; Kx�;x� − Kx�;xK−1

x;xKx;x�Þ;
ð3Þ

where D is the training data and N is the normal
distribution.
Equation (3) emphasizes the value of the GP approach to

interpolation, as the value returned from the model is not a
single point prediction, but a posterior probability distri-
bution which describes the uncertainty of the prediction,
along with the “best estimate” prediction as the mean
of pðy�jx�;DÞ.

A. Choice of covariance function

A covariance function can be designed for any given
GP by considering both the hyperparameters and functional
form of the covariance function. A much fuller discus-
sion of these considerations is given in [23]; however, a
summary is made here due to the importance of these
considerations in the remainder of this work.
A covariance function must be positive definite, that is, it

returns a value which is non-negative for any element in its
domain. Practically, when working with data, this means
that the covariance function will map any pair of points in
the set of data to a non-negative real number. We can
additionally require a covariance function to be stationary,
in which case it is a function of x1 − x2, and so invariant to
translations in the input space. Further, if it is a function of
jx1 − x2j only it is an isotropic covariance function, and
invariant under rigid motions within the input space [25].
A straightforward function of x1 − x2 is a distance

function of the form
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d2ðx1; x2Þ ¼
X
a;b

ðx1 − x2Þaðx1 − x2Þb: ð4Þ

Such a distance function is stationary, and a covariance
function using this distance metric will then be a sta-
tionary GP.
The functional form of the covariance function is

important in defining the prior belief about the form of
the function which generated the training data. A common
choice of covariance function is the exponential squared
covariance function [25],

kSEðd; λÞ ¼ exp

�
−

d2

2λ2

�
: ð5Þ

For λ, the length scale of the kernel can be tuned as a
hyperparameter. A larger value of this parameter will
describe longer scale variations within the data.
The functional form of the squared exponential covari-

ance function implies that the generating function was
infinitely differentiable; however, generalizations of this
covariance function allow the differentiability to be altered
through the addition of a further hyperparameter, allowing
the smoothness of the generating function to be learned
during the training of the GP.
An example of such a covariance function is the general

Matérn covariance function, which has the form

Cνðd; ρ; νÞ ¼
21−ν

ΓðνÞ
� ffiffiffiffiffi

2ν
p d

ρ

�
ν

Kν

� ffiffiffiffiffi
2ν

p d
ρ

�
ð6Þ

for Γ the gamma function, Kν the modified Bessel function
of the second kind, and ρ and ν are hyperparameters. A GP
which uses this covariance function will be (ν − 1)-times
differentiable [25].
Uncertainty in the training data used to train the GP can

be accounted for by modifying the covariance matrix
appropriately, with Kþ of Eq. (2) becoming

Kþ ¼
�
Kx;x þ σ2i I Kx;x�

Kx�;x Kx�;x�

�
; ð7Þ

for I the identity matrix, and σi the standard deviation of the
ith datum.
The predictive distribution then becomes

pðy�jx�;DÞ ¼ N ðy�jKx�;xðKx;x þ σ2i IÞ−1y;
Kx�;x� − Kx�;xðKx;x þ IσiÞ−1Kx;x� Þ:

The inclusion of a small noise term, by setting σ to a
small value, such as 10−6, is often advantageous for
improving the numerical stability of the inversion of the
covariance matrix (Tikhonov regularization), which can

otherwise become nearly singular as the total amount of
training data increases.
More complex covariance models can be obtained by

combining simpler covariance functions through addition
or multiplication. This allows the modeling of effects
within the training data which occur at different scale
lengths or with different properties. For example, if the
training data are produced by a process with a long-term
variation, but within that long-term variation there are a
number of short-term variations, we might model this as a
combination of two covariance functions, specifically the
sum of two exponential squared covariance functions.
Similarly, it is possible to define a GP that uses different
kernels in different dimensions of the parameter space,
allowing the scale length of each dimension to be chosen
individually; for this purpose, we might use a kernel that is
a product of different kernels for each dimension. In the
case of a diagonal metric, this happens automatically when
using the squared-exponential covariance function, and
covariance functions with similar form, since they deter-
mine the scale of each dimension independently.

B. Training the surrogate

Then, in order to produce a good fit to the data, and to
accurately estimate the uncertainty of the prediction from
the regression model, we performed Bayesian model
selection to determine the optimal value of the covariance
function’s hyperparameters. In order to initialize this
process, we made a rough guess of appropriate values
for the hyperparameters; we do this by calculating the
average distance between points along each axis in the data
space and using this as our initial estimate for the hyper-
parameter values. Starting from these initial values we
optimized the log-likelihood of the model by varying the
hyperparameter values to determine a maximum a posteri-
ori log-likelihood.
In order to cope with the large number of training points

and to increase the speed of the training process, we used
the ADAM [26] optimization algorithm to stochastically
optimize the log-likelihood using minibatches of 100
training points.
While this method of determining, and fixing, the

hyperparameters of the GP is computationally convenient,
other methods are also possible, including marginalizing
over the hyperparameters. However, our method has the
advantage that it is not necessary to evaluate the GPR
model for all of the hyperparameter samples and can
therefore be evaluated more rapidly.

III. THE HERON MODEL

Using a GPR model, named Heron, trained on NR data
from the Georgia Tech BBH waveform catalog. Heron was
designed as a surrogate model operating over the eight
dimensions of the BBH parameter space, and we present it
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as a proof of concept of a GPR-based surrogate for this
larger parameter space. The model is constructed using a
squared-exponential covariance function. We will demon-
strate that this model is capable of producing waveforms for
spinning and precessing BBH systems.

A. Training data

We constructed our training data for the Heron model
from the strain values of the 132 waveforms in the Georgia

Tech Catalog [27]. These data were acquired in the LIGO
numerical relativity hdf5 format [28], and the PyCBC

package [6–8] was used to produce the (2,2)-mode of
these waveforms.
Each waveform is parametrized by seven quantities (the

mass ratio and the spin vectors of each component black
hole) in a vector we denote xi. Each strain value, hi, within
the waveform is further parametrized by a time relative to
the maximum strain value in the waveform, and thus each
training point is parametrized by an eight-dimensional

FIG. 1. A pair plot of the parameter space sampling in the Georgia Tech catalog. The subplots on the diagonals show the histograms of
the distribution of waveforms (as red points) generated with respect to each individual parameter. Three additional points are displayed
on the plot corresponding to the waveform samples shown in the later figures of this paper.
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parameter vector, which we denote xi0. This provides us
with a training set which has eight input dimensions, and a
single output dimension, with the form

D ¼ fðxi0; hiÞji ¼ 1; 2;…; Ng

forN the total number of strain samples used from all of the
training waveforms. The distribution of training waveforms
throughout the parameter space is shown in Fig. 1.

B. Computational complexity

A major drawback of GPR is the need to invert the
covariance matrix in order to produce predictions. Matrix
inversion is a computationally intensive task which scales
in memory with N2, for N training points, and with N3 in
time. The standard approach to GPR described in Eq. (3)
thus rapidly becomes impractical, requiring large quan-
tities of memory for even moderately sized training sets.
In order to overcome these scaling problems, appro-
ximate GPs simplify the inversion of the covariance
matrix by making simplifying assumptions about its
form. One example is the use of the approximate
hierarchical off-diagonal low rank (HODLR) [29] inver-
sion method, which allows inversion to be carried out
in OðN log2NÞ operations. This approach is possible
because kernels such as the exponential squared kernel
produce covariance matrices which can be arranged to
form HODLR matrices. The off-diagonal blocks are
then factorized using partial-pivoted lower-upper decom-
position, and the on-diagonal blocks are factorized using
a more accurate algorithm, such as Cholesky decom-
position. The block inverses are then recombined to
provide the (approximate) overall matrix inverse.
This surrogate model makes use of N ¼ 4, 740 training

points, stored as 64-bit floating points, and requires
approximately 370 kilobytes to store in memory. This
leads to the need to invert a covariance matrix which
requires around 134 gigabytes of memory. To overcome
this, we employed the HODLR method for calculating the
matrix inverse, using the implementation in the GEORGE

[29] PYTHON package.
The use of an approximate method to produce the GP

posterior will introduce additional uncertainties. While
tests conducted in [29] indicate that this additional uncer-
tainty is likely to be small, we make use of in-sample
testing (see Sec. IVA) to assess the impact of using this
method on the model’s ability to replicate its training data.

IV. VERIFICATION OF THE GPR MODEL

The sparsity of training data poses a considerable
challenge to the testing and verification of a model such
as the Heron model; conventional approaches to testing
such a model involve setting aside a fraction of the training

data to compare to the model output when evaluated at the
parameter space location of each test datum.
The quantity of numerical relativity waveforms avail-

able at present in the Georgia Tech catalog makes this
approach difficult, as some regions of the parameter
space are very sparsely sampled, and omitting a training
waveform in this location may significantly complicate
the process of training the model. To overcome this, we
have carried out three separate categories of test on the
Heron model.

In-sample tests where the entire catalog of available
training waveforms are used to condition the GPR
used by the model. Waveforms are then produced
from the model at the parameter locations which
correspond to each of the training waveforms, and
the match between the Heron waveform and the GPR
waveform is calculated.

Out-of-sample tests where a single waveform from the
catalog is omitted from the set of training wave-
forms used to condition the GP. A GPR model is
conditioned on a reduced catalog for each wave-
form, the model is retrained to find the optimal
hyperparameters given the reduced dataset, and the
waveform is produced from the reduced Heron
model which corresponds to the omitted NR wave-
form. The match is then computed between these
two waveforms.

Tests against phenomenological models where the
match is computed between waveforms produced
by Heron and by other waveform models, such as
SEOBNRv3 and IMRPhenomPv2.

Each approach to testing has different advantages and
disadvantages and test for different aspects of the model’s
performance.
For each of the tests, we compare the output of the Heron

model with another waveform by calculating the mismatch
between the two waveforms. This is defined as

Mðhmodel; hanaÞ ¼ 1 −max
t0;ϕ0

hhmodel; hanaiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhmodel; hmodelihhana; hanai
p ;

ð8Þ

where hmodel and hana are, respectively, the timeseries
predicted by the GPR model and the analytical phenom-
enological approximant, t0 and ϕ0 are the merger time and
merger phase, and h·; ·i is the noise-weighted inner product
between two waveforms, defined as

ha; bi ¼ ℜ
Z

∞

−∞

ã�ðfÞb̃ðfÞ
SnðfÞ

df ð9Þ

for ã and b̃, respectively, the Fourier transforms of the
timeseries a and b, Sn the amplitude spectral density of the
noise, and f the frequency.
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For all of the tests presented in this paper, we assume that
the noise is flat across frequencies, that is SnðfÞ ¼ 1 ∀ f.

A. In-sample tests

The simplest set of tests which we perform on the Heron
model are in-sample tests, which effectively test the
model’s ability to reproduce its own training data. For
the Heron model, this involved computing the mean
waveform from the GP corresponding to each waveform
which was used in the training set. The mismatch was then
calculated between each mean waveform and the corre-
sponding NR training waveform using the expression for
waveform mismatch, M, given in Eq. (8).
In-sample testing ought to reveal problems with the

choice of hyperparameters in the model, inconsistencies in
the training data itself, and error introduced into the model
through the use of an approximate method for the inversion
of the covariance matrix. Figure 2 plots the histogram of the
mismatch (equal to 1 −M) values which resulted from
these tests against the Georgia Tech waveforms used as the
training data (plotted as the black-outlined histogram).
Reassuringly, the mismatch between the vast majority of
the model outputs and the training data is small. The mean
mismatch from these in-sample tests is 0.003, with 95% of
the mismatches falling between 0.000245 and 0.0124. This
implies that the additional error introduced into the wave-
form using the approximate matrix inversion technique is
responsible for only a small mismatch when compared to
the NR waveform.

B. Out-of-sample tests

A more rigorous test of a predictive model involves
comparing the model’s output in a region of the parameter
space which does not contain a training datum. This
process, known as out-of-sample testing, is difficult for
the Heron model, thanks to the large (seven dimensional)
parameter space, and the small number of available training
waveforms. As a result, removing a substantial fraction of
the waveforms in order to produce a set of test data would
be likely to substantially affect the predictive power of
the model.
To overcome this, we performed a leave-one-out

(LOO) testing procedure. In order to do this, multiple
training datasets are produced; from each, a single
waveform is omitted. This reduced dataset is then
substituted for the data on which the full Heron model’s
GP is conditioned, and the model is retrained using the
reduced training set, in order to find the hyperparameter
values which maximize the model’s log-likelihood. The
reduced Heron model is then evaluated at the parameter
location corresponding to the omitted waveform, in order
to compute a predicted mean waveform. The mismatch
between the predicted waveform and the omitted NR
waveform was then computed, and the distribution of
these mismatches is plotted in Fig. 3 as a black-outlined
histogram.
The mean mismatch across all of the tests was 0.0369,

with 95% of the mismatches between 0.000922 and
0.226. A total of eight tests produce a mismatch greater
than 0.1, and in each case the variance of the returned
waveform is very large, indicating that the model is able
to express its lack of knowledge about these regions of
the parameter space effectively. While this uncertainty

FIG. 2. The distributions of mismatches between waveforms
from the Heron model and each of the NR waveforms from the
Georgia Tech waveform catalog (black outline histogram) used in
the training set using the procedure described in Sec. IVA.
Additionally, the mismatch distributions between waveforms
produced at the same parameters as the NR waveforms by the
SEOBNRv3 (red outline histogram) and the IMRPhenomPv2 (blue
outline histogram) phenomenological waveform models are
plotted. For comparison, the distributions of mismatch between
the same Georgia Tech waveforms and the corresponding wave-
forms from the SEOBNRv3 and IMRPhenomPv2 models are plotted
as filled red and blue histograms, respectively.

FIG. 3. The distributions of mismatches between waveforms
from the Heron model and each of the NR waveforms from the
Georgia Tech waveform catalog (black outline histogram) used in
the training set using the LOO testing procedure detailed in
Sec. IV B. Additionally, the mismatch distributions between
waveforms from the Heron model and waveforms produced at
the same parameters as the NR waveforms by the SEOBNRv3 (red
outline histogram) and the IMRPhenomPv2 (blue outline histogram)
phenomenological waveform models are plotted.
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could be directly incorporated into some applications of
the model, it could also be used to automatically flag
draws from the model which are of low confidence and
which should not be relied upon in an analysis.

C. Tests against phenomenological models

It may also be helpful to understand how the outputs of
the Heron model compare to conventional phenomeno-
logical approximants which are in widespread use. To do
this, we calculated the mismatch between the output of
the Heron model at the same parameter locations as the
in-sample and leave-one-out tests.
In the left panel of Figs. 4 and 5, we compare the

waveform computed for different random samples drawn
from the GPR model, the mean of the GPR model, and
the IMRPhenomPv2 and SEOBNRv3 waveforms for a non-
spinning configuration (Fig. 4), an equal-mass configu-
ration with antialigned spins (Fig. 5), and a precessing
configuration (Fig. 6). The distribution of mismatches
between the GPR model predictions and the two phe-
nomenological approximants is shown in the right panel

of each figure, with matches calculated between the
approximant waveforms and 100 sample waveforms
drawn from the GPR model. In addition, the mismatch
between the mean waveform produced by the GPR model
and each phenomenological model is indicated by a solid
line; it is noteworthy that this mismatch is always smaller
than the mean of the mismatches between the sample
draws and the phenomenological models. This is a result
of the mismatch being a somewhat asymmetric indicator:
the mismatch will always be higher for a waveform
which overestimates or underestimates some feature of
the waveform, where the over- and underestimates will be
averaged through the use of the mean waveform, pro-
ducing a lower mismatch.
In the in-sample case, the Heron model reproduces the

NR waveforms with substantially lower mismatch than
either phenomenological model. This behavior is to be
expected, since the Heron model has direct access to the
NR data, where the phenomenological models do not. It is
worth noting that the mismatch for SEOBNRv3 is consis-
tently smaller than that of IMRPhenomPv2 against both NR

FIG. 4. Nonspinning waveform. One hundred draws from the Gaussian process (left panel) for a nonspinning, equal-mass
configuration (s1 ¼ ð0; 0; 0Þ, s2 ¼ ð0; 0; 0Þ, q ¼ 1.0), shown as light gray lines compared to two analytical phenomenological
approximant models, SEOBNRv3 and IMRPhenomPv2 in red and blue, respectively. The mean draw from the Gaussian process is shown as a
gray dashed line, while the associated variance is plotted as a gray-filled region surrounding the mean. In the right panel, the distribution
of mismatches between the samples and both phenomenological waveforms is shown, with the vertical lines representing the mismatch
between the mean waveform from the GPR and the phenomenological waveform.
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and the Heron model. IMRPhenomPv2 is known to be accurate
over a smaller range of black hole spins than the
SEOBNRv3 model.
We also compare the behavior of the LOO models

described in Sec. IV B with the two phenomenological
models. The distributions of mismatches from comparison
between waveforms from the LOO models and waveforms
produced by each approximant at the same parameter
location as the NR waveform which was omitted from
the LOO model are plotted in Fig. 3 as blue and red-outline
histograms for the IMRPhenomPv2 and SEOBNRv3 waveforms,
respectively. Here we see that the LOO models are
generally in good agreement with the two approximants,
with the mismatches slightly larger between the LOO
models and the approximants than between the LOO
models and the NR waveforms, which is also seen in
the in-sample testing.

V. EXAMPLE WAVEFORMS

While we have discussed at length the various tests
which we carried out on the Heron model, it is valuable to

be able to visually compare the output of this model with
the phenomenological models used in testing.
In the left panel of Figs. 4 and 5, we compare the

waveform computed for different random samples from
the GPR model, the mean of the GPR model, and the
IMRPhenomPv2 and SEOBNRv3 waveforms for a nonspinning
configuration (Fig. 4), and an equal-mass configuration
with antialigned spins (Fig. 5). The distribution of
mismatches between the GPR model predictions and
the two phenomenological approximants is shown in
the right panel of each figure, with matches calculated
between the approximant waveforms and 100 sample
waveforms drawn from the GPR model.
An example of a precessing waveform generated by the

GPR model is also shown in Fig. 6.
In Fig. 7, we also show one of the training NR

waveforms plotted alongside the mean output of the
GPR model, 100 waveform draws from the model,
and waveforms produced from both of the pheno-
menological models used for the comparisons in
Figs. 4–6.

FIG. 5. Antialigned spin waveform. One hundred draws from the Gaussian process (left panel) for a nonspinning, equal-mass
configuration (s1 ¼ ð0; 0; 0.6Þ, s2 ¼ ð0; 0;−0.6Þ, q ¼ 1.0) shown as light gray lines compared to two phenomenological approximant
models, SEOBNRv3 and IMRPhenomPv2 in red and blue, respectively. The mean draw from the Gaussian process is shown as a gray dashed
line, while the associated variance is plotted as a gray-filled region surrounding the mean. In the right panel, the distribution of
mismatches between the samples and both phenomenological waveforms is shown, with the vertical lines representing the mismatch
between the mean waveform from the GPR and the phenomenological waveform.
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VI. SUMMARY

We have entered the era of routine GW detection, and the
ability to accurately and rapidly characterize signals from
events such as BBH coalescences will be critical to
understanding the properties of these systems. This char-
acterization process relies on the availability of waveform
templates which are either precomputed prior to the ana-
lysis being run, or can be generated on-the-fly. Highly
accurate waveforms, generated by NR simulations, are
able, and in principal can facilitate accurate inference on
detected signals. However, the expense of producing them
limits their coverage of the parameter space; as a result of
this lack of coverage, and the considerable time require-
ments to produce new waveforms, any inference method
which relied solely on NR techniques could not hope to
satisfy the requirement to rapidly characterize signals and
would not be practical in a scenario where multiple events
are detected every month. Phenomenological models,
which can be evaluated rapidly, are available, which
attempt to interpolate across a large volume of the param-
eter space, but the accuracy of the waveforms which they

produce can be difficult to assess. This leads to the
possibility of introducing biases into the inferred properties
of the system which generated the signal.
In this paper, we have laid out an approach to improving

the accuracy of gravitational wave parameter estimation in
the context of limited template availability by implement-
ing a waveform approximant model using GPR, providing
not only a point estimate of the waveform at any point in the
BBH parameter space, but also a distribution of plausible
waveforms, allowing the uncertainty of the interpolation to
be taken into account during the analysis. In contrast to
previous attempts to produce a GPR model for GW
waveforms, such as [24], our model is trained on data
from the Georgia Tech NR waveform catalog, described in
Sec. III A.
We introduced GPR in Sec. II as a nonparametric

regression method. This property allows the regression
model to be constructed while making minimal assump-
tions about the form of the waveforms, which are encoded
through the form of the covariance function. We discuss
covariance functions in Sec. II A. In order to reduce the

FIG. 6. Precessing waveform. One hundred draws from the Gaussian process (left panel) for a precessing system, with a mass ratio
q ¼ 0.4, and a spin configuration (s1 ¼ ð−0.5;−0.15; 0.3Þ, s2 ¼ ð0.5; 0.13; 0.3Þ), shown as light gray lines compared to two
phenomenological approximant models, SEOBNRv3 and IMRPhenomPv2 in red and blue, respectively. The mean draw from the Gaussian
process is shown as a gray dashed line, while the associated variance is plotted as a gray-filled region surrounding the mean. In the right
panel, the distribution of mismatches between the samples and both phenomenological waveforms is shown, with the vertical line
representing the mismatch between the mean waveform from the GPR and the phenomenological waveform.
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computational burden of evaluating the model, a hierar-
chical matrix inversion method was used (described in [29]
and discussed in Sec. III B).
We present three testing strategies for our GPR model, in

addition to a number of waveforms which have been
produced by it in Sec. IV. We present both the results of
these tests and make comparisons between the model’s
output and two well-established phenomenological models.
This difference also occurs between the phenomenological
model and the waveform produced from NR. A number of
phenomena are likely to have contributed to this discrep-
ancy. One such difference is in the systematic errors of the
NR simulations used to produce the training data for
the GPR model compared to those used to calibrate the
phenomenological models. Additionally, the relatively
small number of waveforms used to calibrate the phenom-
enological models compared to the GPRmodel are likely to
introduce systematic errors in the waveforms produced by
those models. In order to reduce the effect of systematic

errors from NR, a larger model could include waveforms
from a number of different NR waveform catalogs; how-
ever, the addition of more waveforms will increase the
memory requirements to both train and evaluate the model.
Our waveform model tends toward producing conservative
estimates of the waveform; this is clearly visible in the
variance of the precessing waveform in Fig. 6. The use of
additional waveforms is likely to improve the confidence of
the model’s prediction.
In order for a GPR-based approach such as this to be

practical for parameter estimation studies using data from
LIGO or Virgo, it would be necessary to have a means of
producing waveforms which are capable of modeling a
greater amount of the inspiral than our model can currently
provide. One potential approach to solving this problem is
hybridizing the output waveform from our GPR model with
waveforms produced from a post-Newtonian approximant,
in a similar manner to that used by [21]. This would allow
us to overcome the need for much longer waveforms to be

FIG. 7. GPR predictions, compared to NR. One hundred draws from the Gaussian process (left panel) for a nonspinning configuration
(s1 ¼ ð0; 0; 0Þ, s2 ¼ ð0; 0; 0Þ, q ¼ 0.625), shown as light gray lines compared to the phenomenological approximant models,
IMRPhenomPv2 in blue and SEOBNRv3 in red. The mean draw from the Gaussian process is shown as a gray dashed line, while the
associated variance is plotted as a gray-filled region surrounding the mean. The differences between the phenomenological model and
the GPR model waveforms are seen to also exist between the phenomenological model waveforms and the NR-derived waveform,
plotted here in purple. In the right panel, the distribution of mismatches between the samples and both phenomenological waveforms is
shown, with the vertical lines representing the mismatch between the mean waveform from the GPR and each phenomenological
waveform.
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used in the training set, while still allowing the production
of waveforms with lengthier inspirals than our model is
currently capable of.
We note that in this work we have not attempted to

benchmark this model and compare the times required to
produce sample waveforms from it compared to the
analytical approximates which are currently in regular
use. We expect to address this shortcoming in future work,
but acknowledge that a number of optimizations may be
made to allow the model to produce results more expedi-
ently without impacting on its accuracy.
In conclusion, we have demonstrated that GPR is capable

of being used as an interpolant for BBH waveforms, trained
directly off data from NR simulations. While this method
cannot hope to produce waveforms with the same precision
as NR itself, it does account for the uncertainty introduced
through interpolation, a feature which is valuable for
preventing the introduction of bias in a PE analysis.
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