2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC)

Enforcing Optimal Moving Target Defense Policies

Jianjun Zheng
Computer Science Department
Texas Tech University
Lubbock, Texas, USA
Email: jianjun.zheng @ttu.edu

Abstract—This paper introduces an approach based on control
theory to model, analyze and select optimal security policies for
Moving Target Defense (MTD) deployment strategies. A Markov
Decision Process (MDP) scheme is presented to model states of
the system from attacking point of view. The employed value
iteration method is based on the Bellman optimality equation
for optimal policy selection for each state defined in the system.
The model is then utilized to analyze the impact of various costs
on the optimal policy. The MDP model is then applied to two
case studies to evaluate the performance of the model.

Index Terms—Moving Target Defense, Markov Decision

I. INTRODUCTION

The essence of Moving Target Defense is security through
diversification, in which the configurations and properties of
a target system are dynamically and randomly changed [1].
This creates a complex and unpredictable moving target while
making it computationally expensive for attackers to exploit
the target system. While it increases the attack cost and de-
grades the attackers’ incentives, moving target defense can also
impose some cost on the defenders and thus on the network
infrastructure. Therefore, it is important to incorporate cost
in the computational factors that may affect the effectiveness
of MTD with respect to the type of attacks, environment,
deployment, and employed MTD strategies [2, 3, 4, 5, 6].

Another limiting factor of the implementation of MTD
in practice is due to the security policies that are often
defined across the network, on which the prospective MTD
system would be deployed. These security policies not only
regulate actions that are allowed or prohibited under certain
circumstances but might also cause some conflicting issues
with actions permitted by the MTD implementation.

Game theoretical approaches model the interactions be-
tween defenders and attackers, as the players of a game, and
thus adopt the strategies usually employed by players. In such
games, each player tries to determine the optimal strategy in
order to maximize their incentives. Assuming that all players
(defenders and attackers) in the game are rational, they tend to
choose the best possible strategies to maximize their expected
payoffs while minimizing their costs at each move. When the
game reaches a state called “Nash Equilibrium,” at which no
player could increase their payoffs by changing strategies, the
solution to the game at this state is considered to be optimal.
However, in cyber defense the assumption that attackers would
make rational decisions at each move to maximize their

978-1-7281-2607-4/19/$31.00 ©2019 IEEE

DOI 10.1109/COMPSAC.2019.00112

Akbar Siami Namin
Computer Science Department
Texas Tech University
Lubbock, Texas, USA
Email: akbar.namin@ttu.edu

payoffs might not hold completely, mainly because attackers
would try unpredictable actions to breach the system.

A Markov model is a stochastic model used to describe
the state transition of a system. When combined with game
theory, a Markov game model can describe the interaction
between defenders and attackers and thus it would be possible
to analyze the possible outcome of the system when it is in
a certain state. The Markov chain game model is descriptive
and useful for defenders by which necessary information is
provided to them in order to choose the best strategy for
the next move. However, the key challenge is that network
defenders in some situations may not have access to the needed
time to make informed decisions with respect to the feedback
received from a model. As a result, a model is preferable that
can make decisions to enforce proper security policies (i.e.,
actions) in certain circumestances.

To meet this challenge, this paper proposes to use Markov
Decision Process (MDP) to model the state transition of a
system in which the interaction between defenders and attack-
ers is modeled through transitions from one state to another.
The model incorporates the costs of players’ actions and the
existing security policies in a system using Bellman Optimality
Equations in order to identify the optimal defense strategies
or policies under different scenarios. The model enables the
defender to analyze the impact on the policy change by the
cost of strategy. This paper completes our preliminary work
on modeling MTD using MDP [7] as follows:

o Presents a more comprehensive Markov model to em-
brace additional dynamic nature of networks,

« Investigates the impact of different costs on the selection
of optimal policy,

« Evaluates the proposed model through two use cases to
demonstrate the applicability and usefulness of the model.

The remainder of the paper is organized as follows: Sec-
tion II describes Markov Decision Process game model and
Bellman Optimality Equation. Section III presents the model
simulation setup, simulation results, and implications of find-
ings. Section IV concludes the paper and sketches the future
research directions.

II. A MARKOV DECISION PROCESS-BASED MODEL

The interaction between a defender and an attacker is ab-
stracted out as a discrete, finite-state, and finite-action Markov

IEEE
computer
® psoaety

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

Pr,R

1-PnR 1-PgR-Cr 1- Pg,R - Cg LR-Cp
(a) when the “Wait” action is taken.
Pr.R+Rp - Cp (1- Pp)Pg, (1-Pp)Ps R+R;

R+Rp— (Cp+Cyp) —(Cg+Cp)

Pp.R+ Ry
—(Cr+ Cp)

(1- Pp)(1 - Pg),
R +Rp — (Cr +Cp)

1-P;,
R+Ry—Cp

(1—Pp)(1—Pg),

1R+ R,
R+Rp - (Cg + Cp)

—(Cp + Cy)

Pp,R+Rp— (Cg +Cp)

(b) when the “Defend” action is taken.

(c) when the “Reset” action is taken.

Fig. 1: State transition probabilities/costs of the MDP model.

Decision Process (MDP). The model is formulated as a 4-tuple
(S, A, P, R), where:
— S is the finite set of states.
A is the finite set of control actions.
P is the probability of transition from one state to another
upon performing an action.
R is the expected immediate rewards received after state
transition associated with the control action performed.
Figures la—Ic illustrate the state transition probabilities
and costs under each control action. Furthermore, Figure 2
depicts the big picture of the proposed MDP-based model by
combining Figures la—1c. In the proposed model, the security
defense mechanism is abstracted out into four states (S) and
three control actions (A), as follows:

N System Running Normally
S T System Beling Target.ed 0
E System Being Exploited
B System Being Breached
A € {Wait, Defend, Reset} 2)

A. State Transitions

Two scenarios are presented to help better understand the
state transition in the proposed model:

Scenario 1 : Under the “Waif” control action, state N may
transition to state 7' with the probability values of Pr. It may
also return to itself with the self-transition probability of 1—Pr
(i.e., the sum of all probabilities transitioning out of a state
under a control action must be equal to 1).

Scenario 2: Under the “Wait” control action, a transition
from state T to state E occurs with probability Pr and the

754

self-transition of state 7 occurs with probability 1 — Ppg.
Both transitions incurs a cost denoted by Crp. Therefore, the
immediate reward for each transition is R — Cr.

In an analogous way, similar scenarios can be developed for
the “Defend’ and “Reset” control actions.

B. Key Concepts of MDP

In a typical MDP, the most critical property that must be
satisfied is known as the Markov property. This property states
that the effects of an action taken in any state depend only on
that state and not on the prior history or knowledge.

A policy m in MDP is a mapping function from states to
actions: w : S — A. In other words, a policy dictates each
process (i.e., agent) to take certain actions while being in a
specific state.

The value function, denoted by V7™ (s), represents the ex-
pected value of the received rewards, starting from state S' = s
and following policy 7. It is also called state value function
or utility function and it is computed through the following
equation:

V7(st) = E"[Rit1 + YRiqo + Y’ Reys -+ |S = s4
=[E" [Rt+1 + 'Y(RH.Q + ’)/Rt+3 + -)|S = St] (3)
=E"[Ri1 + 9V (8141)]S = s4]

where:

sy denotes the state S at the time interval t.

— E™ is the expected value of total rewards gained by
following policy .

Ryyq is the reward gained at state S at ¢ + 1.

v is the discount factor.

V7 (s¢) denotes the value function in the state S at t.

By omitting the subscript of the time interval, the general
form of the utility function can be represented as follows:

V™(s) = Z P(s,m,) R(s,m,)+ vV (s)]

s'es

“)

where:

— P(s,m,s’) is the transition probability starting from state
s and ending at state s’ after following policy .

- R(s,m,s’) is the expected rewards received after state
transition from s to s" after following policy .

— 7y is the discount factor.

The discount factor in MDP, denoted by v € (0,1),
presents the portion of the future rewards that would be lost
in comparison to the present rewards. A smaller v means the
rewards received in the future would worth much less than
the present rewards due to the discount. As a result, the agent
should follow the policy and collect the rewards immediately
instead of waiting to collect and claim them in the future.

Finally, an optimal policy ©* is a control action a € A that
generates the maximum state value function and is expressed
by Bellman Optimality Equation [8]:

i+1(s) = max %P(s, a,s")[R(s,a,8") + V7 ()] (5)

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

LR - Cp |

Pr. R, Wait p, R\ Ry -~ Cp, Defend

Py, B Wair

(1= Py)Py R+ Ry — (€5 + Cpl Dafend

Py R— Cp, Wair

(1= PPy, R+ Ry — (€ + Ty, Defend

PR — G, Wait

>
(1= Pg)(1- Py, 7 - i)
________ e
Lot Defend 1-PoR-C J! LE+R,—
1-pp, 1—!".;.;2— Cr. Wit S =Py (1= Py, (Cat fi}- I.a"
B+ Ry —Cp. Iy it JORE Ry — (€4 +Cp) Defend
Defend TYra Po R+ Ry — (€4 Cp)Defend L Defend =T
“:::::-—_.__ 1.R = Cg, Reser ___.--"".H'. ,_--""
‘-—;‘::: -------- LR =g, Reset _.__,.,.r-—"
Fig. 2: The complete MDP model with state transition probabilities and costs [7].
where V| (s) is the value function in the state S by follow-
ing the optimal policy. The optimal policy can be obtained by P(E,a,E)|R(E,a,E) + vV (E)]
solving the MDP problem or the Bellman Optimality Equation. + P(E,a, B)|R(E,a, B) + yV;*(B)] a = Wait
: P(E,a, N)[R(E,a, N) +7V;"(N)]
C. Solving MDP ¢ max + P(E,a, E)[R(E, a, E) + 1V:(E)]
The MDP problem can be solved by using the value iteration + P(E,a, B)[R(E,a,B) +7V;"(B)] a = Defend
method developed by Bellman [8]. The value iteration method .
is simple and intuitive. The algorithm of value iteration is P(E,a, N)[R(E,a,N) + V" (N)] @ = Reset

listed in Algorithm 1.

Algorithm 1 Value Iteration.

1: initialize V(s) = 0, Vs € S, e = a small positive number.
2: A« 0,1+ 0

3: repeat

4: For each s € S

5: Vit1(s) < maxgea P(s,a,s)[R(s,a,s)+~V;i(s")]
6: A = max(A, [Vipi(s) = Vi(s)])

7: 14—1+1

8: until A < e

9:

Output the policy 7, such that

/ ! /
m(s) - argmax % P(s,a,s")[R(s,a,8") + 4V (s')]

The following example demonstrates how to solve the
Bellman Optimality Equation using Algorithm 1.

As shown in Figure 2, there are three control actions a €
{Wait, De fend, Reset} at each state. To find the optimal
policy at a specific state, say state £, we use Equation 4 to
calculate the state value under each of the three control actions
and then assign the maximum of the three values computed
for the three actions to the state value. The process will be
repeated until V% (E) converges, (i.e. Vi (E) = V*(E)).
At the convergence, the control action corresponding to the
maximum state value will be selected as the optimal policy.

* _ / / o /
i+1(E) _Ianeaj(/ZESP(E7G’7$)[R(E’avs) +’Y‘/z (S)}

Authorized licensed use limited to: Texas Tech University. Downloaded

After plugging in all variables shown in Figure 2, the
Bellman Optimality Equation at state E in our model can be
written as:

(1= P)[(R — Ca) + 7V} (B)
+ Pp[(R — Ca) +7V*(B)] a = Wait

PD[R-F Rp—C4— CD)+

YV (N) + (1= Pp)(1 - Pp)

[(R+Rp — Ca = Cp) +7V;*(E)]
+ (1 - Pp)Pg[(R+ Rp

—Ca—Cp) +7V;(B)]

<— max

a = Defend

(R —Cr) +~Vi"(N)

Similarly, we can derive the equations to calculate V;, ; (N),
ij»l(T)’ and Vzil(B)

D. Cost Impact on Optimal Policy

a = Reset

The reward that is gained by taking a specific action has
a significant impact on the calculation of the optimal policy.
Hence, a defender can control the optimal policy by changing
the reward. In our model, we introduce the cost factor and
define the expected reward as the result of the baseline reward
R subtracted by the cost incurred by an action “a” during
a state transition. The action can be initiated by an attacker
or the defender. For example, an MTD-based action from the
defender can incur the cost Cp, an exploitation action from
the attacker can incur the cost C'g, and a reset action can incur
the cost C'r. After plugging these costs into the cost factor,
the Bellman equation will be:

Via(s) = max > P(s,a.8")[(R ~ C(s,a,5"))
o4 yes (6)

+Vi (8]

755

on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

This equation will allow us to analyze the cost impact on the
optimal policy. Several other control theoretic-based problems
can be formulated using MDP (e.g., [9, 10, 11]) in a similar
manner.

III. SIMULATION AND RESULTS

This section presents the results of a simulation with the
goal of analyzing the optimal policy in various network attack
dynamics and then evaluating the impact of the cost on
deciding about the optimal policy.

A. Network Environment

The initial assumption is that our network is infrequently
targeted or exploited by attackers. Therefore, we set the cor-
responding probability values very low (e.g., Pr = 0.2, P4 =
0.2). Furthermore, we assume that an MTD defense technique
is actively applied to protect the network: (e.g., Pp = 0.6), and
the probability of system breach is medium: (e.g., Pp = 0.4).
We also assume the baseline reward of the system is R = 10
and the reward received by performing the defense action is
Rp = 5. Moreover, the discount factor is fixed and it is set
to v =0.9.

B. Defense: Cost vs. Optimal Policy

To investigate the impact of defense cost on the optimal
policy, we fix the other costs as follows:

Cr = 0.1: the cost incurred by attacker’s reconnaissance
(i.e., system being targeted),

Cg = 3: the cost incurred by attacker’s exploitation,
Cp = 4: the cost incurred by system breach, and

Cr = 4: the cost incurred by resetting the system.

We implemented Algorithm 1 with € = 0.001 using Mi-
crosoft Excel and calculated the value function for each policy
(wait, defend, reset) at each state S € {N,T,E, B} with
different values for the defense costs. Figure 3a shows the
state value vs. the defense cost at state S = E.

Figure 3a demonstrates a clear trend in which the state value
decreases as the defense cost increases. However, when the
defense cost exceeds a certain point (i.e., 35% of the total
rewards), the state values corresponding to the Wait and Reset
actions stay unchanged; whereas, the state value corresponding
to the “Defend” action continues to decrease. This observation
implies that the defense cost does not have impact on these two
policies. This behavior can be explained by analyzing Equation
4. Since each value function consists of the immediate reward
R and the discounted value of the successor state vV (s'), we
can re-write Equation 4 in a more general form as follows:

Ry 5[V (1) + Vi (B)] o= Wait

© (B — (B2 — kCp) +~[V;"(N)

711 (E) = max + Vi (E) +V#(B)] a = Defend
R3 +~V*(N) a = Reset

Where:

— Ri, Ry, Ry are the sum of the immediate rewards of
respective value function.

— k is the sum of all coefficients of C'p in value function
for the “Defend” action.

756

140.0

=+ 0=+ Wait
—8—Defend
--8--Reset

130.0 Turning point

—
=
[
=

110.0
100.0

State Value

P o TETe Pt lrs P e T s]

90.0
30.0

&

P B SR RS

22 S ERELER S

Defense Cost (% of Total Rewards)

B oaE R P &

& & e

(a) Impact of defense cost on state value at state S = F.
140.0

1300 | ‘|
& 120.0 l\ Optimal Policy
2 g,
1100 ‘a
£ 8
£ 1000 LS
000 0 9-9-0-9-090-0-0-9-0-0-9
80.0
£ 10 15 20 1517530 3 40 45 S0 55 60 65 W T 80 8 % %5 100

Defense Cost (% of Total Rewards)

(b) Optimal policies as the defense cost increases.

Fig. 3: Defense impact and optimal policy.

For example, when a = Wait, V;* | (E) = Ry +~[V;*(E)+
V;*(B)]. In this equation, the immediate reward R; is in-
dependent of Cp, but v[V;*(E) + V;*(B)] is related to Cp
when C'p is small. However, when Cp exceeds a certain value
C wirs YV (E) + V*(B)] becomes a constant and therefore
independent of C'p. This pattern holds for the value functions
when a = Defend and a = Reset. As a result, the above
equation can be further written in terms of Cp:

Ri+8Cp Cp<C: it
“* (E) = wat 4a
z+1,Wazt() {C CD 2 C;;(”'t ()
. Ry +B8:Cp Cp < Clsep
1 Reser(B) = defend (4b)
¢ CD 2 Cdefend

(R3 —kCp) + 83Cp
Rs — kCp

Cp < C:eset
Cp > C:eset

(4c)

(E)

*
ViJrl,Defend

{

With respect to Equations (4a) and (4b), we can reason that
when Cp is small, both value functions are linear with respect
to Cp, but with different slopes. In an analogous way, when
Cp is large, both value functions remain constant. The value
function for the “Defend” action, however, is always a linear
function of Cp, but the slope changes when Cp exceeds a
certain value, as shown in (4c).

A similar pattern is observable through Figure 3a. It shows
that when the defense cost is below a certain value, called the
turning point, the “Defend’ action is the optimal policy. But
when the defense cost is above the turning point, the “Reset”
action turns out to be the optimal policy because it generates
higher rewards than the other two actions. This optimal policy
shift can be better shown when we plot the optimal state value
at each level of the defense cost for state S = F in Figure 3b.

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

The first 6 data points represent the “Defend” action and the
remaining data points show the “Reset” action.

Another interesting finding in Figure 3a is that when the
defense cost exceeds a certain value (45% in the simulation
experiment) and if the optimal policy (the “Reset” action) is
not available, then the “Wait” action is a better option than the
“Defend” action. It is because the cost of defending the system
would be higher than the damage caused by the attacker. Under
this situation, the defender could choose to wait and accept the
damage until system reset is available again.

TABLE I: Optimal policies as the defense cost increases.

Cost (%) S=N S=T S=E S=B8B
5 Defend Defend Defend Reset
10 Defend Defend Defend Reset
25 Defend Defend Defend Reset
27.5 Defend Defend Defend Reset
30 Defend Defend Reset Reset
35 Wait Defend Reset Reset
40 Wait Defend Reset Reset
95 Wait Wait Reset Reset
100 Wait Wait Reset Reset

To help the defender choose the optimal policy at a given
state, we calculate all optimal policies for all four states with
various defense costs. The results are listed in Table I. At state
S = E (marked in bold), for instance, when the defense cost
is less than or equal to 27.5% of the total rewards, the best
action to take (a.k.a the optimal policy) is "Defend”. However,
when the defense cost is above 27.5% of the total rewards, the
best action to take will change to "Reset.” The table confirms
the optimal policy shift behavior as the defense cost increases.

C. Reset: Cost vs. Optimal Policy

In this simulation, we analyze the impact of the reset action
cost on the optimal policy. With respect to previous simulation,
the parameters remain unchanged, except Cp, which is set to
Cp = 4. We executed the simulation using the same procedure
as described in Section II-C.

The results are plotted in Figures 4a and 4b. As shown in
Figure 4a, when the cost of reset action increases, all state
values decrease implying that the reset cost has impact on all
three policies. In other words, the greatest impact on the policy
will be achieved if the underlying system is reset. Conversely,
it has the least impact on the policy if the system is in defence
mode. Unlike Figure 3a for “defense”, the impact for reset
cost is not stabilized. Employing similar technique presented
in Section II-C, this pattern can be explained by rewriting
Equation 4 in terms of the reset cost Cg.

Equations (6a), (6b), and (6¢) show that all value functions
are linear in terms of C'r with different slopes. The slopes
change once Cp exceeds a certain value.

Figure 4a also shows a similar optimal policy shift as in the
previous simulation (i.e., defense) in that when the reset cost
is below the turning point, the “Reset” action is the optimal

757

102.00
100.00
98.00
96.00
94.00
92.00 Mg,

“_“.-

State Value

TR

COGTe,

90.00 «+0ee Wait ‘e""‘we;. G0

$8.00 —@— Defend ‘-._'_'2_"0'--0...9

86.00 --e--Reset ~.._
-

84.00

82.00
5 10 15 20 25 30 35 40 45 S50 55 60 65 70 75 80 8 90 95

Reset Cost (% of Total Rewards)

100

(a) Impact of reset cost on state value at state S = F.

100.00
29.00
98.00
97.00
96.00
95.00

Optimal Policy

State Value

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Reset Cost (% of Total Rewards)

(b) Optimal policy changes as the reset cost increases.

Fig. 4: Reset impact and optimal policy.

policy. However, when the reset cost is above the turning point,
the “Defend” action turns out to be the optimal policy. Figure
4b is plotted to demonstrate this optimal policy shift. The
first 6 data points represent the “Reset” policy; whereas, the
remaining data points represent the “Defend” policy.

Ry +B4sCr Cgr< C}?
* (E) = , 6
2+1,Watt() R4 +550R CR > C}{ (3.)
. Rs + BsCr Cg < C2
i+1,Reset(E) = ° ﬁﬁ . " 122 (6b)

Rs; +BsCr Cr>C%

_ 3

‘/ij-l,Defend(E) = (R6 CR) * 67CR CR < CR (60)

(Rs — Cr) + BsCr Cr>C3

A similar finding in this simulation is that when the reset
cost exceeds a certain value (i.e., 65% in this experiment) and
if the optimal policy (the “Defend” action) is not available
somehow, then the “Wait” action is better than the “Reset”
action. It is because the cost of resetting the system is much
higher than the damage caused by the attacker. In other words,
if for any reason a defense action is not available, then it would
be better to just accept and absorb the damage (i.e., do nothing)
than resetting the system.

D. Exploitation: Cost vs. Optimal Policy

Similar to the previous simulations, the parameters remain
unchanged, except C'g, which is set to Cr = 4. We analyze
the impact of the cost incurred by attacker’s exploitation on
the optimal policy. We run this simulation using the same
procedure as described in Section II-C.

The results are plotted in Figure 5a and 5b. These figures
exhibit similar trends as observed through the previous sim-
ulations. We also plot the optimal policy with respect to the

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

Turning point

i

- BB - B0 -B--0-0--85-0-8--0-2

o,
[
o

.
Cdig
0oL,
B,

State Value

G
85.00 «+0ne Wait o,
36.00 —8&— Defend OOy
84.00 =-@--Reset
5200

5 10 15 0 25 30 35 40 45 S0 55 60 65 0 75 80 85 90
Exploitation Cost (% of Total Rewards)

95 100

(a) Impact of exploitation cost on state value at state S = E.
99.00

Optimal Policy

5 10 15 20 25 30 35 40 45 50 55 60 65 T0 75 80 85 90 95 100

Exploitation Cost (% of Total Rewards)

(b) Optimal policy changes as the exploitation cost increases.

Fig. 5: Exploitation Impact and optimal policy.

Defense Cost

B NP
ARSI IS

SR IRCC IR CRCES

Exploitation Cost

Reset Cost

(a) With respect to the defense
cost and the exploitation cost.

(b) With respect to the defense
cost and the reset cost.

Fig. 6: Optimal policy.

defense and exploitation costs to show how the optimal policy
shifts in different network environment.

Figure 6a visualizes the optimal selection of policies. For
example, if a combination of the defense and exploitation
costs falls within the area on the top layer (i.e., high defense
and high exploitation costs), then “Reset” will be the optimal
policy. On the other hand, if the combination falls within the
left bottom corner (marked in blue: high defense but low
exploitation costs), then “Wait” will be the optimal policy.
Finally, if the combination falls within the triangle-shape area
on the middle layer, then “Defend” will the optimal policy.

E. Case Studies

We demonstrate how to apply our model to two existing
Moving Target Defense techniques: 1) Decoy-based MTD, and
2) Self Cleansing Intrusion Tolerance (SCIT). It is important
to note that the goal is to qualitatively analyze the feasibility
of these two techniques and not their effectiveness.

758

4
. 3
E

Reset Cost

Reset Cost

(a) Decoy-based MTD. (b) SCIT-based MTD.

Fig. 7: Optimal policies in case studies.

1) Decoy-based MTD: A decoy system is a phony platform
with appealing appearance but fake data and credentials that
is developed for the purpose of trapping unauthorized users.
These types of systems are usually used to study the attacker’s
exploitation patterns in order to protect real targets. Decoy-
based MTD is one of the newest ideas, in which decoy hosts
are mixed with the protected target hosts on the network.
Decoy hosts may confuse attackers by providing fake data and
thus they slow down the pace of attacks towards the real target
host. Meantime, the defender can gain additional valuable time
to prepare for defending against the next attack.

To achieve this goal, first, the configurations of each decoy
system need to be similar to the target host so that it becomes
hard to distinguish the decoy system from the main operational
one. Second, the ratio of the target hosts to the decoys must
be very low, for example 1 : 10,000 as recommended by the
NCLYS 2009 [12]. However, research shows that the ratio of
1:99 [2] is still effective for some attacks.

It is reasonable to assume each host on the network to
employ a similar defense mechanisms so that each host looks
legitimate and indistinguishable. Furthermore, the ratio of the
target hosts to the decoys is kept at least 1 : 10,000. With
respect to these two assumptions, we observe that:

1) The total defense cost is the sum of each host’s defense
cost. As a result, the defense cost of a large-scale decoy-
based MTD can be very high.

When the configuration of the target host is changed,
all decoys must be reset and cloned to match the new
configuration. Therefore, the reset cost of the decoy-
based MTD can also be very high.

Each decoy is loaded with fake data and accounts.
Hence, the cost of a decoy breach will be very low if
not negligible. For the same reason, the exploitation cost
is also very low.

2)

3)

After plugging in the parameters in our simulation, we plot
the optimal policy with respect to the defense and rest costs
as shown in Figure 7a. We can observe that when both the
defense and reset costs are high, the optimal policy is “Wait.”
In reality, however, this may not be acceptable. Therefore,
unless there is some way to reduce the defense cost or the
rest cost, our model shows decoy-based MTD might not be a
viable defense technique.

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

2) Self Cleansing Intrusion Tolerance (SCIT): SCIT [13]

periodically rotates an array of virtual machines to reduce
the exposure time of the protected server with the aim of
disrupting potential attacks. According to the literature, the
rotation frequency is within minutes and VM reset happens
at each rotation, incurring a reset cost. The reset cost is not
discussed as a factor for the effectiveness of the technique.
Therefore, we performed a simulation similar to the one
reported in this paper and plotted the results in Figure 7b.

As Figure 7b indicates, only when either the reset cost is low
or the exploitation damage (cost) is high, the optimal policy is
“Reset.” For example, in a mission-critical infrastructure where

the potential exploitation damage might be very high, it is
preferable to periodically reset the system to disrupt potential
attacks, then SCIT might be a viable option. On the other hand,
if with new technology, the cost of resetting and reloading a
VM can be reduced, then SCIT might be adopted.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed to use finite-state, finite-action,

and stationary Markov Decision Process to model the interac-
tion between a defender and an attacker. We investigated three
possible defense strategies (wait, defend, and reset) for each of
the four system states and used Bellman Optimality Equation

to mathematically define the optimal policy. By solving the
Bellman Optimality Equation, we were able to find the optimal

policy when the system was in a specific state. Various

simulation experiments were conducted to demonstrate how
the optimal policy would shift when cost change. The optimal

policy shift can help defender to make right decision at various

situation. We also applied our model in two existing MTD

techniques and case studies to evaluate the feasibility of the
two MTD techniques.

We plan to include some quantitative cost estimation meth-

ods in our model to fine tune the cost analysis of our research.
We also plan to extend our model to Partially Observable

Markov Decision Process (POMDP) and compare the accuracy

of the two models. Another research opportunity is to utilize
the big data research to estimate the transition probabilities of
different control actions in our model in a real-world dataset
using techniques such as deep learning algorithms [14, 15]
and techniques based on evidence theory [16, 17]. Also,
formal techniques can be used in conjunction with stochastic
approaches to model the MTD problem [18, 19].

ACKNOWLEDGEMENT

This project is funded in part by grants (Awards No:
1516636 and 1564293) from National Science Foundation.

REFERENCES

[1] J. Zheng and A. Siami Namin, “A survey on the moving
target defense strategies: An architectural perspective,’
Journal of Computer Science and Technolology, vol. 34,
no. 1, pp. 207-233, 2019.

R. Skowyra, K. Bauer, V. Dedhia, and H. Okhravi,
“Have No PHEAR: Networks without identifiers,” in
Proceedings of the ACM Workshop on MTD.

(2]

759

[3] J. Zheng and A. Siami Namin, “The impact of ad-
dress changes and host diversity on the effectiveness
of moving target defense strategy,” in 2016 IEEE 40th
Annual Computer Software and Applications Conference
(COMPSAC), vol. 2, June 2016, pp. 553-558.
H. Maleki, S. Valizadeh, W. Koch, A. Bestavros, and
M. van Dijk, “Markov modeling of moving target defense
games,” in Proceedings of the ACM Workshop on MTD.
A. Prakash and M. P. Wellman, “Empirical game-
theoretic analysis for moving target defense,” in Proceed-
ings of the ACM Workshop on MTD, 2015.
M. Wright, S. Venkatesan, M. Albanese, and M. P.
Wellman, “Moving target defense against ddos attacks:
An empirical game-theoretic analysis,” in Proceedings of
the ACM Workshop on MTD, 2016.
J. Zheng and A. Siami Namin, “A markov decision
process to determine optimal policies in moving target,”
in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (ACM CCS’18).
R. E. Bellman, Dynamic Programming, reprint ed.
Princeton University Press, 2010.
N. Tavakoli, D. Dai, and Y. Chen, “Log-assisted
straggler-aware I/O scheduler for high-end computing,”
in 45th International Conference on Parallel Processing
Workshops, ICPP, Philadelphia, PA, USA, 2016.
J. Zheng and A. Siami Namin, “Defending SDN-based
IoT networks against DDoS attacks using markov deci-
sion process,” in /[EEE Big Data, 2018, pp. 4589—4592.
N. Tavakoli, D. Dai, and Y. Chen, “Client-side straggler-
aware I/O scheduler for object-based parallel file sys-
tems,” Parallel Computing, vol. 82, pp. 3—18, 2019.
(2009) National cyber leap year summit 2009. [Online].
Available: https://www.nitrd.gov/nitrdgroups/index.php?
title=National_Cyber_Leap_Year_Summit_2009
A. K. Bangalore and A. K. Sood, “Securing web servers
using self cleansing intrusion tolerance (SCIT),” in Sec-
ond International Conference on Dependability, 2009.
S. Siami-Namini, N. Tavakoli, and A. Siami Namin,
“A comparison of ARIMA and LSTM in forecasting
time series,” in [7th IEEE International Conference on
Machine Learning and Applications, ICMLA, 2018.
S. Siami-Namini and A. Siami Namin, “Forecasting
economics and financial time series: ARIMA vs. LSTM,”
CoRR, vol. abs/1803.06386, 2018. [Online]. Available:
http://arxiv.org/abs/1803.06386
M. Chatterjee, A. Siami Namin, and P. Datta, “Evidence
fusion for malicious bot detection in IoT,” in /IEEE Big
Data, 2018.
M. Chatterjee and A. Siami Namin, “Detecting web
spams using evidence theory,” in 42th COMPSAC, 2018.
S. Sartoli and A. Siami Namin, “Adaptive reasoning in
the presence of imperfect security requirements,” in 40th
IEEE COMPSAC, 2016.
[19] S. Sartoli and A. Siami-Namin, “A semantic model for
action-based adaptive security,” in ACM SAC, 2017.

(4]

(5]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Authorized licensed use limited to: Texas Tech University. Downloaded on August 25,2020 at 21:31:52 UTC from IEEE Xplore. Restrictions apply.

