
Enforcing Optimal Moving Target Defense Policies

Jianjun Zheng
Computer Science Department

Texas Tech University

Lubbock, Texas, USA

Email: jianjun.zheng@ttu.edu

Akbar Siami Namin
Computer Science Department

Texas Tech University

Lubbock, Texas, USA

Email: akbar.namin@ttu.edu

Abstract—This paper introduces an approach based on control
theory to model, analyze and select optimal security policies for
Moving Target Defense (MTD) deployment strategies. A Markov
Decision Process (MDP) scheme is presented to model states of
the system from attacking point of view. The employed value
iteration method is based on the Bellman optimality equation
for optimal policy selection for each state defined in the system.
The model is then utilized to analyze the impact of various costs
on the optimal policy. The MDP model is then applied to two
case studies to evaluate the performance of the model.

Index Terms—Moving Target Defense, Markov Decision

I. INTRODUCTION

The essence of Moving Target Defense is security through

diversification, in which the configurations and properties of

a target system are dynamically and randomly changed [1].

This creates a complex and unpredictable moving target while

making it computationally expensive for attackers to exploit

the target system. While it increases the attack cost and de-

grades the attackers’ incentives, moving target defense can also

impose some cost on the defenders and thus on the network

infrastructure. Therefore, it is important to incorporate cost

in the computational factors that may affect the effectiveness

of MTD with respect to the type of attacks, environment,

deployment, and employed MTD strategies [2, 3, 4, 5, 6].

Another limiting factor of the implementation of MTD

in practice is due to the security policies that are often

defined across the network, on which the prospective MTD

system would be deployed. These security policies not only

regulate actions that are allowed or prohibited under certain

circumstances but might also cause some conflicting issues

with actions permitted by the MTD implementation.

Game theoretical approaches model the interactions be-

tween defenders and attackers, as the players of a game, and

thus adopt the strategies usually employed by players. In such

games, each player tries to determine the optimal strategy in

order to maximize their incentives. Assuming that all players

(defenders and attackers) in the game are rational, they tend to

choose the best possible strategies to maximize their expected

payoffs while minimizing their costs at each move. When the

game reaches a state called “Nash Equilibrium,” at which no

player could increase their payoffs by changing strategies, the

solution to the game at this state is considered to be optimal.

However, in cyber defense the assumption that attackers would

make rational decisions at each move to maximize their

payoffs might not hold completely, mainly because attackers

would try unpredictable actions to breach the system.

A Markov model is a stochastic model used to describe

the state transition of a system. When combined with game

theory, a Markov game model can describe the interaction

between defenders and attackers and thus it would be possible

to analyze the possible outcome of the system when it is in

a certain state. The Markov chain game model is descriptive

and useful for defenders by which necessary information is

provided to them in order to choose the best strategy for

the next move. However, the key challenge is that network

defenders in some situations may not have access to the needed

time to make informed decisions with respect to the feedback

received from a model. As a result, a model is preferable that

can make decisions to enforce proper security policies (i.e.,

actions) in certain circumestances.

To meet this challenge, this paper proposes to use Markov

Decision Process (MDP) to model the state transition of a

system in which the interaction between defenders and attack-

ers is modeled through transitions from one state to another.

The model incorporates the costs of players’ actions and the

existing security policies in a system using Bellman Optimality

Equations in order to identify the optimal defense strategies

or policies under different scenarios. The model enables the

defender to analyze the impact on the policy change by the

cost of strategy. This paper completes our preliminary work

on modeling MTD using MDP [7] as follows:

• Presents a more comprehensive Markov model to em-

brace additional dynamic nature of networks,

• Investigates the impact of different costs on the selection

of optimal policy,

• Evaluates the proposed model through two use cases to

demonstrate the applicability and usefulness of the model.

The remainder of the paper is organized as follows: Sec-

tion II describes Markov Decision Process game model and

Bellman Optimality Equation. Section III presents the model

simulation setup, simulation results, and implications of find-

ings. Section IV concludes the paper and sketches the future

research directions.

II. A MARKOV DECISION PROCESS-BASED MODEL

The interaction between a defender and an attacker is ab-

stracted out as a discrete, finite-state, and finite-action Markov

753

2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

978-1-7281-2607-4/19/$31.00 ©2019 IEEE
DOI 10.1109/COMPSAC.2019.00112

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

(a) when the “Wait” action is taken.

(b) when the “Defend” action is taken.

(c) when the “Reset” action is taken.

Fig. 1: State transition probabilities/costs of the MDP model.

Decision Process (MDP). The model is formulated as a 4-tuple

(S,A, P,R), where:

– S is the finite set of states.

– A is the finite set of control actions.

– P is the probability of transition from one state to another

upon performing an action.

– R is the expected immediate rewards received after state

transition associated with the control action performed.

Figures 1a–1c illustrate the state transition probabilities

and costs under each control action. Furthermore, Figure 2

depicts the big picture of the proposed MDP-based model by

combining Figures 1a–1c. In the proposed model, the security

defense mechanism is abstracted out into four states (S) and

three control actions (A), as follows:

S ∈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N System Running Normally
T System Being Targeted
E System Being Exploited
B System Being Breached

(1)

A ∈ {Wait,Defend,Reset} (2)

A. State Transitions

Two scenarios are presented to help better understand the

state transition in the proposed model:

Scenario 1 : Under the “Wait” control action, state N may

transition to state T with the probability values of PT . It may

also return to itself with the self-transition probability of 1−PT

(i.e., the sum of all probabilities transitioning out of a state

under a control action must be equal to 1).

Scenario 2: Under the “Wait” control action, a transition

from state T to state E occurs with probability PE and the

self-transition of state T occurs with probability 1 − PE .

Both transitions incurs a cost denoted by CT . Therefore, the

immediate reward for each transition is R− CT .

In an analogous way, similar scenarios can be developed for

the “Defend” and “Reset” control actions.

B. Key Concepts of MDP

In a typical MDP, the most critical property that must be

satisfied is known as the Markov property. This property states

that the effects of an action taken in any state depend only on

that state and not on the prior history or knowledge.

A policy π in MDP is a mapping function from states to

actions: π : S → A. In other words, a policy dictates each

process (i.e., agent) to take certain actions while being in a

specific state.

The value function, denoted by V π(s), represents the ex-

pected value of the received rewards, starting from state S = s
and following policy π. It is also called state value function
or utility function and it is computed through the following

equation:

V π(st) = E
π[Rt+1 + γRt+2 + γ2Rt+3 · · · |S = st]

= E
π[Rt+1 + γ(Rt+2 + γRt+3 + · · ·)|S = st]

= E
π[Rt+1 + γV π(st+1)|S = st]

(3)

where:

– st denotes the state S at the time interval t.
– E

π is the expected value of total rewards gained by

following policy π.

– Rt+1 is the reward gained at state S at t+ 1.

– γ is the discount factor.

– V π(st) denotes the value function in the state S at t.

By omitting the subscript of the time interval, the general

form of the utility function can be represented as follows:

V π(s) =
∑
s′∈S

P (s, π, s′)[R(s, π, s′) + γV π(s′)] (4)

where:

– P (s, π, s′) is the transition probability starting from state

s and ending at state s′ after following policy π.

– R(s, π, s′) is the expected rewards received after state

transition from s to s′ after following policy π.

– γ is the discount factor.

The discount factor in MDP, denoted by γ ∈ (0, 1),
presents the portion of the future rewards that would be lost

in comparison to the present rewards. A smaller γ means the

rewards received in the future would worth much less than

the present rewards due to the discount. As a result, the agent

should follow the policy and collect the rewards immediately

instead of waiting to collect and claim them in the future.

Finally, an optimal policy π∗ is a control action a ∈ A that

generates the maximum state value function and is expressed

by Bellman Optimality Equation [8]:

V ∗
i+1(s) = max

a∈A

∑
s′∈S

P (s, a, s′)[R(s, a, s′) + γV ∗
i (s

′)] (5)

754

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The complete MDP model with state transition probabilities and costs [7].

where V ∗
i+1(s) is the value function in the state S by follow-

ing the optimal policy. The optimal policy can be obtained by

solving the MDP problem or the Bellman Optimality Equation.

C. Solving MDP

The MDP problem can be solved by using the value iteration

method developed by Bellman [8]. The value iteration method

is simple and intuitive. The algorithm of value iteration is

listed in Algorithm 1.

Algorithm 1 Value Iteration.

1: initialize V0(s) = 0, ∀s ∈ S, ε = a small positive number.

2: Δ← 0, i← 0
3: repeat
4: For each s ∈ S
5: Vi+1(s)← maxa∈A P (s, a, s′)[R(s, a, s′)+γVi(s

′)]
6: Δ← max(Δ, |Vi+1(s)− Vi(s)|)
7: i← i+ 1
8: until Δ < ε
9: Output the policy π, such that

π(s)← argmax
a∈A

∑
s′∈S

P (s, a, s′)[R(s, a, s′) + γV (s′)]

The following example demonstrates how to solve the

Bellman Optimality Equation using Algorithm 1.

As shown in Figure 2, there are three control actions a ∈
{Wait,Defend,Reset} at each state. To find the optimal

policy at a specific state, say state E, we use Equation 4 to

calculate the state value under each of the three control actions

and then assign the maximum of the three values computed

for the three actions to the state value. The process will be

repeated until V ∗
i+1(E) converges, (i.e. V ∗

i+1(E) ≈ V ∗
i (E)).

At the convergence, the control action corresponding to the

maximum state value will be selected as the optimal policy.

V ∗
i+1(E) = max

a∈A

∑
s′∈S

P (E, a, s′)[R(E, a, s′) + γV ∗
i (s

′)]

← max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P (E, a,E)[R(E, a,E) + γV ∗
i (E)]

+ P (E, a,B)[R(E, a,B) + γV ∗
i (B)] a = Wait

P (E, a,N)[R(E, a,N) + γV ∗
i (N)]

+ P (E, a,E)[R(E, a,E) + γV ∗
i (E)]

+ P (E, a,B)[R(E, a,B) + γV ∗
i (B)] a = Defend

P (E, a,N)[R(E, a,N) + γV ∗
i (N)] a = Reset

After plugging in all variables shown in Figure 2, the

Bellman Optimality Equation at state E in our model can be

written as:

← max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− PB)[(R− CA) + γV ∗
i (E)]

+ PB [(R− CA) + γV ∗
i (B)] a = Wait

PD[R+RD − CA − CD)+
γV ∗

i (N)] + (1− PD)(1− PB)
[(R+RD − CA − CD) + γV ∗

i (E)]
+ (1− PD)PB [(R+RD

−CA − CD) + γV ∗
i (B)] a = Defend

(R− CR) + γV ∗
i (N) a = Reset

Similarly, we can derive the equations to calculate V ∗
i+1(N),

V ∗
i+1(T), and V ∗

i+1(B).

D. Cost Impact on Optimal Policy
The reward that is gained by taking a specific action has

a significant impact on the calculation of the optimal policy.

Hence, a defender can control the optimal policy by changing

the reward. In our model, we introduce the cost factor and

define the expected reward as the result of the baseline reward

R subtracted by the cost incurred by an action “a” during

a state transition. The action can be initiated by an attacker

or the defender. For example, an MTD-based action from the

defender can incur the cost CD, an exploitation action from

the attacker can incur the cost CE , and a reset action can incur

the cost CR. After plugging these costs into the cost factor,

the Bellman equation will be:

V ∗
i+1(s) = max

a∈A

∑
s′∈S

P (s, a, s′)[(R− C(s, a, s′))

+γV ∗
i (s

′)]
(6)

755

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

This equation will allow us to analyze the cost impact on the

optimal policy. Several other control theoretic-based problems

can be formulated using MDP (e.g., [9, 10, 11]) in a similar

manner.

III. SIMULATION AND RESULTS

This section presents the results of a simulation with the

goal of analyzing the optimal policy in various network attack

dynamics and then evaluating the impact of the cost on

deciding about the optimal policy.

A. Network Environment

The initial assumption is that our network is infrequently

targeted or exploited by attackers. Therefore, we set the cor-

responding probability values very low (e.g., PT = 0.2, PA =
0.2). Furthermore, we assume that an MTD defense technique

is actively applied to protect the network: (e.g., PD = 0.6), and

the probability of system breach is medium: (e.g., PB = 0.4).

We also assume the baseline reward of the system is R = 10
and the reward received by performing the defense action is

RD = 5. Moreover, the discount factor is fixed and it is set

to γ = 0.9.

B. Defense: Cost vs. Optimal Policy

To investigate the impact of defense cost on the optimal

policy, we fix the other costs as follows:

– CT = 0.1: the cost incurred by attacker’s reconnaissance

(i.e., system being targeted),

– CE = 3: the cost incurred by attacker’s exploitation,

– CB = 4: the cost incurred by system breach, and

– CR = 4: the cost incurred by resetting the system.

We implemented Algorithm 1 with ε = 0.001 using Mi-

crosoft Excel and calculated the value function for each policy

(wait, defend, reset) at each state S ∈ {N,T,E,B} with

different values for the defense costs. Figure 3a shows the

state value vs. the defense cost at state S = E.

Figure 3a demonstrates a clear trend in which the state value

decreases as the defense cost increases. However, when the

defense cost exceeds a certain point (i.e., 35% of the total

rewards), the state values corresponding to the Wait and Reset

actions stay unchanged; whereas, the state value corresponding

to the “Defend” action continues to decrease. This observation

implies that the defense cost does not have impact on these two

policies. This behavior can be explained by analyzing Equation

4. Since each value function consists of the immediate reward

R and the discounted value of the successor state γV (s′), we

can re-write Equation 4 in a more general form as follows:

V ∗
i+1(E) = max

⎧⎪⎪⎨
⎪⎪⎩

R1 + γ[V ∗
i (E) + V ∗

i (B)] a = Wait

(R2 − kCD) + γ[V ∗
i (N)

+ V ∗
i (E) + V ∗

i (B)] a = Defend

R3 + γV ∗
i (N) a = Reset

Where:

– R1, R2, R3 are the sum of the immediate rewards of

respective value function.

– k is the sum of all coefficients of CD in value function

for the “Defend” action.

(a) Impact of defense cost on state value at state S = E.

(b) Optimal policies as the defense cost increases.

Fig. 3: Defense impact and optimal policy.

For example, when a = Wait, V ∗
i+1(E) = R1+γ[V ∗

i (E)+
V ∗
i (B)]. In this equation, the immediate reward R1 is in-

dependent of CD, but γ[V ∗
i (E) + V ∗

i (B)] is related to CD

when CD is small. However, when CD exceeds a certain value

C∗
wait, γ[V

∗
i (E) + V ∗

i (B)] becomes a constant and therefore

independent of CD. This pattern holds for the value functions

when a = Defend and a = Reset. As a result, the above

equation can be further written in terms of CD:

V ∗
i+1,Wait(E) =

{
R1 + β1CD CD < C∗

wait

c CD ≥ C∗
wait

(4a)

V ∗
i+1,Reset(E) =

{
R2 + β2CD CD < C∗

defend

c CD ≥ C∗
defend

(4b)

V ∗
i+1,Defend(E) =

{
(R3 − kCD) + β3CD CD < C∗

reset

R3 − kCD CD ≥ C∗
reset

(4c)

With respect to Equations (4a) and (4b), we can reason that

when CD is small, both value functions are linear with respect

to CD, but with different slopes. In an analogous way, when

CD is large, both value functions remain constant. The value

function for the “Defend” action, however, is always a linear

function of CD, but the slope changes when CD exceeds a

certain value, as shown in (4c).
A similar pattern is observable through Figure 3a. It shows

that when the defense cost is below a certain value, called the

turning point, the “Defend’ action is the optimal policy. But

when the defense cost is above the turning point, the “Reset”

action turns out to be the optimal policy because it generates

higher rewards than the other two actions. This optimal policy

shift can be better shown when we plot the optimal state value

at each level of the defense cost for state S = E in Figure 3b.

756

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

The first 6 data points represent the “Defend” action and the

remaining data points show the “Reset” action.

Another interesting finding in Figure 3a is that when the

defense cost exceeds a certain value (45% in the simulation

experiment) and if the optimal policy (the “Reset” action) is

not available, then the “Wait” action is a better option than the

“Defend” action. It is because the cost of defending the system

would be higher than the damage caused by the attacker. Under

this situation, the defender could choose to wait and accept the

damage until system reset is available again.

TABLE I: Optimal policies as the defense cost increases.

Cost (%) S = N S = T S=E S = B

5 Defend Defend Defend Reset
10 Defend Defend Defend Reset
...
25 Defend Defend Defend Reset
27.5 Defend Defend Defend Reset
30 Defend Defend Reset Reset
35 Wait Defend Reset Reset
40 Wait Defend Reset Reset
...
95 Wait Wait Reset Reset
100 Wait Wait Reset Reset

To help the defender choose the optimal policy at a given

state, we calculate all optimal policies for all four states with

various defense costs. The results are listed in Table I. At state

S = E (marked in bold), for instance, when the defense cost

is less than or equal to 27.5% of the total rewards, the best

action to take (a.k.a the optimal policy) is ”Defend”. However,

when the defense cost is above 27.5% of the total rewards, the

best action to take will change to ”Reset.” The table confirms

the optimal policy shift behavior as the defense cost increases.

C. Reset: Cost vs. Optimal Policy

In this simulation, we analyze the impact of the reset action

cost on the optimal policy. With respect to previous simulation,

the parameters remain unchanged, except CD, which is set to

CD = 4. We executed the simulation using the same procedure

as described in Section II-C.

The results are plotted in Figures 4a and 4b. As shown in

Figure 4a, when the cost of reset action increases, all state

values decrease implying that the reset cost has impact on all

three policies. In other words, the greatest impact on the policy

will be achieved if the underlying system is reset. Conversely,

it has the least impact on the policy if the system is in defence

mode. Unlike Figure 3a for “defense”, the impact for reset

cost is not stabilized. Employing similar technique presented

in Section II-C, this pattern can be explained by rewriting

Equation 4 in terms of the reset cost CR.

Equations (6a), (6b), and (6c) show that all value functions

are linear in terms of CR with different slopes. The slopes

change once CR exceeds a certain value.

Figure 4a also shows a similar optimal policy shift as in the

previous simulation (i.e., defense) in that when the reset cost

is below the turning point, the “Reset” action is the optimal

(a) Impact of reset cost on state value at state S = E.

(b) Optimal policy changes as the reset cost increases.

Fig. 4: Reset impact and optimal policy.

policy. However, when the reset cost is above the turning point,

the “Defend” action turns out to be the optimal policy. Figure

4b is plotted to demonstrate this optimal policy shift. The

first 6 data points represent the “Reset” policy; whereas, the

remaining data points represent the “Defend” policy.

V ∗
i+1,Wait(E) =

{
R4 + β4CR CR < C1

R

R4 + β5CR CR ≥ C1
R

(6a)

V ∗
i+1,Reset(E) =

{
R5 + β6CR CR < C2

R

R5 + β6CR CR ≥ C2
R

(6b)

V ∗
i+1,Defend(E) =

{
(R6 − CR) + β7CR CR < C3

R

(R6 − CR) + β8CR CR ≥ C3
R

(6c)

A similar finding in this simulation is that when the reset

cost exceeds a certain value (i.e., 65% in this experiment) and

if the optimal policy (the “Defend” action) is not available

somehow, then the “Wait” action is better than the “Reset”

action. It is because the cost of resetting the system is much

higher than the damage caused by the attacker. In other words,

if for any reason a defense action is not available, then it would

be better to just accept and absorb the damage (i.e., do nothing)

than resetting the system.

D. Exploitation: Cost vs. Optimal Policy

Similar to the previous simulations, the parameters remain

unchanged, except CE , which is set to CE = 4. We analyze

the impact of the cost incurred by attacker’s exploitation on

the optimal policy. We run this simulation using the same

procedure as described in Section II-C.

The results are plotted in Figure 5a and 5b. These figures

exhibit similar trends as observed through the previous sim-

ulations. We also plot the optimal policy with respect to the

757

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

(a) Impact of exploitation cost on state value at state S = E.

(b) Optimal policy changes as the exploitation cost increases.

Fig. 5: Exploitation Impact and optimal policy.

(a) With respect to the defense
cost and the exploitation cost.

(b) With respect to the defense
cost and the reset cost.

Fig. 6: Optimal policy.

defense and exploitation costs to show how the optimal policy

shifts in different network environment.

Figure 6a visualizes the optimal selection of policies. For

example, if a combination of the defense and exploitation

costs falls within the area on the top layer (i.e., high defense

and high exploitation costs), then “Reset” will be the optimal

policy. On the other hand, if the combination falls within the

left bottom corner (marked in blue: high defense but low

exploitation costs), then “Wait” will be the optimal policy.

Finally, if the combination falls within the triangle-shape area

on the middle layer, then “Defend” will the optimal policy.

E. Case Studies

We demonstrate how to apply our model to two existing

Moving Target Defense techniques: 1) Decoy-based MTD, and

2) Self Cleansing Intrusion Tolerance (SCIT). It is important

to note that the goal is to qualitatively analyze the feasibility

of these two techniques and not their effectiveness.

(a) Decoy-based MTD. (b) SCIT-based MTD.

Fig. 7: Optimal policies in case studies.

1) Decoy-based MTD: A decoy system is a phony platform

with appealing appearance but fake data and credentials that

is developed for the purpose of trapping unauthorized users.

These types of systems are usually used to study the attacker’s

exploitation patterns in order to protect real targets. Decoy-

based MTD is one of the newest ideas, in which decoy hosts

are mixed with the protected target hosts on the network.

Decoy hosts may confuse attackers by providing fake data and

thus they slow down the pace of attacks towards the real target

host. Meantime, the defender can gain additional valuable time

to prepare for defending against the next attack.

To achieve this goal, first, the configurations of each decoy

system need to be similar to the target host so that it becomes

hard to distinguish the decoy system from the main operational

one. Second, the ratio of the target hosts to the decoys must

be very low, for example 1 : 10, 000 as recommended by the

NCLYS 2009 [12]. However, research shows that the ratio of

1 : 99 [2] is still effective for some attacks.

It is reasonable to assume each host on the network to

employ a similar defense mechanisms so that each host looks

legitimate and indistinguishable. Furthermore, the ratio of the

target hosts to the decoys is kept at least 1 : 10, 000. With

respect to these two assumptions, we observe that:

1) The total defense cost is the sum of each host’s defense

cost. As a result, the defense cost of a large-scale decoy-

based MTD can be very high.

2) When the configuration of the target host is changed,

all decoys must be reset and cloned to match the new

configuration. Therefore, the reset cost of the decoy-

based MTD can also be very high.

3) Each decoy is loaded with fake data and accounts.

Hence, the cost of a decoy breach will be very low if

not negligible. For the same reason, the exploitation cost

is also very low.

After plugging in the parameters in our simulation, we plot

the optimal policy with respect to the defense and rest costs

as shown in Figure 7a. We can observe that when both the

defense and reset costs are high, the optimal policy is “Wait.”

In reality, however, this may not be acceptable. Therefore,

unless there is some way to reduce the defense cost or the

rest cost, our model shows decoy-based MTD might not be a

viable defense technique.

758

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

2) Self Cleansing Intrusion Tolerance (SCIT): SCIT [13]

periodically rotates an array of virtual machines to reduce

the exposure time of the protected server with the aim of

disrupting potential attacks. According to the literature, the

rotation frequency is within minutes and VM reset happens

at each rotation, incurring a reset cost. The reset cost is not

discussed as a factor for the effectiveness of the technique.

Therefore, we performed a simulation similar to the one

reported in this paper and plotted the results in Figure 7b.
As Figure 7b indicates, only when either the reset cost is low

or the exploitation damage (cost) is high, the optimal policy is

“Reset.” For example, in a mission-critical infrastructure where

the potential exploitation damage might be very high, it is

preferable to periodically reset the system to disrupt potential

attacks, then SCIT might be a viable option. On the other hand,

if with new technology, the cost of resetting and reloading a

VM can be reduced, then SCIT might be adopted.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed to use finite-state, finite-action,

and stationary Markov Decision Process to model the interac-

tion between a defender and an attacker. We investigated three

possible defense strategies (wait, defend, and reset) for each of

the four system states and used Bellman Optimality Equation

to mathematically define the optimal policy. By solving the

Bellman Optimality Equation, we were able to find the optimal

policy when the system was in a specific state. Various

simulation experiments were conducted to demonstrate how

the optimal policy would shift when cost change. The optimal

policy shift can help defender to make right decision at various

situation. We also applied our model in two existing MTD

techniques and case studies to evaluate the feasibility of the

two MTD techniques.
We plan to include some quantitative cost estimation meth-

ods in our model to fine tune the cost analysis of our research.

We also plan to extend our model to Partially Observable

Markov Decision Process (POMDP) and compare the accuracy

of the two models. Another research opportunity is to utilize

the big data research to estimate the transition probabilities of

different control actions in our model in a real-world dataset

using techniques such as deep learning algorithms [14, 15]

and techniques based on evidence theory [16, 17]. Also,

formal techniques can be used in conjunction with stochastic

approaches to model the MTD problem [18, 19].

ACKNOWLEDGEMENT

This project is funded in part by grants (Awards No:

1516636 and 1564293) from National Science Foundation.

REFERENCES

[1] J. Zheng and A. Siami Namin, “A survey on the moving

target defense strategies: An architectural perspective,”

Journal of Computer Science and Technolology, vol. 34,

no. 1, pp. 207–233, 2019.

[2] R. Skowyra, K. Bauer, V. Dedhia, and H. Okhravi,

“Have No PHEAR: Networks without identifiers,” in

Proceedings of the ACM Workshop on MTD.

[3] J. Zheng and A. Siami Namin, “The impact of ad-

dress changes and host diversity on the effectiveness

of moving target defense strategy,” in 2016 IEEE 40th
Annual Computer Software and Applications Conference
(COMPSAC), vol. 2, June 2016, pp. 553–558.

[4] H. Maleki, S. Valizadeh, W. Koch, A. Bestavros, and

M. van Dijk, “Markov modeling of moving target defense

games,” in Proceedings of the ACM Workshop on MTD.

[5] A. Prakash and M. P. Wellman, “Empirical game-

theoretic analysis for moving target defense,” in Proceed-
ings of the ACM Workshop on MTD, 2015.

[6] M. Wright, S. Venkatesan, M. Albanese, and M. P.

Wellman, “Moving target defense against ddos attacks:

An empirical game-theoretic analysis,” in Proceedings of
the ACM Workshop on MTD, 2016.

[7] J. Zheng and A. Siami Namin, “A markov decision

process to determine optimal policies in moving target,”

in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (ACM CCS’18).

[8] R. E. Bellman, Dynamic Programming, reprint ed.

Princeton University Press, 2010.

[9] N. Tavakoli, D. Dai, and Y. Chen, “Log-assisted

straggler-aware I/O scheduler for high-end computing,”

in 45th International Conference on Parallel Processing
Workshops, ICPP, Philadelphia, PA, USA, 2016.

[10] J. Zheng and A. Siami Namin, “Defending SDN-based

IoT networks against DDoS attacks using markov deci-

sion process,” in IEEE Big Data, 2018, pp. 4589–4592.

[11] N. Tavakoli, D. Dai, and Y. Chen, “Client-side straggler-

aware I/O scheduler for object-based parallel file sys-

tems,” Parallel Computing, vol. 82, pp. 3–18, 2019.

[12] (2009) National cyber leap year summit 2009. [Online].

Available: https://www.nitrd.gov/nitrdgroups/index.php?

title=National Cyber Leap Year Summit 2009

[13] A. K. Bangalore and A. K. Sood, “Securing web servers

using self cleansing intrusion tolerance (SCIT),” in Sec-
ond International Conference on Dependability, 2009.

[14] S. Siami-Namini, N. Tavakoli, and A. Siami Namin,

“A comparison of ARIMA and LSTM in forecasting

time series,” in 17th IEEE International Conference on
Machine Learning and Applications, ICMLA, 2018.

[15] S. Siami-Namini and A. Siami Namin, “Forecasting

economics and financial time series: ARIMA vs. LSTM,”

CoRR, vol. abs/1803.06386, 2018. [Online]. Available:

http://arxiv.org/abs/1803.06386

[16] M. Chatterjee, A. Siami Namin, and P. Datta, “Evidence

fusion for malicious bot detection in IoT,” in IEEE Big
Data, 2018.

[17] M. Chatterjee and A. Siami Namin, “Detecting web

spams using evidence theory,” in 42th COMPSAC, 2018.

[18] S. Sartoli and A. Siami Namin, “Adaptive reasoning in

the presence of imperfect security requirements,” in 40th
IEEE COMPSAC, 2016.

[19] S. Sartoli and A. Siami-Namin, “A semantic model for

action-based adaptive security,” in ACM SAC, 2017.

759

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

