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We give a purely combinatorial proof of the positivity of the stabilized forms of the
generalized exponents associated to each classical root system. In finite type 4,_;,
we rederive the description of the generalized exponents in terms of crystal graphs
without using the combinatorics of semistandard tableaux or the charge statistic. In

finite type C,, we obtain a combinatorial description of the generalized exponents

"
based on the so-called distinguished vertices in crystals of type A,,_;, which we also
connect to symplectic King tableaux. This gives a combinatorial proof of the positivity
of Lusztig t-analogs associated to zero-weight spaces in the irreducible representations
of symplectic Lie algebras. We also present three applications of our combinatorial
formula and discuss some implications to relating two type C branching rules. Our

methods are expected to extend to the orthogonal types.

1 Introduction

Let g be a simple Lie algebra over C of rank n and G its corresponding Lie group. The
group G acts on the symmetric algebra S(g) of g, and it was proved by Kostant [18]
that S(g) factors as S(g) = H(g) ® S(g)¢, where H(g) is the harmonic part of S(g). The

Received January 4, 2018; Revised June 13, 2018; Accepted June 14, 2018
Communicated by Prof. Masaki Kashiwara

© The Author(s) 2018. Published by Oxford University Press. All rights reserved. For permissions,

please e-mail: journals.permission@oup.com.

020z ¥snbny Gz uo isenb Aq £8€6+¥0G/2761/91/020Z/9101HE/UII/WOd dNo"dlWapede//:sdiy WOl papeojumoq



Combinatorics of Generalized Exponents 4943

generalized exponents of g, as defined by Kostant [18], are the polynomials appearing
as the coefficients in the expansion of the graded character of H(g) in the basis of
the Weyl characters. It was shown by Hesselink [10] that these polynomials coincide,
in fact, with the Lusztig t-analogs [29] of zero-weight multiplicities in the irreducible
finite-dimensional representations of g. In particular, they have nonnegative integer
coefficients, because they are affine Kazhdan-Lusztig polynomials (see [32, 36]). Note
that the zero-weight Lusztig t-analogs are the most complex ones.

For g = sl,,, the generalized exponents admit a nice combinatorial description
in terms of the Lascoux-Schiitzenberger charge statistic on semistandard tableaux of
zero weight [24]. This statistic is defined via the cyclage operation on tableaux, which
is based on the Schensted insertion scheme. This combinatorial description extends,

in fact, to any Lusztig t-analog of type A that is possibly associated to a nonzero

n—1r
weight (also called Kostka polynomials). So we have a purely combinatorial proof of
the positivity of their coefficients. It was also established in [31] that the Lusztig

t-analogs in type A,_; are one-dimensional sums, that is, some graded multiplicities
related to finite-dimensional representations of quantum groups of affine type A;llll.

Another interpretation of the charge statistic in terms of crystals of type A,_; was given
later by Lascoux et al. in [23].

Despite many efforts during the past 3 decades, no general combinatorial
proof of the positivity of the Lusztig t-analogs is known beyond type A. Nevertheless,
such proofs have been obtained in some particular cases. Notably, a combinatorial
description of the generalized exponents associated to small representations was given
in [13] and [14] for any root system. In [28], it was established that some Lusztig
t-analogs of classical types equal one-dimensional sums for affine quantum groups,
which generalizes the result of [31]. Nevertheless, the two families of polynomials
do not coincide beyond type A. In [25] and [26], charge statistics based on cyclage
on Kashiwara-Nakashima (KN) tableaux were defined for classical types, yielding the
desired positivity for particular Lusztig ¢ -analogs. It is worth mentioning that, in type
C

Lusztig t-analogs in this case.

.+ @ version of the mentioned statistic [25] permits conjecturally to describe all the

In [4], Brylinsky obtained an algebraic proof of the positivity of any Lusztig
t-analog based on the filtration by a central idempotent of g. For classical types, this
filtration stabilizes [7, 27], which yields stabilized versions of these polynomials. They
are formal series in the variable t that, in many respects, are more tractable as their

finite-rank counterparts.
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4944 C. Lecouvey and C. Lenart

The goal of this paper is two-fold. First we give a combinatorial description
of the stabilized version of the generalized exponents and a proof of their positivity
by using the combinatorics of type A, crystal graphs. This can be regarded as a
generalization of results in [23] for the weight zero, and in fact we were able to
rederive the latter without any reference to the charge statistic or the combinatorics
of semistandard tableaux. Our description is in terms of the so-called distinguished

vertices in crystal of type A but we show that these vertices are in natural bijection

Foor
with some generalizations of symplectic King tableaux, which makes the link with
stable Lusztig t-analog more natural. Next, we provide a complete combinatorial proof
of the positivity of the generalized exponents in the non-stable C,, case. Observe there
that the non-stable case is much more involved than the stable one, essentially because
we need a combinatorial description of the non-Levi branching from gl,,, to sp,,, which
is complicated in general. Here we use in a crucial way recent duality results by Kwon
[19, 20] giving a crystal interpretation of the previous branching and a combinatorial
model relevant to its study. We also rely on the complex combinatorics of the bijec-
tions realizing the symmetries of type A Littlewood-Richardson (LR) coefficients: the
combinatorial R-matrix and the conjugation symmetry map; both have many different
realizations in the literature. We strongly expect to extend our approach to orthogonal
types as soon as all the results of [20] will be available for the non-Levi orthogonal
branchings.

The paper is organized as follows. In Section 2, we recall the definition of
the generalized exponents and show that, for classical types, they satisfy important
relations in the ring of formal series in ¢t deduced from Cauchy and Littlewood identities.
In Section 3, we briefly rederive the combinatorial description of the generalized
exponents in type A,,_; obtained in [23] without using the results of [24] on the charge.
Section 4 is devoted to the combinatorial description of the stabilized form of the
generalized exponents in terms of distinguished tableaux, which we define and study
here. Our approach also permits us to extend our results to multivariable versions of
the generalized exponents as done in [23] for type A. In Sections 5 and 6, we give the
promised combinatorial description of the generalized exponents in type C,, by using
distinguished tableaux adapted to the finite rank n. In Section 5 we do this based on
the type C,, branching rule due to Sundaram [34], whereas in Section 6 we use Kwon's
branching rule; the latter leads to a more explicit description, including one in terms
of the symplectic King tableaux [17]. In Section 7, we give three applications of the
description in Section 6: (1) analyzing the growth of the generalized exponents of type

C,, with respect to the rank n; (2) proving a conjecture related to the construction of the
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Combinatorics of Generalized Exponents 4945

type C,, charge in [25]; (3) determining the smallest power of ¢ in a generalized exponent
(note that the largest one is well known). The 3rd result turns out to be quite subtle, and
it illustrates the combinatorial complexity of these polynomials. Finally, in Section 8
we raise a question about the possible relationship between the Sundaram and Kwon

branching rules.

2 Generalized Exponents
2.1 Background

Let g,, be a simple Lie algebra over C of rank n with triangular decomposition

=P s, 000 P g,

aeRy aeRy

so that b is the Cartan subalgebra of g, and R, is its set of positive roots. The root

system R = R, U (—R,) of g, is realized in a real Euclidean space E with inner product

_ 2
CEI

roots and Q, the Z, -cone generated by S. The set P of integral weights for g, satisfies
(B,a¥) € Zforany B € Pand o € R. We write P, = {8 € P| (8,a”) > 0 for any « € S} for

the cone of dominant weights of g, and denote by w,,...,», its fundamental weights.

(-,). For any o € R, we write a¥

for its coroot. Let S C R, be the subset of simple

Let W be the Weyl group of g,, generated by the reflections s, with « € S, and write ¢ for
the corresponding length function.

The graded character of the symmetric algebra S(g,,) of g,, is defined by

1 1 1
char,(S(g,)) = H 1_ted (1—10tn H 1—ter’

§ weight of g, a€eR

By a classical theorem due to Kostant, the graded character of the harmonic part of the

symmetric algebra S(g,,) satisfies

o1 -t 1 t ,
char,(H(g,)) = [Ty € ) H i H(l — tdl)chart(S(gn)),
=1

— n — o =
¢ £) a€R te £

where we have d;, =m; +1,fori=1,...,n, and m,,..., m, are the (classical) exponents
of g,. On the other hand, it is known (see [10]) that char,(H(g,)) coincides with the
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4946 C. Lecouvey and C. Lenart

Hall-Littlewood polynomial Q/,, namely, we have

1
cmwmw=%=%mnl4w=§K%m%
a€R A€P,

where

Wot) = > ™,

weW

and sf" is the Weyl character associated to the finite-dimensional irreducible represen-

tation V(A) of g,, with highest weight A. In particular, we have the identity

n

1 —td
WMQ:II1—t'
i=1

The polynomials Kf”;‘)(t) are the generalized exponents of g,,, and they coincide
with the Lusztig t-analogs associated to the zero-weight subspaces in the representa-
tions V(A). We thus have

B = > (-D'MPwk+p) —p),

weW

where p is half the sum of the positive roots, and P, is the t-Kostant partition function
defined by

[] = = 3 rane.

a€Ry BeQy

The classical exponents m,,...,m, correspond to the adjoint representation of g,,
namely, we have
n
Kzp® =2 1™,

i=1

where « is the highest root in R_.
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2.2 (Classical types

Recall the following values of the classical exponents in types A — D:

type X exponents

A, 1,2,...,n—1

B, 1,3,...,2n—-1

C, 1,3,...,2n—1

D 1,3,...,2n -3, and n — 1.

n

In classical types, char,(S(g,,)) is easy to compute. Let P, be the set of partitions
with at most n parts and P be the set of all partitions. The rank of the partition y is
defined as the sum of its parts and is denoted by |y]|.

In type A4,,_;, we start from the Cauchy identity

[ =57 = = #'s,05,0.

tx:
1<ij<n i¥j y€Pn

Here s, (x) stands for the ordinary Schur function in the variables x, ..., x,. By setting
Vv, = )%l foranyi=1,...,n, and by considering the images of the symmetric polynomials

in RAn-1 = Symlx,,...,x,]/(x; ---x,, — 1), we get

char,(SGeL,) =1 -1 > t"s, x)s,xH=10—-0) > t"lss,. = (1)
y€Pn y€Pn

=1-1 > " > s x).

y€Pn rePn_1

Here y* = —w,(y), where w, is the permutation of maximal length in S,,, and we use
the same notation for a symmetric polynomial and its image in R4»-1. Recall also that
the partitions of P,,_; are in one-to-one correspondence with the dominant weights of
sl,,. More precisely, we associate to the dominant weight a,w; + --- + a,,_;0,_; the
partition A = (1%,...,(n — 1)% 1), where u' denotes the conjugate of u. It is also
worth mentioning here that two partitions in P, whose conjugates have the same

parts less than n correspond to the same dominant weight of sl,,. So the coefficients

A
V.Y

the decomposition of V(y) ® V(y*) into irreducible components. Similarly s, (x) is not

c’ . are not properly LR coefficients, but only tensor multiplicities corresponding to

properly a Schur polynomial but belongs to R4-1 (see Section 3).
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For any positive integer m, define 7?,(,%) as the set of partitions of the form 2«
with « € P, and 73(1 "V as the subset of P,, containing the partitions of the form (2«)’

50 S . .
ntl Apz”, and s;"?" the irreducible characters

with « € P. Moreover, we denote by s;
corresponding to the highest weight A, for the Lie algebras of types B,, C,,, and D,,
respectively.

In type B,,, we start from the Littlewood identity [21]

M b= 3 o

tyi¥j

1<i<j<2n+1 i an

St<y=ent vePan i1

and we specialize y,, 1 = 1,y5;_; = X;, and y,; = &, forany i = 1,...,n. This gives
1

2 50
char;(S(s0,,,,1)) = Z vl Z Ch(509941)S5 21,
T

where ¢’ (505, ;) is the branching coefficient corresponding to the restriction from gl,,,,

to 505, 1. Similarly, we can consider the identities

[

1<i<j<2n

Z tvl/2g ,(¥) and H

73;;1) 1§i§j§2n

= > t"%s,m.

1—tyy: tyly] - WLYJ P
2n

They permit to write

char,(S(spy,)) = Z gvi/2 Z C (5p2n)ssp2" and

vep®  AePy

char,(S(s0,,)) = z ¢vl/2 Z C (OZn)sOZ".

vePLD 1€Pn
Note that here we considered the character s2** of the O(2n)-module V9@ (i)
parametrized by the partition A. When A, = 0, we have sfz = s,°?". Nevertheless,

when 1, > 0, V92" () decomposes as the sum of two irreducible SO(2n)-modules
whose highest weights correspond via the Dynkin diagram involution ¢ flipping the
nodesn—1andn.For1l <i <n—1, define q; as the number of columns of height i in A,

and a,, = 21, + a,_,. We then have

Ozn 502n

50
Si = SuG) t Siwi): @
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where 0(A) = X1 | a;0;.

Since we have

o1 -t 1 I ,
char,(H(g,)) = [Ty € ) H I H(l — tdl)chart(S(gn)),
—1

— n — o =
¢ £) a€R te i

we can write

K, 0(®)

W’Sgn = Chart (S(gn)) .
i=1

char, (H(g,)) =

n — tdi
L:](l t ) A€P,

K;.0(t)

So we get the following simple expressions for the formal series T 0
=1 =1

Proposition 2.1. We have the following identities:

(1) IntypeA for any A € P,_,, we have

n—1r
sl
[T, (1 -t S

Y€Pn

The factor (1 — t) in (1) gives the missing “d; = 1" in type 4,,_;.
(2) Intype B, for any A € P,, we have

K502n+1 (t)
+,0 _ [v[/2 A
Mo~ 2, e
= 1,1

Ve on+1

Here the partition A can have an odd rank.

(3) Intype C,, for any A € P,, we have

;e (1)

v|/2 A
Moo~ 2 e

P2
n
(4) Intype D, for any A € P, we have

0(2
Ko

= t"/2ck(0,,).
(1 _ tn) H?:_11(1 _ t2i) Z Cv( 2n)

vePLY

4949

(3)
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4950 C. Lecouvey and C. Lenart

For type D,,, the dominant weights appearing in (3) are not necessarily parti-
tions, whereas this is the case in Assertion 4 of the previous proposition. So here we

have in fact to write

502n(t) S02n __ 502n(t) 02n
ZH 11— Sw - Z H (1-— td)k+
wep, 11i=1 AePy AP, H11=1
Kod" 050 + Koo ®Sia)
2 [T, — %)
w€P+,CU¢'Pn71 =1
02
Z (n)(t) SOZn
)\. ’
rePp H’ 1 (1 td)

where

O(2n) 50 50
® =K, 53 0® =K ,75))00

for any partition A € P, \ P,,_; and w() defined as in (2).

The notation Kf[g(t) is a little unusual in type A where the polynomials

n—1r

K; ["(t) coincide with the Kostka polynomials, which are usually labeled by pairs of
partitions with the same rank (i.e., by using the weights of gl, rather than those of sl,).
When Ksl" (t) # 0, the rank of A should in particular be a multiple of n. Also the sum in
the right-hand side of Assertion 1 is in fact infinite. Indeed, to the weight A correspond
an infinite number of partitions, since adding columns of height n to a Young diagram
does not modify the corresponding weight of sl,,.

We have then by a theorem of Lascoux and Schiitzenberger [24]

5[n (t) — Z tChn(T),

TeSST(A)o

where SST(1), is the set of semistandard tableaux labeled by letters of {1 < --- < n} of
weight © = (a,...,a) = 0 (i.e., each letter i appear a times in T) where a = |A| /n, and
ch,, (T) is the charge statistic evaluated on T. Recall that this charge statistic is defined

by rather involved combinatorial operation such as cyclage on tableaux.
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Combinatorics of Generalized Exponents 4951
2.3 Stable versions

When the ranks of the classical root systems considered go to infinity, the previous
relations simplify. In particular, for n sufficiently large, we have the following stable

branching formulas [12]:

A _ v A _ v A _ v
C, (805, 41) = Z Ch2sr Cy(8Pay) = Z Cy 25y, and cj(soy,) = Z Cy25°
seP seP seP

Observe that, for g = s0,,,,, this implies in particular that c’(so,,,;) = 0 when the
ranks of A and v do not have the same parity, which is false in general. Thus, we get the

relations

Ky (1)

= b2y .
T120, (1 — ¢2) Z Z t""“c; s intype B,, when [1| is even,
1=

veP1LD §eP@
K75 (0 g
Mg = & 2 e, intyeCs,
i=1 veP@ §eP LD
D
K, 5@
2,0 2 s
Tea—e - 2 2 t"d, intypeD..
=1 vePAD §eP?
In particular, this gives
o0 o0 o0 COC
Kys () =K 5 (1) and Kjg(t) =K% (). (5)

All these stabilized forms are in fact formal power series in t equal to zero when the
rank of A is odd (see [27]). The previous identities permit to restrict to the study of
the stabilized formal series Kf};’(t) when A runs over the set of partitions with even
rank. We are going to see that stabilized form of the generalized exponents are easier
to handle than their finite-rank counterparts. Observe also that stabilized versions of
Lusztig t-analogs [27] exist in general (i.e., for nonzero weights) in connection with the
stabilization of the Brylinski filtration. Finally, in type A, the Kostka polynomials Kf[g ®

stabilize to zero when n becomes greater than the rank of A.

3 Charge in Type A, _, and Crystal Graphs

We are now going to explain how the interpretation of the charge for zero-weight

tableaux in terms of crystals obtained in [23] naturally emerges from (4), without any
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4952 C. Lecouvey and C. Lenart

reference to cyclage. In particular, we obtain a direct proof of the positivity of the
polynomials K‘f”é‘l (t); for simplicity, we drop the superscript A,,_;. We refer the reader
to [11, 16] for complements on Kashiwara crystal basis theory, including the standard
notation.

Step 1: Observe that c -

)};,}/* = ¢, .+ for y,x in P, whose conjugates differ only by their

parts equal to n. So by decomposing each x € P,, as k = (y,n™), we get

“+00
1
[ P s n\m _ K|
2 tHlege= 2 e > @ =—0 > e
k€Pnp y€Pn-1 m=0 y€Pn-1
Therefore, (4) can be rewritten in the form
K; o(0)
- P Z tlylcﬁr}’*’ (6)
Hi:l -1 7€Pn-1

where now all the partitions are in one-to-one correspondence with weights of sl,.

Step 2: Recall that R4»! is endowed with the scalar product (-,-) defined by

<frg> = [fapE]Ol

where a, =[] (x%/2 — x~%/2) in R4n-1, the bar involution sends x* to x * and for any

(X€R+
u € R4-1, [u], is the constant term in u . We then have ($3,8,) =8, It follows that the
adjoint of the multiplication by s, in R47-1 for this scalar product is the multiplication

by s,«. This gives
c . =1(s,5,.58)=/(s,,S,8)=c
IO A s A TS S A 27

Step 3: For any A € P,_,, write B() for the crystal graph of the irreducible sl,-module
of highest weight A. Let b, be the highest weight vertex of B(1). For any vertex b € B(),
set

n—1

€(b) = Z Si(b)(l)i [S Pnfl'

i=1

Also given «,8 in P write k < § when § — k is a dominant weight. We know that

n—1

¢/, = card {by ®@beB(y)®BM) |wt(b) =0 and e(b) < y] .

So we have in fact C;,)L = card(B, (y)), where

B, (y)={beBX) |wt(b)=0 and e(b) <y}
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Combinatorics of Generalized Exponents 4953

Now for any b € B(}),, that is, b € B(A) such that wt(b) = 0, set
SO)={y € Py | &) =y}.

We have in fact
S(b) = e(b) + Pr_1

thatis, y € S(b) if and only if there exists « € P,_; such that y = &(b) +«.
Step 4: Write

S =SS o TS gl -

y€Pn-1 beB(1)g y€S(b) beB(\)g k€Pn_1
1
— le(b| k] _ le(b|
- Z t Z = l—In—l(1 _ ti) t ’
beB(A)o k€Pp_1 i=1 beB(L)o

In view of (6), this gives the following result.

Theorem 3.1. For any partition A € P,,_;, we have

K; o) = Z tle®I

beB(M)o
Remark 3.2. Since b € B(A),, we haveforanyi=1,...,n—1 that ¢;(b) = ¢;(b). Moreover,

n—1

leB)] = > ie;(b),

i=1

so the previous expression of K, 4(t) is the same as that obtained in [23]. The interesting
point is that it emerges directly from our computations and does not use the definition
of the charge (as in [23]) given by Lascoux and Schiitzenberger in terms of cyclage of

tableaux or indices on letters of words.

Remark 3.3. This also permits us to recover the multivariable version, defined by

“1

Koty ity T a0 2
nT 1y = Z Hti Cyy*r
i=1 Y y€Pp_1 i=1
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4954 C. Lecouvey and C. Lenart

where y = > ! a;(y)w;. Namely, we have

n—1
&;(b)
Koty ity )= > ]t

beB(A\)g i=1

4 Stabilized Generalized Exponents and Crystal Graphs of Type A

We are going to explain the way in which the formula

Ko (1)

2,0 2 .

12,1 — %) > > Mg intype C,
1=

veP@ sePD)

can be obtained from the combinatorics of crystals of type A, which leads to
a combinatorial proof of the positivity of the stabilized generalized exponents (or
stabilized Lusztig t-analogs). In particular, this will provide a combinatorial description
of Kff’g(t), and thus a similar description of Kffg (t) and Kfff (t), by (5). Furthermore, this

will give a flavor of the methods we will employ in the non-stable type C,, case.

4.1 Crystal of type A4

Recall that crystals of type A, are those associated to the infinite Dynkin diagram

O
|

on

ow

The partitions label the dominant weights of sl, .. If we denote by (v;).; the sequence

of fundamental weights of sl, ., we have for any partition A € P
A= z aia)i,
i

where a; is the number of columns with height i in the Young diagram of 1.

To each partition A corresponds the crystal B(A) of the irreducible infinite-
dimensional representation of sl, ., parametrized by A. A classical model for B(}) is that
of semistandard tableaux of shape A on the infinite alphabet Z_, = {1 <2 <3 < ---}.
Given b € B(1), we define

+00 +00
e(d) =D &i(b)o; and ¢(b) =D ¢;(b)wy,
i=1

i=1

020z ¥snbny Gz uo isenb Aq £8€6+¥0G/2761/91/020Z/9101HE/UII/WOd dNo"dlWapede//:sdiy WOl papeojumoq



Combinatorics of Generalized Exponents 4955

where both sums are in fact finite. The weight of b € B()) then verifies wt(b) = ¢ (b)—e(b).

4.2 Combinatorial preliminaries

In the sequel we consider the order < on P such that A < u if and only if u — 2 € P$°,

that is, u — A decomposes in the basis of the w;'s with nonnegative integer coefficients.
The partitions in P (resp. in P'))) are those that can be tiled with horizontal

(resp. vertical) dominoes. Equivalently, a partition « belongs to P (resp. P(I'D) if and

only if the number of columns (resp. rows) of fixed height (resp. length) is even. So

keP? = k= ZZaia)i and « e PV —= k= Zaini.

1 l

Set PE = P@ npUD 1t follows that

K € PEE’ — Kk = ZZaiwzi,

1

that is, 2 decomposes in terms of the fundamental weights w,; with even coefficients. In

the general case of a partition « € P written as
K = Z ala)l,
i

we define

K = Z(aZi — (ay; mod 2))w,; and K =k — Kpg = Za2i+1“’2i+1 + Z(aZi mod 2)w,;.

l 1 l

So kg and « P are partitions and «g € PH.

Example 4.1. Consider
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4956 C. Lecouvey and C. Lenart

Then

Ky = and «B =

We denote by szo) and P%°

(11, the sublattices of P = (PZw; defined by

i>1

PG = D2Zw; and P, = DZwy,.

i>1 i>1
Observe that P3) NP = P, and PT ;) NP =P ;). We have also

(1,1)

H
PF =P NPT, = 69122‘1’21‘ and P~ =PNP3Z NPT,
i>
We define the order <g on P by
A<gu e pu—rePE

4.3 A combinatorial description of the series K S°3 (t)

Definition 4.2. Consider a partition u. A vertex b € B(A) is called pu-distinguished if
there exists (v,8) € P@ x P11 such that

ob)=v—pu and &) =68— u.

Definition 4.3. Let D(1) be the set of all vertices in B()) that are u-distinguished for at

least a partition u.

Clearly, if b is pu-distinguished, then b is (u + «)-distinguished for any x € P¥
(change (v,8) € P@ x PAD to (v +«,8 +«) € PP x PUD) For any b € D(}), set

S, ={u € P | bis u-distinguished}.
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Lemma 4.4. The set S, has the form
Sb = Up + Pm,

and u; is minimal for <g such that b is p,-distinguished. Moreover, for any u € S, we
have u; = .

Proof. It suffices to show that S, contains a unique element p; minimal for the order
<m, since each element u of S, can then be written in the form u = p, + « with « in PH,

So consider u and p’ two elements in S, minimal for <g in S,. Write
w= Z a;0; and u' = Z aiw;.
i i

Since p is minimal in S, we must have a; € {0, 1} for any even i. Indeed, if a@; > 2 for an
even integer i > 1, we could consider u” = — 2w; € P. Since ¢(b) = v — . > 0, we can
consider v” = v — 2w; € P,,). Similarly, we have e(b) =8 — u > 0, 50 8" = § — 2w; € Py,

(as i is even). Finally, we obtain a contradiction since
@b) =1V -’ and &) =8 -,

so u” <g w belongs to Sy,
We prove similarly that a; € {0, 1} for any even i. Now we can use that u and u’

belong to S, which implies that
p=p'modPh® and u=p'modPT).

Since P5)° N P = P> = X, yen 2Zw;, we get in fact

o -+00
p = modPg™.

This imposes that a; = a; for any odd i and a; = a; mod 2 for any even i. But we have
seen that for any even i, both a; and a; belong to {0, 1}. So we obtain finally that a; = a;
for any i even also. This permits us to conclude that © = ' and S, admits a unique

minimal element for <g. [ |

The following proposition makes more explicit the structure of the distinguished

tableaux.
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4958 C. Lecouvey and C. Lenart

Proposition 4.5. Let b be a vertex of B(.) with A € P. Then b is distinguished if and
only if

(1) &;(b) = 0 for any odd i,

(2) ¢;(b) is even for any odd i.
Moreover, we then have uj, = > ;(¢y;(b) mod 2)w,; =: ¢(b) mod 2 .

Proof. If ¢;(b) = O for any odd i, then ¢(b) belongs to PV, and thus &(b) + 1 belongs
to PV for any p in PV, Since ¢(b) is even for any odd i, we will have that ¢(b) + i
belongs to P® for any p in P4V such that the coefficients of w; with i even in the
expansions of u and ¢(b) have the same parity. Finally, b is u-distinguished for any
such pu.

Conversely, assume there exists u in P such that (b) + u € PV and ¢(b) + 1 €
P@. Since the coefficients of »; with i odd in the expansion of (b) + p are equal to 0,
and both ¢(b) and p are dominant weights, we must have that they belong in fact to
P Therefore, the condition ¢(b) + 1 € P® implies that ¢;(b) is even for any odd i.

To determine pu;, we have to choose u minimal for the order <g. Since ¢;(b) =0
for any odd i, we have in fact to choose u minimal for the order < so that ¢(b) +u € P@.
This imposes that u;, = > ;(¢,;(b) mod 2)w,,. |

Proposition 4.6. We have

SO gy = S de®tmlz S gz,

VeP®@ sePl) beD(1) xePH

Proof. Recall that CK'(S = card{b € B(») | e(b) < § and @(b) = e(b) + v — §}. For a
fixed b € B(A), the idea is to gather all the pairs (v,8) € P@ x PV such that by ® b
is of highest weight v. This is equivalent to saying that b is u-distinguished with pu =
v —@(b) =35 — e(b). So we get

SO g, = S e®rni,

veP®@ sePD) beD() ueSy

Now by Lemma 4.4, we can write ¢(b) + u = ¢@(b) + up, + «, where k = u — u;, belongs to
PH. This gives

SO g = S de®tmlz S g2,

veP®@ seP D) beD() kePH ]
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Theorem 4.7. We have

Coo
KA,O (t) = Z te®+upl/2.
beD(L)

Proof. It suffices to observe that
3 ez - ___r
[12:(1 - t%)

kePH

We can get similarly a multivariable version. For any b € D(}), set

ob) +u, = ZZai(b)wi e PP,

1

and assign to each fundamental weight w; a formal variable t;. The decomposition
v=9(b) + up +« with « e pB

will give the multivariable version. First let t = (t;,t,,...t,,...) be the sequence of
formal variables t;,i > 1. If one prefers, one can also consider each t; as a real number
in [0, a] with @ < 1. For any B € P** such that 8 = X_; B;;, set tF =], tfi.

Theorem 4.8. Define the multivariable formal series Kf"g(t) by

C
KX (1) 1
2,0 2 : 2 : SV AV
_— t2'c .
[1:2, =ty e

veP@ seP L)

Then we have

Coo 1
KA,O (t) = Z t2@®)+np)
beD(r)

Remark 4.9. Multivariable generalized exponents defined via the Joseph-Letzter fil-

tration already appear in the literature (see [5]).

4.4 Distinguished tableaux and zero-weight King-type tableaux

We are now going to explain how the distinguished tableaux we introduced previously
to describe the stable generalized exponents are in natural bijection with zero-weight

tableaux very close to King tableaux. We will in fact consider the sets T, (1) of
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4960 C. Lecouvey and C. Lenart

semistandard tableaux of shape A on the infinite-ordered alphabet {1 <1 <2 <2 < ---}.
There will be no condition on the position of the barred letters here, contrary to the
definition of King tableaux.

We start by discussing the structure of the distinguished tableaux. Recall the

notation of Section 4.3. For any distinguished vertex b in D(}), set

0(b) = @(b) + 1y,

and let 9j(b) be the coefficient of w; in the expansion of #(b). Since #(b) is a dominant
weight for sl_, it can be regarded as a partition. Recall also that || is even, says |A| =
2¢. In the sequel of this section, we shall assume that B(1) is realized as the set of
semistandard tableaux on the infinite-ordered alphabet Z_,. For any integer i > 1, a
reverse lattice skew tableau on {2i — 1,2i} is a semistandard filling of a skew Young
diagram with columns of height at most 2 by letters 2i — 1 and 2i whose Japanese
reading is a lattice word (i.e., in each left factor the number of letters 2i is less than or
equal to that of letters 2i — 1).

Example 4.10. Assume i = 2. Then

3 3|3|3\

[3]3]4]4

3 3|4|

is a reverse lattice skew tableau on {3, 4}.
The following proposition is a reformulation of Proposition 4.5.

Proposition 4.11. A semistandard tableau T of shape A is distinguished if and only if
for any integer i > 1, the skew tableau obtained by keeping only the letters 2i — 1 and 2i

in T is a reverse lattice tableau, and the rows of 8(T) have even lengths.

We now explain the correspondence between distinguished tableaux and zero-
weight King-type tableaux.
Observe that a tableau T in T (%) of weight zero is a juxtaposition of skew

tableaux of weight 0 on {i,7} obtained by keeping only the letters i and 7. So to obtain a
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bijection between the set of distinguished tableaux of shape A and the subset Tgoo ) C
T¢. (1) of zero-weight tableaux, it suffices to describe a bijection between the set of
reverse lattice tableaux on {2i — 1, 2i} of given shape and weight in 2w;Z.(, and the set of
skew tableaux on {i,7} with weight 0. Now recall that we have the structure of a Ugy(sly)-
crystal on the set of all skew semistandard tableaux of fixed skew shape both on {2i —
1,2i} and {i,7}. By replacing each letter 2i — 1 by i and each letter 2i by 7, we get a crystal
isomorphism f. The distinguished tableaux correspond to the highest weight vertices
of weight in 2w;Z_  for the {2i — 1, 2i}-structure, whereas the tableaux of weight 0 give
the vertices of weight O in the {i,7}-crystal structure. By observing that only U, (sl,)-
crystals with highest weight in 2w;Z_ ; admit a vertex of weight 0, which is then unique,
we obtain that the map C that associates to each zero-weight vertex in the {i,7}-crystal
structure its highest weight vertex in the {2i — 1, 2i}-crystal structure is the bijection
we need. More precisely, the map C (resp. its inverse) is obtained as usual: we start by
encoding in the reading of each {i, 7}-tableau (resp. of each {2i — 1, 2i}-tableau) the letters
i by + and the letters 7 by — (resp. the letters 2i — 1 by + and the letters 2i — 1 by —),
and next by recursively deleting all the factors +—, thus obtaining a reduced word of
the form —+™ (resp. +2™). It then suffices to change the m letters 7 corresponding to
the m surviving symbols — into i and to apply the isomorphism f~! (resp. change m
letters 2i — 1 corresponding to the rightmost m surviving symbols + into 2i and apply

the isomorphism f).

Example 4.12. The skew tableau of weight 0 on {2, 2} corresponding to (7) is

2] 2]2]

NN

[2]2]2]2

2]2]2]

In the sequel, we shall abuse the notation and identify the two crystal structures

corresponding up to the isomorphism f.

Remarks 4.13.

(1) It seems not immediate to read 6 directly on zero-weight tableaux. The
simplest way to do this is to start from a tableau T € Tgoc (A) and compute
its associated highest weight tableau H(T) for the U,(sly @ - - @sly)-structure

obtained by considering only the action of the crystal operators indexed by
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odd integers. So we get

Coo 10 (H(T))|
Kst= > t z .
TeTg (M)

(2) Let K_ (1) be the set of King tableaux on the infinite-ordered alphabet {1 <
1<2<2<---}.Recall that T e T (») belongs to K (1) when, for any i =
1,...,n, the letters in row i are greater than or equal to i. Since the number of
barred letters can only decrease when we compute H(T), the tableaux T and
H(T) either both belong to K, (%) or belong to T (1) \ K_(A). Nevertheless,
the set Kgoo (A) of King tableaux of type C,, and zero weight is only strictly

contained in Tgoo (1) due to the constraints on the rows. In particular, we have

Coo 1
K@ >, 2
Tngoo )

in general, and the finite rank ¢-analog thus cannot be obtained from the

statistic § and King tableaux of zero weight and type C,,.

Example 4.14. Assume A = (1,1). Then we get

To (1) = [ |k e Z>1} and Kg_(A) = { | k e Z>2] )

This gives
H é = 2k—1 and ¢ 2k—1 = wyy for any k > 1.
k 2k 2k
Therefore,
0 2k—1 = 2wy for any k > 1.
2k
Finally

2
Coo 4y _ Coo 4y _ o _ L
K5(t) = Dty and K;5(0) = > t*F = T
k>1 k>1
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5 Type Cn Generalized Exponents via the Sundaram-LR Tableaux
5.1 Sundaram description of the coefficients c) (spyp)

Recall that in type C,,, the equality c%(sp,,) = > scpan c, s only holds when v € P, in

which case we have in fact

C)(span) = Z C s

s

In the general case of a partition v € P,,, we have by a result of Sundaram (see [33,
Corollary 3.12])

A‘ -~
Cy(spgy) = Z Cy 5

sePD

where EX s is the number of Sundaram-LR tableaux, that is, the number of LR tableaux
of shape v/A and weight § filled with letters in {1,...,2n} such that each odd letter 2i + 1
appears no lower (English convention) than row (n + i) in v (the rows being numbered
from top to bottom). Observe that for any partition « in 735?1, a Sundaram-LR tableau
of shape v/A and weight § can be easily turned into a Sundaram-LR tableau of shape
(v + x)/1 and weight § + « by adding letters i in rows i, which does not violate the

Sundaram condition.

5.2 LR tableaux and crystals

Given v, A, u three partitions, the LR coefficient CXM is equal to the cardinality of the four

following sets:

(1) the set of LR tableaux of shape v/A and weight wu,
(2) the set of LR tableaux of shape v/u and weight A,
(3) the set of vertices b € B(A) such that e(b) < u,

(4) the set of vertices b’ € B(t) such that e(d’) < A.

Now there exist bijections between all these sets. Given an LR tableau 7 of shape
v/u and weight A, we obtain the corresponding tableau T(r) in B(1), called companion
tableau, by placing in the k-th row of the Young diagram A the numbers of the rows of t

containing an entry k.
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Example 5.1. For

we get T(1) =

D | W[N]~
o1

(&2 Y N IOV I )

Now we can proceed as in Section 4 by first determining the subset of D) C
B9%2n (1) coming from Sundaram-LR tableaux (D(1) would correspond to all the LR

tableaux as in the previous section). To do this we proceed as follows:

(1) Start with a Sundaram-LR tableau of shape v/A and weight §, and determine
its associated tableau T(t) of shape § and entries in {1, ..., 2n}.

(2) Observe that T, ® T(z) is of highest weight v in B(1) ® B(3).

(3) Compute the combinatorial R-matrix, and obtain T(r) in B(A) such that
T,QT(r) == T; ®T(t). Here we can choose the version of the combinatorial
R-matrix given by the Henriques—Kamnitzer commutor [9, 15], which has
several concrete realizations; see Section 8 for more details.

(4) Finally, define D()) as the subset of tableaux T € D()) for which there exists
v,8) € sz) X 7321'1) and t a Sundaram-LR tableau of shape v/A and weight §
such that T = T(7).

Now, we have

[T a -2

KE’PE?L

since 775.31 is obtained by dilating by a factor 2 the set P, (i.e., each square becomes a

(2n)
5 . one can

H). By using similar arguments (here, we need to use that for any « € P,
produce a Sundaram-LR tableau of shape (v + x)/A and weight é§ + « starting from any
Sundaram-LR tableau of shape v/A and weight §) to those of Section 4, we obtain the

following result.

Theorem 5.2. We have

C
K)L'%(t)= Z t|(0(b)+ll-b|/2‘
beD())
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6 Type C, Generalized Exponents via the Kwon Model

In this section, we refine the results in Sections 4 and 4.4 to the finite type C,, based
on Kwon's model for the corresponding branching coefficients [19, 20]. We also need
to use a combinatorial map realizing the conjugation symmetry of LR coefficients. It
turns out that Kwon's model, the version of the conjugation symmetry map used here,
and the distinguished tableaux in Section 4.3 fit together in a beautiful way. This allows
us to express the related statistic in terms of a natural combinatorial labeling of the
vertices of weight 0 in the corresponding type C,, crystal of highest weight A, namely the
corresponding tableaux due to King [17]. In this way, we obtain a more explicit result

than the one in Section 5 in terms of LR-Sundaram tableaux.

6.1 The LR conjugation symmetry

Consider partitions A € P, and §,v € P, with n < m. We will exhibit combinatorially
the equality of LR coefficients ¢} ; = CK:’S/.
8, namely 6™ = (§1%V < ... < §5V), where we add leading Os if necessary.

Let LR; 5 denote the set of LR tableaux T of shape A and content v/§; in other

Throughout, we denote by §™" the reverse of

words, T € B,,(1) and H; ® T is a highest weight element of weight v, where Hy denotes
the Yamanouchi tableau of shape §. We will construct a bijection T — T’ between
LR; ;5 and LRK: s+ where T’ is viewed as an element of B, (1). The construction has

the following three steps:

Step 1. Apply the Schiitzenberger evacuation [6] (realizing the Lusztig involution) to
T within the crystal B,, (1), and obtain S(T) € B, ().

Step 2. Transpose the tableau S(T) and denote the resulting filling of A’ by S(T)".

Step 3. Foreachi =1,...,m, consider in S(T)' the vertical strip of i's, and replace
these entries, scanned from northeast to southwest, with 87V +1, 67V +2, ..,

respectively.

Example 6.1. Letn =3, m =4, 1 = (4,3,1),v=(5,44,2),5 = (3,3,1), and ™ =
(0,1, 3,3). Consider the following tableau of shape v/§ and content A whose reverse row

word is a lattice permutation, and its associated companion tableau T € B,(}):

lﬂ
Il
|wt\>'~
w
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The tableau S(T) € B,(A) and S(T)* are

S(T) = S(THY =

‘»PN»—-
w
S

‘ N N . .
N

Step 3 above produces

B lWwW I N | =

in Bg(1'). One can then check that the same procedure maps T’ back to T.

Theorem 6.2. The above map T + T’ is a bijection between LR} ; and LRY, 5

Proof. A bijection realizing the conjugation symmetry of the LR coefficients was given
on the skew LR tableaux (of shape v/6 and content 1) as the map p5 in [1]. It is not hard to
show that on the companion tableau it is described by the above algorithm. The key fact
involved here is that the crystal action of the longest permutation in S,,, on the skew LR
tableau corresponds to the Schiitzenberger involution applied to the companion tableau.
This fact is well known to experts and is based on the so-called “double crystal graph
structure” on biwords [22]. According to this, the action of crystal operators on words
corresponds to jeu de taquin slides on two-row tableaux, where the latter are involved

in the construction of the Schiitzenberger involution; see also [1, 6] for more details. W

Remarks 6.3.

(1) It is easy to see that, if we change m in the above construction, Step 1 is
different, but the final result is the same.

(2) It was shown in [6] and [1] that the above map coincides with the maps con-
structed by Hanlon-Sundaram [8], White [38], and Benkart-Sottile-Stroomer
[3]. In fact, Benkart-Sottile-Stroomer also give a characterization of their
map based on Knuth and dual Knuth equivalences. Furthermore, the inverse

of the conjugation symmetry map is described by the same procedures [8].
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6.2 Kwon's model

In this section we describe Kwon's spin model for crystals of classical type [19, 20],
which is also used to express certain branching coefficients and leads to an interesting
branching duality.

We start with the Lie algebra sp,,, with the corresponding long simple root
being indexed by 0. Consider a dominant weight 1 € P,, and let A*P(%) := nAf]p +
A&y + Aney + ..., where Ag' is the O-fundamental weight for sp.,. Kwon first constructs
a combinatorial model for the crystal B(sp_,, A°? (1)), which we now briefly describe.

The model is built on a certain family T"(A,n) formed by sequences T :=
C,C,...C,, of fillings with positive integers of column shapes. These sequences satisfy
the following conditions:

(1) each pair C,_;C,; is a semistandard Young tableau (SSYT) of shape
A + 8£§XI,SE?V)’, denoted by T;, where § is some partition in Péz’l), which
means that §,; ; =8, fori=1,...,n;

(2) each pair (T}, T;,,) satisfies certain compatibility conditions, see [19,

Definition 3.2].

For each i > 0, Kwon defines crystal operators e;, fl on the set of pairs of
columns described in (1) above and then extends them to T*P(A,n) via the usual tensor
product rule. With this structure, it is proved that T*? (1, n) is isomorphic to the crystal
B(sp,,, AP (1)).

Following [19], we introduce further notation related to the above objects. The
left and right columns of T; defined above are denoted by TiL and TLB, respectively. The
bottom part of TiL of height A; is denoted by Titaﬂ; the remaining top part together with
TLB, which forms an SSYT of rectangular shape (85?31,85?" !, is by denoted Tib °% 1n the
filling T the columns are arranged such that TP := (TdeY, cees TﬁOdY) is a filling of
the shape (§')" denoting the rotation of §' by 180 degrees. Kwon also uses the notation
tail . (T{aﬂ, ..., T¥) which is a filling of the shape A". As usual, content(T) is defined
as the sequence (cy, ¢y, . ..), where c; is the number of entries i in T. We identify T with its
column word, denoted by word(T), which is obtained by reading the columns from right
to left and from top to bottom. Let L(T) be the maximal length of a weakly decreasing
subword of word(T).

Lemma 6.4. [19] If L(T) < n, then we have
(1) TP°% js an SSYT of shape (§')" for some § € 73;1’1), and Tt is an SSYT of
shape 1/;
(2) T = TPodY @ Tl where = denotes the usual (type A) plactic equivalence.

020z ¥snbny Gz uo isenb Aq £8€6+¥0G/2761/91/020Z/9101HE/UII/WOd dNo"dlWapede//:sdiy WOl papeojumoq



4968 C. Lecouvey and C. Lenart

Now fix a partition v € P,,. Consider the set LR}(sp,,,) of type A highest weight
elements T in T*P(A,n) with content(T) = v/; in other words, we have ¢,(T) = 0 for
alli > 0.

Theorem 6.5. [19] The cardinality of LR} (sp,,) is equal to the branching coefficient

ch(spa,)-

Considering T in LR (sp,,,), we have by definition T = H,,. Thus, in the special
case v € P,, it follows from Lemma 6.4 that Thody — Hy and Ttail ¢ LRKﬁ s for some § €
7321'1). Here and throughout, we use implicitly the fact that the crystal operators preserve

the plactic equivalence. Based on the above facts, the following result is proved.

Theorem 6.6. [19] Assume v € P,,. The map T > T'! is a bijection

LR} (spy,) — || LRY ;.
sePLY

As CX: s = C; s, Theorem 6.6 gives a simple combinatorial realization of the well-

known stable branching rule [12] (for v € P,):

C)(span) = Z C 5

sepgLy

Without the assumption L(T) < n, Lemma 6.4 fails, that is, Thody gnd Tt are
no longer SSYT of the corresponding shapes. Kwon addresses this complication in [20,
Section 5], by first mapping T = C,C,...C,, to a new filling T. The construction is
based on jeu de taquin on successive columns, which is used to perform the following

operations in the indicated order:

e move A, entries from column C; to the 2nd column;

e move A, entries from column Cy to the 3rd column (past the 4th column in
between);

e continue in this fashion, and end by moving 1,, entries from column C,,,_, to

the n-th column (past the columns in between).

It is easy to see that the above operations can always be performed. The shape of the
filling T is a skew Young diagram, obtained by gluing A’ to the bottom of (§'), such

that their 1st columns are aligned (we view (§')" as a diagram with 2n columns, where
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possibly the leading ones have length 0). The fillings of shapes A’ and (§')" are denoted

tail

by T" and TbOdY, respectively. We have an analog of Lemma 6.4.

Lemma 6.7. [20] The following hold:

(1) T°%Y is an SSYT of shape (§)" for some § € Péil’l), and T is an SSYT of
shape 1/;

The difficulty lies in the 1st part of this lemma, whose proof is highly technical.
The 2nd part follows from the 1st one simply by noting that jeu de taquin is compatible
with the plactic equivalence and that the row and column words of a skew SSYT are
placticly equivalent.

In [20, Remark 5.6] it is observed that, if L(T) < n (in particular, if T € LR"}(spZn)
and v € P,), then we have TPOW _ hody gpg TR — Tl 5o Lemma 6.4 is a special
case of Lemma 6.7. In fact, we can show that the mentioned equalities also hold for
the elements of LR%(sp,,,), for any v € P,,,. This leads to the following generalization of
Theorem 6.6. To state it, we define ﬁ;ila, to be the subset of LRK:’(S, consisting of fillings
S with the following property: denoting the 1st row of S by (r; <... <rp), forp <n, we
have

rev ngv

ry > 850 = fori=1,...,p. (8)

Let ¢} ; be the cardinality of LR;, .

Theorem 6.8. Consider T in LR%(sp,,,), and let (§')" be the shape of TP°dY,
(1) We have T*°% = H,, and T*! € LR;, ;.

(2) The map T — Tl is an injection

LR (spy,) —> |_| LR} 5,
5Py

. . . —
and its image is UaeP“'“ LR;, 5.
2n !

Proof. Consider the filling T obtained from T via the procedure described above. Since

T = H , it follows that TPody _ Hy and Thil ¢ LRKﬁ 5 by Lemma 6.7. Thus, the i-th

vV
column of the SSYT T°°Y is 1<2<...<8%), fori=1,...,2n.
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The procedure T — T, which is based on jeu de taquin on successive columns,
is reversible. We claim that this reverse procedure T > T simply slides the columns of
Tl horizontally (i.e., restricts to horizontal jeu de taquin moves) from positions 1,...,n
within T to positions 1,3,...,2n — 1, respectively, while the columns of TbOdY do not
move (recall that the columns of T and Tl within T and T have their top entries on
the same row). This means that T°°% — Tbody gpgq T — tail, Therefore, the map
T — T4l is the desired injection. Moreover, the image of this map is contained in
|_|6€73$l,1> ﬁ%,a/ because the columns of T are strictly increasing.

The proof of the above claim is based on the following fact. Consider columns
1l<2<...<k<c <...<cgyand (1 <2 < ... <) with k <[, and assume that we
can move s entries from the 1st one to the 2nd one via jeu de taquin. To do this, we start
by aligning the two columns such that they form a skew SSYT, and this can be done by
placing k < [ in the same row. We claim that ¢; > [, which implies that the resulting
columnsare(l <2<...<k)and(1<2<...<l<c <... <cy), as needed. Indeed, if
c; <l thenk<l—-1,k—1<1l-2,etc, sowe can align the two initial columns such that
all the mentioned pairs are in the same rows. But then at most s — 1 entries can move
from the 1st column to the 2nd one, which is a contradiction.

It remains to prove that any filling S € ﬁii,a’ is in the image of the given map.
Consider the SSYT whose i-th column is (1 < 2 < ... < §;*Y), and glue the columns of
S to the bottom of the columns of the former in positions 1,3,5,.... It is easy to check
that the resulting filling T satisfies the conditions in [19, Definition 3.2], so T € T*P (A, n).
Now observe that the procedure T + T consists of sliding the columns of S within T
horizontally, as far left as possible, which means that TPo _ phody gng TR — tail
By Lemma 6.7 (2), it follows that T = Hy ® S. The latter is a highest weight element, as
Se LRK;IB,, and this implies T € LR (sp,,,)- [ |

By combining Theorems 6.5 and 6.8, we obtain a simple combinatorial descrip-

tion of the branching coefficient c%(sp,,,) in full generality.

Corollary 6.9. We have
)\ pa—
C, (shap) = Z G5
sePLY
6.3 Generalized exponents in terms of distinguished tableaux

The goal is to derive a finite rank analog of the results in Section 4.3, that is, for type C,,.
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We use the same notation, except that everything now happens in finite rank.
Thus, we require A € P,. We denote the underlying type A,,_; crystal by B,,(}),
and the set of distinguished tableaux contained in it by D,,(%). The latter is defined
like in Definition 4.3 and is characterized by the analogs of the two conditions in

Proposition 4.5. Recall the set S;, whose analog is defined for any b € B,,, (1) by
Spni={ne€Py @b +unce Pﬁ), eb)+pue Pézl)}.
Note that the above conditions on u simply mean that
belR,; ford:=e()+uce 7?21’1), vi=eb) +ue PSL)

The analog of the weight u;, denoted py, ,,, is constructed as in Proposition 4.5 (2)

n—1

Iy p = Z((pzl-(b) mod 2) wy; . (9)

i=1

With this notation, we have the analog of Lemma 4.4, namely,

wp +PE ifbeD, (L)
Sb,n — bn 2n 2n (10)
] otherwise.

We also need some new notation. Let D3 (1) be defined by “swapping” the
conditions characterizing D,,, (1) in Proposition 4.5; namely, D, (}) consists of b € B, (})
such that

(C1) ¢;(b) = 0 for any odd i;
(C2) ¢;(b) is even for any odd i.

Let Ezn()») be the subset of D}, (1) consisting of those SSYT satisfying the following flag

condition:
(C3) the entries in row i are atleast2i — 1, fori=1,...,n.

Finally, we define the analogs of e(b), ¢(b), and of n, ,, in (9) by

2n—1 2n—1 n—1

e b) = D egy D)oy, 9*(b):i= D gy (D), py, = D (Egn ;(b) mod 2) wy;.
i=1

i=1 i=1
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Now recall Lusztig's involution S on the crystal B,,(A). This is realized by
Schiitzenberger’s evacuation [6] and is known to commute with the crystal operators
as follows:

€S =Sfon_i+  FiS =Sty (11)

It is then clear that S maps D,, (1) to D7, (4). It also follows that we have

&/(SMD) = ¢an_i (D), ¢;(S(b)) = &3,_;(b), (12)

and therefore

e(d) =¢*(Sb), @B =e"SD), Ipn=HK5p)n (13)
We start with the analog of Proposition 4.6.

Theorem 6.10. We have

e*(b)+/fgln

>3 iz, = >t /2 > gz,

vepgl) SEP&'D beDy, (M) kePE,

The proof of this theorem is based on the following lemma. To state it, let us
recall the LR conjugation symmetry map in Section 6.1. Following the notation used
there, we set m = 2n, and given fixed A we denote by o5 the bijection from LRj ; to

LRK: s+ note that this map uses § in a crucial way, in Step 3 of its construction.

Lemma 6.11. Consider b € LR)‘{lg with § € Pé,lq’l). The SSYT o;(b) satisfies condition (8)
with respect to § if and only if S(b) satisfies condition (C3). So in fact, the 1st condition

is independent of §.

Proof. Let us denote the 1st column of S(b) by (c; < ... < Cp) where p < n. By the

construction of the map oy in Section 6.1, condition (8) for o;(b) simply means

rev rev __ qrev rev rev rev
8ey =681 =965 ..,Scp zazp_l_ 2 -

.

020z ¥snbny Gz uo isenb Aq £8€6+¥0G/2761/91/020Z/9101HE/UII/WOd dNo"dlWapede//:sdiy WOl papeojumoq



Combinatorics of Generalized Exponents 4973

We need to show that this is equivalent to
c>1, ...,Cp22p—1.

The implication (<) is clear since §™V = (6% = 65V < 63% = §;* < ...), while (=) is
only clear if the weak inequalities defining § are strict.

Assuming that (=) fails, pick the largest i such that 82?" = 85?21 and c; < 2i — 1,
where clearly i > 2; we call such an index i bad. Let us assume first that ¢; = 2i — 2, so
855, =857 ,. Since b € LRK'S, we have e(b) < §, so by (13) we deduce ¢,;_,(S(b)) = 0. This
rules out i = p, as well as i < p and ¢;,; > 2i, because in these cases f,; ,(S(b)) # 0,
by the usual bracketing rule for crystal operators, see for example, [11]. It follows that
Ciy1 = 21 — 1, but this contradicts ¢;,; > 2( + 1) — 1, which holds by the maximality of
i. Thus, we must have c; < 2i — 3.

Assuming i > 2, the index i — 1 must also be bad, because otherwise we would

have

2(i—1)—1 SCi—l <Cl§2i—3
By repeating the above argument with i replaced by i — 1, we deduce ¢;_; < 2i — 5. We
repeat the previous reasoning for the indices i — 2,i — 3,...,2 and conclude ¢, < 1. This

leads to the contradiction 1 < ¢; < ¢, < 1, which concludes the proof. [ |

Proof of Theorem 6.10. We define the following subset of Sj, ,;:
Eb,n = {u €Sy, : o5(b) satisfies (8) with respect to §}, where § := e(b) + u.

Letting
D,,(A) := {b € D,,(») : S(b) satisfies condition (C3)},

we observe that its image under S is precisely D, (). By (10) and Lemma 6.11, we have
g p Y Yon Y

_ +PE ifbeD,
Sb,n — My n 2n 2n( ) (14)

otherwise.
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We now follow the approach in the proof of Proposition 4.6. This gives

SO g = S ez

veP® ek beDzn () €Sy n
= > dle®unaliz 37 glelr2
beDap (1) kePL,
- > £ O+, S g2,
beDy,, () kePH

Here the 2nd equality follows from (14), while the 3rd one follows by translating all the
parameters from D,, (1) to Dy, (%) via (13). [ ]

We now derive the analog of Theorem 4.7, and also of Theorem 3.1 in type A.

Observe first we can write more explicitely for any vertex b € B,,, (%)

2n—1

b
") + | 2= D (2n— )[‘9( )]

i=1

Theorem 6.12. We have
Khn= 2 tho®,
beDy,, ()

where
2n—1

che, (0) = > (2n - z)[g(b)w

i=1

Proof. The proofis immediately based on Corollary 6.9 and Proposition 2.1 (3). Indeed,

it suffices to observe that

bl/z — =
Z t (1 _ tZL)

KEPEE ]

6.4 From distinguished tableaux to King tableaux

We follow a similar approach to that in Section 4.4. The goal is to transfer the results
to a natural labeling of the vertices of weight 0 in the type C,, crystal of highest weight
A, via a bijection with Dj, (). Such a natural labeling is given by the King tableaux of
weight 0 [18]. Recall that the King tableaux of type C,, are just semistandard tableaux of
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shape A in the alphabet {1 <1 <2 < 2 < ... < n < 7}, with the additional flag condition
that the entries in each row i are greater than or equal to i. The set of such tableaux of
weight 0 will be denoted by K¢ ().

Consider a tableau b in D,, (%), and let N;(b) denote the number of entries equal
to i. Note first that conditions (C1) and (C2) in Section 6.3 can be phrased as the following

more explicit ones, fori=1,...,n:

(C1’) the subword of the Japanese reading of the tableau b formed by 2i — 1 and 2i
has the property that in each right factor the number of 2i — 1 is less than or
equal to the number of 2i;

(C2') N,;(b) —N,,_,(b) is a (nonnegative) even integer.

Condition (C2) is also equivalent to the fact that the rows of 6}, (b) := e*(b) + ,u};n have
even lengths.

Given b as above, we will map it to a King tableau in Kgn(k). Letting k; :=
N,;(b) — N,;_;(b), we apply the crystal operator 'é’zclli/fl to b, for i = 1,...,n. Note that
these operators commute, and in fact they correspond to a Usl ... @ sl,)-crystal
structure, cf. Section 4.4. Afterwards, we replace the entries 2i — 1 and 2i with i and 7,
respectively, for each i. It is easy to see that the resulting filling has weight 0 and that
the flag condition (C3) turns into the similar condition for King tableaux. So the result
isin Kgn Q).

Moreover, this map has an inverse. Indeed, given a King tableau T, we first
replace the entries i and 7 with 2i — 1 and 2i, respectively. Then we map the resulting
filling to the lowest weight element with respect to the corresponding U, (sl & ... @ sly)-
crystal structure. It is easy to see that the resulting filling is in Ezn(k). For obvious
reasons, we denote this map by T — L(T).

Based on the above discussion, Theorem 6.12 can be rephrased as follows.

Theorem 6.13. We have

Cn
KA,O t) = Z tChCn (L(T)) ,
Tngn )

where

2n—1
(L(T
che, (T = > @2n -1 [WW .
i=1
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Remarks 6.14.

(1) Asnoted in Remark 4.13 (1), there does not seem to be a simple way to express
the related statistic above directly in terms of T. However, the map T — L(T)
is a simple one.

(2) Theorem 6.13 shows that it is more natural to define a statistic for computing
the Kostka-Foulkes polynomial on King tableaux, rather than on the other
important set of symplectic tableaux, namely the KN tableaux [11]. A natural
question is whether the statistic above can be translated to the KN tableaux
via the bijection in [33] and moreover if one recovers in this way the charge
statistic constructed in [25] (which conjecturally computes the Kostka—

Foulkes polynomials); we will be investigating this question in the future.

We have the following analog of Theorem 4.8, cf. also Remark 4.13, related to
the expression of the multivariable generalization of Kf,’é(t), denoted Kf,'(’)(t). Like in
the infinite case, the related combinatorial expression follows immediately from the
(finite type) combinatorics worked out above. Note that the discrepancy mentioned
in Assertion 2 of Remark 4.13 has now been corrected by passing from the set of

distinguished tableaux D,, (1) to its image D7, (1) under the Schiitzenberger involution.

Theorem 6.15. Define the multivariable polynomial Kf 'o(t) by

c
K;5(t) 1,
e, —ty) = Z Z t27Cpse
1= 1

vePﬁ) 56735:1'1)

Then we have

C *
K (6) = Z tfn@M)/2
Tngn )

where

2n—1
0 @(@)/2 _ H tFSi(L(T))/21.
=1

2n—i

We will now continue Example 4.14.
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Example 6.16. Assume A = (1, 1) in type C,,. Then we get

Kgn(x)={|k=2,...,n].

This gives
k 2k —1 2k —1
L . = and &* = Wo(n— foranyk=2,...,n.
() 2k 2k 2(n—k+1) Y
Therefore,
2k—1
0; = 2w2(n_k+1) for any k= 2,...,n.
2k
Finally,
n n—1 n—1 tz tzn
Cn Cn 2k -
KA,O(t) = th(n—k+1) = Z t2k and KA,O(t) = Z t°t = —1 —Z
k=2 k=1 k=1

7 Three Applications

In this section, we present three applications of Theorem 6.13

7.1 Growth of generalized exponents

First we analyze the growth of the generalized exponents of type C,, with respect to the
rank n.

The (weight 0) symplectic King tableaux of type C,, embed into those of type C,,
by changing the entries k,k to k + 1,k + 1, for all k, respectively. Moreover, it is easy to
see that this map preserves the statistic in Theorem 6.13. So we obtain the following

result, which to our knowledge is new.

Theorem 7.1. For any integer n and any partition A with at most n parts, we have
c Cn

K07 () — K (1) € Zoolt].

7.2 Reducing a type C generalized exponent to one of type A

We now prove a conjecture of the 1st author [25]. This conjecture is the 1st step in the

construction of the type C, charge statistic in [25] and proves the conjecture that this
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charge computes the corresponding Kostka—Foulkes polynomials in the case of column
shapes; see Remark 6.14 (2).

We now label the Dynkin diagram of type C,, such that the special node is n.
Consider the fundamental weight Wap where p € {1,...,|n/2]}. All the zero-weight
vertices in the crystal B(w,,) belong to the same type A, ; component, which has
highest weight y,, :=¢; +... + &, —&,_,; —... — &,, where ¢; are the coordinate vectors

in R™. In type A this weight corresponds to the partition (1?27, 2P).

n—1-

Theorem 7.2. We have

C An—1 .2
szp,o(t) = Ky:o (t%).
Before proving this theorem, we need to describe the KN tableaux for some

column shape (1¥) [13], which index the vertices of the type C, crystal B(wy).

Definition 7.3. A column-strict filling C = (c; < ... < ¢;) withentriesin{l <... <n <

7 <...< 1} is a KN column if there is no pair (z,Z) of letters in C such that
q—p=<k-z

We will need a different definition of KN columns, which was proved to be

equivalent to the one above in [33].

Definition 7.4. Let C be a column and I = {x; > ... > x,} the set of unbarred letters z
such that the pair (z,Zz) occurs in C. The column C can be split when there exists a set of

r unbarred letters J = {y; > ... > y,} C {1,...,n} such that
e y, is the greatest letter in {1,...,n} satisfying y, < x,,y, €C,andy; ¢ C,

e fori = 2,..,r, the letter y; is the greatest one in {1,...,n} satisfying y; <

min(y;_,,x;), y; € C,and y; € C.
In this case, we say that x; is paired with y;, and we write

e [C for the column obtained by changing x; into y; in C for each letter x; € I,
and by reordering if necessary;
e rC for the column obtained by changing X; into y; in C for each letter x; € I,

and by reordering if necessary.

The pair (IC, rC) will be called a split column.
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Example 7.5. The following is a KN column of height 5 in type C,, for n > 5, together

with the corresponding split column

4 1|4
5 2|5
c=|5|, (c,rc)=|5|3
4 4|2
3 3|1

We used the fact that I = {5 > 4},soJ = {2 > 1}.

For the definition of the crystal operators on KN columns via the well-known
bracketing rule, we refer to [11].

Cn

Proof of Theorem 7.2. We use the King tableaux for computing K o o(t) via Theorem

w;

6.13. Meanwhile, K;;’fal (t) is computed based on an analog of Theorem 3.1, namely

ng—l (t) = Z 2 (n—iei(h) (15)
beB(A\)o

which is referred to [23]. For this computation, we use the crystal structure on the
type A,_; component of highest weight y, of B(w,,), which contains the zero-weight
KN tableaux.

First we need a bijection between the zero-weight King tableaux and KN tableaux
of shape (1?P). Let Ck=(c; <€ <...<Cp<Cp) be such a King tableau, which means
thatc; > 2i—1and¢; > 2i,fori =1, ..., p; but these conditions are equivalent to c; > 2i.
Let Cxy = (dy < ... <dp < d_p < ... < d,) be a zero-weight KN column, where we note
the different order used on the alphabet {1,...,n,7,...,1}. The condition in Definition
7.4 implies that d; > 2i for any i, because d, ... d; need to be paired with distinct entries

i_1- One can check that the

strictly less than d;, which are also different from d,,...,d;

reciprocal is also true. Thus, the desired bijection maps Cy to Cxy with d; = ¢;, which
we now assume.

Now let us calculate the exponent of the variable ¢t corresponding to Cy in
ngp,o(t)' as given by Theorem 6.13. First we replace c¢; by 2c; — 1 and ¢; by 2c;,
obtaining a column Cj. Note that this is both a highest and lowest weight element

with respect to the corresponding Uq(sl2 ® ... ® sly)-crystal structure, so L(Cx) = Cg.
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Let P := {c; € Cxlc; — 1 ¢ Cg}. Note that the only type A raising crystal operators that

can be applied to Cy are e,, , for p € P, and each can be applied only once. Thus, for

each p € P, we get a contribution of 2(n — p + 1) to the mentioned exponent of t.
Finally, let us calculate the exponent of ¢ corresponding to Cgy in K‘;’fa‘(t), as

mentioned above, based on (15). Let CEN =(cp <...<Cp). Observe first that

1 ifpeP
ep_1(Cry) = p—l(CEN) = .
0 otherwise.

This means that, for each p € P, we get a contribution of n — p + 1 to the mentioned

exponent of t. This concludes the proof. |

Remark 7.6. Theorem 7.2 also permits us to establish the conjecture of [25] for Lusztig
t-analogs associated to any fundamental weight. Indeed, each such fundamental weight
is indexed by a column partition » = (1¥) = w; with k < n and the possible
corresponding dominant weights yielding nonzero polynomials have the form yu = (1%) =

w, where k — a is a nonnegative even integer. We then have

Cn—u
K  (t)= K, ().

Wk Wa

This follows in fact from a more general row removal property of Lusztig t-analogs of

type C,. Assume that A and u are two partitions such that A; = pu; then

c Cn—
K@) =K (D),

where 1” and ;" are the partitions obtained by removing the part A; = u; in A and pu,
respectively. This can be proved directly from the very definition of Kf " (@) in terms of

partition function or by using the Morris type recurrence formula established in [25].

7.3 The smallest power of t in ng(t)

The largest power of ¢t in Kf,’é(t) is well known to be (A, pV), where p" is half the sum
of the positive coroots. Furthermore, it is also known that the smallest power is greater
than or equal to |A|/2. See [26, 27]. As the 3rd application of our formula for Kfl'})(t), we

will determine this smallest power.
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Let A € P, be such that |A| is even, and write A = X' | a; w,,,_;. Define

a;+1 ifa; odd and s; odd
sgi=2.a;, b;i=1a,—1 ifa;oddands, even

a:

i if a; even.

Alsolet sy :=0and S :=s,.

Theorem 7.7. The smallest power of ¢ in Kf"é(t), for |A| even, is

—Z(n+1—t)b % +5 Z D% Tn+1-1. (16)

i=1 i:a;odd

We start by sketching the idea of the proof, whose details can be found in
the next section. Based on Theorem 6.12, we need to find the filling o € EZH(A) that

minimizes
2n—1 Ny ( )
che, (@) = D (2n—1) [ 1
i=1
We will first minimize Chcn (0) for fillings o of the row shape (S) with 1,...,2n,

subject to certain conditions. Namely, let ¥ be the set of allo = (0, < ... < o5) satisfying

o;<n+k, fors,_;<i<s,andk=1,...,n. (17)
Note that this condition is a necessary one for the 1st row of a filling of A with 1, ..., 2n.
Let us also define the sequence ¢y, ..., ¢, by setting c; := b;, except for the case in which,

for the largest i with a; odd, we have s; odd, in which case ¢; := a; (and b; := a; + 1). Note
thata, +...+a,=¢;+...+¢c, =S.

Lemma 7.8. We have
1 n
1(5161)121 che (o) = 2 ‘_E (n+1-1b;

and the minimum is attained for o3 := ((n + 1) (n + 2)% ... (2n)).

Now consider o € ﬁzn (A). By the usual bracketing rule for crystal operators, see

for example [11], it is easy to see that all entries i > 2 in the 1st row of o contribute

I‘OW

to ¢;_,(0). Thus, it suffices to construct o,,;, € Dy, (1) whose 1st row is oo, and for

mln
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4982 C. Lecouvey and C. Lenart

which no entry ¢ below the 1st row contributes to ¢;_; (o). This is achieved with one
mild failure of the last property; nevertheless, we always have ch; (o,37) = che (o),
which is all that is needed.

Algorithm 7.10 describes the construction of o,;,. In order to state it, we need
some definitions and related results. Let k; <k, < ... <k, be the indexes i for which g;
is odd. We pair them from left to right as (k;, k,), (k3,k,), ..., where kp is unpaired if p
is odd. Given such a pair (k, k'), we say that all the columns in 2 of heights n+ 1 —i with
k < i < k' form a block. This block is called odd or even, depending k' — k being odd or
even, respectively. A subblock of columns is formed by all columns of the same height
in a given block. If p is odd, we say that all columns of height at most n+1 — k,, form an
incomplete block.

We call a column of A special if it is the 1st one in a subblock, without being the
1st one of the corresponding block. Note that, if the 1st row of A is filled with the entries

row
of Omin

then a column is special if and only if its top entry is strictly smaller than the
maximum possible, namely n+1 if n + 1 —i is the corresponding column height. We call
a special column odd if its top entry has the same parity as the column height. Note that
this condition on a special column is equivalent to the bottom entry being odd (hence

the name), when the column is filled with consecutive entries starting from the top one.

Lemma 7.9.

(1) The number of odd blocks is even unless p and n + 1 — k,, are odd.

(2) The number of odd special columns in a block is odd or even, depending on
the block being odd or even, respectively.

(3) The total number of odd special columns is even unless p and n +1 —k,, are
odd.

Algorithm 7.10. Construction of o;,.

Step 1: Fill the 1st row of A with the entries of o_27.
Step 2: Fill all columns except the odd special ones with consecutive entries starting
from the top entry.

Step 3: Fill the odd special columns, considered from right to left, as follows:

e If the last entry of the previously filled odd special column (assuming it
exists) is 2i — 1, then the current one will contain 2i, but not 2 — 1.

e Assume that p and n+1 -k, are odd, in which case the top entry in each
column of height n +1 — kp isn+ kp. Leti:=(n+ kp)/2. In this case, the

rightmost odd special column will contain 2i, but not 2i — 1.
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Combinatorics of Generalized Exponents 4983
e With the above rules in place, fill the current special column by consid-
ering consecutive entries starting from the top one.

Lemma 7.11. The filling o, ,;,, belongs to E;n(k). Furthermore, no entry i below the 1st

min
row contributes to ¢;_; (o) with one exception: if p and n + 1 — k, are odd, then one
entry n +k, below the 1st row contributes to ¢, +kyp—1(Omin)- In addition, we always have

row
ChCn (amin

) = chg, (Opin)-
Proof of Theorem 7.7. By Lemma 7.11, chg (0y,;,) is given by the expression in
(16). Lemma 7.8 guarantees that this is the minimum of the charge over D,,(%). Thus,

Theorem 7.7 is proved. u

In conclusion, all that is left is to prove Lemmas 7.8, 7.9, and 7.11, which is done
in Section 7.4.
We will now give an example of the construction of o,,;,. We will also exhibit a

2nd filling, with the same shape and 1st row as oy,

which also satisfies the properties
in Lemma 7.11. This will have the same charge as o,,;,,, which shows that the coefficient

of the smallest power of t in Kf,%(t) can be strictly larger than 1.

Example 7.12. Letn = 5 and A = (7,6,5,3,1). The sequence (q;) is (1,2,2,1,1), and
thus there is a single block, which is odd and consists of all the columns of A except

the last one. The special columns are the 2nd, the 4th, and the 6th; they are all odd.

row

The sequences (b;) and (c;) are (2,2,2,0,2) and (2,2,2,0,1), respectively, while o =

min
(6,6,7,7,8,8,10). The filling o,,;,, and a different one with the same charge are

6 8 |10 6 10
7 10 7 8

818 10 ' 818 10|10

9 10|10 9 10|10

10 10

It is straightforward to check that the above fillings satisfy the properties in
Lemma 7.11; in particular, the highlighted entries are bracketed in the usual
procedure for applying crystal operators. Thus, both of these fillings have charge
/2 +1/26—2+1)=11+2=13.
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4984 C. Lecouvey and C. Lenart

Below is a different filling o

mins Which illustrates another aspect of
Algorithm 7.10.

10|10

6
7
8

9|

10|

7.4 The proof of the lemmas in Section 7.3

The terminology and notation in the previous section will be used. We start with

Lemma 7.8. We first define the following moves o — o’ on sequences o = (i");_; _,, in
3, assuming that ¢’ is still in Z:

1) (.., 2, ) > (..,i5i+1,i+1,..);

(2) (.., %y ik i, ),

3) (..., 1 1y ik

(@) (..., 0%k 21y (L iRkl R,
It is not hard to see that in all cases we have

moreover, in case (4) we always have equality. Indeed, note that
2n m.
ch = 2n+1—1 (—l-| ;
¢, (@) l;( +1-10) |

based on this, it suffices to observe that if we insert an entry i > 1 into a sequence o,
the charge increases by 2n + 1 — i, if m; is even, and does not change, otherwise.

It is helpful to visualize the (1)-(4) using the following representation of a
op 1D X as a lattice path from (0,0) to (S,2n) with steps (1,0)

and (0, 1). The horizontal segments in this path are

sequence ¢ = (i");_;

,,,,,

m +...4+m_,i) > (m;+...+m;, 1), form;>0,i=1,...,2n.
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Note that condition (17) defining ¥ simply means that this path stays weakly below the

similar path from (0, 0) to (S, 2n), whose horizontal segments are
(S;_y,mn+1) — (s;;n+1), fora;>0,i=1,...,n.

The latter path will be called the upper-bound path. We will also consider the path
corresponding to o>, which will be called the target path.

Now recall that k; < k, < ... < k, are the indexes i for which q; is odd, which
are paired (k;, k,), (k3,k,), etc. For each such pair (k, k'), we consider the subpath of the
upper-bound path between the horizontal segments with y = n+ kand y = n + k/,
inclusive, plus the vertical segment after the last horizontal one; we call it an odd
subpath. If p is odd, the subpath between the horizontal segment with y = n +k,
and the end of the path is called an incomplete odd subpath. The subpaths obtained
by removing the odd ones are called even.

Now note that the upper-bound path and the target one are closely related.
Namely, every even subpath of the former coincides with a corresponding subpath of the
latter, and so does the incomplete odd subpath (if any). Moreover, for every odd subpath
of the former, there is a corresponding one in the latter whose vertical segments are
translations by (1, 0) of the vertical segments of the former; the exceptions are the last
vertical segments in the two paths, which coincide. Thus, we can also divide the target

path into even, odd, and incomplete odd subpaths.

Proof of Lemma 7.8. In terms of the above visualization, and based on (18), it suffices
to show that any path that is weakly below the upper-bound path (including the latter)
can be related to the target path by applying the moves (1)-(4). This can be done as
follows, using a sequence of intermediate paths. See Example 7.13 for an illustration of

this procedure.

Step 1: By applying the moves (1) and (2), from southwest to northeast in the current
path, we obtain a path in which every vertical segment coincides with
the corresponding one of the upper-bound path, or with its translation
by (1,0); moreover, for the 1st vertical segment (starting at (0,0)), the 1st
statement holds. Divide the obtained path into even, odd, and incomplete
odd subpaths.

Steps 2-4: These steps are applied to the subpaths of the path in Step 1, considered
from southwest to northeast. As a result, each subpath will coincide with

the corresponding one of the target path.
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4986 C. Lecouvey and C. Lenart

Step 2: The move (2) is applied to an even subpath.
Step 3: The moves (2) and (3) are applied to an odd subpath.
Step 4: The moves (2) and (4) are applied to the incomplete odd subpath (if any). g

Example 7.13. Let n = 7, and let the sequence (a;) be (1,0,2,1,1,2,2). We have
a;l"i‘l’l" = (8,8,10,10,12,13,13,14,14), which corresponds to the target path, while
the upper-bound path corresponds to (8,10,10,11,12,13,13,14,14). Both of these
paths consist of an odd subpath and an incomplete odd subpath. Consider ¢ =
(7,7,7,9,10,11,11,12,14). Its corresponding path is represented in the 1st diagram
below, whose bottom left corner has coordinates (0,7), while the upper-bound path
appears in all three diagrams. The 2nd diagram represents the result of Step 1 in the
above algorithm; move (1) was applied six times, while move (2) twice. The last diagram
contains the target path, which is obtained from the path in the 2nd diagram via Step 3
followed by Step 4. In Step 3, move (3) was applied twice, and after that move (2) once;

in Step 4, move (4) was applied twice (from northeast to southwest).

We conclude by proving Lemmas 7.9 and 7.11.

Proof of Lemma 7.9. It is not hard to see that the number of boxes in an odd (resp.
even) block is odd (resp. even); in addition, if p is odd, the number of boxes in the
incomplete block is even unless n + 1 — k, is odd (recall that this number represents
the height of the 1st column in the incomplete block). Based on this and the fact that ||
is even, the 1st statement is immediate.

Now let us consider a block corresponding to a pair (k, k), that is, it contains all
columns of heights n + 1 —i for k < i < k’. A special column is odd or even depending
on the difference between its height and the height of the previous column being odd
or even. But the sum of all these numbers is the difference between the heights of the
1st and last columns in the block, namely (n +1 - k) — (n +1 — k') = k' — k. The 2nd
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statement now follows from the fact that the parity of a block is determined by k' — k.

The 3rd statement is an immediate consequence of the 1st two. |

Proof of Lemma 7.11. It is not hard to see that the filling o,;,, is a semistandard Young

tableau satisfying the flag condition (C3) in Section 6.3. Indeed, for semistandardness,

observe first that if the 1st row of X is ¢f%W and we fill all columns with consecutive

min
entries starting from the top one, we clearly obtain a semistandard tableau. To obtain

Omin-

special column starting with the leftmost one. But in each case the entries of the next

the only change we need is a certain increase in the entries of every other odd

column are the largest possible, so the weakly increasing condition for rows is still
verified.

To complete the proof, it suffices to check the following properties for the column
word of o

‘min+ the 1st two of which rely on the usual bracketing rule for crystal operators
[11]:

(P1) After bracketing (2i,2i — 1), there is no unbracketed 2i — 1; also, there is no
unbracketed 2i below the 1st row with one exception: a single 2i = n + k,, if
pandn+1—k, are odd.

(P2) For any pair (2i + 1, 2i), there is no unbracketed 2i + 1 below the 1st row.

(P3) Each even entry in the 1st row occurs an even number of times with one

exception: n +k, if p and n + 1 — k,, are odd.

Property (P3) is immediate from the construction of o ;Y. By analyzing
Algorithm 7.10, observe that the columns of o,;, have the following structure (the

notation m indicates the absence of the element m in a sequence):

e Every other odd special column starting with the 2nd leftmost one is of the
form (j,j+1,...,2i—2,2i — 1).

e Every other odd special column starting with the leftmost one is of the form:
Gj+1,...,2i—2,2i—1,2i,2i+1,...,2) withi <1, or (j,j+1,...,21—1,2l,2i)
with [ < i.

e A mnon-odd special column is of the form (j,j+1,...,2n —1,2n).

In particular, the 2nd fact follows from the 1st two rules in Step 3 of Algorithm 7.10.
Based on these facts, we can describe each bracketing for the column word of o,
which will prove (P1) and (P2).

Let us first bracket (2i,2i — 1) and ignore all such pairs coming from the same
column of o;,. The remaining subword in these letters starts with a set of pairs

(21,21 — 1) coming from successive odd special columns and ends with an even number
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of 2i; the latter are all in the 1st row, with the one exception indicated in (P1) above,
which corresponds to the number of odd special columns being odd (the entry 2i below
the 1st row is in the rightmost odd special column). Here we applied Lemma 7.9 (3). Now
let us bracket (2i + 1, 2i) and again ignore all such pairs coming from the same column
of o,;,. The remaining subword in these letters consists of a sequence of 2i followed by
a sequence of 2i 4+ 1, where all the elements of the latter are in the 1st row. Indeed, no

column can contain 2i + 1 below the 1st row but no 2i above it. [ |

8 Comparing the Sundaram and Kwon Branching Rules

The work in Sections 5 and 6 raises the question whether the Sundaram and Kwon
branching rules (mentioned in those sections) are, in fact, equivalent. Based on the
results above, we discuss what this equivalence entails and we present an example that
provides evidence for an affirmative answer.

We consider the branching coefficient ¢}, (sp,,), for fixed A € P, and v € P,,,. The
Sundaram rule says that c¢’(sp,,) is the number of Sundaram-LR tableaux of shape v/A
and content §, for some § € Péil'l). By Corollary 6.9 and Lemma 6.11, the same coefficient
is expressed as the number of LR tableaux T in LR; ; for which S(T) satisfies the flag
condition (C3) in Section 6.3, where § € Pé;l) (recall the notation in Section 6.1).

To relate the two types of tableaux, we need to consider the composition of the
following maps:

companion R-matrix

{LR tableaux of shape v/, content §} LR}, LR; 2 S(LR;j ;). (19)

For the combinatorial R-matrix, we use the Henriques—Kamnitzer commutor [9, 15],
which has several other realizations, cf. [2] and the references therein. Note that the
Henriques—Kamnitzer commutor was defined in terms of the Schiitzenberger involution,
which connects it to the last map in (19), namely the Schiitzenberger involution in the
crystal B,, ().

The main question is whether the composition (19) bijects the tableaux men-
tioned above, coming from the Sundaram and Kwon branching rules. The example below

suggests an affirmative answer.

Example 8.1. Considern = 3, A = (2,1,1) and v = (5,4,3,3,3,2), with Cﬁ(spﬁ) = 1.
There are three LR tableaux of shape v/ for which the corresponding § is in Péil’l). We
indicate them below, together with the result of applying the maps in (19).
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(1)6=(3,3,3,3,2,2).

111 111
2122 21212
1|1 6
3|3 companion 313 |4 | R-matrix S
fr—— —— =
3144 414 |5 5
5|5 5|5
6|6 6|6
(206 =44,222,2).
1111 1111
2122 212|125
1]3 2|6
313 companion 3|3 R-matrix S,
114]4 414 — .
5 4
5|5 5|5 E— —
6|6 6|6
(B3)6=(443311).
1111 11112
1122 212|134
1|5 1|2
213 companion | 3 | 4|5 R-matrix S
3|4 4|5|6 ] .
6 6
3|14|5 5 — —
4|6 6

Note that in case (1) the 1st tableau is a Sundaram-LR tableau, while the last
one satisfies condition (C3) mentioned above. However, both of these properties fail in

cases (2) and (3); the entries causing these failures are shown in bold.

Remark 8.2. Kwon's rule also works in orthogonal types, whereas there is no
Sundaram-type rule in this case. For symplectic types, there is also the rule conjectured
by Naito-Sagaki [30], which was proved via its relation to the Sundaram rule in [35], cf.
also [37].
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