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We give a purely combinatorial proof of the positivity of the stabilized forms of the

generalized exponents associated to each classical root system. In finite type An−1,

we rederive the description of the generalized exponents in terms of crystal graphs

without using the combinatorics of semistandard tableaux or the charge statistic. In

finite type Cn, we obtain a combinatorial description of the generalized exponents

based on the so-called distinguished vertices in crystals of type A2n−1, which we also

connect to symplectic King tableaux. This gives a combinatorial proof of the positivity

of Lusztig t-analogs associated to zero-weight spaces in the irreducible representations

of symplectic Lie algebras. We also present three applications of our combinatorial

formula and discuss some implications to relating two type C branching rules. Our

methods are expected to extend to the orthogonal types.

1 Introduction

Let g be a simple Lie algebra over C of rank n and G its corresponding Lie group. The

group G acts on the symmetric algebra S(g) of g, and it was proved by Kostant [18]

that S(g) factors as S(g) = H(g) ⊗ S(g)G, where H(g) is the harmonic part of S(g). The
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generalized exponents of g, as defined by Kostant [18], are the polynomials appearing

as the coefficients in the expansion of the graded character of H(g) in the basis of

the Weyl characters. It was shown by Hesselink [10] that these polynomials coincide,

in fact, with the Lusztig t-analogs [29] of zero-weight multiplicities in the irreducible

finite-dimensional representations of g. In particular, they have nonnegative integer

coefficients, because they are affine Kazhdan–Lusztig polynomials (see [32, 36]). Note

that the zero-weight Lusztig t-analogs are the most complex ones.

For g = sln, the generalized exponents admit a nice combinatorial description

in terms of the Lascoux–Schützenberger charge statistic on semistandard tableaux of

zero weight [24]. This statistic is defined via the cyclage operation on tableaux, which

is based on the Schensted insertion scheme. This combinatorial description extends,

in fact, to any Lusztig t-analog of type An−1, that is possibly associated to a nonzero

weight (also called Kostka polynomials). So we have a purely combinatorial proof of

the positivity of their coefficients. It was also established in [31] that the Lusztig

t-analogs in type An−1 are one-dimensional sums, that is, some graded multiplicities

related to finite-dimensional representations of quantum groups of affine type A(1)
n−1.

Another interpretation of the charge statistic in terms of crystals of type An−1 was given

later by Lascoux et al. in [23].

Despite many efforts during the past 3 decades, no general combinatorial

proof of the positivity of the Lusztig t-analogs is known beyond type A. Nevertheless,

such proofs have been obtained in some particular cases. Notably, a combinatorial

description of the generalized exponents associated to small representations was given

in [13] and [14] for any root system. In [28], it was established that some Lusztig

t-analogs of classical types equal one-dimensional sums for affine quantum groups,

which generalizes the result of [31]. Nevertheless, the two families of polynomials

do not coincide beyond type A. In [25] and [26], charge statistics based on cyclage

on Kashiwara–Nakashima (KN) tableaux were defined for classical types, yielding the

desired positivity for particular Lusztig t -analogs. It is worth mentioning that, in type

Cn, a version of the mentioned statistic [25] permits conjecturally to describe all the

Lusztig t-analogs in this case.

In [4], Brylinsky obtained an algebraic proof of the positivity of any Lusztig

t-analog based on the filtration by a central idempotent of g. For classical types, this

filtration stabilizes [7, 27], which yields stabilized versions of these polynomials. They

are formal series in the variable t that, in many respects, are more tractable as their

finite-rank counterparts.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/16/4942/5049383 by guest on 25 August 2020



4944 C. Lecouvey and C. Lenart

The goal of this paper is two-fold. First we give a combinatorial description

of the stabilized version of the generalized exponents and a proof of their positivity

by using the combinatorics of type A+∞ crystal graphs. This can be regarded as a

generalization of results in [23] for the weight zero, and in fact we were able to

rederive the latter without any reference to the charge statistic or the combinatorics

of semistandard tableaux. Our description is in terms of the so-called distinguished

vertices in crystal of type A+∞, but we show that these vertices are in natural bijection

with some generalizations of symplectic King tableaux, which makes the link with

stable Lusztig t-analog more natural. Next, we provide a complete combinatorial proof

of the positivity of the generalized exponents in the non-stable Cn case. Observe there

that the non-stable case is much more involved than the stable one, essentially because

we need a combinatorial description of the non-Levi branching from gl2n to sp2n, which

is complicated in general. Here we use in a crucial way recent duality results by Kwon

[19, 20] giving a crystal interpretation of the previous branching and a combinatorial

model relevant to its study. We also rely on the complex combinatorics of the bijec-

tions realizing the symmetries of type A Littlewood–Richardson (LR) coefficients: the

combinatorial R-matrix and the conjugation symmetry map; both have many different

realizations in the literature. We strongly expect to extend our approach to orthogonal

types as soon as all the results of [20] will be available for the non-Levi orthogonal

branchings.

The paper is organized as follows. In Section 2, we recall the definition of

the generalized exponents and show that, for classical types, they satisfy important

relations in the ring of formal series in t deduced from Cauchy and Littlewood identities.

In Section 3, we briefly rederive the combinatorial description of the generalized

exponents in type An−1 obtained in [23] without using the results of [24] on the charge.

Section 4 is devoted to the combinatorial description of the stabilized form of the

generalized exponents in terms of distinguished tableaux, which we define and study

here. Our approach also permits us to extend our results to multivariable versions of

the generalized exponents as done in [23] for type A. In Sections 5 and 6, we give the

promised combinatorial description of the generalized exponents in type Cn by using

distinguished tableaux adapted to the finite rank n. In Section 5 we do this based on

the type Cn branching rule due to Sundaram [34], whereas in Section 6 we use Kwon’s

branching rule; the latter leads to a more explicit description, including one in terms

of the symplectic King tableaux [17]. In Section 7, we give three applications of the

description in Section 6: (1) analyzing the growth of the generalized exponents of type

Cn with respect to the rank n; (2) proving a conjecture related to the construction of the
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type Cn charge in [25]; (3) determining the smallest power of t in a generalized exponent

(note that the largest one is well known). The 3rd result turns out to be quite subtle, and

it illustrates the combinatorial complexity of these polynomials. Finally, in Section 8

we raise a question about the possible relationship between the Sundaram and Kwon

branching rules.

2 Generalized Exponents

2.1 Background

Let gn be a simple Lie algebra over C of rank n with triangular decomposition

gn=
⊕
α∈R+

gα ⊕ h ⊕
⊕
α∈R+

g−α ,

so that h is the Cartan subalgebra of gn and R+ is its set of positive roots. The root

system R = R+ � (−R+) of gn is realized in a real Euclidean space E with inner product

(·, ·). For any α ∈ R, we write α∨ = 2α
(α,α)

for its coroot. Let S ⊂ R+ be the subset of simple

roots and Q+ the Z+-cone generated by S. The set P of integral weights for gn satisfies

(β, α∨) ∈ Z for any β ∈ P and α ∈ R. We write P+ = {β ∈ P | (β, α∨) ≥ 0 for any α ∈ S} for

the cone of dominant weights of gn and denote by ω1, . . . , ωn its fundamental weights.

Let W be the Weyl group of gn generated by the reflections sα with α ∈ S, and write � for

the corresponding length function.

The graded character of the symmetric algebra S(gn) of gn is defined by

chart(S(gn)) =
∏

δ weight of gn

1

1 − teδ
= 1

(1 − t)n

∏
α∈R

1

1 − teα
.

By a classical theorem due to Kostant, the graded character of the harmonic part of the

symmetric algebra S(gn) satisfies

chart(H(gn)) =
∏n

i=1(1 − tdi)

(1 − t)n

∏
α∈R

1

1 − teα
=

n∏
i=1

(1 − tdi)chart(S(gn)),

where we have di = mi + 1, for i = 1, . . . , n, and m1, . . . , mn are the (classical) exponents

of gn. On the other hand, it is known (see [10]) that chart(H(gn)) coincides with the
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4946 C. Lecouvey and C. Lenart

Hall–Littlewood polynomial Q′
0, namely, we have

chart(H(gn)) = Q′
0 = W0(t)

∏
α∈R

1

1 − teα
=

∑
λ∈P+

Kgn
λ,0(t)sgn

λ ,

where

W0(t) =
∑

w∈W

t�(w) ,

and sgn
λ is the Weyl character associated to the finite-dimensional irreducible represen-

tation V(λ) of gn with highest weight λ. In particular, we have the identity

W0(t) =
n∏

i=1

1 − tdi

1 − t
.

The polynomials Kgn
λ,0(t) are the generalized exponents of gn, and they coincide

with the Lusztig t-analogs associated to the zero-weight subspaces in the representa-

tions V(λ). We thus have

Kgn
λ,0(t) =

∑
w∈W

(−1)�(w)Pt(w(λ + ρ) − ρ) ,

where ρ is half the sum of the positive roots, and Pt is the t-Kostant partition function

defined by

∏
α∈R+

1

1 − teα
=

∑
β∈Q+

Pt(β)eβ .

The classical exponents m1, . . . , mn correspond to the adjoint representation of gn,

namely, we have

Kgn
α̃,0(t) =

n∑
i=1

tmi ,

where α̃ is the highest root in R+.
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2.2 Classical types

Recall the following values of the classical exponents in types A − D:

type X exponents

An−1 1, 2, . . . , n − 1

Bn 1, 3, . . . , 2n − 1

Cn 1, 3, . . . , 2n − 1

Dn 1, 3, . . . , 2n − 3, and n − 1.

In classical types, chart(S(gn)) is easy to compute. Let Pn be the set of partitions

with at most n parts and P be the set of all partitions. The rank of the partition γ is

defined as the sum of its parts and is denoted by |γ |.
In type An−1, we start from the Cauchy identity

∏
1≤i,j≤n

1

1 − txiyj
=

∑
γ∈Pn

t|γ |sγ (x)sγ (y).

Here sν(x) stands for the ordinary Schur function in the variables x1, . . . , xn. By setting

yi = 1
xi

for any i = 1, . . . , n, and by considering the images of the symmetric polynomials

in RAn−1 = Sym[x1, . . . , xn]/(x1 · · · xn − 1), we get

chart(S(sln)) = (1 − t)
∑

γ∈Pn

t|γ |sγ (x)sγ (x−1) = (1 − t)
∑

γ∈Pn

t|γ |sγ sγ ∗ = (1)

= (1 − t)
∑

γ∈Pn

t|γ | ∑
λ∈Pn−1

cλ
γ ,γ ∗sλ(x).

Here γ ∗ = −w◦(γ ), where w◦ is the permutation of maximal length in Sn, and we use

the same notation for a symmetric polynomial and its image in RAn−1 . Recall also that

the partitions of Pn−1 are in one-to-one correspondence with the dominant weights of

sln. More precisely, we associate to the dominant weight a1ω1 + · · · + an−1ωn−1 the

partition λ = (1a1 , . . . , (n − 1)an−1)′, where μ′ denotes the conjugate of μ. It is also

worth mentioning here that two partitions in Pn whose conjugates have the same

parts less than n correspond to the same dominant weight of sln. So the coefficients

cλ
γ ,γ ∗ are not properly LR coefficients, but only tensor multiplicities corresponding to

the decomposition of V(γ ) ⊗ V(γ ∗) into irreducible components. Similarly sλ(x) is not

properly a Schur polynomial but belongs to RAn−1 (see Section 3).
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For any positive integer m, define P(2)
m as the set of partitions of the form 2κ

with κ ∈ Pm and P(1,1)
m as the subset of Pm containing the partitions of the form (2κ)′

with κ ∈ P. Moreover, we denote by sso2n+1
λ , ssp2n

λ , and sso2n
λ the irreducible characters

corresponding to the highest weight λ, for the Lie algebras of types Bn, Cn, and Dn,

respectively.

In type Bn, we start from the Littlewood identity [21]

∏
1≤i<j≤2n+1

1

1 − tyiyj
=

∑
ν∈P(1,1)

2n+1

t|ν|/2sν(y),

and we specialize y2n+1 = 1, y2i−1 = xi, and y2i = 1
xi

, for any i = 1, . . . , n. This gives

chart(S(so2n+1)) =
∑

ν∈P(1,1)
2n+1

t|ν|/2
∑

λ∈Pn

cλ
ν (so2n+1)sso2n+1

λ ,

where cλ
ν (so2n+1) is the branching coefficient corresponding to the restriction from gl2n+1

to so2n+1. Similarly, we can consider the identities

∏
1≤i<j≤2n

1

1 − tyiyj
=

∑
ν∈P(1,1)

2n

t|ν|/2sν(y) and
∏

1≤i≤j≤2n

1

1 − tyiyj
=

∑
ν∈P(2)

2n

t|ν|/2sν(y).

They permit to write

chart(S(sp2n)) =
∑

ν∈P(2)
2n

t|ν|/2
∑

λ∈Pn

cλ
ν (sp2n)ssp2n

λ and

chart(S(so2n)) =
∑

ν∈P(1,1)
2n

t|ν|/2
∑

λ∈Pn

cλ
ν (O2n)sO2n

λ .

Note that here we considered the character sO2n
λ of the O(2n)-module VO(2n)(λ)

parametrized by the partition λ. When λn = 0, we have sO2n
λ = sso2n

λ . Nevertheless,

when λn > 0, VO(2n)(λ) decomposes as the sum of two irreducible SO(2n)-modules

whose highest weights correspond via the Dynkin diagram involution ι flipping the

nodes n − 1 and n. For 1 ≤ i ≤ n − 1, define ai as the number of columns of height i in λ,

and an = 2λn + an−1. We then have

sO2n
λ = sso2n

ω(λ) + sso2n
ι(ω(λ)), (2)
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where ω(λ) = ∑n
i=1 aiωi.

Since we have

chart(H(gn)) =
∏n

i=1(1 − tdi)

(1 − t)n

∏
α∈R

1

1 − teα
=

n∏
i=1

(1 − tdi)chart(S(gn)),

we can write

1∏n
i=1(1 − tdi)

chart(H(gn)) =
∑
λ∈P+

Kλ,0(t)∏n
i=1(1 − tdi)

sgn
λ = chart(S(gn)). (3)

So we get the following simple expressions for the formal series Kλ,0(t)∏n
i=1(1−tdi )

.

Proposition 2.1. We have the following identities:

(1) In type An−1, for any λ ∈ Pn−1, we have

Ksln
λ,0 (t)∏n

i=1(1 − ti)
=

∑
γ∈Pn

t|γ |cλ
γ ,γ ∗ . (4)

The factor (1 − t) in (1) gives the missing “di = 1” in type An−1.

(2) In type Bn, for any λ ∈ Pn, we have

Kso2n+1
λ,0 (t)∏n

i=1(1 − t2i)
=

∑
ν∈P(1,1)

2n+1

t|ν|/2cλ
ν (so2n+1).

Here the partition λ can have an odd rank.

(3) In type Cn, for any λ ∈ Pn, we have

Ksp2n
λ,0 (t)∏n

i=1(1 − t2i)
=

∑
ν∈P(2)

2n

t|ν|/2cλ
ν (sp2n).

(4) In type Dn, for any λ ∈ Pn, we have

KO(2n)
λ,0 (t)

(1 − tn)
∏n−1

i=1 (1 − t2i)
=

∑
ν∈P(1,1)

2n

t|ν|/2cλ
ν (O2n).
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For type Dn, the dominant weights appearing in (3) are not necessarily parti-

tions, whereas this is the case in Assertion 4 of the previous proposition. So here we

have in fact to write

∑
ω∈P+

Kso2n
ω,0 (t)∏n

i=1(1 − tdi)
sso2n
ω =

∑
λ∈P+,λ∈Pn−1

Kso2n
λ,0 (t)∏n

i=1(1 − tdi)
sO2n
λ +

+
∑

ω∈P+,ω/∈Pn−1

Kso2n
ω,0 (t)sso2n

ω + Kso2n
ι(ω),0(t)sso2n

ι(ω)∏n
i=1(1 − tdi)

=
∑

λ∈Pn

KO(2n)
λ,0 (t)∏n

i=1(1 − tdi)
sO2n
λ ,

where

KO(2n)
λ,0 (t) = Kso2n

ω(λ),0(t) = Kso2n
ι(ω(λ)),0(t)

for any partition λ ∈ Pn \ Pn−1 and ω(λ) defined as in (2).

The notation Ksln
λ,0 (t) is a little unusual in type An−1, where the polynomials

Ksln
λ,0 (t) coincide with the Kostka polynomials, which are usually labeled by pairs of

partitions with the same rank (i.e., by using the weights of gln rather than those of sln).

When Ksln
λ,0 (t) �= 0, the rank of λ should in particular be a multiple of n. Also the sum in

the right-hand side of Assertion 1 is in fact infinite. Indeed, to the weight λ correspond

an infinite number of partitions, since adding columns of height n to a Young diagram

does not modify the corresponding weight of sln.

We have then by a theorem of Lascoux and Schützenberger [24]

Ksln
λ,0 (t) =

∑
T∈SST(λ)0

tchn(T),

where SST(λ)0 is the set of semistandard tableaux labeled by letters of {1 < · · · < n} of

weight μ = (a, . . . , a) = 0 (i.e., each letter i appear a times in T) where a = |λ| /n, and

chn(T) is the charge statistic evaluated on T. Recall that this charge statistic is defined

by rather involved combinatorial operation such as cyclage on tableaux.
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2.3 Stable versions

When the ranks of the classical root systems considered go to infinity, the previous

relations simplify. In particular, for n sufficiently large, we have the following stable

branching formulas [12]:

cλ
ν (so2n+1) =

∑
δ∈P

cν
λ,2δ, cλ

ν (sp2n) =
∑
δ∈P

cν
λ,(2δ)′ , and cλ

ν (so2n) =
∑
δ∈P

cν
λ,2δ.

Observe that, for g = so2n+1, this implies in particular that cλ
ν (so2n+1) = 0 when the

ranks of λ and ν do not have the same parity, which is false in general. Thus, we get the

relations

KB∞
λ,0 (t)∏∞

i=1(1 − t2i)
=

∑
ν∈P(1,1)

∑
δ∈P(2)

t|ν|/2cν
λ,δ in type B∞ when |λ| is even,

KC∞
λ,0 (t)∏∞

i=1(1 − t2i)
=

∑
ν∈P(2)

∑
δ∈P(1,1)

t|ν|/2cν
λ,δ in type C∞,

KD∞
λ,0 (t)∏∞

i=1(1 − t2i)
=

∑
ν∈P(1,1)

∑
δ∈P(2)

t|ν|/2cν
λ,δ in type D∞.

In particular, this gives

KB∞
λ,0 (t) = KD∞

λ,0 (t) and KB∞
λ,0 (t) = KC∞

λ′,0(t). (5)

All these stabilized forms are in fact formal power series in t equal to zero when the

rank of λ is odd (see [27]). The previous identities permit to restrict to the study of

the stabilized formal series KC∞
λ,0 (t) when λ runs over the set of partitions with even

rank. We are going to see that stabilized form of the generalized exponents are easier

to handle than their finite-rank counterparts. Observe also that stabilized versions of

Lusztig t-analogs [27] exist in general (i.e., for nonzero weights) in connection with the

stabilization of the Brylinski filtration. Finally, in type A, the Kostka polynomials Ksln
λ,0 (t)

stabilize to zero when n becomes greater than the rank of λ.

3 Charge in Type An−1 and Crystal Graphs

We are now going to explain how the interpretation of the charge for zero-weight

tableaux in terms of crystals obtained in [23] naturally emerges from (4), without any
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4952 C. Lecouvey and C. Lenart

reference to cyclage. In particular, we obtain a direct proof of the positivity of the

polynomials KAn−1
λ,0 (t); for simplicity, we drop the superscript An−1. We refer the reader

to [11, 16] for complements on Kashiwara crystal basis theory, including the standard

notation.

Step 1: Observe that cλ
γ ,γ ∗ = cλ

κ,κ∗ for γ , κ in Pn whose conjugates differ only by their

parts equal to n. So by decomposing each κ ∈ Pn as κ = (γ , nm), we get

∑
κ∈Pn

t|κ|cλ
κ,κ∗ =

∑
γ∈Pn−1

t|κ|cλ
γ ,γ ∗

+∞∑
m=0

(tn)m = 1

1 − tn

∑
γ∈Pn−1

t|κ|cλ
γ ,γ ∗ .

Therefore, (4) can be rewritten in the form

Kλ,0(t)∏n−1
i=1 (1 − ti)

=
∑

γ∈Pn−1

t|γ |cλ
γ ,γ ∗ , (6)

where now all the partitions are in one-to-one correspondence with weights of sln.

Step 2: Recall that RAn−1 is endowed with the scalar product 〈·, ·〉 defined by

〈 f , g〉 = [ faρgaρ ]0,

where aρ = ∏
α∈R+(xα/2 − x−α/2) in RAn−1 , the bar involution sends xμ to x−μ and for any

u ∈ RAn−1 , [u]0 is the constant term in u . We then have 〈sλ, sμ〉 = δλ,μ. It follows that the

adjoint of the multiplication by sλ in RAn−1 for this scalar product is the multiplication

by sλ∗ . This gives

cλ
γ ,γ ∗ = 〈sγ sγ ∗ , sλ〉 = 〈sγ , sγ sλ〉 = cγ

γ ,λ.

Step 3: For any λ ∈ Pn−1, write B(λ) for the crystal graph of the irreducible sln-module

of highest weight λ. Let bλ be the highest weight vertex of B(λ). For any vertex b ∈ B(λ),

set

ε(b) =
n−1∑
i=1

εi(b)ωi ∈ Pn−1.

Also given κ, δ in Pn−1, write κ ≤ δ when δ − κ is a dominant weight. We know that

cγ
γ ,λ = card

{
bγ ⊗ b ∈ B(γ ) ⊗ B(λ) | wt(b) = 0 and ε(b) ≤ γ

}
.

So we have in fact cγ
γ ,λ = card(Bλ(γ )), where

Bλ(γ ) = {b ∈ B(λ) | wt(b) = 0 and ε(b) ≤ γ }.
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Now for any b ∈ B(λ)0, that is, b ∈ B(λ) such that wt(b) = 0, set

S(b) = {γ ∈ Pn−1 | ε(b) ≤ γ }.

We have in fact

S(b) = ε(b) + Pn−1,

that is, γ ∈ S(b) if and only if there exists κ ∈ Pn−1 such that γ = ε(b) + κ.

Step 4: Write

∑
γ∈Pn−1

t|γ |cλ
γ ,γ ∗ =

∑
b∈B(λ)0

∑
γ∈S(b)

t|γ | =
∑

b∈B(λ)0

∑
κ∈Pn−1

t|κ|+|ε(b)| =

=
∑

b∈B(λ)0

t|ε(b| ∑
κ∈Pn−1

t|κ| = 1∏n−1
i=1 (1 − ti)

∑
b∈B(λ)0

t|ε(b| .

In view of (6), this gives the following result.

Theorem 3.1. For any partition λ ∈ Pn−1, we have

Kλ,0(t) =
∑

b∈B(λ)0

t|ε(b)|.

Remark 3.2. Since b ∈ B(λ)0, we have for any i = 1, . . . , n−1 that εi(b) = ϕi(b). Moreover,

|ε(b)| =
n−1∑
i=1

iεi(b),

so the previous expression of Kλ,0(t) is the same as that obtained in [23]. The interesting

point is that it emerges directly from our computations and does not use the definition

of the charge (as in [23]) given by Lascoux and Schützenberger in terms of cyclage of

tableaux or indices on letters of words.

Remark 3.3. This also permits us to recover the multivariable version, defined by

Kλ,0(t1, . . . , tn−1)∏n−1
i=1 (1 − ti)

=
∑

γ∈Pn−1

n−1∏
i=1

tai(γ )

i cλ
γ ,γ ∗ ,
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where γ = ∑n−1
i=1 ai(γ )ωi. Namely, we have

Kλ,0(t1, . . . , tn−1) =
∑

b∈B(λ)0

n−1∏
i=1

tεi(b)

i .

4 Stabilized Generalized Exponents and Crystal Graphs of Type A+∞

We are going to explain the way in which the formula

KC∞
λ,0 (t)∏∞

i=1(1 − t2i)
=

∑
ν∈P(2)

∑
δ∈P(1,1)

t|ν|/2cν
λ,δ in type C∞

can be obtained from the combinatorics of crystals of type A+∞, which leads to

a combinatorial proof of the positivity of the stabilized generalized exponents (or

stabilized Lusztig t-analogs). In particular, this will provide a combinatorial description

of KC∞
λ,0 (t), and thus a similar description of KB∞

λ,0 (t) and KD∞
λ,0 (t), by (5). Furthermore, this

will give a flavor of the methods we will employ in the non-stable type Cn case.

4.1 Crystal of type A+∞

Recall that crystals of type A+∞ are those associated to the infinite Dynkin diagram

1◦ − 2◦ − 3◦ · · · .

The partitions label the dominant weights of sl+∞. If we denote by (ωi)≥1 the sequence

of fundamental weights of sl+∞, we have for any partition λ ∈ P

λ =
∑

i

aiωi,

where ai is the number of columns with height i in the Young diagram of λ.

To each partition λ corresponds the crystal B(λ) of the irreducible infinite-

dimensional representation of sl+∞ parametrized by λ. A classical model for B(λ) is that

of semistandard tableaux of shape λ on the infinite alphabet Z>0 = {1 < 2 < 3 < · · · }.
Given b ∈ B(λ), we define

ε(b) =
+∞∑
i=1

εi(b)ωi and ϕ(b) =
+∞∑
i=1

ϕi(b)ωi,
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where both sums are in fact finite. The weight of b ∈ B(λ) then verifies wt(b) = ϕ(b)−ε(b).

4.2 Combinatorial preliminaries

In the sequel we consider the order ≤ on P such that λ ≤ μ if and only if μ − λ ∈ P∞+ ,

that is, μ − λ decomposes in the basis of the ωi’s with nonnegative integer coefficients.

The partitions in P(2) (resp. in P(1,1)) are those that can be tiled with horizontal

(resp. vertical) dominoes. Equivalently, a partition κ belongs to P(2) (resp. P(1,1)) if and

only if the number of columns (resp. rows) of fixed height (resp. length) is even. So

κ ∈ P(2) ⇐⇒ κ =
∑

i

2aiωi and κ ∈ P(1,1) ⇐⇒ κ =
∑

i

aiω2i.

Set P� = P(2) ∩ P(1,1). It follows that

κ ∈ P� ⇐⇒ κ =
∑

i

2aiω2i,

that is, λ decomposes in terms of the fundamental weights ω2i with even coefficients. In

the general case of a partition κ ∈ P written as

κ =
∑

i

aiωi,

we define

κ� =
∑

i

(a2i − (a2i mod 2))ω2i and κ� = κ − κ� =
∑

i

a2i+1ω2i+1 +
∑

i

(a2i mod 2)ω2i.

So κ� and κ� are partitions and κ� ∈ P�.

Example 4.1. Consider
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Then

We denote by P∞
(2) and P∞

(1,1) the sublattices of P = ⊕
i≥1

Zωi defined by

P∞
(2) = ⊕

i≥1
2Zωi and P∞

(1,1) = ⊕
i≥1

Zω2i.

Observe that P∞
(2) ∩ P = P(2) and P∞

(1,1) ∩ P = P(1,1). We have also

P∞
� = P∞

(2) ∩ P∞
(1,1) = ⊕

i≥1
2Zω2i and P� = P ∩ P∞

(2) ∩ P∞
(1,1).

We define the order ≤� on P by

λ ≤� μ ⇐⇒ μ − λ ∈ P�.

4.3 A combinatorial description of the series KC∞
λ,0 (t)

Definition 4.2. Consider a partition μ. A vertex b ∈ B(λ) is called μ-distinguished if

there exists (ν, δ) ∈ P(2) × P(1,1) such that

ϕ(b) = ν − μ and ε(b) = δ − μ.

Definition 4.3. Let D(λ) be the set of all vertices in B(λ) that are μ-distinguished for at

least a partition μ.

Clearly, if b is μ-distinguished, then b is (μ + κ)-distinguished for any κ ∈ P�

(change (ν, δ) ∈ P(2) × P(1,1) to (ν + κ, δ + κ) ∈ P(2) × P(1,1)). For any b ∈ D(λ), set

Sb = {μ ∈ P | b is μ-distinguished}.
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Lemma 4.4. The set Sb has the form

Sb = μb + P�,

and μb is minimal for ≤� such that b is μb-distinguished. Moreover, for any μ ∈ Sb, we

have μb = μ�.

Proof. It suffices to show that Sb contains a unique element μb minimal for the order

≤�, since each element μ of Sb can then be written in the form μ = μb + κ with κ in P�.

So consider μ and μ′ two elements in Sb minimal for ≤� in Sb. Write

μ =
∑

i

aiωi and μ′ =
∑

i

a′
iωi.

Since μ is minimal in Sb, we must have ai ∈ {0, 1} for any even i. Indeed, if ai ≥ 2 for an

even integer i ≥ 1, we could consider μ� = μ − 2ωi ∈ P. Since ϕ(b) = ν − μ ≥ 0, we can

consider ν� = ν − 2ωi ∈ P(2). Similarly, we have ε(b) = δ − μ ≥ 0, so δ� = δ − 2ωi ∈ P(1,1)

(as i is even). Finally, we obtain a contradiction since

ϕ(b) = ν� − μ� and ε(b) = δ� − μ�,

so μ� <� μ belongs to Sb.

We prove similarly that a′
i ∈ {0, 1} for any even i. Now we can use that μ and μ′

belong to Sb, which implies that

μ = μ′ mod P+∞
(2) and μ = μ′ mod P+∞

(1,1).

Since P+∞
(2) ∩ P+∞

(1,1) = P+∞
� = ∑

i even 2Zωi, we get in fact

μ = μ′ mod P+∞
� .

This imposes that ai = a′
i for any odd i and ai = a′

i mod 2 for any even i. But we have

seen that for any even i, both ai and a′
i belong to {0, 1}. So we obtain finally that ai = a′

i

for any i even also. This permits us to conclude that μ = μ′ and Sb admits a unique

minimal element for ≤�. �

The following proposition makes more explicit the structure of the distinguished

tableaux.
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Proposition 4.5. Let b be a vertex of B(λ) with λ ∈ P. Then b is distinguished if and

only if

(1) εi(b) = 0 for any odd i,

(2) ϕi(b) is even for any odd i.

Moreover, we then have μb = ∑
i(ϕ2i(b) mod 2)ω2i =: ϕ(b) mod 2 .

Proof. If εi(b) = 0 for any odd i, then ε(b) belongs to P(1,1), and thus ε(b) + μ belongs

to P(1,1) for any μ in P(1,1). Since ϕ(b) is even for any odd i, we will have that ϕ(b) + μ

belongs to P(2) for any μ in P(1,1) such that the coefficients of ωi with i even in the

expansions of μ and ϕ(b) have the same parity. Finally, b is μ-distinguished for any

such μ.

Conversely, assume there exists μ in P such that ε(b) + μ ∈ P(1,1) and ϕ(b) + μ ∈
P(2). Since the coefficients of ωi with i odd in the expansion of ε(b) + μ are equal to 0,

and both ε(b) and μ are dominant weights, we must have that they belong in fact to

P(1,1). Therefore, the condition ϕ(b) + μ ∈ P(2) implies that ϕi(b) is even for any odd i.

To determine μb, we have to choose μ minimal for the order <�. Since εi(b) = 0

for any odd i, we have in fact to choose μ minimal for the order <� so that ϕ(b) + μ ∈ P(2).

This imposes that μb = ∑
i(ϕ2i(b) mod 2)ω2i. �

Proposition 4.6. We have

∑
ν∈P(2)

∑
δ∈P(1,1)

t|ν|/2cν
λ,δ =

∑
b∈D(λ)

t|ϕ(b)+μb|/2
∑

κ∈P�
t|κ|/2.

Proof. Recall that cν
λ,δ = card{b ∈ B(λ) | ε(b) ≤ δ and ϕ(b) = ε(b) + ν − δ}. For a

fixed b ∈ B(λ), the idea is to gather all the pairs (ν, δ) ∈ P(2) × P(1,1) such that bδ ⊗ b

is of highest weight ν. This is equivalent to saying that b is μ-distinguished with μ =
ν − ϕ(b) = δ − ε(b). So we get

∑
ν∈P(2)

∑
δ∈P(1,1)

t|ν|/2cν
λ,δ =

∑
b∈D(λ)

∑
μ∈Sb

t|ϕ(b)+μ|/2.

Now by Lemma 4.4, we can write ϕ(b) + μ = ϕ(b) + μb + κ, where κ = μ − μb belongs to

P�. This gives

∑
ν∈P(2)

∑
δ∈P(1,1)

t|ν|/2cν
λ,δ =

∑
b∈D(λ)

t|ϕ(b)+μb|/2
∑

κ∈P�
t|κ|/2.

�
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Theorem 4.7. We have

KC∞
λ,0 (t) =

∑
b∈D(λ)

t|ϕ(b)+μb|/2.

Proof. It suffices to observe that

∑
κ∈P�

t|κ|/2 = 1∏∞
i=1(1 − t2i)

.

�

We can get similarly a multivariable version. For any b ∈ D(λ), set

ϕ(b) + μb =
∑

i

2ai(b)ωi ∈ P(2),

and assign to each fundamental weight ωi a formal variable ti. The decomposition

ν = ϕ(b) + μb + κ with κ ∈ P�

will give the multivariable version. First let t = (t1, t2, . . . tn, . . .) be the sequence of

formal variables ti, i ≥ 1. If one prefers, one can also consider each ti as a real number

in [0, a] with a < 1. For any β ∈ P+∞ such that β = ∑
i βiωi, set tβ = ∏

i≥1 tβi
i .

Theorem 4.8. Define the multivariable formal series KC∞
λ,0 (t) by

KC∞
λ,0 (t)∏∞

i=1(1 − t2i)
=

∑
ν∈P(2)

∑
δ∈P(1,1)

t
1
2 νcν

λ,δ.

Then we have

KC∞
λ,0 (t) =

∑
b∈D(λ)

t
1
2 (ϕ(b)+μb).

Remark 4.9. Multivariable generalized exponents defined via the Joseph–Letzter fil-

tration already appear in the literature (see [5]).

4.4 Distinguished tableaux and zero-weight King-type tableaux

We are now going to explain how the distinguished tableaux we introduced previously

to describe the stable generalized exponents are in natural bijection with zero-weight

tableaux very close to King tableaux. We will in fact consider the sets TC∞(λ) of
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semistandard tableaux of shape λ on the infinite-ordered alphabet {1 < 1 < 2 < 2 < · · · }.
There will be no condition on the position of the barred letters here, contrary to the

definition of King tableaux.

We start by discussing the structure of the distinguished tableaux. Recall the

notation of Section 4.3. For any distinguished vertex b in D(λ), set

θ(b) = ϕ(b) + μb,

and let θj(b) be the coefficient of ωj in the expansion of θ(b). Since θ(b) is a dominant

weight for sl∞, it can be regarded as a partition. Recall also that |λ| is even, says |λ| =
2�. In the sequel of this section, we shall assume that B(λ) is realized as the set of

semistandard tableaux on the infinite-ordered alphabet Z>0. For any integer i ≥ 1, a

reverse lattice skew tableau on {2i − 1, 2i} is a semistandard filling of a skew Young

diagram with columns of height at most 2 by letters 2i − 1 and 2i whose Japanese

reading is a lattice word (i.e., in each left factor the number of letters 2i is less than or

equal to that of letters 2i − 1).

Example 4.10. Assume i = 2. Then

(7)

is a reverse lattice skew tableau on {3, 4}.

The following proposition is a reformulation of Proposition 4.5.

Proposition 4.11. A semistandard tableau T of shape λ is distinguished if and only if

for any integer i ≥ 1, the skew tableau obtained by keeping only the letters 2i − 1 and 2i

in T is a reverse lattice tableau, and the rows of θ(T) have even lengths.

We now explain the correspondence between distinguished tableaux and zero-

weight King-type tableaux.

Observe that a tableau T in TC∞(λ) of weight zero is a juxtaposition of skew

tableaux of weight 0 on {i, ı} obtained by keeping only the letters i and ı. So to obtain a
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bijection between the set of distinguished tableaux of shape λ and the subset T0
C∞(λ) ⊂

TC∞(λ) of zero-weight tableaux, it suffices to describe a bijection between the set of

reverse lattice tableaux on {2i−1, 2i} of given shape and weight in 2ωiZ≥0, and the set of

skew tableaux on {i, ı} with weight 0. Now recall that we have the structure of a Uq(sl2)-

crystal on the set of all skew semistandard tableaux of fixed skew shape both on {2i −
1, 2i} and {i, ı}. By replacing each letter 2i − 1 by i and each letter 2i by ı, we get a crystal

isomorphism f . The distinguished tableaux correspond to the highest weight vertices

of weight in 2ωiZ≥0 for the {2i − 1, 2i}-structure, whereas the tableaux of weight 0 give

the vertices of weight 0 in the {i, ı}-crystal structure. By observing that only Uq(sl2)-

crystals with highest weight in 2ωiZ≥0 admit a vertex of weight 0, which is then unique,

we obtain that the map C that associates to each zero-weight vertex in the {i, ı}-crystal

structure its highest weight vertex in the {2i − 1, 2i}-crystal structure is the bijection

we need. More precisely, the map C (resp. its inverse) is obtained as usual: we start by

encoding in the reading of each {i, ı}-tableau (resp. of each {2i − 1, 2i}-tableau) the letters

i by + and the letters ı by − (resp. the letters 2i − 1 by + and the letters 2i − 1 by −),

and next by recursively deleting all the factors +−, thus obtaining a reduced word of

the form −m+m (resp. +2m). It then suffices to change the m letters ı corresponding to

the m surviving symbols − into i and to apply the isomorphism f −1 (resp. change m

letters 2i − 1 corresponding to the rightmost m surviving symbols + into 2i and apply

the isomorphism f ).

Example 4.12. The skew tableau of weight 0 on {2, 2} corresponding to (7) is

In the sequel, we shall abuse the notation and identify the two crystal structures

corresponding up to the isomorphism f .

Remarks 4.13.

(1) It seems not immediate to read θ directly on zero-weight tableaux. The

simplest way to do this is to start from a tableau T ∈ T0
C∞(λ) and compute

its associated highest weight tableau H(T) for the Uq(sl2 ⊕· · ·⊕ sl2)-structure

obtained by considering only the action of the crystal operators indexed by
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odd integers. So we get

KC∞
λ,0 (t) =

∑
T∈T0

C∞ (λ)

t
|θ(H(T))|

2 .

(2) Let KC∞(λ) be the set of King tableaux on the infinite-ordered alphabet {1 <

1 < 2 < 2 < · · · }. Recall that T ∈ TC∞(λ) belongs to KC∞(λ) when, for any i =
1, . . . , n, the letters in row i are greater than or equal to i. Since the number of

barred letters can only decrease when we compute H(T), the tableaux T and

H(T) either both belong to KC∞(λ) or belong to TC∞(λ) \ KC∞(λ). Nevertheless,

the set K0
C∞(λ) of King tableaux of type C∞ and zero weight is only strictly

contained in T0
C∞(λ) due to the constraints on the rows. In particular, we have

KC∞
λ,0 (t) �=

∑
T∈K0

C∞ (λ)

t
1
2 θ(H(T))

in general, and the finite rank t-analog thus cannot be obtained from the

statistic θ and King tableaux of zero weight and type Cn.

Example 4.14. Assume λ = (1, 1). Then we get

This gives

Therefore,

Finally

KC∞
λ,0 (t) =

∑
k ≥1

t2k and KC∞
λ,0 (t) =

∑
k ≥1

t2k = t2

1 − t2 .
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5 Type Cn Generalized Exponents via the Sundaram–LR Tableaux

5.1 Sundaram description of the coefficients cλ
ν (sp2n )

Recall that in type Cn, the equality cλ
ν (sp2n) = ∑

δ∈P(1,1) cν
λ,δ only holds when ν ∈ Pn, in

which case we have in fact

cλ
ν (sp2n) =

∑
δ∈P(1,1)

n

cν
λ,δ.

In the general case of a partition ν ∈ P2n, we have by a result of Sundaram (see [33,

Corollary 3.12])

cλ
ν (sp2n) =

∑
δ∈P(1,1)

ĉν
λ,δ,

where ĉν
λ,δ is the number of Sundaram–LR tableaux, that is, the number of LR tableaux

of shape ν/λ and weight δ filled with letters in {1, . . . , 2n} such that each odd letter 2i+1

appears no lower (English convention) than row (n + i) in ν (the rows being numbered

from top to bottom). Observe that for any partition κ in P�
2n, a Sundaram–LR tableau

of shape ν/λ and weight δ can be easily turned into a Sundaram–LR tableau of shape

(ν + κ)/λ and weight δ + κ by adding letters i in rows i, which does not violate the

Sundaram condition.

5.2 LR tableaux and crystals

Given ν, λ, μ three partitions, the LR coefficient cν
λμ is equal to the cardinality of the four

following sets:

(1) the set of LR tableaux of shape ν/λ and weight μ,

(2) the set of LR tableaux of shape ν/μ and weight λ,

(3) the set of vertices b ∈ B(λ) such that ε(b) ≤ μ,

(4) the set of vertices b′ ∈ B(μ) such that ε(b′) ≤ λ.

Now there exist bijections between all these sets. Given an LR tableau τ of shape

ν/μ and weight λ, we obtain the corresponding tableau T(τ ) in B(λ), called companion

tableau, by placing in the k-th row of the Young diagram λ the numbers of the rows of τ

containing an entry k.
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Example 5.1. For

Now we can proceed as in Section 4 by first determining the subset of D̂(λ) ⊂
Bgl2n(λ) coming from Sundaram–LR tableaux (D(λ) would correspond to all the LR

tableaux as in the previous section). To do this we proceed as follows:

(1) Start with a Sundaram–LR tableau of shape ν/λ and weight δ, and determine

its associated tableau T(τ ) of shape δ and entries in {1, . . . , 2n}.
(2) Observe that Tλ ⊗ T(τ ) is of highest weight ν in B(λ) ⊗ B(δ).

(3) Compute the combinatorial R-matrix, and obtain T̂(τ ) in B(λ) such that

Tλ ⊗T(τ ) ←−−−−−−→ Tδ ⊗ T̂(τ ). Here we can choose the version of the combinatorial

R-matrix given by the Henriques–Kamnitzer commutor [9, 15], which has

several concrete realizations; see Section 8 for more details.

(4) Finally, define D̂(λ) as the subset of tableaux T ∈ D(λ) for which there exists

(ν, δ) ∈ P(2)
2n × P(1,1)

2n and τ a Sundaram–LR tableau of shape ν/λ and weight δ

such that T = T̂(τ ).

Now, we have

∑
κ∈P�

2n

t|κ|/2 = 1∏n
i=1(1 − t2i)

,

since P�
2n is obtained by dilating by a factor 2 the set Pn (i.e., each square becomes a

�). By using similar arguments (here, we need to use that for any κ ∈ P(2n)

� , one can

produce a Sundaram–LR tableau of shape (ν + κ)/λ and weight δ + κ starting from any

Sundaram–LR tableau of shape ν/λ and weight δ) to those of Section 4, we obtain the

following result.

Theorem 5.2. We have

KCn
λ,0(t) =

∑
b∈D̂(λ)

t|ϕ(b)+μb|/2.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/16/4942/5049383 by guest on 25 August 2020



Combinatorics of Generalized Exponents 4965

6 Type Cn Generalized Exponents via the Kwon Model

In this section, we refine the results in Sections 4 and 4.4 to the finite type Cn, based

on Kwon’s model for the corresponding branching coefficients [19, 20]. We also need

to use a combinatorial map realizing the conjugation symmetry of LR coefficients. It

turns out that Kwon’s model, the version of the conjugation symmetry map used here,

and the distinguished tableaux in Section 4.3 fit together in a beautiful way. This allows

us to express the related statistic in terms of a natural combinatorial labeling of the

vertices of weight 0 in the corresponding type Cn crystal of highest weight λ, namely the

corresponding tableaux due to King [17]. In this way, we obtain a more explicit result

than the one in Section 5 in terms of LR–Sundaram tableaux.

6.1 The LR conjugation symmetry

Consider partitions λ ∈ Pn and δ, ν ∈ Pm with n ≤ m. We will exhibit combinatorially

the equality of LR coefficients cν
λ,δ = cν′

λ′,δ′ . Throughout, we denote by δrev the reverse of

δ, namely δrev = (δrev
1 ≤ . . . ≤ δrev

m ), where we add leading 0s if necessary.

Let LRν
λ,δ denote the set of LR tableaux T of shape λ and content ν/δ; in other

words, T ∈ Bm(λ) and Hδ ⊗ T is a highest weight element of weight ν, where Hδ denotes

the Yamanouchi tableau of shape δ. We will construct a bijection T �→ T ′ between

LRν
λ,δ and LRν′

λ′,δ′ , where T ′ is viewed as an element of B�(ν′)(λ
′). The construction has

the following three steps:

Step 1. Apply the Schützenberger evacuation [6] (realizing the Lusztig involution) to

T within the crystal Bm(λ), and obtain S(T) ∈ Bm(λ).

Step 2. Transpose the tableau S(T) and denote the resulting filling of λ′ by S(T)tr.

Step 3. For each i = 1, . . . , m, consider in S(T)tr the vertical strip of i’s, and replace

these entries, scanned from northeast to southwest, with δrev
i +1, δrev

i +2, . . .,

respectively.

Example 6.1. Let n = 3, m = 4, λ = (4, 3, 1), ν = (5, 4, 4, 2), δ = (3, 3, 1), and δrev =
(0, 1, 3, 3). Consider the following tableau of shape ν/δ and content λ whose reverse row

word is a lattice permutation, and its associated companion tableau T ∈ B4(λ):
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The tableau S(T) ∈ B4(λ) and S(T)tr are

Step 3 above produces

in B5(λ′). One can then check that the same procedure maps T ′ back to T.

Theorem 6.2. The above map T �→ T ′ is a bijection between LRν
λ,δ and LRν′

λ′,δ′ .

Proof. A bijection realizing the conjugation symmetry of the LR coefficients was given

on the skew LR tableaux (of shape ν/δ and content λ) as the map ρ3 in [1]. It is not hard to

show that on the companion tableau it is described by the above algorithm. The key fact

involved here is that the crystal action of the longest permutation in Sm on the skew LR

tableau corresponds to the Schützenberger involution applied to the companion tableau.

This fact is well known to experts and is based on the so-called “double crystal graph

structure” on biwords [22]. According to this, the action of crystal operators on words

corresponds to jeu de taquin slides on two-row tableaux, where the latter are involved

in the construction of the Schützenberger involution; see also [1, 6] for more details. �

Remarks 6.3.

(1) It is easy to see that, if we change m in the above construction, Step 1 is

different, but the final result is the same.

(2) It was shown in [6] and [1] that the above map coincides with the maps con-

structed by Hanlon–Sundaram [8], White [38], and Benkart–Sottile–Stroomer

[3]. In fact, Benkart–Sottile–Stroomer also give a characterization of their

map based on Knuth and dual Knuth equivalences. Furthermore, the inverse

of the conjugation symmetry map is described by the same procedures [8].
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6.2 Kwon’s model

In this section we describe Kwon’s spin model for crystals of classical type [19, 20],

which is also used to express certain branching coefficients and leads to an interesting

branching duality.

We start with the Lie algebra sp2n, with the corresponding long simple root

being indexed by 0. Consider a dominant weight λ ∈ Pn, and let �sp(λ) := n�
sp

0 +
λ′

1ε1 + λ′
2ε2 + . . ., where �

sp

0 is the 0-fundamental weight for sp∞. Kwon first constructs

a combinatorial model for the crystal B(sp∞, �sp(λ)), which we now briefly describe.

The model is built on a certain family Tsp(λ, n) formed by sequences T :=
C1C2 . . . C2n of fillings with positive integers of column shapes. These sequences satisfy

the following conditions:

(1) each pair C2i−1C2i is a semistandard Young tableau (SSYT) of shape

(λi + δrev
2i−1, δrev

2i )′, denoted by Ti, where δ is some partition in P(1,1)
2n , which

means that δ2i−1 = δ2i for i = 1, . . . , n;

(2) each pair (Ti, Ti+1) satisfies certain compatibility conditions, see [19,

Definition 3.2].

For each i ≥ 0, Kwon defines crystal operators ẽi, f̃i on the set of pairs of

columns described in (1) above and then extends them to Tsp(λ, n) via the usual tensor

product rule. With this structure, it is proved that Tsp(λ, n) is isomorphic to the crystal

B(sp∞, �sp(λ)).

Following [19], we introduce further notation related to the above objects. The

left and right columns of Ti defined above are denoted by TL
i and TR

i , respectively. The

bottom part of TL
i of height λi is denoted by Ttail

i ; the remaining top part together with

TR
i , which forms an SSYT of rectangular shape (δrev

2i−1, δrev
2i )′, is by denoted Tbody

i . In the

filling T the columns are arranged such that Tbody := (Tbody
1 , . . . , Tbody

n ) is a filling of

the shape (δ′)π denoting the rotation of δ′ by 180 degrees. Kwon also uses the notation

Ttail := (Ttail
1 , . . . , Ttail

n ), which is a filling of the shape λ′. As usual, content(T) is defined

as the sequence (c1, c2, . . .), where ci is the number of entries i in T. We identify T with its

column word, denoted by word(T), which is obtained by reading the columns from right

to left and from top to bottom. Let L(T) be the maximal length of a weakly decreasing

subword of word(T).

Lemma 6.4. [19] If L(T) ≤ n, then we have

(1) Tbody is an SSYT of shape (δ′)π for some δ ∈ P(1,1)
2n , and Ttail is an SSYT of

shape λ′;
(2) T ≡ Tbody ⊗ Ttail, where ≡ denotes the usual (type A) plactic equivalence.
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Now fix a partition ν ∈ P2n. Consider the set LRλ
ν(sp2n) of type A highest weight

elements T in Tsp(λ, n) with content(T) = ν′; in other words, we have ẽi(T) = 0 for

all i > 0.

Theorem 6.5. [19] The cardinality of LRλ
ν(sp2n) is equal to the branching coefficient

cλ
ν (sp2n).

Considering T in LRλ
ν(sp2n), we have by definition T ≡ Hν′ . Thus, in the special

case ν ∈ Pn, it follows from Lemma 6.4 that Tbody ≡ Hδ′ and Ttail ∈ LRν′
λ′,δ′ , for some δ ∈

P(1,1)
2n . Here and throughout, we use implicitly the fact that the crystal operators preserve

the plactic equivalence. Based on the above facts, the following result is proved.

Theorem 6.6. [19] Assume ν ∈ Pn. The map T �→ Ttail is a bijection

LRλ
ν(sp2n) −→

⊔
δ∈P(1,1)

2n

LRν′
λ′,δ′ .

As cν′
λ′,δ′ = cν

λ,δ, Theorem 6.6 gives a simple combinatorial realization of the well-

known stable branching rule [12] (for ν ∈ Pn):

cλ
ν (sp2n) =

∑
δ∈P(1,1)

2n

cν
λ,δ.

Without the assumption L(T) ≤ n, Lemma 6.4 fails, that is, Tbody and Ttail are

no longer SSYT of the corresponding shapes. Kwon addresses this complication in [20,

Section 5], by first mapping T = C1C2 . . . C2n to a new filling T. The construction is

based on jeu de taquin on successive columns, which is used to perform the following

operations in the indicated order:

• move λ2 entries from column C3 to the 2nd column;

• move λ3 entries from column C5 to the 3rd column (past the 4th column in

between);

• continue in this fashion, and end by moving λn entries from column C2n−1 to

the n-th column (past the columns in between).

It is easy to see that the above operations can always be performed. The shape of the

filling T is a skew Young diagram, obtained by gluing λ′ to the bottom of (δ′)π , such

that their 1st columns are aligned (we view (δ′)π as a diagram with 2n columns, where
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possibly the leading ones have length 0). The fillings of shapes λ′ and (δ′)π are denoted

by T
tail

and T
body

, respectively. We have an analog of Lemma 6.4.

Lemma 6.7. [20] The following hold:

(1) T
body

is an SSYT of shape (δ′)π for some δ ∈ P(1,1)
2n , and T

tail
is an SSYT of

shape λ′;
(2) T ≡ T ≡ T

body ⊗ T
tail

.

The difficulty lies in the 1st part of this lemma, whose proof is highly technical.

The 2nd part follows from the 1st one simply by noting that jeu de taquin is compatible

with the plactic equivalence and that the row and column words of a skew SSYT are

placticly equivalent.

In [20, Remark 5.6] it is observed that, if L(T) ≤ n (in particular, if T ∈ LRλ
ν(sp2n)

and ν ∈ Pn), then we have T
body = Tbody and T

tail = Ttail, so Lemma 6.4 is a special

case of Lemma 6.7. In fact, we can show that the mentioned equalities also hold for

the elements of LRλ
ν(sp2n), for any ν ∈ P2n. This leads to the following generalization of

Theorem 6.6. To state it, we define LR
ν′
λ′,δ′ to be the subset of LRν′

λ′,δ′ consisting of fillings

S with the following property: denoting the 1st row of S by (r1 ≤ . . . ≤ rp), for p ≤ n, we

have

ri > δrev
2i−1 = δrev

2i for i = 1, . . . , p. (8)

Let cν
λ,δ be the cardinality of LR

ν′
λ′,δ′ .

Theorem 6.8. Consider T in LRλ
ν(sp2n), and let (δ′)π be the shape of Tbody.

(1) We have Tbody ≡ Hδ′ and Ttail ∈ LR
ν′
λ′,δ′ .

(2) The map T �→ Ttail is an injection

LRλ
ν(sp2n) ↪−−→

⊔
δ∈P(1,1)

2n

LRν′
λ′,δ′ ,

and its image is
⊔

δ∈P(1,1)
2n

LR
ν′
λ′,δ′ .

Proof. Consider the filling T obtained from T via the procedure described above. Since

T ≡ Hν′ , it follows that T
body ≡ Hδ′ and T

tail ∈ LRν′
λ′,δ′ , by Lemma 6.7. Thus, the i-th

column of the SSYT T
body

is (1 < 2 < . . . < δrev
i ), for i = 1, . . . , 2n.
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The procedure T �→ T, which is based on jeu de taquin on successive columns,

is reversible. We claim that this reverse procedure T �→ T simply slides the columns of

T
tail

horizontally (i.e., restricts to horizontal jeu de taquin moves) from positions 1, . . . , n

within T to positions 1, 3, . . . , 2n − 1, respectively, while the columns of T
body

do not

move (recall that the columns of T
tail

and Ttail within T and T have their top entries on

the same row). This means that T
body = Tbody and T

tail = Ttail. Therefore, the map

T �→ Ttail is the desired injection. Moreover, the image of this map is contained in⊔
δ∈P(1,1)

2n
LR

ν′
λ′,δ′ because the columns of T are strictly increasing.

The proof of the above claim is based on the following fact. Consider columns

(1 < 2 < . . . < k < c1 < . . . < cs) and (1 < 2 < . . . < l) with k ≤ l, and assume that we

can move s entries from the 1st one to the 2nd one via jeu de taquin. To do this, we start

by aligning the two columns such that they form a skew SSYT, and this can be done by

placing k ≤ l in the same row. We claim that c1 > l, which implies that the resulting

columns are (1 < 2 < . . . < k) and (1 < 2 < . . . < l < c1 < . . . < cs), as needed. Indeed, if

c1 ≤ l, then k ≤ l − 1, k − 1 ≤ l − 2, etc., so we can align the two initial columns such that

all the mentioned pairs are in the same rows. But then at most s − 1 entries can move

from the 1st column to the 2nd one, which is a contradiction.

It remains to prove that any filling S ∈ LR
ν′
λ′,δ′ is in the image of the given map.

Consider the SSYT whose i-th column is (1 < 2 < . . . < δrev
i ), and glue the columns of

S to the bottom of the columns of the former in positions 1, 3, 5, . . .. It is easy to check

that the resulting filling T satisfies the conditions in [19, Definition 3.2], so T ∈ Tsp(λ, n).

Now observe that the procedure T �→ T consists of sliding the columns of S within T

horizontally, as far left as possible, which means that T
body = Tbody and T

tail = Ttail.

By Lemma 6.7 (2), it follows that T ≡ Hδ′ ⊗ S. The latter is a highest weight element, as

S ∈ LRν′
λ′,δ′ , and this implies T ∈ LRλ

ν(sp2n). �

By combining Theorems 6.5 and 6.8, we obtain a simple combinatorial descrip-

tion of the branching coefficient cλ
ν (sp2n) in full generality.

Corollary 6.9. We have

cλ
ν (sp2n) =

∑
δ∈P(1,1)

2n

cν
λ,δ.

6.3 Generalized exponents in terms of distinguished tableaux

The goal is to derive a finite rank analog of the results in Section 4.3, that is, for type Cn.
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We use the same notation, except that everything now happens in finite rank.

Thus, we require λ ∈ Pn. We denote the underlying type A2n−1 crystal by B2n(λ),

and the set of distinguished tableaux contained in it by D2n(λ). The latter is defined

like in Definition 4.3 and is characterized by the analogs of the two conditions in

Proposition 4.5. Recall the set Sb, whose analog is defined for any b ∈ B2n(λ) by

Sb,n := {
μ ∈ P2n : ϕ(b) + μ ∈ P(2)

2n , ε(b) + μ ∈ P(1,1)
2n

}
.

Note that the above conditions on μ simply mean that

b ∈ LRν
λ,δ for δ := ε(b) + μ ∈ P(1,1)

2n , ν := ϕ(b) + μ ∈ P(2)
2n .

The analog of the weight μb, denoted μb,n, is constructed as in Proposition 4.5 (2)

μb,n :=
n−1∑
i=1

(ϕ2i(b) mod 2) ω2i . (9)

With this notation, we have the analog of Lemma 4.4, namely,

Sb,n :=
⎧⎨
⎩μb,n + P�

2n if b ∈ D2n(λ)

∅ otherwise .
(10)

We also need some new notation. Let D∗
2n(λ) be defined by “swapping” the

conditions characterizing D2n(λ) in Proposition 4.5; namely, D∗
2n(λ) consists of b ∈ B2n(λ)

such that

(C1) ϕi(b) = 0 for any odd i;

(C2) εi(b) is even for any odd i.

Let D
∗
2n(λ) be the subset of D∗

2n(λ) consisting of those SSYT satisfying the following flag

condition:

(C3) the entries in row i are at least 2i − 1, for i = 1, . . . , n.

Finally, we define the analogs of ε(b), ϕ(b), and of μb,n in (9) by

ε∗(b) :=
2n−1∑
i=1

ε2n−i(b) ωi , ϕ∗(b) :=
2n−1∑
i=1

ϕ2n−i(b) ωi , μ∗
b,n :=

n−1∑
i=1

(ε2n−2i(b) mod 2) ω2i.
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Now recall Lusztig’s involution S on the crystal B2n(λ). This is realized by

Schützenberger’s evacuation [6] and is known to commute with the crystal operators

as follows:

ẽiS = S̃f2n−i , f̃iS = S̃e2n−i. (11)

It is then clear that S maps D2n(λ) to D∗
2n(λ). It also follows that we have

εi(S(b)) = ϕ2n−i(b) , ϕi(S(b)) = ε2n−i(b), (12)

and therefore

ε(b) = ϕ∗(S(b)) , ϕ(b) = ε∗(S(b)) , μb,n = μ∗
S(b),n. (13)

We start with the analog of Proposition 4.6.

Theorem 6.10. We have

∑
ν∈P(2)

2n

∑
δ∈P(1,1)

2n

t|ν|/2 cν
λ,δ =

∑
b∈D

∗
2n(λ)

t

∣∣∣ε∗(b)+μ∗
b,n

∣∣∣/2 ∑
κ∈P�

2n

t|κ|/2.

The proof of this theorem is based on the following lemma. To state it, let us

recall the LR conjugation symmetry map in Section 6.1. Following the notation used

there, we set m = 2n, and given fixed λ we denote by σδ the bijection from LRν
λ,δ to

LRν′
λ′,δ′ ; note that this map uses δ in a crucial way, in Step 3 of its construction.

Lemma 6.11. Consider b ∈ LRν
λ,δ with δ ∈ P(1,1)

2n . The SSYT σδ(b) satisfies condition (8)

with respect to δ if and only if S(b) satisfies condition (C3). So in fact, the 1st condition

is independent of δ.

Proof. Let us denote the 1st column of S(b) by (c1 < . . . < cp), where p ≤ n. By the

construction of the map σδ in Section 6.1, condition (8) for σδ(b) simply means

δrev
c1

≥ δrev
1 = δrev

2 , . . . , δrev
cp

≥ δrev
2p−1 = δrev

2p .
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We need to show that this is equivalent to

c1 ≥ 1 , . . . , cp ≥ 2p − 1.

The implication (⇐) is clear since δrev = (δrev
1 = δrev

2 ≤ δrev
3 = δrev

4 ≤ . . .), while (⇒) is

only clear if the weak inequalities defining δ are strict.

Assuming that (⇒) fails, pick the largest i such that δrev
ci

= δrev
2i−1 and ci < 2i − 1,

where clearly i ≥ 2; we call such an index i bad. Let us assume first that ci = 2i − 2, so

δrev
2i−2 = δrev

2i−1. Since b ∈ LRν
λ,δ, we have ε(b) ≤ δ, so by (13) we deduce ϕ2i−2(S(b)) = 0. This

rules out i = p, as well as i < p and ci+1 ≥ 2i, because in these cases f̃2i−2(S(b)) �= 0,

by the usual bracketing rule for crystal operators, see for example, [11]. It follows that

ci+1 = 2i − 1, but this contradicts ci+1 ≥ 2(i + 1) − 1, which holds by the maximality of

i. Thus, we must have ci ≤ 2i − 3.

Assuming i > 2, the index i − 1 must also be bad, because otherwise we would

have

2(i − 1) − 1 ≤ ci−1 < ci ≤ 2i − 3 .

By repeating the above argument with i replaced by i − 1, we deduce ci−1 ≤ 2i − 5. We

repeat the previous reasoning for the indices i − 2, i − 3, . . . , 2 and conclude c2 ≤ 1. This

leads to the contradiction 1 ≤ c1 < c2 ≤ 1, which concludes the proof. �

Proof of Theorem 6.10. We define the following subset of Sb,n:

Sb,n := {μ ∈ Sb,n : σδ(b) satisfies (8) with respect to δ} , where δ := ε(b) + μ.

Letting

D2n(λ) := {b ∈ D2n(λ) : S(b) satisfies condition (C3)} ,

we observe that its image under S is precisely D
∗
2n(λ). By (10) and Lemma 6.11, we have

Sb,n :=
⎧⎨
⎩μb,n + P�

2n if b ∈ D2n(λ)

∅ otherwise .
(14)
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We now follow the approach in the proof of Proposition 4.6. This gives

∑
ν∈P(2)

2n

∑
δ∈P(1,1)

2n

t|ν|/2 cν
λ,δ =

∑
b∈D2n(λ)

∑
μ∈Sb,n

t|ϕ(b)+μ|/2

=
∑

b∈D2n(λ)

t|ϕ(b)+μb,n|/2
∑

κ∈P�
2n

t|κ|/2

=
∑

b∈D
∗
2n(λ)

t

∣∣∣ε∗(b)+μ∗
b,n

∣∣∣/2 ∑
κ∈P�

2n

t|κ|/2.

Here the 2nd equality follows from (14), while the 3rd one follows by translating all the

parameters from D2n(λ) to D
∗
2n(λ) via (13). �

We now derive the analog of Theorem 4.7, and also of Theorem 3.1 in type A.

Observe first we can write more explicitely for any vertex b ∈ B2n(λ)

∣∣ε∗(b) + μ∗
b,n

∣∣ /2 =
2n−1∑
i=1

(2n − i)
⌈

εi(b)

2

⌉
.

Theorem 6.12. We have

KCn
λ,0(t) =

∑
b∈D

∗
2n(λ)

tchCn (b),

where

chCn
(b) =

2n−1∑
i=1

(2n − i)
⌈

εi(b)

2

⌉
.

Proof. The proof is immediately based on Corollary 6.9 and Proposition 2.1 (3). Indeed,

it suffices to observe that ∑
κ∈P�

2n

t|κ|/2 = 1∏n
i=1(1 − t2i)

.

�

6.4 From distinguished tableaux to King tableaux

We follow a similar approach to that in Section 4.4. The goal is to transfer the results

to a natural labeling of the vertices of weight 0 in the type Cn crystal of highest weight

λ, via a bijection with D
∗
2n(λ). Such a natural labeling is given by the King tableaux of

weight 0 [18]. Recall that the King tableaux of type Cn are just semistandard tableaux of
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shape λ in the alphabet {1 < 1 < 2 < 2 < . . . < n < n}, with the additional flag condition

that the entries in each row i are greater than or equal to i. The set of such tableaux of

weight 0 will be denoted by K0
Cn

(λ).

Consider a tableau b in D
∗
2n(λ), and let Ni(b) denote the number of entries equal

to i. Note first that conditions (C1) and (C2) in Section 6.3 can be phrased as the following

more explicit ones, for i = 1, . . . , n:

(C1′) the subword of the Japanese reading of the tableau b formed by 2i − 1 and 2i

has the property that in each right factor the number of 2i − 1 is less than or

equal to the number of 2i;

(C2′) N2i(b) − N2i−1(b) is a (nonnegative) even integer.

Condition (C2) is also equivalent to the fact that the rows of θ∗
n(b) := ε∗(b) + μ∗

b,n have

even lengths.

Given b as above, we will map it to a King tableau in K0
Cn

(λ). Letting ki :=
N2i(b) − N2i−1(b), we apply the crystal operator ẽki/2

2i−1 to b, for i = 1, . . . , n. Note that

these operators commute, and in fact they correspond to a Uq(sl2 ⊕ . . . ⊕ sl2)-crystal

structure, cf. Section 4.4. Afterwards, we replace the entries 2i − 1 and 2i with i and ı,

respectively, for each i. It is easy to see that the resulting filling has weight 0 and that

the flag condition (C3) turns into the similar condition for King tableaux. So the result

is in K0
Cn

(λ).

Moreover, this map has an inverse. Indeed, given a King tableau T, we first

replace the entries i and ı with 2i − 1 and 2i, respectively. Then we map the resulting

filling to the lowest weight element with respect to the corresponding Uq(sl2 ⊕ . . . ⊕ sl2)-

crystal structure. It is easy to see that the resulting filling is in D
∗
2n(λ). For obvious

reasons, we denote this map by T �→ L(T).

Based on the above discussion, Theorem 6.12 can be rephrased as follows.

Theorem 6.13. We have

KCn
λ,0(t) =

∑
T∈K0

Cn
(λ)

tchCn (L(T)),

where

chCn
(L(T)) =

2n−1∑
i=1

(2n − i)
⌈

εi(L(T))

2

⌉
.
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Remarks 6.14.

(1) As noted in Remark 4.13 (1), there does not seem to be a simple way to express

the related statistic above directly in terms of T. However, the map T �→ L(T)

is a simple one.

(2) Theorem 6.13 shows that it is more natural to define a statistic for computing

the Kostka–Foulkes polynomial on King tableaux, rather than on the other

important set of symplectic tableaux, namely the KN tableaux [11]. A natural

question is whether the statistic above can be translated to the KN tableaux

via the bijection in [33] and moreover if one recovers in this way the charge

statistic constructed in [25] (which conjecturally computes the Kostka–

Foulkes polynomials); we will be investigating this question in the future.

We have the following analog of Theorem 4.8, cf. also Remark 4.13, related to

the expression of the multivariable generalization of KCn
λ,0(t), denoted KCn

λ,0(t). Like in

the infinite case, the related combinatorial expression follows immediately from the

(finite type) combinatorics worked out above. Note that the discrepancy mentioned

in Assertion 2 of Remark 4.13 has now been corrected by passing from the set of

distinguished tableaux D2n(λ) to its image D∗
2n(λ) under the Schützenberger involution.

Theorem 6.15. Define the multivariable polynomial KCn
λ,0(t) by

KCn
λ,0(t)∏n

i=1(1 − t2i)
=

∑
ν∈P(2)

2n

∑
δ∈P(1,1)

2n

t
1
2 νcν

λ,δ.

Then we have

KCn
λ,0(t) =

∑
T∈K0

Cn
(λ)

t θ∗
n(L(T))/2,

where

t θ∗
n(L(T))/2 =

2n−1∏
i=1

t�εi(L(T))/2�
2n−i .

We will now continue Example 4.14.
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Example 6.16. Assume λ = (1, 1) in type Cn. Then we get

This gives

Therefore,

Finally,

KCn
λ,0(t) =

n∑
k=2

t2(n−k+1) =
n−1∑
k=1

t2k and KCn
λ,0(t) =

n−1∑
k=1

t2k = t2 − t2n

1 − t2 .

7 Three Applications

In this section, we present three applications of Theorem 6.13

7.1 Growth of generalized exponents

First we analyze the growth of the generalized exponents of type Cn with respect to the

rank n.

The (weight 0) symplectic King tableaux of type Cn embed into those of type Cn+1

by changing the entries k, k to k + 1, k + 1, for all k, respectively. Moreover, it is easy to

see that this map preserves the statistic in Theorem 6.13. So we obtain the following

result, which to our knowledge is new.

Theorem 7.1. For any integer n and any partition λ with at most n parts, we have

KCn+1
λ,0 (t) − KCn

λ,0(t) ∈ Z≥0[t].

7.2 Reducing a type C generalized exponent to one of type A

We now prove a conjecture of the 1st author [25]. This conjecture is the 1st step in the

construction of the type Cn charge statistic in [25] and proves the conjecture that this
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charge computes the corresponding Kostka–Foulkes polynomials in the case of column

shapes; see Remark 6.14 (2).

We now label the Dynkin diagram of type Cn such that the special node is n.

Consider the fundamental weight ω2p, where p ∈ {1, . . . , �n/2�}. All the zero-weight

vertices in the crystal B(ω2p) belong to the same type An−1 component, which has

highest weight γp := ε1 + . . . + εp − εn−p+1 − . . . − εn, where εi are the coordinate vectors

in Rn. In type An−1, this weight corresponds to the partition (1n−2p, 2p).

Theorem 7.2. We have

KCn
ω2p,0(t) = KAn−1

γp,0 (t2).

Before proving this theorem, we need to describe the KN tableaux for some

column shape (1k) [13], which index the vertices of the type Cn crystal B(ωk).

Definition 7.3. A column-strict filling C = (c1 < . . . < ck) with entries in {1 < . . . < n <

n < . . . < 1} is a KN column if there is no pair (z, z) of letters in C such that

z = cp , z = cq , q − p ≤ k − z.

We will need a different definition of KN columns, which was proved to be

equivalent to the one above in [33].

Definition 7.4. Let C be a column and I = {x1 > . . . > xr} the set of unbarred letters z

such that the pair (z, z) occurs in C. The column C can be split when there exists a set of

r unbarred letters J = {y1 > . . . > yr} ⊂ {1, . . . , n} such that

• y1 is the greatest letter in {1, . . . , n} satisfying y1 < x1, y1 �∈ C, and y1 �∈ C,

• for i = 2, ..., r, the letter yi is the greatest one in {1, . . . , n} satisfying yi <

min(yi−1, xi), yi �∈ C, and yi �∈ C.

In this case, we say that xi is paired with yi, and we write

• lC for the column obtained by changing xi into yi in C for each letter xi ∈ I,

and by reordering if necessary;

• rC for the column obtained by changing xi into yi in C for each letter xi ∈ I,

and by reordering if necessary.

The pair (lC, rC) will be called a split column.
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Example 7.5. The following is a KN column of height 5 in type Cn for n ≥ 5, together

with the corresponding split column

We used the fact that I = {5 > 4}, so J = {2 > 1}.

For the definition of the crystal operators on KN columns via the well-known

bracketing rule, we refer to [11].

Proof of Theorem 7.2. We use the King tableaux for computing KCn
ω2p,0(t) via Theorem

6.13. Meanwhile, KAn−1
γp,0 (t) is computed based on an analog of Theorem 3.1, namely

KAn−1
λ,0 (t) =

∑
b∈B(λ)0

t
∑n−1

i=1 (n−i)εi(b), (15)

which is referred to [23]. For this computation, we use the crystal structure on the

type An−1 component of highest weight γp of B(ω2p), which contains the zero-weight

KN tableaux.

First we need a bijection between the zero-weight King tableaux and KN tableaux

of shape (12p). Let CK = (c1 < c1 < . . . < cp < cp) be such a King tableau, which means

that ci ≥ 2i − 1 and ci ≥ 2i, for i = 1, . . . , p; but these conditions are equivalent to ci ≥ 2i.

Let CKN = (d1 < . . . < dp < dp < . . . < d1) be a zero-weight KN column, where we note

the different order used on the alphabet {1, . . . , n, n, . . . , 1}. The condition in Definition

7.4 implies that di ≥ 2i for any i, because d1, . . . di need to be paired with distinct entries

strictly less than di, which are also different from d1, . . . , di−1. One can check that the

reciprocal is also true. Thus, the desired bijection maps CK to CKN with di = ci, which

we now assume.

Now let us calculate the exponent of the variable t corresponding to CK in

KCn
ω2p,0(t), as given by Theorem 6.13. First we replace ci by 2ci − 1 and ci by 2ci,

obtaining a column C′
K . Note that this is both a highest and lowest weight element

with respect to the corresponding Uq(sl2 ⊕ . . . ⊕ sl2)-crystal structure, so L(CK) = C′
K .
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Let P := {ci ∈ CK | ci − 1 �∈ CK}. Note that the only type A raising crystal operators that

can be applied to C′
K are ẽ2p−2 for p ∈ P, and each can be applied only once. Thus, for

each p ∈ P, we get a contribution of 2(n − p + 1) to the mentioned exponent of t.

Finally, let us calculate the exponent of t corresponding to CKN in KAn−1
γp,0 (t), as

mentioned above, based on (15). Let C+
KN := (c1 < . . . < cp). Observe first that

εp−1(CKN) = εp−1(C+
KN) =

⎧⎨
⎩1 if p ∈ P

0 otherwise .

This means that, for each p ∈ P, we get a contribution of n − p + 1 to the mentioned

exponent of t. This concludes the proof. �

Remark 7.6. Theorem 7.2 also permits us to establish the conjecture of [25] for Lusztig

t-analogs associated to any fundamental weight. Indeed, each such fundamental weight

is indexed by a column partition λ = (1k) = ωk with k ≤ n and the possible

corresponding dominant weights yielding nonzero polynomials have the form μ = (1a) =
ωa where k − a is a nonnegative even integer. We then have

KCn
ωk,ωa

(t) = KCn−a
ωk−a,0(t).

This follows in fact from a more general row removal property of Lusztig t-analogs of

type Cn. Assume that λ and μ are two partitions such that λ1 = μ1 then

KCn
λ,μ(t) = KCn−1

λ�,μ� (t),

where λ� and μ� are the partitions obtained by removing the part λ1 = μ1 in λ and μ,

respectively. This can be proved directly from the very definition of KCn
λ,μ(t) in terms of

partition function or by using the Morris type recurrence formula established in [25].

7.3 The smallest power of t in KCn
λ,0(t)

The largest power of t in KCn
λ,0(t) is well known to be 〈λ, ρ∨〉, where ρ∨ is half the sum

of the positive coroots. Furthermore, it is also known that the smallest power is greater

than or equal to |λ|/2. See [26, 27]. As the 3rd application of our formula for KCn
λ,0(t), we

will determine this smallest power.
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Let λ ∈ Pn be such that |λ| is even, and write λ = ∑n
i=1 ai ωn+1−i. Define

sk :=
k∑

i=1

ai , bi :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ai + 1 if ai odd and si odd

ai − 1 if ai odd and si even

ai if ai even .

Also let s0 := 0 and S := sn.

Theorem 7.7. The smallest power of t in KCn
λ,0(t), for |λ| even, is

1

2

n∑
i=1

(n + 1 − i)bi = |λ|
2

+ 1

2

∑
i : ai odd

(−1)si−1(n + 1 − i). (16)

We start by sketching the idea of the proof, whose details can be found in

the next section. Based on Theorem 6.12, we need to find the filling σ ∈ D
∗
2n(λ) that

minimizes

chCn
(σ ) =

2n−1∑
i=1

(2n − i)
⌈

εi(σ )

2

⌉
.

We will first minimize chCn
(σ ) for fillings σ of the row shape (S) with 1, . . . , 2n,

subject to certain conditions. Namely, let � be the set of all σ = (σ1 ≤ . . . ≤ σS) satisfying

σi ≤ n + k , for sk−1 < i ≤ sk, and k = 1, . . . , n . (17)

Note that this condition is a necessary one for the 1st row of a filling of λ with 1, . . . , 2n.

Let us also define the sequence c1, . . . , cn by setting ci := bi, except for the case in which,

for the largest i with ai odd, we have si odd, in which case ci := ai (and bi := ai +1). Note

that a1 + . . . + an = c1 + . . . + cn = S.

Lemma 7.8. We have

min
σ∈�

chCn
(σ ) = 1

2

n∑
i=1

(n + 1 − i)bi,

and the minimum is attained for σ row
min := ((n + 1)c1(n + 2)c2 . . . (2n)cn).

Now consider σ ∈ D
∗
2n(λ). By the usual bracketing rule for crystal operators, see

for example [11], it is easy to see that all entries i ≥ 2 in the 1st row of σ contribute

to εi−1(σ ). Thus, it suffices to construct σmin ∈ D
∗
2n(λ) whose 1st row is σ row

min , and for
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which no entry i below the 1st row contributes to εi−1(σmin). This is achieved with one

mild failure of the last property; nevertheless, we always have chCn
(σ row

min ) = chCn
(σmin),

which is all that is needed.

Algorithm 7.10 describes the construction of σmin. In order to state it, we need

some definitions and related results. Let k1 < k2 < . . . < kp be the indexes i for which ai

is odd. We pair them from left to right as (k1, k2), (k3, k4), . . ., where kp is unpaired if p

is odd. Given such a pair (k, k′), we say that all the columns in λ of heights n + 1 − i with

k ≤ i ≤ k′ form a block. This block is called odd or even, depending k′ − k being odd or

even, respectively. A subblock of columns is formed by all columns of the same height

in a given block. If p is odd, we say that all columns of height at most n + 1 − kp form an

incomplete block.

We call a column of λ special if it is the 1st one in a subblock, without being the

1st one of the corresponding block. Note that, if the 1st row of λ is filled with the entries

of σ row
min , then a column is special if and only if its top entry is strictly smaller than the

maximum possible, namely n + i if n + 1 − i is the corresponding column height. We call

a special column odd if its top entry has the same parity as the column height. Note that

this condition on a special column is equivalent to the bottom entry being odd (hence

the name), when the column is filled with consecutive entries starting from the top one.

Lemma 7.9.

(1) The number of odd blocks is even unless p and n + 1 − kp are odd.

(2) The number of odd special columns in a block is odd or even, depending on

the block being odd or even, respectively.

(3) The total number of odd special columns is even unless p and n + 1 − kp are

odd.

Algorithm 7.10. Construction of σmin.

Step 1: Fill the 1st row of λ with the entries of σ row
min .

Step 2: Fill all columns except the odd special ones with consecutive entries starting

from the top entry.

Step 3: Fill the odd special columns, considered from right to left, as follows:

• If the last entry of the previously filled odd special column (assuming it

exists) is 2i − 1, then the current one will contain 2i, but not 2i − 1.

• Assume that p and n + 1 − kp are odd, in which case the top entry in each

column of height n + 1 − kp is n + kp. Let i := (n + kp)/2. In this case, the

rightmost odd special column will contain 2i, but not 2i − 1.
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• With the above rules in place, fill the current special column by consid-

ering consecutive entries starting from the top one.

Lemma 7.11. The filling σmin belongs to D
∗
2n(λ). Furthermore, no entry i below the 1st

row contributes to εi−1(σmin) with one exception: if p and n + 1 − kp are odd, then one

entry n + kp below the 1st row contributes to εn+kp−1(σmin). In addition, we always have

chCn
(σ row

min ) = chCn
(σmin).

Proof of Theorem 7.7. By Lemma 7.11, chCn
(σmin) is given by the expression in

(16). Lemma 7.8 guarantees that this is the minimum of the charge over D
∗
2n(λ). Thus,

Theorem 7.7 is proved. �

In conclusion, all that is left is to prove Lemmas 7.8, 7.9, and 7.11, which is done

in Section 7.4.

We will now give an example of the construction of σmin. We will also exhibit a

2nd filling, with the same shape and 1st row as σmin, which also satisfies the properties

in Lemma 7.11. This will have the same charge as σmin, which shows that the coefficient

of the smallest power of t in KCn
λ,0(t) can be strictly larger than 1.

Example 7.12. Let n = 5 and λ = (7, 6, 5, 3, 1). The sequence (ai) is (1, 2, 2, 1, 1), and

thus there is a single block, which is odd and consists of all the columns of λ except

the last one. The special columns are the 2nd, the 4th, and the 6th; they are all odd.

The sequences (bi) and (ci) are (2, 2, 2, 0, 2) and (2, 2, 2, 0, 1), respectively, while σ row
min =

(6, 6, 7, 7, 8, 8, 10). The filling σmin and a different one with the same charge are

It is straightforward to check that the above fillings satisfy the properties in

Lemma 7.11; in particular, the highlighted entries are bracketed in the usual

procedure for applying crystal operators. Thus, both of these fillings have charge

|λ|/2 + 1/2(5 − 2 + 1) = 11 + 2 = 13.
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Below is a different filling σmin, which illustrates another aspect of

Algorithm 7.10.

7.4 The proof of the lemmas in Section 7.3

The terminology and notation in the previous section will be used. We start with

Lemma 7.8. We first define the following moves σ → σ ′ on sequences σ = (imi)i=1,...,2n in

�, assuming that σ ′ is still in �:

(1) (. . . , ik+2, . . .) → (. . . , ik, i + 1, i + 1, . . .);

(2) (. . . , i2k+1, . . .) → (. . . , i2k, i + 1, . . .);

(3) (. . . , i2k−1, jl+1, . . .) → (. . . , i2k, jl, . . .);

(4) (. . . , i2k, j2l−1, . . .) → (. . . , i2k−1, j2l, . . .).

It is not hard to see that in all cases we have

chCn
(σ ) ≥ chCn

(σ ′); (18)

moreover, in case (4) we always have equality. Indeed, note that

chCn
(σ ) =

2n∑
i=2

(2n + 1 − i)
⌈mi

2

⌉
;

based on this, it suffices to observe that if we insert an entry i > 1 into a sequence σ ,

the charge increases by 2n + 1 − i, if mi is even, and does not change, otherwise.

It is helpful to visualize the (1)–(4) using the following representation of a

sequence σ = (imi)i=1,...,2n in � as a lattice path from (0, 0) to (S, 2n) with steps (1, 0)

and (0, 1). The horizontal segments in this path are

(m1 + . . . + mi−1, i) → (m1 + . . . + mi, i) , for mi > 0, i = 1, . . . , 2n.
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Note that condition (17) defining � simply means that this path stays weakly below the

similar path from (0, 0) to (S, 2n), whose horizontal segments are

(si−1, n + i) → (si, n + i) , for ai > 0, i = 1, . . . , n.

The latter path will be called the upper-bound path. We will also consider the path

corresponding to σ row
min , which will be called the target path.

Now recall that k1 < k2 < . . . < kp are the indexes i for which ai is odd, which

are paired (k1, k2), (k3, k4), etc. For each such pair (k, k′), we consider the subpath of the

upper-bound path between the horizontal segments with y = n + k and y = n + k′,
inclusive, plus the vertical segment after the last horizontal one; we call it an odd

subpath. If p is odd, the subpath between the horizontal segment with y = n + kp

and the end of the path is called an incomplete odd subpath. The subpaths obtained

by removing the odd ones are called even.

Now note that the upper-bound path and the target one are closely related.

Namely, every even subpath of the former coincides with a corresponding subpath of the

latter, and so does the incomplete odd subpath (if any). Moreover, for every odd subpath

of the former, there is a corresponding one in the latter whose vertical segments are

translations by (1, 0) of the vertical segments of the former; the exceptions are the last

vertical segments in the two paths, which coincide. Thus, we can also divide the target

path into even, odd, and incomplete odd subpaths.

Proof of Lemma 7.8. In terms of the above visualization, and based on (18), it suffices

to show that any path that is weakly below the upper-bound path (including the latter)

can be related to the target path by applying the moves (1)–(4). This can be done as

follows, using a sequence of intermediate paths. See Example 7.13 for an illustration of

this procedure.

Step 1: By applying the moves (1) and (2), from southwest to northeast in the current

path, we obtain a path in which every vertical segment coincides with

the corresponding one of the upper-bound path, or with its translation

by (1, 0); moreover, for the 1st vertical segment (starting at (0, 0)), the 1st

statement holds. Divide the obtained path into even, odd, and incomplete

odd subpaths.

Steps 2–4: These steps are applied to the subpaths of the path in Step 1, considered

from southwest to northeast. As a result, each subpath will coincide with

the corresponding one of the target path.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/16/4942/5049383 by guest on 25 August 2020



4986 C. Lecouvey and C. Lenart

Step 2: The move (2) is applied to an even subpath.

Step 3: The moves (2) and (3) are applied to an odd subpath.

Step 4: The moves (2) and (4) are applied to the incomplete odd subpath (if any). �

Example 7.13. Let n = 7, and let the sequence (ai) be (1, 0, 2, 1, 1, 2, 2). We have

σ row
min = (8, 8, 10, 10, 12, 13, 13, 14, 14), which corresponds to the target path, while

the upper-bound path corresponds to (8, 10, 10, 11, 12, 13, 13, 14, 14). Both of these

paths consist of an odd subpath and an incomplete odd subpath. Consider σ =
(7, 7, 7, 9, 10, 11, 11, 12, 14). Its corresponding path is represented in the 1st diagram

below, whose bottom left corner has coordinates (0, 7), while the upper-bound path

appears in all three diagrams. The 2nd diagram represents the result of Step 1 in the

above algorithm; move (1) was applied six times, while move (2) twice. The last diagram

contains the target path, which is obtained from the path in the 2nd diagram via Step 3

followed by Step 4. In Step 3, move (3) was applied twice, and after that move (2) once;

in Step 4, move (4) was applied twice (from northeast to southwest).

We conclude by proving Lemmas 7.9 and 7.11.

Proof of Lemma 7.9. It is not hard to see that the number of boxes in an odd (resp.

even) block is odd (resp. even); in addition, if p is odd, the number of boxes in the

incomplete block is even unless n + 1 − kp is odd (recall that this number represents

the height of the 1st column in the incomplete block). Based on this and the fact that |λ|
is even, the 1st statement is immediate.

Now let us consider a block corresponding to a pair (k, k′), that is, it contains all

columns of heights n + 1 − i for k ≤ i ≤ k′. A special column is odd or even depending

on the difference between its height and the height of the previous column being odd

or even. But the sum of all these numbers is the difference between the heights of the

1st and last columns in the block, namely (n + 1 − k) − (n + 1 − k′) = k′ − k. The 2nd
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statement now follows from the fact that the parity of a block is determined by k′ − k.

The 3rd statement is an immediate consequence of the 1st two. �

Proof of Lemma 7.11. It is not hard to see that the filling σmin is a semistandard Young

tableau satisfying the flag condition (C3) in Section 6.3. Indeed, for semistandardness,

observe first that if the 1st row of λ is σ row
min and we fill all columns with consecutive

entries starting from the top one, we clearly obtain a semistandard tableau. To obtain

σmin, the only change we need is a certain increase in the entries of every other odd

special column starting with the leftmost one. But in each case the entries of the next

column are the largest possible, so the weakly increasing condition for rows is still

verified.

To complete the proof, it suffices to check the following properties for the column

word of σmin, the 1st two of which rely on the usual bracketing rule for crystal operators

[11]:

(P1) After bracketing (2i, 2i − 1), there is no unbracketed 2i − 1; also, there is no

unbracketed 2i below the 1st row with one exception: a single 2i = n + kp if

p and n + 1 − kp are odd.

(P2) For any pair (2i + 1, 2i), there is no unbracketed 2i + 1 below the 1st row.

(P3) Each even entry in the 1st row occurs an even number of times with one

exception: n + kp if p and n + 1 − kp are odd.

Property (P3) is immediate from the construction of σ row
min . By analyzing

Algorithm 7.10, observe that the columns of σmin have the following structure (the

notation m̂ indicates the absence of the element m in a sequence):

• Every other odd special column starting with the 2nd leftmost one is of the

form ( j, j + 1, . . . , 2i − 2, 2i − 1).

• Every other odd special column starting with the leftmost one is of the form:

( j, j+1, . . . , 2i−2, 2̂i − 1, 2i, 2i+1, . . . , 2l) with i ≤ l, or ( j, j+1, . . . , 2l−1, 2l, 2i)

with l < i.

• A non-odd special column is of the form ( j, j + 1, . . . , 2n − 1, 2n).

In particular, the 2nd fact follows from the 1st two rules in Step 3 of Algorithm 7.10.

Based on these facts, we can describe each bracketing for the column word of σmin,

which will prove (P1) and (P2).

Let us first bracket (2i, 2i − 1) and ignore all such pairs coming from the same

column of σmin. The remaining subword in these letters starts with a set of pairs

(2i, 2i − 1) coming from successive odd special columns and ends with an even number
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of 2i; the latter are all in the 1st row, with the one exception indicated in (P1) above,

which corresponds to the number of odd special columns being odd (the entry 2i below

the 1st row is in the rightmost odd special column). Here we applied Lemma 7.9 (3). Now

let us bracket (2i + 1, 2i) and again ignore all such pairs coming from the same column

of σmin. The remaining subword in these letters consists of a sequence of 2i followed by

a sequence of 2i + 1, where all the elements of the latter are in the 1st row. Indeed, no

column can contain 2i + 1 below the 1st row but no 2i above it. �

8 Comparing the Sundaram and Kwon Branching Rules

The work in Sections 5 and 6 raises the question whether the Sundaram and Kwon

branching rules (mentioned in those sections) are, in fact, equivalent. Based on the

results above, we discuss what this equivalence entails and we present an example that

provides evidence for an affirmative answer.

We consider the branching coefficient cλ
ν (sp2n), for fixed λ ∈ Pn and ν ∈ P2n. The

Sundaram rule says that cλ
ν (sp2n) is the number of Sundaram–LR tableaux of shape ν/λ

and content δ, for some δ ∈ P(1,1)
2n . By Corollary 6.9 and Lemma 6.11, the same coefficient

is expressed as the number of LR tableaux T in LRν
λ,δ for which S(T) satisfies the flag

condition (C3) in Section 6.3, where δ ∈ P(1,1)
2n (recall the notation in Section 6.1).

To relate the two types of tableaux, we need to consider the composition of the

following maps:

{LR tableaux of shape ν/λ, content δ} companion������⇒ LRν
δλ

R-matrix�����⇒ LRν
λ,δ

S�⇒ S(LRν
λ,δ). (19)

For the combinatorial R-matrix, we use the Henriques–Kamnitzer commutor [9, 15],

which has several other realizations, cf. [2] and the references therein. Note that the

Henriques–Kamnitzer commutor was defined in terms of the Schützenberger involution,

which connects it to the last map in (19), namely the Schützenberger involution in the

crystal B2n(λ).

The main question is whether the composition (19) bijects the tableaux men-

tioned above, coming from the Sundaram and Kwon branching rules. The example below

suggests an affirmative answer.

Example 8.1. Consider n = 3, λ = (2, 1, 1) and ν = (5, 4, 3, 3, 3, 2), with cλ
ν (sp6) = 1.

There are three LR tableaux of shape ν/λ for which the corresponding δ is in P(1,1)
2n . We

indicate them below, together with the result of applying the maps in (19).
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(1) δ = (3, 3, 3, 3, 2, 2).

(2) δ = (4, 4, 2, 2, 2, 2).

(3) δ = (4, 4, 3, 3, 1, 1).

Note that in case (1) the 1st tableau is a Sundaram–LR tableau, while the last

one satisfies condition (C3) mentioned above. However, both of these properties fail in

cases (2) and (3); the entries causing these failures are shown in bold.

Remark 8.2. Kwon’s rule also works in orthogonal types, whereas there is no

Sundaram-type rule in this case. For symplectic types, there is also the rule conjectured

by Naito–Sagaki [30], which was proved via its relation to the Sundaram rule in [35], cf.

also [37].
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