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Distributionally Robust Distribution Network
Configuration Under Random Contingency

Sadra Babaei , Member, IEEE, Ruiwei Jiang , Member, IEEE, and Chaoyue Zhao , Member, IEEE

Abstract—Topology design is a critical task for the reliability,
economic operation, and resilience of distribution systems. This
paper proposes a distributionally robust optimization (DRO)
model for designing the topology of a new distribution system
facing random contingencies (e.g., imposed by natural disasters).
The proposed DRO model optimally configures the network
topology and integrates distributed generation to effectively
meet the loads. Moreover, we take into account the uncertainty
of contingency. Using the moment information of distribution
line failures, we construct an ambiguity set of the contingency
probability distribution, and minimize the expected amount of
load shedding with regard to the worst-case distribution within the
ambiguity set. As compared with a classical robust optimization
model, the DRO model explicitly considers the contingency
uncertainty and so provides a less conservative configuration,
yielding a better out-of-sample performance. We recast the
proposed model to facilitate the column-and-constraint generation
algorithm. We demonstrate the out-of-sample performance of the
proposed approach in numerical case studies.

Index Terms—Distribution network, contingency, distribution-
ally robust optimization (DRO), power system resilience.

NOMENCLATURE

Sets

T Set of time periods.
N Set of nodes.
E Set of power lines.

Parameters

By Available budget for power line constructions.
Bw Available number (budget) of distributed generators for

allocation.
Nz Maximum number of affected power lines during the

contingency.
cmn Construction cost of line (m,n).
φmn Resistance of the power line (m,n).
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ηmn Reactance of the power line (m,n).
Kmn Upper limit of active power flow in line (m,n).
Rmn Upper limit of reactive power flow in line (m,n).
Dp
nt Active power load at node n in time t.

Dq
nt Reactive power load at node n in time t.

Cpn Active power capacity of substation or distributed
generation unit at node n.

Cqn Reactive power capacity of substation or distributed
generation unit at node n.

νmax Upper bound of voltage.
νmin Lower bound of voltage.
V0 Reference voltage value.
μmaxmn,t Upper bound of failure rate in line (m,n) in time t.
τ rst
mn Minimum restoration time of line (m,n) during contin-

gency.

First-Stage Decision Variables

ymn Binary variable for network configuration; equals 1 if
line (m,n) is constructed, 0 otherwise.

wn Binary variable; equals 1 if the distributed generation
unit is placed at node n, 0 otherwise.

fmn Fictitious flow across line (m,n) for configuring the
network.

g Vector of first stage decision variables including ymn,
wn, and fmn.

β, γ Dual variables in the reformulation of the distribution-
ally robust model.

Second-Stage Decision Variables

pmn,t Active power flow across line (m,n) in period t.
qmn,t Reactive power flow across line (m,n) in period t.
xpnt Active power generation at node n in period t.
xqnt Reactive power generation at node n in period t.
νnt Voltage magnitude at node n in period t.
snt Load shedding at node n in period t.
π Dual variables in subproblem reformulation.
u Vector of second-stage decision variables including

pmn,t, qmn,t, x
p
nt, x

q
nt, νnt, and snt.

Random Parameter

zmn,t Bernoulli random variable; equals 0 if line (m,n) is
affected in period t, 1 otherwise.

I. INTRODUCTION

R ECENTLY U.S. has witnessed repeated severe power out-
ages due to natural disasters such as hurricane Sandy [1]

and tropical storm Irene [2]. Only between years of 2003–2012,
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nearly 679 weather-related power outages happened in the U.S.
and each influenced more than 50,000 customers [3]. Unfor-
tunately, the severity and frequency of natural disasters have
been trending upwards. For example, in the last ten years, the
U.S. has suffered from seven of the ten most costly storms
in its history [4]. The growing threat from natural disasters
calls for better planning of the power grids to improve system
resiliency. According to the report [5] by the President’s Council
of Economic Advisers and the U.S. Department of Energy,
nearly 80–90% of outages in the power system occurs along
distribution systems, often leading to interruptions of power
supply to end customers. Practically, a distribution system is
operated in a radial topology so as to make the design and
protection coordination as simple as possible. Despite its sim-
plicity, any contingency in the distribution system can interrupt
the continuity of power supply to all customers downstream the
on-contingency area.

The distribution network planning is widely investigated in
existing literature and broadly categorized in three parts: dis-
tribution configuration planning ([6], [7]), distribution recon-
figuration and self-healing planning ([8], [9]), and distribution
reinforcement and expansion planning ([10], [11]). The main
objective of distribution configuration planning is to design a
new system to meet the demand in the most cost-effective and
reliable way. Distribution reconfiguration and self-healing plan-
ning aim at improving or recovering of network functionality by
altering the topological structure of the network. In particular, a
self-healing process is brought up when a contingency occurs in
the system. Distribution reinforcement and expansion planning
involve enhancing the resilience of the network to protect against
possible damages or expanding current facilities to increase
reliability. This paper focuses on the distribution network con-
figuration part. As we borrow some ideas from the self-healing
and reinforcement planning literature, we also briefly review the
relevant works in these domains.

Existing mathematical models of distribution network con-
figuration involve various design variables that usually include
the location [12] and size [13] of equipments like substations
and feeders. As the penetration of distributed generation (DG)
resources grows, the location and sizing of the DG units has
also received increasing attention in the literature (see, e.g.,
[14], [15], [16], [17]). The network topology is another important
design variable (see, e.g., [18]–[20], [21]). [18] proposes an
optimal network topology design that minimizes investment
and variable costs associated with power losses and reliability.
[19] considers network reconfiguration and maintains a radial
network topology by ensuring that the node-incidence matrix has
non-zero determinant. [20] explicitly incorporates the radiality
constraints in the distribution system configuration model and
considers the integration of DG units. None of the above works
incorporate the possibility of contingency occurrences in the
planning stage.

Most of existing planning models in the literature incorporate
contingencies in a post-outage recovery formulation that iden-
tifies an optimal network reconfiguration and promptly restores
the system. [8] studies a comprehensive framework for the distri-
bution system in both normal operation and self-healing modes.

In the normal operation mode, the objective is to minimize the
operation costs. When a contingency happens, the system enters
the self-healing mode by sectionalizing the on–outage zone into
a set of self-supplied microgrids (MGs) to pick up the maximum
amount of loads. [9] develops a systematic framework including
planning and operating stages for a smart distribution system. In
the planning stage, the goal is to construct self-sufficient MGs
using various DGs and storage units. In the operating stage,
a new formulation that incorporates both emergency reactions
and system restoration is addressed for carrying out optimal
self-healing control actions. [22] proposes a graph-theoretic dis-
tribution system restoration algorithm to find an optimal network
reconfiguration after multiple contingencies arise in the system,
where the MGs are modeled as virtual feeders and the distribu-
tion system is modeled as a spanning tree. All of the above works
are under the premise that the contingencies have already been
located and then we perform system reconfiguration to enhance
its reliability. In contrast, this paper considers the stochasticity
of the contingency (e.g., caused by natural disasters).

Existing distribution reinforcement planning models consider
stochastic contingencies and carry out pre-event enhancement
activities including vegetation management, pole refurbish-
ments, and undergrounding of power lines [1]. [10] presents
a two-stage robust optimization model for optimally allocating
DG resources and hardening lines before the upcoming natural
disasters. A new uncertainty set for contingency occurrences
is developed to capture the spatial and temporal dynamic of
hurricanes. [11] proposes a new tri-level optimization approach
to mitigate the impacts of extreme weather events on the distribu-
tion system, with the objective of minimizing hardening invest-
ment and the worst-case load shedding cost. An infrastructure
fragility model is exploited by considering a time-varying un-
certainty set of disastrous events. Even though the above works
adopt realistic uncertainty sets for modeling the contingency,
challenges still exist for the robust optimization approaches.
Indeed, they completely neglect the probabilistic characteris-
tics of the contingency. Accordingly, the robust optimization
approaches may only focus on the worst-case contingency and
yield over-conservative solutions.

To tackle these challenges, distributionally robust (DR) mod-
els have been proposed [23]. The DR models consider a set
of probability distributions of the uncertain parameters (termed
ambiguity set) using certain statistical characteristics (e.g.,
moments). Then, we search for a solution that is optimal
with respect to the worst-case probability distribution within
the ambiguity set. DR models have been applied on various
power system problems, such as unit commitment [24], reserve
scheduling [25], congestion management [26], and transmission
expansion planning [27].

To the best of our knowledge, this paper conducts the first
study of DR models for distribution network configuration when
facing contingency. Our main contributions include: (a) we
apply the DR model to capture the contingencies with low prob-
ability and high impacts, two key features of natural disaster-
induced outages, by incorporating the contingency probability
distribution; (b) we recast the DR model as a two-stage robust op-
timization formulation that facilitate the column-and-constraint
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Fig. 1. Example of a spanning tree representation.

generation algorithm (see Proposition 1); (c) solving the DR
model yields a worst-case contingency distribution, which can
be used (e.g., in simulation models) to examine other topology
configuration/re-configuration policies facing random contin-
gency (see Proposition 2); (d) numerical case studies demon-
strate the better out-of-sample performance of our DR model.

The remainder of the paper is organized as follows. In
Section II, we describe the DR formulation including the net-
work configuration, the restoration process, and the ambiguity
set of contingency probability distribution. In Section III, we
derive an equivalent reformulation and employ the column-and-
constraint generation framework to solve the problem. In Sec-
tion IV, we conduct case studies and analyze the computational
results. Finally, we conclude this paper in Section V.

II. MATHEMATICAL MODEL

We propose a distributionally robust optimization model for
a distribution network facing random contingency. The model
involves two stages. In the first stage, we form a set of radially
configured networks, each energized by a substation within the
network. In addition, we allocate a set of available DGs in
the system. Then, the contingency launches a set of disruptions
to the system to inflict damages. In the second stage, we take
restoration actions to minimize the load shedding by reschedul-
ing the output of substations and DGs.

A. Distribution Network Configuration

We plan to establish a distribution system in a new community
without existing facilities. In this community, only the locations
of loads and substations are identified. It is assumed that the
substations are connected to a higher-level substation in the grid.
Let graphG = (N , E) represent the distribution network, where
N denotes the set of nodes and E denotes the set of distribution
lines that can be constructed. Also, assume that substations are
located in the set R ⊂ N . In the devised network configuration,
the distribution system consists of a set of radial networks in
the sense that each load bus is connected to a substation directly
or via other nodes. In other words, we construct a spanning
forest with |R| components, each rooted at one substation. For
this purpose, we add a new higher-level node s to graph G and
connect it to all substation nodes, i.e., nodes in R. We call the
new graph G′ = (N ,′ E ′). Now constructing a spanning forest
rooted in R is equivalent to constructing a spanning tree of
this new graph G′, where all newly added lines (i.e., E′\E) are
included in the tree (see Fig. 1 for an example). To formulate the

spanning tree, we employ the single commodity formulation [28]
as follows:

∑
n|(s,n)∈E′

fsn = |N ′| − 1, (1a)

∑
m|(m,n)∈E′

fmn −
∑

m|(n,m)∈E′

fnm = 1, ∀n ∈ N ′\s, (1b)

∑
(m,n)∈E′

ymn = |N ′| − 1, (1c)

fmn ≤ (|N ′| − 1) ymn, ∀(m,n) ∈ E′, (1d)

ymn = 1, ∀(m,n) ∈ E′\E , (1e)

fmn ≥ 0, ymn ∈ {0, 1}, ∀(m,n) ∈ E′. (1f)

We remark that fmn does not represent the power flow along
the line (m,n). Instead, it represents fictitious flow to math-
ematically guarantee that the distribution network is radial.
Constraint (1a) indicates that there must be |N ′ | − 1 arcs leaving
the root node s in order to form a spanning tree. Constraints
(1b) ensure the connectivity of the spanning tree. Constraint
(1c) specifies that, in the constructed spanning tree, the number
of connected lines should be one unit less than the number of
nodes. Constraints (1d) designate that the capacity of fictitious
flow on each line should be no more than the total number of
connected lines. Constraints (1e) indicate that all substations
should be connected to the higher-level node s.

Furthermore, we consider the budget constraints on the num-
ber of available DG units for installation and the total construc-
tion costs, as stated in (1g) and (1h), respectively:

∑
n∈N

wn ≤ Bw, (1g)

∑
(m,n)∈E

cmnymn ≤ By. (1h)

B. Post-Contingency Restoration Process

There are several existing studies that address the distribution
system restoration process (see e.g., [29]–[33]). In this study, we
model the whole restoration process using a number of corrective
actions to minimize the load shedding. We adopt the well-studied
linearized approximation of the DistFlow model (see, e.g., [10],
[34]) to formulate power flow in the distribution system after the
contingency. According to this model, active and reactive power
balance flows at each bus are expressed as follows:

∑
k|(n,k)∈E

pnk,t = pmn,t −Dp
nt + xpnt + snt,

∀n ∈ N , ∀(m,n) ∈ E , ∀t ∈ T , (2a)∑
k|(n,k)∈E

qnk,t = qmn,t −Dq
nt + xqnt,

∀n ∈ N , ∀(m,n) ∈ E , ∀t ∈ T . (2b)
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According to the linearized DistFlow model, the relationship
of voltage level between any pair of adjacent nodes is character-
ized by the following constraints:

νntymn = νmtymn − (φmnpmn,t + ηmnqmn,t) /V0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T . (2c)

Moreover, the voltage level at each node should be within a
permissible range:

νmin ≤ νnt ≤ νmax, ∀n ∈ N , ∀t ∈ T . (2d)

Additionally, if line (m,n) is not constructed in the configu-
ration stage or constructed but disrupted during the contingency,
the power flow on line (m,n) should be zero. These restrictions
are described by the following constraints:

0 ≤ pmn,t ≤ Kmnzmn,tymn, ∀(m,n) ∈ E , ∀t ∈ T , (2e)

0 ≤ qmn,t ≤ Rmnzmn,tymn, ∀(m,n) ∈ E , ∀t ∈ T . (2f)

In our proposed framework, each radial network is rooted at
a node where the substation is placed. Moreover, the DG units
can supply power not only to their neighboring loads but also
to all nodes in the connected network. The active and reactive
power capacity of the substations and DGs are described by the
following constraints:

0 ≤ xpnt ≤ Cpn, ∀n ∈ R, ∀t ∈ T , (2g)

0 ≤ xqnt ≤ Cqn, ∀n ∈ R, ∀t ∈ T , (2h)

0 ≤ xpnt ≤ wnC
p
n, ∀n ∈ N\R, ∀t ∈ T , (2i)

0 ≤ xqnt ≤ wnC
q
n, ∀n ∈ N\R, ∀t ∈ T . (2j)

Finally, the unsatisfied active demand at each node should be
no more than the active demand at that node:

0 ≤ snt ≤ Dp
nt, ∀n ∈ N , ∀t ∈ T . (2k)

C. Ambiguity Set of Contingency

Different approaches have been proposed in the literature
to deal with the uncertainty of contingency. Stochastic pro-
gramming (SP) is well-known for modeling contingency due to
natural disasters (see, e.g., [35]–[37]). Using statistical methods,
SP estimates the joint probability distribution of contingency
and then generates a set of scenarios to represent the stochastic
contingency in decision making. The major drawback of this
approach is that the underlying probability distribution often
cannot be estimated accurately, and the computational effort
significantly increases as the number of contingency scenarios
increases. Robust optimization (RO) is another well-known
approach to cope with the uncertainty of contingency (see,
e.g., [10], [11]). Applied on the distribution network configu-
ration problem, RO identifies the most critical contingencies by
solving the following bilevel model:

max
z∈D(g)

Q(g, z) (3a)

s.t. D(g) =

⎧⎨
⎩

∑
(m,n)∈E

(1− zmn,t) ≤ Nz, ∀t ∈ T ,

(3b)

1− zmn,t ≤ ymn, ∀(m,n) ∈ E , ∀t ∈ T , (3c)

zmn,t+τ ≤ zmn,t, ∀(m,n) ∈ E , ∀τ ≤ τ rst
mn

⎫⎬
⎭ ,

(3d)

where,

Q(g, z) = min
u∈H(g,z)

∑
t∈T

∑
n∈N

snt, (4a)

s.t. H(g, z) =

{
u : Constraints (2a) − (2k)

}
, (4b)

g := (y,w, f) indicates network configuration and DG allo-
cation decision variables, u := (p,q,xp,xq,ν, s) denotes the
post-contingency decision variables, andQ(g, z) represents the
minimum load shedding for given topology g and contingency
z. Moreover, D(g) specifies the set of all possible contingency
scenarios. We assume by constraints (3b) that the number of
simultaneous line outages is bounded by Nz , which can be
calibrated based on reliability analyses of distribution lines
during contingency (see, e.g., [38]). Constraints (3c) designate
that only constructed lines can be affected, i.e., zmn,t is set to be
one whenever ymn equals zero. However, variables zmn,t only
appear in constraints (2e)–(2f), whose right-hand sides equal
zero if ymn = 0, regardless of the value of zmn,t. Hence, we
can relax constraints (3c) without loss of optimality. Constraints
(3d) model the minimum restoration time of failing distribution
lines. As discussed in Section I, the RO model may only focus
on the worst-case contingency (i.e., z ∈ D(g) that maximizes
Q(g, z) in (3a)) and yield over-conservative topology design
and/or DG allocation.

To overcome the challenges of the classical stochastic and
robust approaches, we propose a DR framework considering a
family of joint probability distributions of contingency based
on the moment information of the random parameters (see,
e.g., [23], [24], [39]). More specifically, we define the ambiguity
set as follows:

D =

{
P ∈ P (D(g)) : 0 ≤ EP [1− z] ≤ μmax

}
, (5)

where P(D(g)) consists of all probability distributions on a
sigma-field of D(g), where the sigma-field refers to the power
set of D(g), i.e., the set of all subsets of D(g). Constraints
(5) imply that the marginal probability of each line (m,n) not
working during time unit t has an upper limit μmax. We note
that, although D models the contingency of new distribution
lines, the distributional information (e.g., μmax and D(g)) can
be calibrated based on reliability analyses of distribution lines
(see, e.g., [38]). Accordingly, we consider the following DR
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model:

max
P∈D

EP [Q(g, z)]. (6)

Here, instead of considering the worst-case scenario of con-
tingency as in the RO model, we consider the worst-case dis-
tribution of contingency and the corresponding expected load
shedding. Hence, our approach, though still risk-averse, is less
conservative than the RO approach.

D. Distributionally Robust Optimization Model

Our distributionally robust optimization model aims to find an
optimal distribution system configuration to minimize the load
shedding under random contingency:

min
g∈G

max
P∈D

EP [Q(g, z)] , (7a)

s.t. G = {g : Constraints (1a) − (1h)} . (7b)

In above formulation, the objective function (7a) aims to
minimize the worst-case expected load shedding Q(g, z).

III. SOLUTION METHODOLOGY

In this section, we first derive reformulations of the worst-case
expectation model (6) and the DR model (7a)–(7b), respectively.
Then, we describe a solution approach based on the column-and-
constraint generation (CCG) framework. Finally, we derive the
worst-case distribution of contingency.

A. Problem Reformulation

Proposition 1: For fixed g ∈ G, we have

max
P∈D

EP [Q (g, z)]

= min
β≥0

max
z∈D(g)

⎧⎨
⎩Q(g, z) +

∑
t∈T

∑
(m,n)∈E

(
μmaxmn,t + zmn,t − 1

)
βmn,t

⎫⎬
⎭ ,

where dual variables β are associated with constraints (5).
The proof is given in the appendix. By Proposition 1 and com-

bining two minimizations, we obtain the following equivalent
reformulation of formulation (7a)–(7b):

min
β≥0,g∈G

max
z∈D(g)

min
u∈H(g,z)

∑
t∈T

∑
n∈N

snt

+
∑
t∈T

∑
(m,n)∈E

(
μmaxmn,t + zmn,t − 1

)
βmn,t. (8)

Therefore, the DR model (7a)–(7b) is transformed into the
classical robust optimization problem (8).

B. Column-and-Constraint Generation Framework

We employ the CCG framework [40] to solve the problem
(8). We describe the master problem in the rth iteration of the

CCG framework as follows:

min
β≥0,g∈G,λ,uj

∑
t∈T

∑
(m,n)∈E

(μmaxmn,t − 1)βmn,t + λ (9a)

s.t. λ ≥
∑
t∈T

∑
n∈N

sjnt +
∑
t∈T

∑
(m,n)∈E

zjmn,tβmn,t,

∀zj ∈ F , ∀j = 1, . . ., r, (9b)

uj ∈ H(g, zj), ∀zj ∈ F , ∀j = 1, . . ., r, (9c)

where F ⊆ D(g). In the CCG framework, set F is iteratively
augmented by incorporating more scenarios. Note that, the mas-
ter problem is a relaxation of the original problem, in which the
set of contingency D(g) consists of all possible scenarios sat-
isfying constraints (3b) (note that, as discussed in Section II-C,
we have relaxed (3c) without loss of optimality). Therefore,
solving the master problem (9a)–(9c) yields a lower bound for
that optimal value of (8). In contrast, the following subproblem
yields an upper bound:

max
z∈D(ĝ)

min
u∈H(ĝ,z)

∑
t∈T

∑
n∈N

snt +
∑
t∈T

∑
(m,n)∈E

β̂mn,tzmn,t, (10)

where decisions ĝ and β̂ are obtained from solving the master
problem (9a)–(9c). Note that (ĝ, β̂) is feasible to the problem
(8). Hence, the optimal objective value of (10), plus constant∑
t∈T
∑

(m,n)∈E(μ
max
mn,t − 1)β̂mn,t, is an upper bound for (8).

Moreover, since the inner minimization problem of (10) is
always feasible and bounded (a trivial solution is when all loads
are shed), we take the dual of this minimization problem with
strong duality and convert the bilevel subproblem (10) into the
following single-level bilinear maximization problem:

max
z∈D(g),π

∑
t∈T

∑
(m,n)∈E

β̂mn,tzmn,t −
∑
t∈T

∑
n∈N

Dp
ntπ

1
nt

−
∑
t∈T

∑
n∈N

Dq
ntπ

2
nt+

∑
t∈T

∑
(m,n)∈E

Kmnπ
3
mn,tzmn,tymn

+
∑
t∈T

∑
(m,n)∈E

Rmnπ
4
mn,tzmn,tymn

+
∑
t∈T

∑
n∈N\R

wnC
p
nπ

5
nt +

∑
t∈T

∑
n∈N\R

wnC
q
nπ

6
nt

+
∑
t∈T

∑
n∈R

Cpnπ
7
nt +

∑
t∈T

∑
n∈R

Cqnπ
8
nt

+
∑
t∈T

∑
n∈N

vmaxπ10
nt −

∑
t∈T

∑
n∈N

vminπ11
nt

+
∑
t∈T

∑
n∈N

Dp
ntπ

12
nt (11a)

s.t. π3
mn,t + π1

mt − π1
nt +

φmn
V0

π9
nt ≤ 0,

∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T , (11b)

π4
mn,t + π2

mt − π2
nt +

ηmn
V0

π9
nt ≤ 0,
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∀m,n ∈ N|(m,n) ∈ E , ∀t ∈ T , (11c)

− π1
nt + π5

nt ≤ 0, ∀n ∈ N\R, ∀t ∈ T , (11d)

− π2
nt + π6

nt ≤ 0, ∀n ∈ N\R, ∀t ∈ T , (11e)

− π1
nt + π7

nt ≤ 0, ∀n ∈ R, ∀t ∈ T , (11f)

− π2
nt + π8

nt ≤ 0, ∀n ∈ R, ∀t ∈ T , (11g)

π10
nt − π11

nt + π9
jt −

∑
i|(n,i)∈E

π9
it ≤ 0,

j|(j, n) ∈ E , ∀n ∈ N , ∀t ∈ T , (11h)

− π1
nt + π12

nt ≤ 1, ∀n ∈ N , ∀t ∈ T , (11i)

π3
mnt, π

4
mnt, π

5
nt, π

6
nt, π

7
nt, π

8
nt, π

10
nt , π

11
nt , π

12
nt ≤ 0,

π1
nt, π

2
nt, π

9
nt are free, (11j)

where π represent dual variables pertaining to constraints (2a)–
(2k). Note that bilinear terms πz in the objective function (11a)
can be linearized using the McCormick method [41], which re-
casts the problem (11a)–(11j) as a mixed-integer linear program
and facilitates efficient off-the-shelf solvers like CPLEX. The
CCG framework is summarized as follows:

Step 0: Initialization. Pick an optimality gap ε. Set LB = −∞,
UB = +∞, set of contingencies F = ∅, and iteration index
r = 1.

Step 1: Solve the master problem (9a)–(9c), obtain the optimal
value objMP and optimal configuration decisions ĝr and β̂

r
, and

update LB = objMP.
Step 2: Solve the subproblem (11a)–(11j), obtain the

optimal value objSP and an optimal contingency scenario
ẑr. Update UB = min{UB, objSP +

∑
t∈T
∑

(m,n)∈E(μ
max
mn,t −

1)β̂mn,t}, and F = F ∪ {ẑr}.
Step 3: If Gap = (UB − LB)/LB ≤ ε, then terminate and

output ĝr as an optimal solution; otherwise, update r = r + 1
and go to the next step.

Step 4: Create second-stage variables ur and the correspond-
ing constraints ur ∈ H(g, ẑr). Add them to the master problem
and go to Step 1.

An important by-product of the CCG framework is the worst-
case contingency probability distribution, which is formalized
in the following proposition. The proof is given in the appendix.

Proposition 2: Suppose that the CCG framework termi-
nates at the Rth iteration with optimal solutions (β̂R, ĝR,
λ̂R, {ûj}j=1,...,R). Then, if we resolve formulation (9a)–(9c)
with variables g and uj fixed at ĝR and ûj , respectively, then
the dual optimal solutions associated with constraints (9b), de-
noted as {ψj}j=1,...,R, characterize the worst-case contingency
probability distribution, i.e., P{z = zj} = ψj , ∀j = 1, . . . , R.

IV. CASE STUDY

To evaluate the effectiveness of our approach, we conduct
three case studies. In the first study, the distribution network
includes 33 nodes, 3 substations, and 2 DG units for alloca-
tion. The 3 substations are located at nodes 1, 11, and 25,

Fig. 2. Optimal configuration for the 33-node distribution system.

Fig. 3. Optimal configuration for the 69-node distribution system.

respectively. In the second study, the system contains 69 nodes,
4 substations, and 3 DG units for allocation. The substations
are located at nodes 1, 13, 39, and 61, respectively. In the
third study, the system has 123 nodes, 5 substations, and 5 DG
units for allocation. The substations are located at nodes 1, 23,
57, 81, and 100, respectively. The active and reactive power
capacities of the DGs are assumed to be 100 kW and 50 kvar,
respectively. In both studies, we consider 24 hours in the post-
contingency restoration, i.e., T = {1, . . . , 24}. The active and
reactive power loads at each node are randomly generated from
intervals [30, 200] kW and [5, 100] kvars, respectively. The con-
struction costs for distribution lines are randomly generated from
intervals proportional to their length. Overall, the construction
costs are within the interval $[40, 100]× 104. The contingency
status for distribution lines is assumed to follow independent
Bernoulli distributions with different failure probabilities that
vary within the interval [0, 0.01]. Unless stated otherwise, we set
the construction budgetBy and the maximum number of affected
lines Nz to be $1770× 104 and 3 for the 33-node system,
$4480× 104 and 4 for the 69-node system, and $8580× 104

and 5 for the 123-node system, respectively. All case studies are
implemented in C++ with CPLEX 12.6 on a computer with Intel
Xeon 3.2 GHz and 8 GB memory.

A. Optimal Distribution Network Configuration

We report optimal configurations for the 33-node, the 69-
node, and the 123-node distribution systems in Fig. 2, Fig. 3,
and Fig. 4, respectively.
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Fig. 4. Optimal configuration for the 123-node distribution system.

TABLE I
COMPARISON OF LOAD SHEDDING

We also compare our DR model with the RO model. For
comparison purposes, we fix configuration decisions obtained
by each model and then simulate the load shedding using ran-
domly generated contingencies. Table I reports the expected load
shedding under the worst-case contingency distribution (WCD),
the load shedding under the worst-case contingency scenario
(WCS), the out-of-sample average load shedding under a ran-
domly simulated contingency distribution within D (Sim), and
the computational time of both models. To obtain WCD, WCS,
and Sim for the DR model and the RO model, we first solve these
two models and obtain (i) the optimal configurations of the two
models, (ii) the worst-case contingency distribution from the DR
model, and (iii) the worst-case contingency scenario from the
RO model. Then, with the two configurations fixed, we evaluate
WCD, WCS and Sim by solving the formulation (4a)–(4b) under
the worst-case distribution (from the DR model), the worst-case
contingency scenario (from the RO model), and a randomly
generated distribution, respectively. The results verify that our
DR approach yields lower load shedding both under worst-case
distribution and in the out-of-sample simulations. In particular,
our approach leads to 11%, 10%, and 6% reduction in average
load shedding in the out-of-sample simulation and 13%, 5%, and
3% reduction under the worst-case distribution for the 33-node,
69-node, and 123-node distribution systems, respectively. For
the worst-case contingency scenario, RO model triggers less
load shedding, which was expected, because RO optimizes the
system configuration with respect to the worst-case contingency

Fig. 5. Comparisons of optimal and random DG allocation in the 33-node
distribution system.

Fig. 6. Comparisons of optimal and random DG allocation in the 69-node
distribution system.

scenario. In addition, the CPU seconds taken to solve the test
instances demonstrate the efficacy of the proposed solution
approach. To further verify the efficacy, we replicate the ex-
periments on 10 randomly generated instances. For the 33-node
system, the average and maximum number of iterations the CCG
algorithm takes to converge are 7.6 and 12, respectively; for the
69-node system, the average and maximum number of iterations
are 8.4 and 14, respectively; and for the 123-node system the
average and maximum number of iterations are 6.4 and 10,
respectively.

B. On the Value of Optimal DG Allocation

We conduct a set of experiments to evaluate the value of
optimally allocating DG units in the distribution system. In
Figs. 5, 6, and 7 we compare the level of load shedding when
DG units are optimally located with the case when DG units are
randomly deployed. For “optimal DG,” we solve the DR and
RO models. For “random DG,” we first randomly place DGs
and then solve both models to configure the distribution system.
We perform the experiments for 5 times and report the average
values to mitigate the randomness. From Figs. 5, 6, and 7, we
observe that locating DGs properly can significantly decrease
the load shedding. This is because when the distribution system
is affected by contingencies, the loads in islanded zones can
be effectively picked up by the existing DG resources. As a
result, better DG allocation significantly enhances the system
resiliency.
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Fig. 7. Comparisons of optimal and random DG allocation in the 123-node
distribution system.

Fig. 8. Average load shedding under various line construction budget and
affected lines for the 33-node distribution system.

Fig. 9. Average load shedding under various line construction budget and
affected lines for the 69-node distribution system.

C. Impact of Construction and Contingency Budgets

In Figs. 8, 9, and 10, we depict the amounts of expected load
shedding under various line construction budgets (i.e., By) and
contingency budgets (i.e., Nz). From these figures, we observe
that load shedding reduces asBy increases and asNz decreases,
i.e., as we allow the contingency to affect less power lines in the
DR model. This is intuitive. In addition, we observe that load
shedding is sensitive to the construction budget. For example, by
increasing the budget from $4440 × 104 to $4480 × 104 when
Nz = 4 in Fig. 9, the load shedding decreases from 5485 kW
to 4297 kW, which means that a 0.9% budgetary rise translates
into a 21.6% load shedding reduction. Furthermore, we observe
that the impact of construction budget is marginally diminishing.
For example, increasing the budget from $4500 × 104 to $4560
× 104 (i.e., by 1.3%) results in a 6.7% load shedding reduction.

Fig. 10. Average load shedding under various line construction budget and
affected lines for the 123-node distribution system.

TABLE II
WORST-CASE CONTINGENCY DISTRIBUTION FOR THE 69-NODE SYSTEM

This observation highlights the necessity of implementing a
cost-effective distribution configuration planning.

D. Worst-Case Contingency Distribution

The worst-case contingency distribution for the 69-node dis-
tribution system is reported in Table II. We select a subset of
representative scenarios to display and omit other scenarios with
smaller probability values. From this table, we observe that the
contingency probabilities for different power lines are highly
heterogeneous. This provides the system operator a guideline
on the system vulnerability and a meaningful contingency
probability distribution that can be used in other vulnerability
analyses.

V. CONCLUSION

In this paper, we studied a DRO approach that configures a
distribution system considering probabilistic characterizations
of the contingencies (e.g., the outage probability of each dis-
tribution line). Out-of-sample simulations demonstrated that,
comparing with the traditional robust optimization approach,
the proposed DRO approach provides less conservative config-
urations that can reduce post-disaster load shedding. Moreover,
the computational results highlighted the values of optimal
allocation of DG units and construction budget in the distribution
system resiliency. This study can be extended in the following
directions: (i) incorporating distributed energy resources (such
as solar panels and storage units) into the system via optimized
location and sizing, (ii) incorporating network reconfiguration
after the contingencies take place, (iii) adopting ac power flow
in the post-contingency restoration process, and (iv) considering
the contingencies of other components.
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APPENDIX

Proof of Proposition 1: We rewrite maxP∈D EP [Q(g, z)]
as:

max
P∈D

EP [Q(g, z)] = max
P

∫
D(g)

Q(g, z)dP , (12a)

s.t.
∫
D(g)

dP = 1, (12b)

∫
D(g)

(1− zmn,t) dP ≤ μmaxmn,t, ∀(m,n) ∈ E , ∀t ∈ T .

(12c)

The feasible region of the problem (12a)–(12c) has an interior
point. In other words, there exists a P̂ that satisfies constraint
(12b) at equality and constraint (12c) strictly. For example,
we can set P̂ to be the probability distribution solely sup-
ported on the scenario that no contingency arises in the system,
i.e., zmn,t = 1, ∀(m,n) ∈ E , t ∈ T . Thus, the Slater’s condition
holds between the problem (12a)–(12c) and the following dual
formulation:

min
β≥0,γ

γ +
∑
t∈T

∑
(m,n)∈E

μmaxmn,tβmn,t, (13)

s.t. γ +
∑
t∈T

∑
(m,n)∈E

(1−zmn,t)βmn,t≥Q(g, z), ∀z ∈ D(g).

(14)

where γ and β are dual variables associated with constraints
(12b) and (12c), respectively. In the dual formulation, we ob-
serve that the optimal γ should satisfy

γ = max
z∈D(g)

⎧⎨
⎩Q(g, z)−

∑
t∈T

∑
(m,n)∈E

(1− zmn,t)βmn,t

⎫⎬
⎭ .

(15)

Substituting γ from (15) to the objective function (13) completes
the proof. �

Proof of Proposition 2: With variables g and uj fixed at ĝR

and ûj , respectively, we take the dual of formulation (9a)–(9c)
to obtain:

max
ψ≥0

R∑
j=1

ψj

(∑
t∈T

∑
n∈N

sjnt

)
(16a)

s.t.
R∑
j=1

ψj

(
1− zjmn,t

)
≤ μmaxmn,t,

∀t ∈ T , ∀(m,n) ∈ E , (16b)

R∑
j=1

ψj = 1. (16c)

By constraints (16b)–(16c), {ψj}j=1,...,R characterize a prob-
ability distribution supported on scenarios {zj}j=1,...,R such
that P{z = zj} = ψj , ∀j = 1, . . . , R. As the CCG framework
terminates at the Rth iteration and by the strong duality of
linear programming, formulation (16a)–(16c) is equivalent to the

worst-case expectation formulation (6), i.e., these two formula-
tions yield the same optimal value. It follows that {ψj}j = 1,
. . . , R characterize the worst-case contingency probability
distribution. �
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