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This work presents a deep reinforcement learning (DRL) approach for procedural content
generation (PCG) to automatically generate three-dimensional (3D) virtual environments
that users can interact with. The primary objective of PCG methods is to algorithmically
generate new content in order to improve user experience. Researchers have started explor-
ing the use of machine learning (ML) methods to generate content. However, these
approaches frequently implement supervised ML algorithms that require initial datasets
to train their generative models. In contrast, RL algorithms do not require training data
to be collected a priori since they take advantage of simulation to train their models. Con-
sidering the advantages of RL algorithms, this work presents a method that generates new
3D virtual environments by training an RL agent using a 3D simulation platform. This work
extends the authors’ previous work and presents the results of a case study that supports the
capability of the proposed method to generate new 3D virtual environments. The ability to
automatically generate new content has the potential to maintain users’ engagement in a
wide variety of applications such as virtual reality applications for education and training,
and engineering conceptual design. [DOI: 10.1115/1.4046293]

Keywords: human computer interactions, machine learning for engineering applications,
virtual and augmented reality
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1 Introduction

The objective of procedural content generation (PCG) methods is
to automatically generate content. Since the 1980s, the gaming indus-
try has been using PCG methods to generate new game levels by
manipulating game design elements such as terrains, maps, and
objects [1]. Similarly, researchers have started exploring how auto-
matically generating new content for e-learning applications can
help advance Adaptive Instructional Systems (AISs), such as intelli-
gent tutoring systems [2,3]. The ability to automatically generate new
content offers several advantages for the design and development of a
wide range of applications [4]. For example, automatically generat-
ing new content can help reduce the resources needed to develop
new applications. PCG methods can help designers explore the
design space and potentially help co-create more creative content.
More importantly, content that is automatically generated can be per-
sonalized to individual’s unique attributes in order to maximize the
user experience [5—7]. The use of PCG methods to generate new
content has been shown to improve user experience and engage
users (e.g., replay value) [7-9].

In recent years, researchers have started integrating machine
learning (ML) algorithms to automatically generate new content
[1,10,11]. However, PCG methods that implement ML algorithms
require datasets to train their generative models since these algo-
rithms frequently use supervised learning methods. In contrast,
deep reinforcement learning (DRL)-based methods are capable of
generating efficient representations of complex situations and
tasks by implementing sensory input information obtained from
simulation environments (e.g., pixels acquired from images of a
video game) [12]. Hence, there is no need to capture training data
a priori, which can help reduce cost [5-7].
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Given the advantages of the PCG methods and the potential of
RL algorithms, this work presents a PCG method based on a
Deep RL approach that generates new virtual environments.
Figure 1 shows an outline of this method. A Deep RL agent is pre-
sented that generates new 3D virtual environments that are validated
via a 3D simulation platform. In this work, the term “virtual” repre-
sents a 3D computer-generated (virtual) environment that users can
interact with. The RL agent generates new virtual environments
according to individuals’ preferences for the location of a subset
of virtual objects. Once a new 3D virtual environment is generated,
the user can interact with it using a variety of interfaces (e.g.,
immersive virtual reality (VR) headset, smartphone, and computer).
This work extends the authors’ previous work [13] and presents the
results of a case study that supports the ability of the proposed
method to generate new 3D virtual environments.

2 Literature Review

2.1 Procedural Content Generation. Procedural content gen-
eration can be defined as the field that studies the development of
algorithms and methods capable of automatically generating
content. The gaming industry has used PCG for decades [1].
Most of the early PCG methods were composed of rule sets and
heuristics that guided the content generation process or functions
to evaluate the generated content. These heuristics and functions
were developed by designers based on their understanding of the
application [6,14]. However, in recent years, researchers have
started exploring the use of supervised ML algorithms to train gen-
erative models capable of automatically creating new content [11].

One of the most well-known projects that integrate supervised
ML to generate new game environments is “Mario AI” [15-17].

2hup://mari(mi.org/
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Fig. 1

Researchers have presented a wide range of PCG methods to auto-
matically generate new environments for a variety of popular games
[1,14-17]. For example, Summerville and Mateas [1] introduce a
Long Short-Term Memory Recurrent Neural Network framework
to generate new Super Mario Brothers levels. Their model was
trained using a corpus of 39 existing levels of Super Mario Brothers,
which they were able to augment by using several training tech-
niques (e.g., stacking). Moreover, Summerville et al. [17] present
a Bayesian network to automatically generate level topologies for
Zelda-like games. They annotated the topology characteristics of
38 levels of different Zelda games in order to train their generative
model. Justesen et al. [18] attempt to overcome the overfitting
problem that arises when training DRL agents on static game envi-
ronments (e.g., training a model to play an Atari game by using just
one level) by introducing a search-based PCG. Their progressive
PCG method helps control for the difficulty of levels to match the
Deep RL agent being trained to play the game. They trained their
models using levels from the games of Zelda, Solarfox, Frogs,
and Boulderdash. Similarly, researchers have introduced PCG
methods based on Markov Chain [19,20], and matrix factorization
approaches [21]. However, these methods still require
human-authored content to train their models.

Most of the current PCG methods that implement supervised ML
methods require some initial dataset to train their generative models.
In contrast, RL algorithms implement high-dimensional sensory
input to generate efficient representations of complex situations
and tasks with the use of simulation [12]. Hence, there is no need
to capture training data a priori. Based on these advantages, this
work presented a PCG method to generate new 3D virtual environ-
ments based on a Deep RL approach.

2.2 Adaptive Instructional Systems. The field of AISs has
greatly benefited from integrating methods to generate new
content for their adaptive applications [22]. These types of
systems require significantly more content than their non-adaptive
counterparts since for each adaptation, new content is required
[23]. AISs are defined as “class of intelligent, machine-based
tools that guide learning experiences by tailoring instruction and
recommendations based on the goals, needs, and preferences of
each learner [or team] in the context of domain learning objectives”
[23]. Intelligent tutoring systems, intelligent method, recommender
systems, personal assistants, and intelligent instructional media fall
under the umbrella of AISs.

Within this field, RL has been used to model students’ learning
styles and develop pedagogical policy strategies [3,9,24,25].
However, there has been a limited number of studies that have
explored how to automatically generate new content for learning pur-
poses [26,27]. For example, Hullett and Mateas [8] present an appli-
cation capable of generating new scenarios for a firefighting training

051005-2 / Vol. 20, OCTOBER 2020

Outline of the reinforcement learning PCG method

application. The application was able to generate different scenarios
of buildings partly collapsed based on the desired skills the users
wanted to train on. Smith et al. [28] implement a method for creating
levels in a learning application aimed at teaching students about frac-
tional arithmetic. The method implements a constraint-focused gen-
erator design approach. Similarly, a learning application that
implemented PCG and gamification to engage students in solving
math problems is introduced in Ref. [29]. This method was
founded on template-based and constructive algorithms.

In the context of conflict resolution, a serious game application that
combined a player modeling and a metaheuristic-search PCG
approach is introduced in Ref. [30]. This PCG method was driven
by a neural network used to predict the distribution fairness of the
players. The results of this study support the value of PCG to guide
the learning of individuals toward targeted learning objectives.
Most recently, Hooshyar et al. [7] proposed a PCG framework for
educational game applications based on a genetic algorithm (GA)
approach. The framework allows designers to control the generation
process, given various learning objectives and preferences. In a dif-
ferent study, Hooshyar et al. [26] present a data-driven PCG approach
based on genetic and support vector machine algorithms. They
implemented their method in a language learning application and
compared the method against a heuristic-based approach. Their
results indicate that their data-driven approach was more effective
at generating content that matched the performance target of individ-
uals, compared to the heuristic approach. Similarly, Sottilare [23]
presents an ML method based on a GA approach to automatically
generate new scenarios from a set of parent scenarios for virtual
instructional and game-based applications.

The previous studies show how PCG methods can be imple-
mented in learning applications and their potential benefits. These
studies also show that researchers are starting to use ML approaches
(e.g., neural network, support vector machines, and genetic algo-
rithms) to train their PCG models. They train their models on data-
sets from existing content or datasets containing users’ data, which
has to be generated or collected a priori [7,26,30]. The process of
generating new content to use as a training dataset can require sig-
nificant time and resources [5—7]. In recent years, researchers have
started exploring how realistic, synthetic data can be automatically
generated [31,32]. However, while studies have shown that these
approaches can generate synthetic datasets that cannot be accurately
distinguished from human-generated ones [33-35], they still require
some initial datasets to train their models. In contrast, RL
approaches do not require training data to be collected a priori
since they take advantage of simulation to train their models.
Based on the limitations of supervised ML algorithms and the
advantages of RL algorithms, this work presents a PCG method
based on a Deep RL approach. The RL agent is trained using a
simulation platform to automatically generate new 3D virtual envi-
ronments, which could potentially be used for learning applications.
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2.3 Reinforcement Learning. While traditional supervised
ML algorithms require the use of a training dataset, RL methods
do not require a training dataset to be collected a priori since they
take advantage of simulation environments to generate efficient rep-
resentations of complex situations and tasks [12]. The RL process
can be understood as a Markov decision process, where the RL
agent connects to a simulation environment via different sensory
inputs. The objective of the agent is to develop a model that
selects the actions that maximize its long-run reward. In other
words, the agent creates the desired action policy by the process
of trial and error via simulation [36]. Hence, an RL agent can be
described as a software agent capable of inducing an action
policy in an uncertain environment with delayed rewards [37].

Reinforcement learning methods are suitable for solving learning
control problems, which are challenging for traditional supervised
ML algorithms and dynamic programming optimization methods
[38]. RL agents focus on generating an action policy that can
adapt to changes in the environment (e.g., state space). Researchers
have used RL methods to train agents capable of mastering complex
tasks at human-level performance [39-41]. In recent years, Deep
RL algorithms have been implemented to master and perform a
wide range of tasks, from Atari games to the Chinese game of Go
[39,40]. Thanks to these advancements, researchers argue that
these algorithms will revolutionize the field of artificial intelligence
[12]. In addition, the rapid development of these RL methods has
been encouraged by the rise of easy to use, scalable simulation plat-
forms [42-44].

In the context of AISs, RL-based methods have shown promising
results in helping personalized narrative-centered learning environ-
ments. For example, Wang et al. [45] present a Deep RL framework
to personalize interactive narrative for an educational game. Simi-
larly, Rowe et al. [46] introduce a multi-armed bandit computational
formalism, consisting of several components of a Deep RL frame-
work to generate a new training scenario for the Army. The
authors also explored Long Short-Term Memory Network
approaches and stated that in future work, they would be imple-
menting RL algorithms to help generate new complex training
scenarios.

Table 1 shows a summary of existing work related to methods that
automatically generate content (i.e., PCG). This table shows that
while PCG methods are frequently used in gaming applications,
researchers are starting to explore the use of PCG methods for learn-
ing purposes. However, most of the studies on learning applications
implement metaheuristics. In light of the advantages of PCG
methods and the potential of RL algorithms, this work presents a
PCG method based on an RL approach that generates new 3D
virtual environments. The RL agent validates the new 3D virtual
environments via a simulation platform; hence, it does not require
any training data to be collected a priori. The RL-based PCG
method is implemented in a case study to generate new layouts for
a virtual 3D manufacturing environment used for an e-learning
application.

In the authors’ previous work, initial results of the performance of
the RL agent’s reward score were presented [13]. The results show
that the RL agent did not reach the maximum reward score, but that
its reward score was significantly and strongly correlated with the
training iterations (p =0.98, p-value<0.001). In other words, the
RL agent was not able to generate a 3D virtual environment that
was completely functional and that maximized the rewards func-
tion. However, it managed to model an action policy that

maximized the long-run rewards function. Moreover, in the previ-
ous work, the training of the agent was not parallelized and the
training time constrained to less than 6 h due to computational lim-
itations. These factors played a significant role in the performance
of the RL agent. Based on these limitations, in this work, the
authors extended their previous study by implementing parallelized
training over 60,000 iterations. In addition, the reward function of
the RL agent and the simulation environment used for training
have been enhanced in order to incentivize the generation of
more realistic and functional layouts. Finally, the results of a case
study that supports the capability of the proposed method to gener-
ate new 3D virtual environments are presented in this work.

2.4 Reinforcement Learning and Operations Research.
The objective of PCG methods to generate new environments
given certain criteria is analogous to the operations research (OR)
problem of facility layout planning (FLP). The objective of FLP
algorithms is to identify the optimal arrangement of equipment or
facilities in accordance with some criteria and given certain con-
straints [47]. FLP problems are an NP-complete problem, which
means that “the computational time required to find an optimal solu-
tion increases exponentially with the problem size” [48]. This is one
of the reasons why researchers have proposed multiple metaheuris-
tics algorithms to solve the FLP problem, such as simulated anneal-
ing and genetic algorithms [47]. However, one of the limitations of
optimization approaches is that a given optimal solution might not
continue to be optimal under a different problem configuration. For
example, if an additional constraint is added (e.g., now machine Z
must be in the coordinates x and y), the algorithm needs to be run
again to find the optimal or near-optimal solution [47,49]. In con-
trast, since RL algorithms focus on generating an action policy
that can adapt to changes in the state space, they do not require addi-
tional training when exposed to a new state (e.g., now machine Z
must be in the coordinates x and y).

Due to the advantages of RL algorithms, researchers have
explored how to implement RL in combination with metaheuristics
with the objective of identifying more efficient methods for solving
OR problems [50-55]. Recently, some studies have shown promis-
ing results of using RL for solving combinatorial optimization prob-
lems [56]. For example, RL algorithms have been implemented to
tackle classical OR problems like dynamic job shop scheduling
problem [57], vehicle touting problem [58], among others routing
and scheduling problems [56]. In a recent study, Govindaiah and
Petty [59,60] present the application of a framework that integrates
RL algorithms and discrete event simulation to improve the cost
efficiency of material handling plans under varying product
demands. Their method focused on reducing the cost of material
handling plans by changing the routes, timing, and equipment
used to transport the material between workstations and/or ware-
houses. However, their method did not consider the locations of
the workstations nor warehouses, the reason why it cannot be
implemented for FLP [49]. The case study used in this work to
test the proposed Deep RL PCG method shares some characteristics
with the material handling problem tackled by Govindaiah and
Petty [59,60]. However, the proposed method focuses on generating
new 3D virtual environments by allocating a set of virtual objects.
In the case study presented, the RL agent is capable of changing the
location of the workstation (i.e., injection molding machine, see
Sec. 4) and material handling equipment (e.g., conveyor belts and

Table 1 Summary of the related work

Reference Metaheuristics Supervised ML RL Environment generation Application context
[7,8,28,29] X Learning
[9,26,30,45] X Learning
[1,14-18] X X Games

This work X X Learning/games
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robot arms). Moreover, the proposed Deep RL PCG method can
adapt to changes in the problem space (i.e., state space) without
the need for additional training. That is, once the RL agent is
trained, it can generate new 3D virtual environments given different
injection molding machine locations (see Sec. 5 for results). In con-
trast, using traditional OR methods would require to run optimiza-
tion or metaheuristic algorithms every time the problem space
changes when a constraint is added or modified (e.g., now
machine Z must be in the coordinates x and y) [47,49].

3 Method

In this work, a PCG method based on a Deep RL approach is
introduced. The method is capable of dynamically generating new
3D virtual environments by implementing an RL agent that vali-
dates the content via a 3D simulation platform. Figure 2 shows
the method of the Deep RL algorithm implemented. In addition,
it shows 2D aerial views of the 3D simulation platform used to val-
idate the virtual manufacturing environments generated for the case
study (see Sec. 4).

Reinforcement learning problems are framed as Markov decision
processes, where the agents connect to the simulation environment
at a given time ¢ via the sensory inputs of state (S,) that belongs to
the set of possible states S, and action (A ) that belongs to the set of
possible actions A (see Fig. 2). In each training epoch ¢, the agent
observes the current state: S, and chooses an action to be executed:
A,. The environment reacts to the action executed and determines
the new state to transition: 8., as well as the reward signal (i.e.,
reinforcement signal): R. The sensory inputs of the state and
action can be in a vector form, containing information about the
state of the environment and information regarding the action the
agent is taking, respectively. The agent makes decisions based on
a policy that is defined by a mapping from the state space to a prob-
ability distribution over the action space, formalized as #(S,) € P(A).
In Deep RL, this policy function is realized using a neural network
which takes S, as input and generates probabilities for selecting each
possible action as output.

The goal of an RL agent is to determine a particular policy =*
which maximizes the long-run reward of the agent. The long-run
reward, also known as the return, is used as an objective function
over the reward signal itself because it is more stable and less
sparse. The return is defined as p= ELOy’R, , where y € [0,1] is

the discount factor that controls the exponential devaluation of
delayed rewards.

In this work, the proximal policy optimization (PPQ) [61] algo-
rithm is employed to train the RL agent. PPO is a policy gradient
approach to RL based on the Trust Region Policy Optimization
algorithm introduced by Schulman et al.’s work [62]. Schulman
et al.’s [61] study reveals that the PPO algorithm outperformed
other policy gradient algorithms, and provided a more favorable tra-
deoff between sample complexity, simplicity, and wall time. Given
that a neural network is fully differentiable, gradient ascent can be
applied to the policy function directly with respect the advantage
estimate of the policy, a quantity which is related to the expected
value of the policy’s return (readers are referred to Refs. [61,62]
for additional details).

For generating a new 3D virtual environment, S, contains enough
information to describe the current state of the virtual environment
(e.g., location, orientation, and relevant properties of objects in the
environment), while A, corresponds to ways that the agent can alter
the environment. These actions could correspond to determining the
location, orientation, or parameters which govern the behavior of
the virtual objects in the 3D virtual environment (see Fig. 2).
Given this framing, the proposed DRL method can be applied to
generate 3D virtual environments for problems that can be framed
as arranging multiple individual objects with inherent properties
and that can be expressed in a vector form. This enables the use
of this method in a variety of application, such as educational and
training where new environments are generated for learning pur-
poses or game applications where new levels are generated for
entertainment purposes.

The goal of the RL agent is to develop a model that selects the
actions that maximize its long-run reward signal, which takes the
form of a scalar value. The elements of the reward function will
depend on the behavior that the designers expected the RL agent
to model (i.e., learn). The RL agent needs to be rewarded for gen-
erating new environments that are functional and not just a
random placement of virtual objects. This can be achieved by
designing a reward function that incentivizes the generation of func-
tional environments and penalizes nonfunctional ones (e.g., makes
parts as in the manufacturing layout example of Figs. 1 and 2).
However, a major difference between layout generation problems
and other RL problems is that each action (i.e., placement of an
object) cannot be evaluated until the full layout has been generated.
This means that every action except the final will have an immediate

(PPO -
Action
'
[al,tl Aat, e a‘p,t] -

At ;Agem_/ Rt St\

Rewards State

[sl,tJ Sz,t, aniny sp,t]

Environment

Location of tote

Location of machine

Fig. 2 Reinforcement learning framework representation
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reward of R,=0. Thus, the proposed method omits the discount
factor from the return, by choosing y=1.

Through its interactions with the simulated environment, the RL
agent is trained (i.e., learns) to model an action policy that will max-
imize its return. Once the RL agent is trained, it will be able to gen-
erate new 3D virtual environments, given an initial state provided
by the user or randomly selected by the agent. In the example
shown in Fig. 2, this could be the initial location of the injection
molding machine. Hence, the RL agent will place the objects in a
way that will create a functional virtual 3D manufacturing layout.

4 Case Study

For this case study, the authors used a VR learning application
designed to teach industrial engineering (IE) concepts (i.e.,
Poisson distribution, Little’s law, and queuing theory) with the
use of a simulated manufacturing system. Specifically, a manufac-
turing system that produces power drills was simulated, as shown
in Figs. 1 and 2. The objective of this VR learning application is
to provide a tool with a common theme that educators could use
to teach IE concepts and integrate course knowledge into their cur-
riculum [63]. A power drill manufacturing line was selected since
previous studies that aim to integrate [E course knowledge have
implemented similar power tools [64]. The virtual environment sim-
ulates the initial steps of the process to manufacture a power drill,
where the plastic housing is manufactured.

Figure 3 shows, from a user’'s point of view, a functional layout
for this manufacturing system. In this layout, first, an injection
molding press produces the plastic housing components. Then,
they are cooled down with the use of a conveyor belt. Finally, the
plastic housings are placed in a tote with the use of a robotic arm
in order to be transported to the assembly line. The 3D virtual envi-
ronment allows users to interact with virtual objects. For this appli-
cation, the agent is rewarded based on the efficiency and
functionality of the layout generated to produce goods (e.g., the
rightmost image on Fig. 2 has a high reward score, while the two
other images have a low reward score). Specifically, the reward
function used in this case study can be mathematically expressed
as follows:

R= B,(Tote) — B, (Floor) + B30, + f4(Flow) (1)

For

P
Tote= Y ¢, @)
p=1

P
Floor = E @ (3)
p=1

“

P E
Flow= Y Y A, (5)

p=1 e=1

Bi>0Vi={1,23,4} (6)

where

® ¢, is a binary variable that indicates if a given part p was cor-
rectly placed in a tote ¢, =1 or not ¢, =0, for p € {P}

® @, is a binary variable that indicates if a given part p falls to the
floor ¢, =1 or not ¢, =0, forp e {P}

e },is a parameter that describes the behavior distribution of
equipment e, for e € {E}. (In the case study, this parameter
is only applied to the conveyor and injection machine)

e A, is a binary variable that indicates if a given part p inter-
acted with a given equipment e, forp € {P} and e ¢ {E}

The reward function shown in Eq. (1) will be maximized when all
the parts p are placed in a tote and no parts fall on the floor, follow-
ing Eqs. (2) and (3), when the standard deviation of the parameters
that describe the behavior distribution of the equipment set {E} is
minimized, following Eq. (4), and when all the parts interact with
all the equipment following the manufacturing process, as shown
in Eq. (5). This reward function was designed to reinforce the gen-
eration of functional manufacturing layouts that follow the prede-
fined manufacturing process and have a constant flow of part
being placed in the tote. This reward function will be computed
for every simulation epochs ¢ (R,), as shown in Fig. 2. In addition,
in every simulation epoch ¢, the RL agent will be able to control the
placement (x,, y.) and the parameters that describe the behavior dis-
tribution (A,) of the equipment set {E}. The environment will
provide the agent with the state information about the placement
(%, ¥,) of the equipment placed by the user {U}. The set of equip-
ment {U} will allow users to customize the VR environment. In the
event that the user does not need to customize the environment, the
equipment set {U} can be placed randomly to generate a new
environment.

For this application, users can select the location of the injection
molding machine, U = {injection molding machine}. On the other
hand, the RL agent will manipulate one conveyor belt, one tote,
and one robot arm. This means that the set E will contain three dif-
ferent equipment (i.e., virtual objects). In order for the agent to be
robust to various placements of the injection molding machine,
the position of the injection machine was randomly changed at
every epoch ¢, and thus to maximize the reward, the agent would
need to generate a functional layout regardless of the position of
the machine. The Aconveyor parameter will control the speed of the
conveyor, while the Apuchine parameter will control the speed of
the injection molding machine. To improve training performance,
the RL agent is trained in parallel with multiple layouts. This
provides the benefit in improved diversity of training samples by
ensuring that the agent is exploring multiple action trajectories
simultaneously. In this case study, the agent is trained in parallel
on 32 environments.

Fig. 3 User’s point of view of a functional manufacturing layout
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Finally, in this work, the game engine Unity [65] is used as the
3D simulation platform to train the RL agent. Because of its fidelity,
physics simulation capabilities, accessibility, and community
support, Unity is widely used by developers [66,67], as well as
by researchers [33,68]. Furthermore, Unity ML-Agents Toolkit
[44] provides several algorithms and functionalities for the develop-
ment and design of RL-based applications [69]. In this case study,
for each simulation epoch ¢, a total of 10 parts were simulated (i.e.,
p ={1-10}). This number of parts was selected to reduce the com-
plexity of the simulation while allowing the simulation platform to
generate the state transition in which the environment reacts to the
action executed and provides a reward signal. However, this
number can be increased, and the relative difference between the
rewards score of layouts would not change. That is, a layout that
allows all the parts to fall on the floor will always have a worse
reward score than one that places all the parts on the tote, no
matter how many parts are simulated.

5 Results and Discussions

The RL agent was trained using an Intel® Core™ i7-4770 K
3.50 GHz CPU and 16 GB RAM. A total of 10,000 training iter-
ations (r=10,000) on 32 simulated environments were used to
train an RL agent in parallel. This means that a total of 32,000
virtual environments were generated and evaluated to train the
RL agent. The total training time was 3.25 h. In this work, the
coefficient of our rewards function (i.e., pi, f2, P3, fs) were
empirically set to one in order to give the same importance to
the elements of the reward function. Figure 4 shows the evolution
of the RL agent’s average reward over the 32 environments, given
the training epoch ¢. The y-axis shows the bounds of the reward
function (i.e., [—11, 21]). Figure 4 shows that the agents’
rewards score was significantly and strongly correlated with the

2 R e e s e

Avg. Reward over 32 training environments

(32
[l

simulation iterations (p=0.915, p-value<0.001). This indicates
that the agent managed to train a model that describes an action
policy that maximized the long-run rewards function used in
this case study.

To test the performance of the trained RL agent, a total of 512
(i.e., 32*16) new 3D virtual environments were generated and eval-
uated. This process took 2 min and 20 s. That is, the trained RL
agent takes, on average, 0.27 s to generate a new 3D virtual envi-
ronment. Table 2 shows the number of layouts generated, given
the rewards score achieved and a description as to why the
rewards score was not optimal (i.e., 21). This table shows that, on
average, these layouts had a reward score of 13.18 (SD =7.74).
This is in line with the average rewards score achieved during the
last iteration of the training process (see Fig. 4). It also shows
that more than 55.08% of the layouts achieved a reward score
greater than 18 and only mismatched the speed between the con-
veyor and the injection molding machine (i.e., o;). Figure 5
shows 2D aerial views of several of the environments generated
for testing the performance of the trained RL agent.

The results indicate that the agent managed to train a model that
describes an action policy that maximized the long-run rewards
function used in this case study. Moreover, the results show that
the trained RL agent is capable of generating new 3D virtual envi-
ronments given different injection molding machine locations
without the need for additional training and in less than a second.
This is in contrast with common methods used for the FLP,
which required to rerun optimization algorithms every time the
problem space changes (e.g., the injection molding machine loca-
tion changes). This finding shows promising results for using
PCG methods based on Deep RL approaches to generate new 3D
virtual environments. The capability to generate new 3D virtual
environments given different initial configurations of virtual
objects can help personalize applications to an individual’s
unique preferences.

Upper Bound

Lower Bound

5000 7500 10000

Training lterations [t]

Fig. 4 Reinforcement learning agent rewards score versus training iterations
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Table 2 Summary of environments generated to evaluate the trained model

Reward No. Percentage Comments

21 45 8.79 Optimal layout

19 237 46.29 Mismatched speed only

11 25 4.88 No robot or conveyor interaction, but matched speed and all parts in the tote

9 128 25.00 No robot or conveyor interaction, mismatched speed, but all parts in the tote

1 11 2.15 Robot and conveyor interaction, matched speed, but no parts in the tote

-1 52 10.16 Robot and conveyor interaction but no parts in bin, mismatched speed

—4 3 0.59 Conveyor interaction and matched speed, but no robot interaction, nor parts in bin
-6 9 1.76 Conveyor interaction but no robot interaction, no parts in tote, and mismatched speed
—11 2 0.39 No conveyor or robot interaction, mismatched speed, and no parts in the tote

Reward = 21 Reward = 21 Reward = 11 Reward =19

Reward =9 Reward =19 Reward =11

Reward =9

Fig. 5 Example of new manufacturing layouts generated by the
trained RL agent. Eight randomly generated layouts from the
learned policy. The reward achieved by each layout is displayed
underneath. Rewards of 21 and 19 reflect the use of all objects in
the layout to place all ten parts in the bin. Rewards of 11 and 9
reflect that all ten parts were placed in the bin, but the conveyor
belt and robot arm were not utilized. The difference within these
categories reflects whether the speed of the conveyor matches
the speed of the injection machine.

6 Conclusion and Future Works

The ability to automatically generate new content with the use of
PCG methods offers several advantages for the development and
design of new applications. PCG methods can help reduce the
resources needed to develop new applications. More importantly,
content that is automatically generated can be personalized and
adapted to an individual. Implementing PCG methods allows
designers to generate new environments that can help improve the
overall user experience. Researchers have started developing PCG
methods that integrate supervised ML algorithms, which allow
designers to generate new content more efficiently compare to
heuristics-based methods. However, these algorithms require large
datasets to train their generative models. In contrast, RL methods
do not require any training data to be collected a priori since they
take advantage of simulation environments to generate efficient rep-
resentations of complex situations and tasks.

In light of this, a PCG method based on a Deep RL approach that
generates new virtual environments is presented. This method trains

a model by implementing an RL agent that validates new 3D virtual
environments via a 3D simulation platform; hence, it does not
require any training data to be collected a priori. In this work, a
case study is introduced where the proposed method is used to gen-
erate new 3D virtual manufacturing environments, with the inten-
tion to teach IE concepts. The preliminary results indicate that the
RL agent was able to model (i.e., learn) a policy that allows it to
automatically generate new and functional 3D virtual environments.

The proposed Deep RL PCG approach can help designers auto-
matically generate new content for a wide range of applications.
For example, Fig. 6 shows how the 3D virtual environment gener-
ated for the case study can be integrated into an immersive VR
learning application. This immersive VR application can help
users learn about IE concepts. The PCG method presented can
also be applied to other applications that can benefit from automat-
ically generating new 3D virtual environments (e.g., Adaptive
Instructional Systems, adaptive games). Designers can implement
this method in their applications by creating a rewards function
based on the new environments they would like the RL agent to
generate.

While this work presents a novel PCG method based on a Deep
RL approach, there still exist a lot of areas for improvement. First,
the method should be used to generate other types of 3D virtual
environments that differ from the manufacturing layouts used in
the case study. Moreover, while the RL approach does not require
the collection of data a priori since it takes advantage of simulation
to train its model, the reward function, which impacts the action
policy the RL agent models, can be challenging to design under
certain conditions. Furthermore, it could be challenging under
certain circumstances to create simulation environments that
allow an RL agent to identify the desired action policy. More impor-
tantly, future work should explore how integrating the proposed
PCG method into learning applications can impact the motivation
and learning of users. For example, as shown in Fig. 5, this
method can be used to generate new 3D virtual environments for
immersive VR learning applications. However, the impact of auto-
matically generating new content on users’ learning and engage-
ment still has to be tested. Nevertheless, this work presents initial
groundwork on integrating RL algorithms to automatically generate
new content, which has significant implications for personalized
and adaptive systems.

Fig. 6 Users interacting with the generated virtual environment using an immersive VR headset
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