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ABSTRACT

Balanced graph partitioning is a critical step for many large-scale
distributed computations with relational data. As graph datasets
have grown in size and density, a range of highly-scalable balanced
partitioning algorithms have appeared to meet varied demands
across different domains. As the starting point for the present
work, we observe that two recently introduced families of iter-
ative partitionersÐthose based on restreaming and those based
on balanced label propagation (including Facebook’s Social Hash
Partitioner)Ðcan be viewed through a commonmodular framework
of design decisions. With the help of this modular perspective, we
find that a key combination of design decisions leads to a novel
family of algorithms with notably better empirical performance
than any existing highly-scalable algorithm on a broad range of
real-world graphs. The resulting prioritized restreaming algorithms

employ a constraint management strategy based on multiplicative
weights, borrowed from the restreaming literature, while adopting
notions of priority from balanced label propagation to optimize
the ordering of the streaming process. Our experimental results
consider a range of stream orders, where a dynamic ordering based
on what we call ambivalence is broadly the most performative in
terms of the cut quality of the resulting balanced partitions, with a
static ordering based on degree being nearly as good.
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· Theory of computation → Graph algorithms analysis; ·
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1 INTRODUCTION

Graphs are ubiquitous structures in computer science for represent-
ing a host of real-world systems, including social and information
networks, biological networks, and meshed domains in physics
simulations. The scale of such systems of interest continue to grow,
particularly in domains connected to online social data. The mod-
ern World Wide Web hosts tens of billions of webpages (nodes)
with trillions of links (edges) between them. Facebook serves bil-
lions of monthly active users, plus hundreds of millions of pages,
events, and groups, all interacting with each other through network
structures. Similarly, Twitter sees hundreds of millions of monthly
active users interact by sharing and liking each others content. In
all these examples, graph-wide computationsÐmost notably in the
service of ranking and recommendation problemsÐare central to
the core functions of many products and services.

Unfortunately, large-scale computations are expensive; these
graphs account for terabytes of compressed data [37] and most
computations over such datasets are intractable for a single ma-
chine to perform. The typical solution to this problem involves
partitioning the input graph across a number of machines and us-
ing parallel algorithms for these computations, thereby increasing
computational efficiency in terms of both network latency and
runtime [6].

The question becomes how do we łbestž partition the network
to achieve these performance gains? The answer to this question
is often highly context-specific. Indeed, some problems are best
distributed by partitioning the node set, while others are best dis-
tributed by partitioning the edge set [11]. In this work we focus
on applications motivated by partitioning the node set (without
replication), and approaches to efficiently partitioning the node
sets of large empirical graphs, a difficult task [19]. As further mo-
tivation for our work, balanced node set partitioning has recently
been used in causal inference to improve the design of experiments
in networked settings through a procedure dubbed graph cluster
randomization [33, 40]; this area of work specifically motivates the
search for good k-way balanced partitions for very large k .

A common approach to node set partitioning is a simple hashing
of the node set, effectively distributing nodes uniformly at random
across clusters (or machines) [20, 31, 35]. But more intelligent ap-
proaches to partitioning can greatly improve the runtime of these
distributed algorithms [37, 39]. One of the important requirements
of this partitioning task, compared to generic graph clustering tasks,
is that we seek to balance the computational load associated with
each cluster of the partitioning. In this work we will focus on con-
texts where the computational load is constant per node, but the
algorithms we consider and introduce can all be easily modified to
account for non-uniform/weighted loads [24].
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Enter the problem of interest, balanced graph partitioning: given
an input graph, how can we partition the node set to (1) maintain
balanced loads across k clusters, or shards, while (2) minimizing
some objective function. We focus on the edge-cut objective [6]Ð
minimizing the number of edges which span multiple shardsÐas
it closely aligns with the literature. We recognize that minimiz-
ing edge-cut may not fully depict workload performance in prac-
tice [26], but we use this objective as a proxy and to catalog the effect
of various design decisions on this outcome. Other examples of ob-
jective functions include fanout minimization for hypergraphs [12]
and the variance minimization in graph cluster randomization [40].

Unfortunately, finding an exact solution to the edge-cut problem
is infeasible for even modest graphs: when the number of shards is
two, this problem equates to the minimum bisection problem, which
is classically NP-hard [1] and for which there are no known efficient
algorithms with good approximation guarantees. That said, there
is a large body of work on practical, albeit heuristic, algorithms
that perform well empirically successful across a range of relevant
large-scale graph datasets.

Recent work on scalable practical algorithms for graph partition-
ing has been driven largely by research at companies that manage
some of the world’s largest relational datasets [3, 4, 9, 12, 21, 37ś39].
In this work, we build a common framework around three such
recent algorithms that are generally regarded as at or near the
state-of-the-art for different objectives: Balanced Label Propagation
(BLP) [39], Restreamed Linear Deterministic Greedy (reLDG) [24],
and Social Hash partitioner (SHP) [12]. In our experimental eval-
uations we also benchmark against a recent high-performance
algorithm based on linear embeddings [3], an approach that is not
obviously related to these other approaches.

BLP and SHP belong to a family of algorithms based on label prop-
agation. Starting from an initial assignment they iteratively con-
duct node relocations to achieve higher quality partitions. ReLDG
is an example of what are called restreaming algorithms [24], pro-
cessing the node set serially in repeated passes, with each node
placed according to an assignment rule designed to achieve bal-
ance. Streaming algorithms are commonly motivated by a highly
restricted computational framework where one is attempting to
make node assignments while the graph is in transit, being moved
and/or loaded (during ETL, in the language of data warehousing).
As such, the only stream orderings of the node set tested prior
to this work were random, breadth-first-search (BFS), and depth-
first-seach (DFS) to mimic the order obtained by a web-crawler or
equivalent process [37]. Our work is thus the first to (1) benchmark
the latter against scalable non-streaming algorithms, and (2) ex-
plore strategic stream orderings, the order in which the node set is
considered by the algorithm. We call these algorithms prioritized
restreaming algorithms for balanced graph partitioning.

Our contribution. The contribution of this work can be summa-
rized in three points:

(1) We provide benchmarking that has been absent from the
literature, showing that the existing restreaming algorithm
reLDG outperforms BLP and SHP1 on a range of real-world
graphs.

1Our implementation of SHP has been adapted to minimize the edge-cut objective,
rather than fanout. See Section 3.

(2) We modularize the three algorithms in our discussion and
notice that they are in fact three different combinations of
design decisions within a common framework in terms of
how they manage constraints, node priority, and a concept
we call incumbency.

(3) We introduce both static and dynamic stream orderings,
where the latter can vary between stream iterations, as a
way to inject priority into streaming algorithms for balanced
graph partitioning. In particular, one such dynamic ordering,
ambivalence ordering, produces the best or nearly best results
in all test cases, followed closely by a static degree ordering.

By illustrating how these existing algorithms can be viewed under
the same framework, we highlight potential improvements in each.
While not all of these directions lead to improvements (we docu-
ment several failed attempts at improvement), the (dynamic) stream
ordering contribution stands out as a significant advancement of
the state-of-the-art. Our results are supplemented with extensive
empirical investigations of the role of various design decisions,
presented in Section 4, in these algorithms.

Paper structure. Section 2 formally defines the problem of inter-
est and sets up the notation used in the remainder of this work.
In Section 3, the three aforementioned iterative techniquesÐBLP,
SHP, and reLDGÐare presented as they exist in the literature. We
introduce a decomposition of the algorithms into their modular
components in Section 4, laying out the taxonomy we will refer
to for the remainder of the work. In Section 5 we discuss stream
orders, and introduce a novel stream order inspired by the other
non-streaming methods. Section 6 studies empirical evaluations of
the algorithms on a variety of graphs. Finally, Section 7 concludes
and summarizes our main findings.

1.1 Related Work

Graph partitioning and its balanced variation are well-studied prob-
lems, with major results dating back to at least 1970. Many classes of
algorithms for balanced graph partitioning were omitted from this
work, primarily because of their poor scaling properties when con-
sidering truly massive graphs, though we highlight some notable
algorithms in this section. Borrowing nomenclature from [6], the
class of łglobalž balanced partitioners considers the entire graph in
some capacity and strives to achieve a solution to adjacent problems
with some version of theoretical guarantees, e.g. spectral partition-
ing or max-flow/min-cut-based algorithms [2, 5] for bipartitioning.
Given a bipartitioning algorithm, one can achieve a k-way partition
by recursively cutting the graph log2 k times. The earliest iterative
algorithms for k-way partitioning were based on recursive schemes
for bisection [10, 15]. However, these methods are less than ideal
in our context for a few reasons: (1) spectral algorithms become
impractical to compute for extremely large graphs, and in this work
we focus on the frontier of truly massive graphs and (2) recursive
bisection greatly restricts the k-way partition. Hence, we focus our
work on direct k-way partitioning algorithms.

Another class of algorithms are łcoarseningž or łmulti-levelž
algorithms, which are comprised of coarsening, partitioning, un-
coarsening, and refinement phases [8, 22, 25]. These methods strive
to harness the theoretical benefits of the previously mentioned tech-
niques, but on smaller contracted graphs. METIS [13, 14], a family
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of partitioning algorithms, is an example of a multilevel method,
and currently represents the state-of-the-art in partition quality
(for the edge-cut objective). As such, we present these results in
our experiments in Section 6.

However, though METIS has a multi-threaded implementation
[16], these methods generally require significant resources in terms
of memory and time [26], so we focus our attention on the łlocal-
improvementž or łiterativež class of algorithms. This class makes
adjustments to feasible partitionings using only information at the
local level for each node. BLP, SHP, and reLDG all fall into this class.
Other examples include the classic KernighanśLin [15] heuristic
and its descendants [10, 12, 39], other streaming algorithms [24,
36ś38], max-flow-based local improvements [30], and diffusion-
based methods, which are primarily used for clustering with a
few extensions to partitioning [23, 27]. This class is attractive to
researchers and engineers for their speed, ease of implementation,
and relatively intuitive nature.

2 PROBLEM DEFINITION

In this work we study iterative algorithms for solving the balanced
k-way partitioning problem: given an undirected graph G = (V , E)

on |V | = n nodes and |E | =m edges, an integer k , and an imbalance
parameter ϵ , find a partitioning P = {V1, . . . ,Vk } of the node set
into k disjoint shards Vi such that

⌈
(1 − ϵ)n

k

⌉
≤ |Vi | ≤

⌈
(1 + ϵ)n

k

⌉

for all i , and the number of cross-shard edges is minimized. Formally,
the edge-cut objective looks to minimize the size of the cut set of
partition P ,

C(P) = {(u,v) ∈ E | P(u) , P(v)},

where P : V → [k] is the shard map, mapping nodes to their shard
assignment under partition P . As additional notation, let N (u) be
the neighbor set of node u, N (u) = {v ∈ V | (u,v) ∈ E}. In Section
6, we report our results in terms of cut quality, or internal edge
fraction, which is defined as 1 minus the cut-fraction, 1 − |C(P)|/m.
Lastly, note that while we assume thatG is an unweighted graph, all
our techniques generalize easily to weighted graphs, where balance
is defined in terms of total node weight and the objective minimizes
the sum of edge weights.

3 THREE METHODS

In this section, we present three existing iterative algorithmsÐ
Balanced Label Propagation (BLP), Social Hash partitioner (SHP),
and Restreaming Linear Deterministic Greedy (reLDG)Ðas they are
published in the literature. This section acts as a quick introduc-
tion to the algorithms before we dissect them further in Section 4.
As we are more concerned with design modules than optimizing
performance in this work, we push discussions of complexity and
parallelization of these base methods to Appendix A.1.

3.1 Balanced Label Propagation

BLP [39] takes a constrained view of the label propagation litera-
ture surrounding semi-supervised learning and community detec-
tion [28, 45]. The BLP algorithm makes iterative, balanced improve-
ments to an initial feasible partitioning (labelling) of the node set
until an equilibrium is achieved (or amaximumnumber of iterations
is reached). In this work, we use the simplest initializationÐrandom

balanced assignmentÐfor comparison with other methods, though
careful initialization has been shown to achieve a better equilibrium
cut, depending on both context and available metadata [39].

Each iteration proceeds as follows: for every node u ∈ V , we
compute its move gain, the maximum improvement in co-located
neighbor count if unilaterally relocated, defined as

дu = max
i ∈[k ]

|N (u) ∩Vi | − |N (u) ∩VP (u) |. (1)

Clearly дu ≥ 0 for all u ∈ V . When дu = 0, node u is effectively
łsatisfiedž and gets to keep its shard assignment, a concept we for-
malize in Section 4. Nodes with дu > 0 are placed in a queue to
move to their target shard in order of decreasing gain. This infor-
mation is funneled into a linear program that solves a circulation
problem within the iteration, determining the maximum number
of top nodes to move from these queues to maximize gain while
abiding by constraints on each shard size. Conducting these node
relocations for all shard pairs constitutes one iteration, and the pro-
cess repeats until no nodes desires to move, or a maximum number
of iterations is reached.

3.2 Social Hash Partitioner

Social Hash Partitioner (SHP) [12] is a two-level framework for
producing and updating partitions of graph data, developed for
optimizing Facebook’s SocialHash [34] infrastructure. It was built to
partitionmore general hypergraph data [7], minimizing an objective
called fanout (the average number of shards a hyperedge spans).
The algorithm is easily łextendedž to partitioning non-hyper graphs
under the traditional edge-cut objective, though that evaluation has
not been done in the literature. Its mechanism for balancing shard
size is a natural k-way extension of one of the earliest balanced
partitioning algorithms for minimizing edge-cut, the Kernighanś
Lin algorithm [15].

Like BLP, SHP starts from an initial partitioning of the node
set and makes iterative improvements to the edge-cut objective
until equilibrium or a maximum number of iterations is reached.
The original implementation of SHP proposed in [12] operates as
follows: gains, as defined in Equation (1), are computed for each
node u ∈ V . Nodes with дu > 0 are bucketed in exponentially sized
bins by gain tomove to their target shard, tu , storing two histograms
per shard pair. For all pairs, these buckets are deterministically
paired and swapped from highest to lowest gain until the last bucket,
where nodes are swapped in a random order until no more swaps
can increase the overall gain of relocation.

As a simplifying step, in this work we modify the algorithm to
store two fully sorted queues of nodes per shard pair. Individual
nodes are then paired off and swapped deterministically in order
of most gain, a strict improvement in the within-iteration objective
over the more easily distributed implementation in [12]. As this
work studies the effects of these design decisions on the objective
and less about computational trade-offs for distributed implemen-
tations, this simplification allows us to study the SHP algorithm
in its łbestž form. At the same time, we acknowledge that better
performance within an iteration doesn’t necessarily translate to
better performance in equilibrium.

As another important modification, we define gain in this case
to include satisfied nodes, those with дu = 0, in the move queues
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for their second-best shard, effectively sorting by a modified form
of gain over external shards:

д′u = max
i ∈[k ]\P (u)

|N (u) ∩Vi | − |N (u) ∩VP (u) |. (2)

For later reference, we denote satisfied nodes in the move queue
of their best external shard as "second-bestž nodes. Such nodes are
included at their own expense to possibly allow for swaps with a
net-positive global gain, a hallmark characteristic of the original
1970 KernighanśLin algorithm. For this reason, we will denote this
clarified implementation by łKL-SHPž.

Two simplifications of KL-SHP, denoted łSHP-Iž and łSHP-IIž in
our work, are also implemented to study the effect of constituent
design decisions. In SHP-I, we both exclude second-best nodes from
relocation queues and forego the prioritized ordering, randomly
pairing nodes to be swapped until one queue is empty. In SHP-
II, we exclude second-best nodes but still swap in a sorted order,
restricting swaps to only involve nodes with positive move gains.
Comparing KL-SHP and SHP-II showcases the effect of locally-
negative (KL-style) swaps; between SHP-II and SHP-I, that of the
sorted ordering.

3.3 Restreamed Linear Deterministic Greedy

Restreamed Linear Deterministic Greedy (reLDG) [24] falls in a sub-
class of iterative algorithms known as a (re)streaming algorithms.
This class is motivated by the context of single-pass online graph
loading, where a program parses through a graph file, serially read-
ing graph data from a source to a destination cluster [37]. The
multi-pass/iterative version of this approach was proposed in [24],
considering restreaming methods for partitioning as potentially
competitive with offline, non-streaming algorithms.

The reLDG algorithm was derived from LDG [37], repeatedly
streaming over the node list until a maximum number of itera-
tions is reached [24]. Specifically, reLDG does the following at each
iteration: for each u ∈ V , assign u to the shard which satisfies

arg max
i ∈[k ]

|V
(t )
i

∩ N (u)| ·

(

1 −
x
(t )
i

C

)

.

HereV
(t )
i

holds the current population of shard i , from the previous
or the current stream (when applicable, if the node has already been

łseenž this iteration), x
(t )
i

holds the number of nodes assigned to i in
the current stream, andC is the shard capacity constraint,C = (1 +

ϵ)·
⌈
|V |
k

⌉
. Notice that as the shards begin to fill up, the łmultiplicative

weightž 1 − x
(t )
i

/C approaches zero, eventually eliminating filled
shards from consideration.

Unsurprisingly, the position of a node in the stream order plays a
large role in the quality of the resulting partition around that node.
Nodes at the beginning of the stream are not yet impacted by the
multiplicative weight, while the assignment of nodes at the end may
be dominated by this term. The previous study of LDG and reLDG
focused on a random (persistent) order, with some consideration
given to BFS/DFS order in the original LDG work. We revisit the
idea of stream orderings in Section 5.

4 TAXONOMY OF BALANCED

PARTITIONING ALGORITHMS

In this section, we introduce a decomposition of the iterative meth-
ods in Section 3 intomodular parts, developing a common taxonomy
of these algorithms. The identified distinctions are (1) how node
relocations are carried out, (2) whether or not nodes may be exempt
from relocation due to łincumbencyž, and (3) if the algorithmmakes
use of łpriorityž.

Synchronous vs. streaming assignment. BLP and SHP conduct
all node relocations simultaneously, utilizing information from a
static snapshot of the previous partitioning. In reLDG, nodes are
assigned one at a time from a serial pass over the node list, changing
the assignment landscape for nodes later in the stream. In this work,
we denote this distinction as synchronous vs. streaming assignment.

Flow-based vs. pairwise constraint handling. Between the two
synchronous algorithms, BLP uses a linear program to maintain
balance, maximizing relocation gain subject to constraints that the
net inflow of nodes to each shard equals the net outflow, up to a
desired imbalance parameter. KL-SHP on the other hand simply
ensures that the same number of nodes move between shard pairs.
As the former has a fluid dynamical interpretation, we call this
strategy flow-based constraint handing. The latter we call pairwise
constraint handling.

Incumbency preference. Recall that in BLP, SHP-I, and SHP-II,
only nodes with gain дu > 0 are eligible for relocation. All other
nodes are reassigned to their previous shard assignment. On the
other hand, KL-SHP allows for suboptimal movement via relocating
łsecond-bestž nodes for a globally-positive swap. ReLDG serially
assigns each node at every iteration, potentially evicting nodes
late in the stream which were assigned to a desirable shard at the
previous iteration. BLP and the restricted SHP algorithms therefore
have incumbency preference, always allowing nodes to keep their
previous assignment.

To parameterize this preference, we introduce a threshold c for
an algorithm’s level of łincumbencyž, defined as the allowance
for nodes with дu ≤ c to keep their last assignment. In other
words, only nodes with дu > c are eligible for relocation. Vanilla
restreaming (random stream order) corresponds to a choice of c =
−∞ (no incumbency), while BLP corresponds to a choice of c = 0.
Any of the algorithms can be easily modified to accommodate c as
an input parameter to the method, and we explore this flexibility
in Section 6.

Priority ordering. We define priority in this work as an ordering
of how non-incumbent nodes are considered for relocation. Both
BLP and KL-SHP prioritize gain, Eq (1) or (2), in conducting node
relocations. They utilize sorting within relocation queues to move
nodes with the highest gain first, thereby directly optimizing edge-
cut. On the other hand, vanilla reLDG does not prioritize any metric
in relocating nodes; nodes are prioritized randomly in the stream
order. This fact highlights an opportunity for improvement among
this family of algorithms, which we explore in the following section.

5 PRIORITY THROUGH STREAM ORDERS

We now consider how node prioritization can be incorporated into
the reLDG algorithm through a thoughtful choice of the order in
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which nodes are streamed. An adversarial demonstration for LDG
(a single stream iteration) given by Stanton & Kliot [37] clearly
shows how the stream order of nodes can play a large role in the
final cut quality of (re)LDG. That said, the original work focused
only on random, BFS, and DFS stream orders within the graph
loading context. In this section, we investigate alternative static
as well as dynamic prioritized orderings. As forward pointers, we
study the performance of reLDG with these orders in Section 6,
most specifically in Table 2. The rank correlation between different
stream orders is inspected in Figure 4. We discuss the complexity
of computing these stream orders in Appendix A.2.

5.1 Static

We classify all of the previously considered ordersÐ(persistent)
random, BFS, and DFSÐas łstaticž, as they are defined based on
graph properties alone and need not be updated between iterations.
Of these, we consider only random and BFS, rooted at the largest-
degree node. BFS (1) broadly outperforms DFS in [37] and (2) is
a good surrogate for the node order obtained from a web crawler
or similar graph exploration process. Random order is analogous
to the random assignments we use to initialize BLP and the SHP
algorithms. We add two additional prioritized static orderings for
consideration: degree and local clustering coefficient [44], both in
decreasing order.

5.2 Dynamic

Dynamic stream orders are updated between iterations of a re-
streaming algorithm. We introduce two prioritized dynamic stream
orders in this work: gain order, as defined in Equation (1), and a
new ordering we call ambivalence. Note that random order could
be implemented in a dynamic manner, shuffling the order between
iterations. However, we choose to focus our attention on dynamic
stream orders which leverage updated information in the network.

Gain. A natural first idea is to follow the lead of synchronous
algorithms such as BLP and stream nodes in decreasing gain order.
In other words, place nodes that stand to gain the most early in
the stream, and those that do not stand to gain much late in the
stream. However, this ordering easily backfires in the streaming
setting, where nodes with a low gain value, e.g. дu = 0, may have
little to gain but at the same time risk incurring a significant loss by
moving. Placing such nodes at the end of the stream makes them
likely to be łevictedž from their satisfactory assignment.

Ambivalence. To remedy the above issueswith gain-sorted stream-
ing, we propose a novel metric, ambivalence, as a prioritized stream
order, streaming in increasing order. That is, nodes that strongly
prefer to either move or stay in place are placed early in the order,
thereby giving the nodes a good chances at getting what they want,
whereas nodes which are more łambivalentž are streamed later. We
define the ambivalence of node u, au , as the (negative) maximum
difference in co-assigned neighbors when contrasting the current
assignment with the best possible external assignment:

au = − max
i ∈[k ]\P (u)

��|N (u) ∩Vi | − |N (u) ∩VP (u) |
�� . (3)

The higher (less negative) the score au , the smaller the gap in neigh-
bor co-location count between the node’s current assignment and

Table 1: Test networks, all from the SNAP repository [18].

Here d̄ is average degree and LCC denotes the percent of

nodes in the largest connected component.

Graph n m d̄ LCC Type

pokec 1,632,803 22,301,964 27.32 100% Social
livejournal 4,847,571 43,110,428 17.79 99.9% Social
orkut 3,072,441 63,464,467 41.31 100% Social

notredame 325,729 1,103,835 6.78 100% Web
stanford 281,903 1,992,636 14.14 91% Web
google 875,713 4,322,051 9.87 98% Web
berkstan 685,230 7,600,595 19.41 96% Web

the best other shard. As ambivalence ranges from negative degree
to 0, the order has a tendency to push low degree nodes towards
the end of the stream. In Section 6.2 we observe a high correlation
between ambivalence and degree. Further, in Appendix B we show
that the expected initial ambivalence is upper and lower bounded
by monotonic (linear) functions of the node degree.

Initialization. The two dynamic schemes are defined relative to a
partition, P . Specifically, they are undefined during the first pass
of reLDG. As such, we define both as using degree order for their
first iteration (and do so in Section 6); degree order gives the best
empirical performance of the static orders after many iterations, as
in Table 2, but also after one iteration (not shown).

6 RESULTS

We design experiments to answer the following questions:

(1) How do the presented algorithms for balanced graph parti-
tioning, which previously haven’t been well-benchmarked,
compare in terms of cut quality?

(2) What role do the modules in Section 4 play in the perfor-
mance of these methods?

(3) How does the performance of our prioritized reLDG algo-
rithm scale with increasing k?

(4) How does stream order affect the performance of reLDG?

We focus our tests of balanced partitioning algorithms on a fixed
number of shards (k = 16) and number of iterations (t = 10), study-
ing varied social and web networks described in Table 1. Directed
graphs were made undirected by reciprocating all edges, storing
both forward and backward directed edges. Some plots focus only
on the pokec and notredame graphs but are then representative
of social and web graphs, respectively. All methods are presented
under exact balance, ϵ = 0 in the problem formulation in Section 2.
Relative performance does not change when allowing slight im-
balance (ϵ = 0.05), so we omit imbalanced results. Given that all
methods are to some extent random, if only in the handling of
tie-breaks, all tabulated results were averaged over ten trials.

6.1 Performance of the methods

To study question (1), we report the partition qualities of all methodsÐ
BLP, KL-SHP and its restricted forms (SHP-I, SHP-II), and reLDG
with six stream orders (random, local clustering coefficient, BFS,
degree, gain, ambivalence)Ðon all networks in Table 2. In Figure
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nodes have degree < 10, and 49% have degree 1. Nodes with degree
1 have a clustering coefficient of 0; half of the node set is thus tied
for last place in both orderings. Furthermore, when restricted to
nodes with degree < 10 we found that clustering coefficient in-
creased with degree in the network. Thus, the strange correlations
are an artifact of the degree distribution of this specific network.

7 CONCLUSION

In this work, we dissect the design decisions involved in recent
highly-scalable iterative algorithms for balanced partitioning. Based
on this dissection, we introduce a new class, prioritized streaming

algorithms, that leverages prioritization ideas from synchronous
algorithms within the streaming setting. We contribute a novel pri-
ority ordering, ambivalence order, for streaming algorithms. When
tested on various social andweb graphs, we find that streaming algo-
rithms do not suffer from observed pathologies of the synchronous
assignment process used by BLP or SHP-based algorithmsÐnamely
moving or swapping neighboring nodes away from or past each
other. Even vanilla reLDG (random stream order) results in higher
quality partitions on all tested graphs than BLP and KL-SHP.

The best restreaming results come from ambivalence and de-
gree orderings, being superior on six of the seven tested graphs.
Ambivalence and degree are highly correlated orderings, offer-
ing degree order as the preferred static ordering if computing am-
bivalence is burdensome. Though initially proposed in the online
settingÐmoving graphs between clustersÐour results clarify that
restreaming algorithms are major contenders as highly scalable
offline partitioners.

Reproducibility. Implementations of BLP, SHP variations, reLDG,
prioritized reLDG, as well as notebooks replicating plots in this
paper are available at: https://github.com/ameloa/streamorder.
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A COMPUTATIONAL CONSIDERATIONS

A.1 Base methods

Complexity. For k clusters and a graph on n nodes, both BLP
and KL-SHP compute node gains and targets in O(nk) operations.
They then sort k(k − 1) queues in O(n/k2 log(n/k2)) time3. BLP
additionally solves an LP with O(k2) variables and O(д∗k2) con-
straints, where д∗ is the number of unique gain levels дu . For large
graphs with large degrees,д∗ can be quite large; one example in [39]
solves an LP with 12, 000 variables and 600, 000 constraints. A major
achievement of SHP, it can be said, was to come up with a effective
LP-less variation on BLP. Both methods conduct node relocations
in O(n).

Meanwhile, the runtime of reLDG in its proposed form is simply
O(nk)Ðserially accessing each node, and finding the shard which
maximizes the objective for each oneÐmaking it the most light-
weight algorithm in terms of computational complexity of those
discussed in this work. Alternative choices of stream order may
incur additional preprocessing costs, as is discussed in Section A.2.

Parallelization. Though reLDG is the algorithm with the lowest
serial time-complexity, BLP and SHP are both easily parallelizable,
whereas the streaming algorithm is more difficult to distribute, by
design. Between BLP and SHP, computing gains and sorting the
move queues between each shard pair are completely independent
operations per node and shard pair. All node relocations can be
done in a distributed manner as well, once the LP is solved in the
case of BLP. ReLDG has a parallel implementation which incurs
a performance penalty that can be mitigated with more iterations
[24]. For the sake of pure algorithmic comparison in this work, we
chose to not consider parallelized implementations in our analyses.

A.2 Stream orders

Complexity. The prioritized static and dynamic stream orders
proposed in this work require sorts of the entire node set, taking
O(n logn) time to sort after computing the per-node quantities of
interest. Of these calculations, we compute the local clustering co-
efficients in O(nd2max) operations, ambivalence and gain in O(nk),
BFS order takes O(n +m), and degree takes O(m). The calculations
of our static orderings are one-time up-front computations, easily
stored for future use; the dynamic orderings compute their respec-
tive quantities and sort at every iteration, taking O(n(k + logn))
time at each step.

B EXPECTED AMBIVALENCE AND DEGREE

To begin, note that the strong correlations in Figure 4 are between
increasing ambivalence and decreasing degree order. As such, we
will consider negated ambivalence in this section for simplicity.
Further, we adjust the definition of ambivalence in Eq. (3) from the
max over absolute differences to the max over squared differences,

au = max
i ∈[k ]\P (u)

(
|N (u) ∩Vi | − |N (u) ∩VP (u) |

)2
. (4)

The adjustment bears no effect on the order of the ambivalence
scores and aids the following analysis.

3Recall that the production implementation of SHP does not fully sort each move
queue to alleviate this additional complexity. See [12].

Proposition 1. The expected value of the initial ambivalence in

Eq. (4) is lower and upper bounded by

2

k
du ≤ E [au ] ≤

2(k − 1)

k
· du ,

where k is the number of shards and du is the degree of node u.

Proof. Let Y ∈ {0, 1}n×k be the matrix of node assignments
under partition P , and A ∈ {0, 1}n×n denote the adjacency matrix
of graph G. We denote shard i’s column of Y by Yi , and node u’s
column of A by Au .

Note that |N (u) ∩Vi | = A⊤
uYi , so ambivalence can be written as:

au = max
i ∈[k ]\P (u)

((Yi − YP (u))
⊤Au )

2

= max
i ∈[k ]\P (u)

(Yi − YP (u))
⊤AuA

⊤
u (Yi − YP (u))

= max
i ∈[k ]\P (u)

x⊤
i
Muxi ,

where we define xi = Yi − YP (u), andMu = AuA
⊤
u .

Lower bound. Computing the expected value, we have

E [au ] = E

[
max

i ∈[k]\P (u)
x⊤
i
Muxi

]

≥ max
i ∈[k ]\P (u)

E
[
x⊤
i
Muxi

]

= max
i ∈[k ]\P (u)

tr(MuΣi ) + µ
⊤
i
Mu µi ,

where µi = E[xi ] = E[Yi −YP (u)] and Σi = Cov(xi ). Computing µi
under a random partition,

µi = E[Yi − YP (u)]

= E[Yi ] − E[YP (u)]

=

1

k
✶ −

1

k
✶

= 0.

So we have

E [au ] ≥ max
i ∈[k ]\P (u)

tr(MuΣi ).

Expanding the covariance matrix Σi ,

Σi = E
[
(Yi − YP (u))(Yi − YP (u))

⊤
]
− µi µ

⊤
i

= E
[
(Yi − YP (u))(Yi − YP (u))

⊤
]
.

We define the random quantity B(i) = (Yi − YP (u))(Yi − YP (u))
⊤.

Analyzing the quantities on the diagonal and off-diagonals, respec-
tively,

B
(i)
uu = (Yui − YuP (u))

2

=

{
1 if u ∈ Vi ∪VP (u),

0 otherwise.

B
(i)
uv = (Yui − YuP (u))(Yvi − YvP (u))

=




1 if u,v ∈ Vi or u,v ∈ VP (u),

−1 if u ∈ Vi ,v ∈ VP (u) or u ∈ VP (u),v ∈ Vi ,

0 otherwise.
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Under the initial random assignment, the probability of 1 on the

diagonal is 2
k
, for all u ∈ V . On the off-diagonal, the probability of

a value being either -1 or 1 is 2
k2 . Hence,

Σi = E[B
(i)] =

2

k
I , ∀i,

where I is the identity matrix. Therefore,

E[au ] ≥ max
i ∈[k ]\P (u)

tr(MuΣi )

=

2

k
tr(Mu )

=

2

k
· du ,

where du is the degree of node u.

Upper bound. Borrowing the same notation,

E [au ] = E

[
max

i ∈[k]\P (u)
x⊤
i
Muxi

]

≤ E



∑

i ∈[k ]\P (u)

x⊤
i
Muxi


=

∑

i ∈[k ]\P (u)

E
[
x⊤
i
Muxi

]

=

∑

i ∈[k ]\P (u)

tr(MuΣi ) + µ
⊤
i
Mu µi

=

∑

i ∈[k ]\P (u)

2

k
tr(Mu )

=

2(k − 1)

k
· du .

□
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