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ABSTRACT

Software product line engineering is a best practice for managing
reuse in families of software systems. In this work, we explore the
use of product line engineering in the emerging programming do-
main of synthetic biology. In synthetic biology, living organisms are
programmed to perform new functions or improve existing func-
tions. These programs are designed and constructed using small
building blocks made out of DNA. We conjecture that there are fam-
ilies of products that consist of common and variable DNA parts,
and we can leverage product line engineering to help synthetic
biologists build, evolve, and reuse these programs. As a first step
towards this goal, we perform a domain engineering case study that
leverages an open-source repository of more than 45,000 reusable
DNA parts. We are able to identify features and their related arti-
facts, all of which can be composed to make different programs. We
demonstrate that we can successfully build feature models repre-
senting families for two commonly engineered functions. We then
analyze an existing synthetic biology case study and demonstrate
how product line engineering can be beneficial in this domain.

CCS CONCEPTS

- Software and its engineering — Software product lines; «
Applied computing — Systems biology.
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1 INTRODUCTION

Today’s software development practices are dominated by reusabil-
ity, with practitioners sharing plug-and-play modules that can be
applied in a multitude of different applications. As part of this move-
ment, open-source repositories such as GitHub have emerged as
marketplaces where developers find libraries and other reusable
components. At the same time, software product line (SPL) engi-
neering has become a best practice for modeling and managing
families of software systems. The SPL community has turned to
open-source systems and used the concepts of commonality and
variability to define open-source product lines [31]. Recently, Mon-
talvillo and Diaz have proposed techniques to aid SPL practices
within GitHub [25]. It seems natural to look at other emerging open-
source marketplaces to understand whether SPL development can
provide benefits to those communities as well.

Synthetic biology, the practice of engineering living organisms
by modifying their DNA, has advanced rapidly over the last 30
years [8]. It is being used for sensing heavy metals for pollution miti-
gation [5], development of synthetic biofuels [40], engineering cells
to communicate and produce bodily tissues [29], emerging med-
ical applications [22, 38], and basic computational purposes [12].
Synthetic biologists design new functionality, encode this in DNA
strands, and insert the new DNA part into a living organism such
as the common K-12 strain of the bacteria Escherichia coli (E. coli).
As the organism reproduces, it replicates the new DNA along with
its native code and builds proteins that perform the encoded func-
tionality. In essence, the biochemist is programming the organism
to behave in a new way. Hence we call these organic programs.

As DNA strands have become easy to engineer by simply pur-
chasing a desired sequence, the field of synthetic biology has rapidly
grown. For instance, each year 300+ teams of students (high school
through graduate) compete in the International Genetically En-
gineered Machine (iGEM) Competition. Teams build genetically
engineered systems to solve real-world problems [20]. Students are
required to submit the engineered parts along with their designs
and experimental results back into an open-source collection of
DNA parts called BioBricks. This BioBrick repository (called The
Registry of Standard Parts) [21] contains over 45,000 DNA parts
and can be viewed as a Git repository for DNA. In this paper we
utilize this as our exemplar system, but we note that companies
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and other institutions are likely building their own commercial
instances of this type of repository.

DNA parts are often advertised as “LEGO” pieces that can be
combined in many ways to form new genetic devices. However,
these LEGO pieces come with no “Building Instructions” An en-
gineer begins a project by developing a blueprint for the organic
program they want to build. They will have a general plan for the
type of features they want their system to have (such as a part
that produces a fluorescent protein or expresses a gene in the pres-
ence of a particular chemical). To bring this creation to fruition
they must find the corresponding parts in a repository or in the
literature. They then build the associated working organic system
following an architecture that merges the features together. How-
ever, this architecture can require significant domain knowledge to
develop. Rather than expecting engineers to create architectures
from scratch, we hypothesize that SPL engineering can be used.

In this work we explore the use of product line engineering with
the goal of helping developers in synthetic biology. We conjecture
that there are families of products that consist of common and
variable DNA parts, just as we see in other open-source repositories.
We call these organic software product lines. We conduct a case study
to evaluate this claim and lay the foundations for merging software
product line engineering and synthetic biology.

The contributions of this work are:

(1) A mapping of SPL engineering to the domain of synthetic
biology resulting in organic software product lines;

(2) A case study demonstrating the potential reuse and exis-
tence of both commonality and variability in the BioBricks
repository and showing that we can build feature models
that have potential to help synthetic biologists.

In the next section we present background on synthetic biology
and a motivating example. We then propose the notion of an organic
SPL (Section 3). We follow this with our case study (Section 4),
results (Section 5), and discussion (Section 6). We present related
work in Section 7, and end with conclusions and future work.

2 BACKGROUND

Synthetic biology has been defined as a process “to design new, or
modify existing, organisms to produce biological systems with new
or enhanced functionality according to quantifiable design crite-
ria” [1]. Part of this definition emphasizes design and quantification.
It follows that we can view synthetic biology as a programming
discipline. It begins with a model, which is then implemented into
strands of DNA that are inserted into a living cell. We can view
the organism as the compiler that takes the DNA and translates
it to machine level code, creating proteins that the organism uses
to perform different functions. Just as machine code is written in
1s and 0Os, biology is written in the four DNA bases adenine (A),
thymine (T), cytosine (C), and guanine (G).

This analogy of programming biology is not a new concept. There
is even a programming language called the Synthetic Biology Open
Language (SBOL) which defines a common way to represent biolog-
ical designs [30]. Researchers have used synthetic biology to create
a context-free grammar using BioBricks [7], automated design of
genetic circuits with NOT/NOR gates [26], and bacterial networks
to use DNA for data storage [6, 32]. There are also several examples
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of organic programs inspired by classic computer science constructs
such as a genetic oscillator [13], a genetic toggle switch [17], and a
time-delay circuit [39].

At its core, synthetic biology breaks down a biological process
into smaller functions, each of which can be represented by a DNA
part. These parts can be put together in various combinations to
make new functions. The largest open-source repository of DNA
parts is called the Registry of Standard Parts [21] (Registry for
short). Parts have been contributed to this registry through the
iGEM Competition. Although participants from iGEM are the most
frequently documented users of the repository, anyone can use it
to find appropriate parts for their designs.

iGEM describes itself as a competition where teams “design, build,
test, and measure a system of their own design using interchange-
able biological parts and standard molecular biology techniques.”
Each year about 6,000 students participate, designing projects which
often address various regional problems such as pollution mitiga-
tion. Teams are judged by community experts and can be awarded
a medal (bronze, silver, and gold) corresponding to the impact and
contributions of their project. A gold medal team must achieve
several goals such as modeling their project, demonstrating their
work through experimentation, collaborating with other teams, ad-
dressing safety concerns, improving pre-existing parts or projects,
and contributing new parts.

2.1 Motivating Example

We next present a motivating example derived from our case study
demonstrating the potential of SPL engineering in this domain.

Cell-to-cell signaling is a common function of synthetic biology.
It represents a key communication mechanism for cellular organ-
isms. A sender organism communicates with a receiver organism
which responds to the signal by emitting some chemical reporter.
Suppose an engineer wants to build a cell-to-cell signaling system
from scratch. If the engineer has no additional resources other than
an online repository and his or her knowledge of synthetic biology,
then this analogy is similar to someone searching GitHub for code
that performs a particular function. The user can search the Reg-
istry for “signalling” and they will be redirected to a single page
with a list of parts. It consists of eight senders, 11 receivers, and
464 “other” parts. If, however, the user searches with U.S. English
convention for “signaling” the query returns 789 hits, each with its
own page to investigate. It is important to note that not all of these
page hits link to parts actually involved in cell-to-cell signaling.
Some are pages that simply have the word “signaling” in them. This
demonstrates the difficulty of any free-text search.

An alternate strategy is to search based on function using the
field “Browse parts and devices by function.” Figure 1, steps #1 and
#2, show this in the Registry. There are 10 functions listed including
“Cell-to-cell signaling and quorum sensing.” Parts are sorted (Figure
1 - step #3) into various lower-level categories on this page. Most are
basic parts that include: 39 promoters, 13 transcriptional regulators,
12 enzymes, and 21 translational units. There is also a separate list
of 138 composite (or aggregate) parts.

Another strategy would be to search for previous projects that
built a cell-to-cell signaling system. For example, one might locate
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Figure 1: Browse by function — Cell-to-cell signaling

the 2017 iGEM team from Arizona State University (ASU) [2]. Look-
ing on this team’s web page would lead the user to find models
for 30 composite parts for cell-to-cell signaling. While this is an
improvement over the prior approaches and provides a roadmap to
build the system (along with results of the study), it is limited to the
30 products that the ASU team chose to use in their experiments.
As we will show, there are many more ways to build a cell-to-cell
signaling system.

What if, instead of starting from scratch, the synthetic biologist
begins this process with the feature model shown in Figure 2 (a
subset of a feature model in our study)? From this model the user
immediately can see the architecture of their system. First, they
learn that any cell-to-cell signaling system requires three basic
parts: a sender, a receiver, and a reporter. Instead of having to look
at hundreds of possible parts, the user can also see there are only
two possible parts for each of the three components. The user also
notices a constraint in this model, so they will also not waste time
testing combinations of features which are incompatible.

If users wanted to test the effectiveness of various receivers
in this system, they could slice this model to get a specific set of
products. They could also design experiments to test products that
have not yet been analyzed in the laboratory. Once they complete
their experiments, users could add their results back to the Registry
as annotations. This is a small example, but it demonstrates how
product line engineering could help users construct valid cell-to-cell
signaling programs.

As further motivation, if we return to the ASU team’s experi-
ments, one of their goals was to investigate the crosstalk, or the
interactions between various parts. To test this, they designed ex-
periments with multiple combinations of senders and receivers.
Without realizing it, they defined a family of products for cell-to-
cell signaling and evaluated the individual products. If they were
working with a feature model they would have been able to: 1) effi-
ciently sample the product space; 2) know how much of the space
they explored; and 3) add constraints when they found crosstalk
between parts. They could then annotate the feature models and
create assets to describe their findings which could be used by an-
other team working on a similar project. In essence, they could
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Figure 2: Example feature model for cell-to-cell signaling,.

leverage the power of SPLs. It is this motivation that leads us to
propose organic software product lines.

3 ORGANIC SOFTWARE PRODUCT LINES

Not long ago, the SPL community asked if open-source applications
such as the Linux kernel should be considered product lines given
that they are not managed and developed in the traditional man-
ner [23, 31]. This has led to a broader view of SPLs. We ask the same
question now of organic programs. Is there a mapping between
traditional software product line engineering and synthetic biology
that allows for managed development and reuse?

As Clements and Northrop state, the output of domain engi-
neering should contain (1) a product line scope, (2) a set of core
assets, and (3) a production plan [10]. This feeds into application
engineering, which uses the production plan and scope to build and
test individual products. Our focus in this work is primarily domain
engineering, however we touch upon application engineering in
the context of organic programs in the case study.

Assets. To begin we need to identify what constitutes a core asset
for this domain. Assets in traditional product lines can include a
software architecture, reusable software components, performance
models, test plans and test cases, as well as other design documents.
In organic programs, we see similar elements, discussed next. SBOL
(or a similar representation) is used to define the functionality
of a snippet of DNA code. This serves as an important design
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Figure 3: SBOL model of a transcription unit. This compos-
ite part is composed of four basic DNA parts: The promoter
(also called a regulator), ribosome binding site (RBS), coding
sequence, and terminator.

document for individual features. SBOL models can be composed
and aggregated leading to composite models. The SBOL model
for the simplest, stand-alone functional biological unit (called a
transcriptional unit) can be seen in Figure 3. It is composed of
four basic DNA parts: the promoter, ribosome binding site, coding
sequence, and terminator.

The DNA sequence is the reusable software component. Like
code it is not tangible, but must be implemented as a program
and compiled to a machine level (or byte-code level) representa-
tion. DNA can be synthesized into a physical strand which can be
inserted into a compiler (the living organism) for translation to
machine level code (via the biological processes of transcription
and translation of DNA via RNA into proteins). Other assets such
as test cases and test plans can be constructed which define either
laboratory experiments or virtual simulations. Both lead to eval-
uation of the program’s expected, versus observed, functionality.
Additional assets in the form of design documents and documen-
tation can be provided such as safety cases [16] and higher level
system architecture (e.g., GenoCAD [7]).

Domain Engineering. During domain engineering the engineer
defines the product line scope by choosing a family of behavior
such as a type of molecular communication. He or she also de-
fines the common and variable features and their relationships. An
example of commonality is the transcription unit (Figure 3). The
specific choices for promoters and binding sites defines the vari-
ability. When inserted into their host organisms at specific binding
sites, the sets of DNA sequences define unique sets of products. Last,
a production plan can be created in combination with a feature
model and constraints. The feature model and constraints show how
the DNA parts, as features, form a family of products, along with
experimental notes on expected environmental conditions or other
assumptions that are required for the program to run correctly.
Application Engineering. Application engineering involves com-
bining the expected parts using standard DNA cloning techniques
for insertion into a living organism [28]. Just as with traditional
product lines, it is up to the engineer to adhere to constraints and
only compose products defined in the feature model, otherwise
unexpected behavior may occur. As in traditional software, some
constraints may be hard-coded into the program, while some may
represent a domain expectation instead.

Thiim et al. [36] in their survey of product lines discuss different
implementations of product lines and analyses that can be per-
formed at both the family and variability level. We believe organic
product lines are just another type of implementation and we can
utilize common analyses and techniques from SPL engineering in
this domain. We study that next.
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4 CASE STUDY

We conducted a case study to evaluate the feasibility of using prod-
uct line engineering in synthetic biology. Supplemental data for this
study can be found on our website.! We ask the following research
questions:

RQ1: Does a DNA repository have the characteristics of a software
product line?

RQ2: Can we build feature models representing families of products
from an existing DNA Repository?

RQ3: Can SPL engineering provide useful analyses for developers
of organic programs?

4.1 Subject Repository

We use as our subject repository the Registry of Standard Biological
Parts (herein referred to as the BioBrick repository) as described in
Section 2. We choose this subject as it is the largest open-source
DNA repository and continues to grow (on average 2,995 parts are
added each year).

For this work we define a feature simply as a BioBrick part. A
product is the compilation of multiple basic BioBricks that together
perform a cohesive function.

4.2 Data Collection

To study the core assets of the system, we use the BioBrick API
to pull data for all parts up through December of 2018, consisting
of 47,934 entries [19]. Each entry contains information such as
the partfid, part_name, part_type, uses, status, and creation_date.
Usage in this case is defined by counting how many times a part has
been requested by a community user. This can tell us how useful a
part is to the community.

4.3 Study Objects

For RQ1 we use the BioBrick repository. For RQ2 we select two
biological functions in which to build a feature model. The BioBrick
repository has sorted parts into ten common biological functions:
biosafety, biosynthesis, cell-to-cell signaling and quorum sensing,
cell death, coliroid, conjugation, motility and chemotaxis, odor
production and sensing, DNA recombinations, and viral vectors. We
select the two functions with the greatest number of parts (biosafety
and cell-to-cell signaling). Biosafety has several subcategories, we
choose the subcategory with the most parts —kill switch. For RQ3
we selected a 2017 iGEM team from Arizona State University [2]
whose project is a subcategory of cell-to-cell signaling.

4.3.1 Kill Switch. A kill switch is a safety mechanism which trig-
gers cellular death, typically by engineering cells to produce pro-
teins which destroy cellular membranes. Common triggers include
exposure to specific chemicals, temperature ranges, pH levels, or
frequencies of light. To build the kill switch feature model we manu-
ally reviewed all of the wiki pages from the 110 teams who earned a
gold medal in the 2017 iGEM competition [16]. Only 14 mentioned
some type of kill switch in their design. We use those pages. The
exact set of teams is listed on our website.

Lhttps://sites.google.com/view/splc-dnafeatures
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Table 1: Part types for all BioBrick parts in the repository.

part_type # parts || part_type # parts
Coding 10,265 || RBS 769
Composite 9,966 || Primer 685
Regulatory 4,165 || Plasmid 681
Intermediate 3,506 || Project 656
Generator 2,425 || Terminator 518
Reporter 2,310 || Signalling 511
Device 2,277 || Plasmid_Backbone 454
DNA 1,717 || Tag 385
Other 1,419 || Scar 121
Measurement 1,162 || Inverter 117
RNA 976 || Cell 75
Protein_Domain 917 || T7 57
Translational_Unit 880 || Conjugation 51
Temporary 866 || Promoter 3

4.3.2  Cell-to-Cell Signaling. Cell-to-cell signaling is a key cellular
communication mechanism by means of secreting and sensing small
molecules or peptides/proteins between a sender and a receiver.
To build a feature model for cell-to-cell signaling, we forward-
engineered the parts listed under the cell-to-cell signaling category
of the BioBrick repository. We employed basic knowledge of the
structure of a cell-to-cell signaling category and sorted parts by
their features.

There are 39 promoters, 13 transcriptional regulators, 10 biosyn-
thesis enzymes, 2 degradation enzymes, 21 transitional units, and
138 composite parts in this category. Since we want to map systems
down to the lowest level of feature we ignore the composite parts.

5 RESULTS

In this section we answer each of our research questions in turn.
In RQ1 we quantify assets from the BioBrick repository and ex-
plore both commonality and variability between products. We focus
on domain engineering in RQ2 and RQ3. We move to application
engineering in RQ3.

5.1 RQ1 Does the BioBrick repository have the
characteristics of a software product line?

In Section 3 we defined organic software product lines in terms of
SPL engineering concepts. We start with the core assets, the code.
There are 47,934 BioBrick parts at the time of this publication. Table
1 shows the counts of parts by function. The largest category, coding,
has over 10,000 parts. These are sequences that encode specific
proteins. The second most frequent category (9,966) is composite
part. A composite part is composed of two or more basic parts (i.e.,
an aggregate class or function). All of the top ten categories have
more than 1,000 parts. We can consider these reusable assets for
building products.

We next analyzed the use count for each part. The use count
specifies how many times a request for the part was made by an
external user. This is similar to a GitHub checkout. Table 2 displays
this data. We can see that the majority of parts (about 71%) are
never requested. Approximately 27% are used between one and
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Table 2: BioBrick use counts - # user requests.

# of Uses # of Parts
0 34,091 (71.12%)
1-10 13,117 (27.36%)
11-50 602 (1.26%)
51-100 61 (0.13%)
101+ 63 (0.13%)

Table 3: Assets present in 100 random composite parts.

Asset SBOL DNA Textual Experimental
model | sequence | description results
% parts 82% 95% 90% 24%

ten times. Then we see a small percentage of parts (under 2%) that
are used more than 11 times. This demonstrates the repository
consists of many reusable core assets. The parts with high use
may show potential commonality between projects, and the parts
with lower use may represent potential variability. We leave a
complete analysis as future work. We see a similar phenomenon in
traditional software repositories with a large abundance of code,
but a comparatively small number of highly used modules [42].

Each part’s web page in the BioBrick repository can contain
several additional assets including the SBOL model, the raw DNA
sequence, a part description in plaintext, and results from exper-
imentation from iGEM teams. All of these assets may be useful
to a user interested in how a part can fit into their construct. We
randomly sampled 100 composite parts from the repository and
identified whether they had these assets. Table 3 shows the results.
82% of parts included the SBOL format. Most of them included the
raw DNA sequence (95%) and a basic textual description (90%). Only
24% of parts included any additional experimental results.

We now focus on two aspects of SPLs that we would expect to
see in practice:
Variability. To examine variability we focus on the transcription
unit, the most basic function (see Figure 3). There are 4,165 pro-
moters, 769 RBSs, 10,265 coding sequences, and 518 terminators.
If we underestimate the possible product space by counting one
of each part (a standard practice is to use two terminators which
will increase the space by a large factor) we have on the order of
1.7 x 10'3 (17 trillion) products representing transcription units.

There are also 9,966 parts labeled as composite in the repository
(meaning they were built from basic parts and added back into the
repository). Each represents one customized product built from the
core components, again showing variability.
Commonality. Not every product is completely distinct from oth-
ers. Products will share certain common features with other prod-
ucts in their biological functionality. There are ten functional cate-
gories listed in the BioBrick repository. Each of these categories can
represent one set of products, and they will share common architec-
tural elements. Two examples of this include: (1) a kill switch will
always have a trigger and an effect; and (2) a cell-to-cell signaling
system will always have a sender, receiver, and reporter. In RQ3 we
examine a real family of products that has 15 common features.
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5.2 RQ2 Can we build a feature model from the
BioBrick Repository?

For this research question we built two different feature models for
two different functions in the BioBricks repository.

5.2.1 Kill Switch. Based on manual review of 2017 iGEM teams
who earned a gold medal, we built the feature model shown in
Figure 4. The trigger type (left side) is the most interesting because
synthetic biologists will want to engineer kill switches to activate
only under certain conditions. The kill switches we reviewed can
be triggered under several different conditions: temperature ranges;
presence or absence of specific chemicals; low pH levels; or expo-
sure to specific frequencies of natural light. Each of those trigger
conditions ends in leaf nodes which are the BioBrick IDs correlated
to specific DNA sequences. The promoters, RBSs, coding sequences,
and terminators show which BioBricks can be used to complete
a transcription unit for a kill switch. The visualization branch is
optional. It provides visual evidence that the switch is working
through production of fluorescent proteins. This model represents
882 valid (different) kill switches.

5.2.2 Cell-to-Cell Signaling. Figure 5 shows the overall cell-to-cell
signaling feature model we constructed. Recall that a basic cell-to-
cell signaling system has three different of transcriptional units
(sender, receiver, reporter). The feature model follows a hierarchical
model with variation points at the transcriptional unit level as a
sub-feature model. Because the full cell-to-cell signaling model is
too large to show here, we visually present only some of these sub-
feature models and describe the rest in text (the complete model is
on our supplementary website).

Promoter: One promoter is needed for the sender, one for the
receiver, and one for the reporter. A promoter has three features:
constitutiveness, activation, and repression. A promoter may have a
different level of constitutive expression (meaning it expresses on
its own, without being activated by any protein). We found parts
that categorize this as weak, medium, or strong. A promoter can also
be activated (increased expression) by a protein. We identified four
proteins listed under cell-to-cell signaling promoters. We identified
seven proteins that could be used for repression.

We represent the three features of a promoter (constitutive, acti-
vation, repression) with an OR relationship. Each of the parts below
these features have an Alternative relationship. In our model one
promoter alone has 159 possible configurations. The model for the
receiver promoter is expanded and can be seen in Figure 5.

RBS: The next high-level feature is the RBS. This part will have
the same variation in the sender, receiver, and reporter. Since the
cell-to-cell signaling catalog does not include RBS parts, we looked
at all RBS parts. They are sorted into different collections, so we
use the community collection. The functional differences between
them is in their protein expression level (“strength”). This feature
in the SPL has eight possible configurations.

Coding Sequence (Protein): The next part is the coding sequence.
We limit this model to only coding sequences which encode for
creation of specific proteins. We have identified five proteins in the
cell-to-cell signaling catalog. In addition to a protein, a function is
required to be chosen, either transcriptional regulation or an enzyme.
An enzyme can either be for biosynthesis or degradation. There is
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also an optional LVA tag which reduces the proteins’ half-life. The
coding sequence parts have 30 possible configurations. This model
is shown in Figure 6.

Coding Sequence (Reporter): The other type of coding sequence
we model represents the encoding of the reporter’s signal. We
identify four possible behavioral responses: green fluorescence,
biofilm production, antibiotic production, and a kill switch.
Terminator: The final part is the terminator. There are no termi-
nators listed in the cell-to-cell signaling catalog, so we look at all
terminators in the repository. Terminators can be in the forward
direction, reverse direction, or be bidirectional. We only consider
forward directional terminators in this model. In the BioBrick cat-
alog there are 24 terminators available. It is common to choose
two terminators to ensure transcription stops, so in our model we
allow choosing one or two (a {1,2} OR relation) terminators. The
terminator parts allow 300 possible configurations. Since our model
was too large for FeatureIDE to calculate the set of products we use
FaMa [4]. The sender and receiver each have 11,448,000 products.
The reporter has 5,724,000 products. The total number of products
is 7.5 x 1020

5.3 RQ3: Can SPL engineering provide useful
analyses for organic programs?

For this research question we ask questions related to application
engineering. We use the 2017 iGEM team project from Arizona State
University [2, 33] introduced in our motivating example. Because
this team built a quorum sensing network, which is a type of cell-
to-cell signaling, it helps us validate the results from RQ1 from an
application engineering perspective.

In quorum sensing, there are two groups of organisms: the first
group acts as the sender, and the second as the receiver. The receiver
will exhibit a type of behavioral response at a certain concentration
(a quorum) signaled by the presence of both these proteins. For
example, the receiving organism may turn green when enough of
the sending organism’s signal is sensed in the system.

The choice of protein for the sender and the receiver plays an
important role. Some combinations of proteins cause crosstalk for
the receiver which can render the system inefficient or even useless.
As stated on the ASU team’s project web page: “Knowing the rates of
induction also allows for greater precision when designing genetic
circuits” The team chose ten different proteins for the sender (Aub,
Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, Sin), three different proteins
for the receiver (Las, Lux, Tra), and three different proteins for the
reporter (Las, Lux, Tra).

5.3.1 Providing a Broader View of the Product Space. Though per-
haps unintentionally, the ASU team’s project represents a fea-
ture model. We formalize it by manually reverse-engineering their
project feature model from their web page. Figures 7 and 8 show the
resulting sender and receiver models respectively (herein referred
to together as the ASU model). This model contains the high-level
features: sender and receiver. The receiver contains both a regula-
tor and reporter. Each feature has four basic parts (promoter, RBS,
coding sequence, terminator) and the sender has an extra feature to
incorporate a red fluorescence. Many of the features are mandatory.
The points of variability lie in the sender’s coding sequence, the reg-
ulator’s coding sequence, and the reporter’s promoter. This model
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Figure 4: A feature model for a kill switch. An integer on a leaf represents how many nodes are in their subtrees (obfuscated).
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Figure 5: Top levels of the cell-to-cell signaling feature model.
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Figure 6: Sub-feature model of a protein coding sequence.

represents a total of 90 products. To conduct their experiments,
the ASU team added a constraint between the regulator’s coding
sequence and the reporter’s promoter (they are required to be the
same). Thus their experiment tested 30 of these products in the
laboratory. We call this the ASU experiment model.

If we compare this ASU model to the reverse engineered model
presented in Section 5.2.2 (we call this the cell-to-cell signaling
model), the ASU model is not a direct subset of the cell-to-cell

signaling model. In practice it should be. We would have expected
the products in the models to overlap, as seen in Figure 9a. However
the actual overlap can be seen in Figure 9b. We can see that only
12 products overlap between the ASU model and the cell-to-cell
signaling model. There are an additional 78 products that the cell-
to-cell signaling model misses.

To understand why there is such a small overlap we examine the
features each model considers. The ASU team’s experimental focus
was on the interactions of protein features for the sender, regulator,
and reporter, so the points of variation were chosen on these three
variables. We expected a complete set of proteins to be documented
on the cell-to-cell signaling page, but they are not comprehensively
listed in the BioBrick repository.

Both models are valid representations of quorum sensing sys-
tems, however they come from different resources and their prod-
ucts differ. This highlights a key problem with the current method
of engineering a model - there is a lack of complete information
available. In an ideal world we would show a complete list of all
proteins, possibly through a central, open-source feature model.
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Figure 7: The sender slice from a feature model for the 2017 Arizona State University’s iGEM project (ASU Model).
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Figure 8: The receiver slice from a feature model for the 2017 Arizona State University’s iGEM project (ASU Model).
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Figure 9: The overlap of the feature models and ASU experimentation. The sum of each circle is in parentheses.

5.3.2 Testing and Analysis. We next move to testing and analysis
of our applications. Assume the ASU team used the cell-to-cell
signaling model to drive their experiments instead of working from
scratch. We demonstrate how they could have used this feature
model to help with testing and analysis.

Since the ASU team focused only on the proteins, they could have
sliced the cell-to-cell signaling model. This would yield the model in
Figure 10 (called protein slice) which represents 100 products. This
is significantly fewer than the total product space (7.50169 x 10%0),
but more than what the ASU team eventually tested (30).

We could also employ common sampling methods such as com-
binatorial interaction testing (CIT) which samples broadly across a
set of features [11]. Using sampling allows us to test a larger space
of combinations. We used CASA [18] to build a 2-way CIT sample
of the ASU model. In this scenario an interaction is between two
proteins. We can cover all pairs of proteins in the complete model
using 30 tests. Note that ASU also tested 30 products, but in order
to scope the project they applied their own constraint that does not
test for possible interactions between the regulator and reporter
proteins. Using CIT will more broadly sample the interaction space
of all three proteins.
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Figure 10: A slice of the complete cell-to-cell signaling feature model focuses on protein combinations to mimic the ASU team’s

experiment (protein slice).

We also built a 2-way CIT sample for the cell-to-cell signaling
model, covering all pairs of all features. This has 715 tests. This is
a significant reduction of the entire configuration space, however
it may be too large in practice. Each of these samples and their
product overlaps can be seen in Figure 11. All samples can be found
on our associated website.

ASU model
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Cell-to-Cell Signaling
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Key

7.5x10%

CIT sample

2-way
Cell-Cell AsU

experiment

715

11 asu
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(30)

Figure 11: Product overlap between each of the feature mod-
els and possible samples.

5.3.3 Leveraging Existing Reverse Engineering Tools. Given that
synthetic biology is an end-user software engineering domain, de-
velopers of organic programs may not be well versed in software
development methods. Therefore, building a feature model from
scratch may be a roadblock. We have observed this in other re-
cent studies that have applied software engineering concepts to
synthetic biology [16]. Instead, we want to understand whether it
would be possible to obtain an initial feature model using only a set
of products (which is how the ASU team built their experiments).
This model could then be used to define CIT sampling, etc.

We utilized an existing reverse engineering tool, SPLRevO [34,
35]. We note that other similar tools could also be used. This tool
accepts either (1) a set of constraints based on domain knowledge
describing the compatibility of the DNA parts, or (2) a set of prod-
ucts which can be the known working composite components. The
tool then uses a genetic algorithm to automatically build a feature
model that represents all products. The fitness function (validity)
aims to maximize the set of existing products while minimizing any
additional products using a penalty. Because we do not have a set of
constraints for this model we used a set of products as inputs. We

believe that a domain-specific language for users that describes the
product line and which can generate constraints is an interesting
avenue for future work.

The current prototype of SPLRevO can handle up to 27 fea-
tures when reverse engineering from products. Therefore, we re-
duced the ASU model from 30 to 27 features by selecting two of
the common features (B0010 and B0012) and merging them into
one feature (B0015) for the sender, regulator, and reporter (e.g.
B0010_S+B0012_S—B0015_S, B0010_R+B0012_R—B0015_R, etc.).
Since there are 15 features in the ASU model that are common to all
products, we could have chosen any of those features to combine
or remove while still representing the same 30 products. SPLRevO
returned the feature model seen in Figure 12. It was able to provide
us with a model that closely resembles the hand-built model and has
100% validity (it represents exactly the same number of products).
Though the models represent the same products, their physical
structure is different. The SPLRevO model grouped the sender’s
protein coding sequences together like the ASU model (Group1).
Group?2 represents the proteins for the regulator and reporter. In-
stead of adding a cross-tree constraint like the ASU team did for
their experiment, the SPLRevO model uses mandatory relations for
these under Group2. The rest of the features are all mandatory.

During this process we realized that 100% validity, while a good
result for this study, might be relaxed in a real scenario. If the user
provides a set of products, but they are not complete, relaxation
could be used to allow them to interactively improve their model.
We may also want to add additional features (from the BioBricks
repository) and show the potentially larger model. Ultimately, if
we can represent BioBricks features using a constraint language,
there is an opportunity for direct reverse-engineering and greater
scalability. SPLRevO has been evaluated on reverse-engineering a
feature model up to 100 features when using input constraints [35].

6 DISCUSSION

We found several interesting insights when working on this study.
First, we found the domain engineering from an open source repos-
itory like this to be challenging. We did not obtain the same fea-
ture model for cell-to-cell signaling as ASU, and cannot be certain
whether they had additional domain expertise to restrict their study
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Figure 12: A reverse-engineered feature model using SPLRevO.

or if this was due to chance. However, we believe that an interactive
environment that we have described would be useful. Recent work
on other SPL development in open source repositories are looking
at ways to provide branching constructs for more easy reuse and
understandability [25]. Second, there is an opportunity to develop
more techniques for domain experts (who may not understand fea-
ture modeling) to work with product line engineers to build models
that are functionally useful. It would be useful to provide some do-
main specific tools that can be used to generate sets of constraints,
rather than require the user to either build the full feature model or
list a set of products by hand. Third, we believe there is an oppor-
tunity for users to provide qualitative/experimental information
which can be returned to the product line and connected via trace
links. These can be provided as assets in the BioBricks Repository.
Last, we note that there is a lot of noise in this repository. For in-
stance, some parts do not have a DNA sequence which means it is
empty code. We did not attempt to account for all of that during
our study, but leave that as future work.

7 RELATED WORK

This paper follows a long line of research on software product lines.
We do not attempt to summarize all of that work here, but point
readers to several good surveys on this topic [3, 36]. Product line
engineering has been applied in many emerging domains recently
including drones and nanodevices [9, 24]. There is also a push
towards open-source product lines [23, 25, 31] and the concept of a
software ecosystem, where the community modifies and customizes
product lines using a common platform and look [27].

The closest work is that of Lutz et al. [24] who study a family
of DNA nanodevices. While they also look at DNA, they study
chemical reaction networks (CRNs), rather than a living synthet-
ically engineered organism. Their line of organic programming
leverages CRNs, which are sets of concurrent equations that can be
compiled into single strands of DNA [41]. CRNs have been shown
go be Turing complete [14]. CRNs are not necessarily part of living
organisms; there is no transcription and translation of the code [15].

Ours is not the first analysis of the BioBricks repository. Valverde
et al. examined the relationships within the repository from a net-
work perspective to gain an understanding of the software com-
plexity (they too treat this as a software ecosystem) [37].

This work differs from the existing work in that we demonstrate
the use of domain engineering to build a family of synthetic bi-
ology products which can be analyzed and reasoned about using
traditional SPL engineering techniques.

8 CONCLUSIONS AND FUTURE WORK

In this paper we have shown how the emerging programming field
of synthetic biology can potentially benefit from software prod-
uct line engineering. We first presented the notion of an organic
software product line. We then used the largest open source DNA
repository to analyze 1) whether there are assets which are reused
and products that share common and variable elements, 2) whether
we can build feature models to represent the products in this repos-
itory, and 3) how common SPL techniques can be used to benefit
product line development in this domain. We found reusable assets,
commonality, and variability in the repository. We were able to
build feature models to represent several common functions. We
then demonstrated how we might automatically reverse engineer
a model and how this can help users test and reason about the
product space more comprehensively.

In future work we plan to investigate building a domain specific
language for generating SPL constraints, and evaluating this ap-
proach in practice with teams of synthetic biologists perhaps in
the iGEM Competition. We also plan to investigate challenges that
are shared with modern SPLs including scalability, dynamic feature
models, and collaborative SPLs.
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