
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 3, MARCH 2020 1861

On the Energy-Delay Tradeoff in Streaming
Data: Finite Blocklength Analysis

Mirza Uzair Baig , Lei Yu , Zixiang Xiong , Fellow, IEEE, Anders Høst-Madsen , Fellow, IEEE,

Houqiang Li , Senior Member, IEEE, and Weiping Li, Fellow, IEEE

Abstract— This paper investigates basic trade-offs between
energy and delay in wireless communication systems using finite
blocklength theory. We first assume that data arrive in constant
stream of bits, which are put into packets and transmitted
over a communications link. Our results show that depending
on exactly how energy is measured, in general energy depends
on

√
d−1 or

�
d−1 log d, where d is the delay. This means

that the energy decreases quite slowly with increasing delay.
Furthermore, to approach the absolute minimum of -1.59 dB
on energy, bandwidth has to increase very rapidly, much more
than what is predicted by infinite blocklength theory. We then
consider the scenario when data arrive stochastically in packets
and can be queued. We devise a scheduling algorithm based on
finite blocklength theory and develop bounds for the energy-delay
performance. Our results again show that the energy decreases
quite slowly with increasing delay.

Index Terms— Wireless communications, delay, energy, finite
blocklength, queuing, scheduling.

I. INTRODUCTION

THE focus of this paper is to understand the relationship
between delay and energy in wireless communications.

With the proliferation of mobile devices, such as smart phones
and tablet PCs, wireless communications are increasingly
used to serve traffic with stringent delay constraints,
such as video streaming, online gaming, VoIP, and video
conferencing. Nowadays most of the internet traffic are video.
Therefore, providing stringent delay guarantees becomes
an important challenge for enhancing the quality of
service (QoS) of end users.
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On the other hand, energy consumption of communications
is becoming an increasing focus under the banner of “green”
communications (IEEEXplore returns thousands of hits
on “green communications”). The main reason for this is
the prevalence of mobile battery powered devices. Also,
recently there has been an increased awareness on energy
used in data centers [1], but 90% of energy consumption in
cloud computing is actually in wireless access, not in data
centers [2]. The two trends, delay sensitive communications
and the desire for energy conservation, are basically conflicted.
Hence it is important to understand the basic tradeoff between
energy and delay.

There has been a large body of work on analyzing the
trade-off between energy and delay using infinite-blocklength
information theory. It mainly focuses on designing power
allocation and scheduling algorithms with the objective of min-
imizing energy consumption under various types of constraints
on the delay. The optimization problem has been considered
under various system setups and channel conditions. The
different types of delay constraints considered include: an
average buffer delay constraint [3], average queuing delay
constraint [4]–[6], a single hard delay constraint over M
packets [7], [8], and individual hard delay constraint on each
packet [9], [11], [12]. In [13], the constraint on delay is
converted into one on the departure time of the packet; this
approach can be used to model various QoS constraints. The
algorithm design and system performance also depend on
the availability of channel state information: time-variant and
fading channels have been considered in [14]–[20].

One recent progress in information theory, namely the
results on finite blocklength initiated by Polyanskiy, Poor and
Verdú [21], has made analyzing delay more true to real world
constraints. Previously, in order to use information theory to
analyze delay, the packet size would have to approach infinity
to use asymptotic results. This is of course a contradiction:
with infinite packet size, the delay is infinite. While in some
applications, the delay is so large that this gives reasonable
insight, for smaller delay the result may not be accurate.
With finite blocklength theory it is finally possible to precisely
analyze, for example, what is the actual energy needed to meet
a given delay constraint.

In terms of energy, energy per bit is the key quantity in low-
power communications. Shannon [22] first demonstrated that
for AWGN channels and any channel code, in the limit of the
number of information bits k → ∞, blocklength n → ∞, error
probability ε → 0, and code rate r � k

n → 0, the minimum
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Fig. 1. Packet transmission modes. Blue are transmitted packets, grey dropped bits.

energy per bit converges to

(Eb/N0)min = ln 2 = −1.59 dB, (1)

where N0
2 is the noise power spectral density. Verdú [23], [24]

generalized [22] from AWGN channels to general memoryless
channels. In the regime of fixed rate r and ε, non-asymptotic
bounds on the minimum Eb for finite k have been studied
in [21], [25], [26]. In the seminal work [21], Polyanskiy et al.
also maximized the average throughput with ARQ for a given
k and input power. That is equivalent to minimizing the
average delay per bit. In [27], Polyanskiy et al. studied the
minimum energy to transmit finite bits without delay con-
straint. Except for memoryless channels, energy-delay tradeoff
for the communication over fading channels has been studied
in [3], [29]–[33], and diversity-multiplexing-delay tradeoff or
error probability-delay tradeoff for MIMO channels has been
investigated in [34]–[36].

In this paper we study the energy-delay tradeoff taking
into consideration finite blocklength. The paper consists of
two parts. In part one we assume that bits arrive periodically
in a steady stream with a maximum delay constraint. This
allows us to obtain rigorous results based on finite blocklength
theory. We show that depending on how energy is measured,
in general energy depends on

√
d−1 or

√
d−1 log d, where d

is the delay. As d → ∞ both
√

d−1 and
√

d−1 log d of course
converge to zero, but the approach to zero is quite slow, e.g.,
compared to a linear convergence in d−1. However, the type of
bit arrival in part one is not common in real world systems. In
part two of this paper, we allow packets to arrive at random
times to a queue. This on one hand gives a more realistic
picture of real-world systems; on the other hand, to analyze
this complex system we can only use finite blocklength theory
mainly as an approximation. Furthermore, in this case we
consider average delay, as the optimum solution is found using
Markov decision process theory, which becomes too complex
with a maximum delay constraint. Our results again show that
the energy decreases quite slowly with increasing delay.

A. Notation and Conventions

We use ε(x) denote any function that satisfies
limx→0 ε(x) = 0, while o(x) = xε(x).

Usually, the energy is specified in dB. In terms of asymp-
totic, Eb,dB = 10 log10(Eb,min + ΔEb) = 10 log10(Eb,min) +

10ΔEb

Eb,min ln 10 + o(ΔEb). Since our interest is the behavior of
excess energy when small, except for a proportionality con-
stant, this is the same in absolute units and dB. We will
therefore use absolute units in theoretical results as this makes
equations simpler.

II. PERIODIC BIT ARRIVALS:
FUNDAMENTAL THEORY

In this section we investigate this relationship between
delay and energy for a basic problem. Consider an AWGN
(additive white Gaussian noise) channel with symbol spacing
Tc. An infinite stream b[t], t = 1, 2, . . . of bits arrive
periodically at a transmitter with spacing Ts, i.e., arrival
rate λ = T−1

s ; we let Ra = Tc

Ts
= λTc be the unit-less

arrival rate. Equivalently, the bandwidth for transmission is
B = T−1

c = R−1
a T−1

s . The decoder needs to decode bit b[t]
no later than at time (t + d)Ts, where d is the (unit-less)
delay. The energy critically depends on the two parameters
Ra and d, and aim is to find the energy per bit required for
the transmission, i.e., the function Eb(d, Ra).

For a finite delay and finite energy, error-free transmission
is not possible. The most natural setting for the problem we
consider is clearly sequential decoding, which was studied by
Fano in [44] with practical coding considered in [45]. How-
ever, in this work we will only consider block coding. There
are a number of reasons for this: packet based transmission
is used in most practical communications systems, practical
block coding is more developed than sequential coding, and
we can use the theory initiated with [21].

For packet transmission, the transmitter takes k bits from
the input bit stream and packs them into a packet. This packet
is then transmitted in n channel uses; all the bits must arrive
at the receiver within dTs seconds after the first bit in the
packet arrived at the transmitter, see the top row in Fig. 1 (we
assume zero transmission and decoding delay). We assume
that a packet is either received without error or is lost with
probability δ. This means that independent of the packet
length k, the fraction of bits lost is δ. We consider δ as a fixed
and given constraint in our system independent of Ra and d.

With packet transmission there are certain special ways
energy can be saved. Usually we think of errors happening
because of the random noise of the channel. However, instead
the transmitter can decide not to transmit certain packet or
bits [10]. To see why the former pays off, suppose that the
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Fig. 2. Numerical solution of (9) for (a) high rate with delay d = 10, 000, Ra = 1, δ = 10−2 and (b) low rate with delay d = 10, 000, Ra = 0.01,
δ = 10−2.

delay and packet size are large and Ra is small. Then a bit
can be transmitted with an energy near ln 2 (see (1)) with
very small error probability. The transmitter now can decide to
simply drop the last packets. If the fraction of dropped packets
is (1−δ), the error probability now is δ, and the energy per bit
is (1 − δ) ln 2 < ln 2; in terms of overall energy this can pay
off. Of course, the transmitter can also randomly spread out
the dropped packets for a more reasonable solution. Still, the
solution is perhaps not so relevant from an application point
of view, both because the idea of deleting packets might seem
odd and because energy will be consumed in an non-uniform
way. We can avoid this solution by using maximum energy
per packet instead of average energy per packet. Thus, energy
saved on one packet (say, by not transmitting it at all) cannot
be used on other packets; that way energy is consumed at a
constant rate. We will consider both average and maximum
energy.

The transmitter can also decide to drop the last ke bits in
each packet. This will contribute to the error probability, but
will allow longer time to transmit the packet. Consider Fig. 1
for the general relationship between parameters, which gives
the following constraints

0 ≤ ke ≤ δd (2)

d − ke

2
≤ k ≤ d (3)

� =
δ − ke

d

1 − ke

d

(4)

n =
d − k

Ra
(5)

where � is the required packet error probability to achieve a
certain bit loss δ. If k = d−ke

2 the transmission is continuous,
that is the channel is kept active all the time; on the other
hand, if k > d−ke

2 transmission is bursty: the channel is idle in-
between packets. If there are no dropped bits, the relationships

simplify to

d

2
≤ k ≤ d; n =

d − k

Ra
(6)

The energy to transmit the packet is

Eb

N0
2

=
nP

k
(7)

For simplicity we set N0 = 1 so that

Eb =
nP

2k
. (8)

For maximum energy transmissions per packet we can use

k = nC(P ) −
√

nV (P )Q−1(�) +
1
2

log n + O (1) (9)

from [21], [46]. Here Q (·) is the Q-function,

V (P ) =
P

2
P + 2

(P + 1)2
log2 e (10)

is the channel dispersion, and

C(P ) =
1
2

log(1 + P ) (11)

is the channel capacity. If we ignore the O(1) term, we can
solve this numerically with respect to P , and then use (8) to
calculate the energy per bit. A few such solutions can be seen
in Fig. 2. It can be seen that it seems to pay off to have ke > 0,
and for small Ra it seems that bursty transmission (k > d

2 )
pays off.

When bits arrive periodically, instead of numerical solution
as above, it is possible to derive analytical solutions in a rigor-
ous way, without ignoring the O(1) term. We will, as discussed
above, consider both average and maximum energy. However,
we will disregard dropped bits, that is, use ke = 0 as the idea
that bits are dropped in a periodic and predictable fashion is
hardly a reasonable communications scheme (and the dropped
bits always have to be at the end of a packet). An additional
reason is that allowing ke > 0 requires optimization over �
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as d → ∞, and finite blocklength theory assumes a fixed �,
and that d has to be very large for ke > 0 to pay off. As a
consequence, � = δ, and we will therefore use δ as the packet
error probability in this section.

A. Formal Problem Statement

As mentioned at the beginning of the section, we consider
an infinite stream b[t], t = 1, 2, . . . of bits, where the decoder
needs to decode bit b[t] no later than at time (t + d)Ts. The
coder divides the bit stream into blocks of size k bits, each of
which forms a message W ∈ {1, 2, . . . , 2k

}
transmitted in n

channel uses over an AWGN using a (possibly randomized)
coder f :

{
1, 2, . . . , 2k

}→ R
n; no simultaneous transmission

is allowed, resulting in the relationship (6) between d, k, n.
The decoder is a function on the received signal yn in each
block, g : Rn → {

0, 1, 2, . . . , 2k
}

(0 denotes error). If Ŵ =
g(yn) �= W an error is declared for that block. The error
probability is constrained to δ.

Let the codebook be cj ∈ Rn, j ∈ {1, 2, . . . , 2k
}

. We con-
sider two possible constraints on energy. For a maximum
energy constraint we require

∀j ∈ {1, 2, . . . , 2k
}

:
	cj	2

�2

2k
≤ Eb (12)

while for an average energy constraint

2−k
2k∑

j=1

	cj	2
�2

2k
≤ Eb (13)

The goal is to find the relationship between Eb, d, Ra, and δ.

B. Fixed Arrival Rate Ra

We first consider the problem when we fix Ra and let d →
∞. The solution in principle is simply to solve (9) with respect
to P using series expansion and then using (8). What makes
the proof not quite straightforward is that we have to 1) deal
rigorously with the O(1) term and 2) optimize over k. The
solution is given by

Theorem 1. For fixed Ra and maximum energy constraint,
the energy per bit is

Eb (d, δ) =
22Ra − 1

2Ra
+

22Ra
√

2V (22Ra − 1)√
Ra log e

Q−1(δ)
√

d−1

+ o
(√

d−1
)

(14)

This limit can be achieved by continuous transmission i.e.,
with k = d

2 .

For an average energy constraint, instead of (8) we use [47,
(19)] with r = k

n (with no dropped bits, � = δ)

r = C

(
P

1 − �

)
−
√

V

(
P

1 − �

)√
log n

n
+ O

(
1√
n

)
(15)

Theorem 2. For fixed Ra and average energy constraint, the
energy per bit is

Eb (d, δ)
1 − δ

=
22Ra − 1

2Ra
+

22Ra
√

2V (22Ra − 1)√
Ra log e

√
log d

d

+ o

(√
log d

d

)
(16)

This limit can be achieved by continuous transmission i.e., with
k = d

2 .

The proofs are in Appendix A.

C. Variable Arrival Rate Ra

It can be noticed that in the results in Section II-B the
absolute minimum energy of ln 2 from (1) (or (1− δ) ln 2 for
average energy) is not achieved even if d → ∞. To approach
the theoretical minimum energy per bit, −1.59dB, we need to
let Ra → 0, i.e., let the bandwidth B → ∞. That is, we have
an infinite (or very large) bandwidth available for transmission.
First, if we keep d fixed, then when Ra = 0 identical (i.e.,
exact infinite bandwidth is available) it is clear that letting
k = d is optimum (since the time to transmit the bits is zero),
that is, extremely bursty transmission is optimum. In this case
we have the following result

Proposition 3. The minimum energy per bit for Ra = 0 for
maximum energy constraint is given by

Eb (d, δ) = ln 2 + Q−1 (δ)
√

2 ln 2
√

d−1 − 1
2

ln d

d
+ O

(
d−1
)

(17)

This is just a restatement of the results in [27] in terms of
energy per bit, and the proof is simply doing suitable series
expansion so we will omit it.

For average energy constraint we have the following gener-
alization of [27]

Theorem 4. With average energy constraint, for given δ the
packet size k is given by

k =
E

1 − δ
log e

−
√

2E

1−δ
ln
(

E

4π (1−δ)

)(
1 + ln−1

(
E

4π (1 − δ)

))
log e

+ log (E) + O (1) . (18)

for E sufficiently large.

The proof is in Appendix C.

Corollary 5. For average energy constraint, the minimum
energy per bit is given by

Eb (d, δ)
1 − δ

= ln 2 +
√

2 ln 2d−1 ln d + o
(√

d−1 ln d
)

. (19)

This result is straightforward to prove using appropriate
series expansions in Theorem 4 and setting k = d and the
proof is hence omitted.
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What we are interested in is how the limit (1) is approached
as Ra → 0 but Ra > 0. This is tricky to state rigorously, as we
are dealing with two simultaneous limits, Ra → 0 as in [24]
and d → ∞ as in [21]. Clearly, the results depend on how Ra

and d jointly approach their limit. For example, if Ra is fixed
while d → ∞, we simply get the results of Section II-B; by
implication, if d → ∞ while Ra approaches zero very, very
slowly, we should get a result very similar to this. On the
other hand, if Ra → 0 while d approaches infinity very, very
slowly, we should get something like Proposition 3. One way
to specify this rigorously is to consider Ra as function of
d, Ra(d). The results now depends on how Ra(d) → 0 as
d → ∞, and are given by the following Theorem.

Theorem 6. Depending on how Ra behaves as a function
of d, we get different behavior of Eb for a maximum energy
constraint.
1) Non-convergence. If lim infd Ra(d) > 0, Eb is bounded
away from −1.59dB.
2) Continuous transmission. If O

(
d exp(−√

d ln 2Q−1(δ))
)

< Ra < o(
√

d−1) continuous transmission is optimum, and
the energy is given by

Eb (d, δ) = ln 2 +
√

2
√

2 ln 2Q−1(δ)
√

d−1 + o(
√

d−1) (20)

3) Extremely bursty transmission. If Ra <
o(d) exp(−√

2d ln 2Q−1(δ)), the energy is given by

Eb (d, δ) = ln 2 +
√

2 ln 2Q−1(δ)
√

d−1 + o(
√

d−1) (21)

The proof is in Appendix B. In light of previous results,
and in particular Corollary 5, one can conjecture that similar
results for average energy constraint with

√
d−1 replaced with√

log d
d holds. However, it turns out that the bounds in [47]

are too weak to prove this. It might be possible to prove a
stronger version of Theorem 6 with the theory in [38].

The Theorem shows that for extremely bursty transmission,
the absolute lower bound of Proposition 3 is achievable.
Of course this was in some sense already known from Propo-
sition 3, but only when Ra = 0 identical. What Theorem 6
tells is how fast Ra has to decrease with d to achieve this
lower bound.

We notice that the only difference between continuous
transmission and extremely bursty transmission is a factor√

2 on the
√

d−1 term, a very small difference. But to get
that slight additional gain, the bandwidth has to be enormous.
For continuous transmission we only require Ra ∼

√
d−1

(slightly smaller, to be precise). Since
√

d−1 ∼ ΔEb that
means the bandwidth B is essentially proportional to ΔE−1

b ,
just as in [24]. On the other hand, for extremely bursty trans-
mission we essentially require B proportional to exp(ΔE−1

b ),
an exploding bandwidth.

D. Numerical Results

As we have already mentioned, there are two ways to deal
with equation (9). We can treat it as an exact expression, as we
have done in Theorem 3, or we can treat as an approximation.
It can be of interest to compare those two approaches.

Fig. 3. The plot shows the first two terms in the energy delay relationships
in Theorem 6, straight lines. This is compared with solving (9) numerically,
either fixing k = d

2
("Numerical: Cont.") or optimizing over k ("Numerical:

optimum").

To use equation (9) as an approximation we ignore the
O(1) term, or more precisely we put O(1) = 0. We fix Ra

and δ and next choose k subject to the condition (6), which
also gives n. Finally, we numerically solve equation (9) with
respect to P, which is the only unknown. We can now find the
corresponding Eb from (8). We take two different approaches

• Continuous transmission (case 2 in Theorem 6): in this
case put k = d

2 .
• Optimum transmission (case 3 in Theorem 6): In this case

we (numerically) optimize k subject to d
2 ≤ k ≤ d.

The results are given in Fig. 3.
The plot shows that for large d the theoretical results and

numerical results agree. Specifically, the theoretical results
predict a linear relationship in

√
d−1, and also give the

slopes, and the numerical results converge to this. In particular,
it confirms one conclusion from Theorem 6: for energies near
the minimum of −1.59dB, bursty transmission is better than
continuous transmission; however, the gain is only a minor
improvement in slope. The cost is that bursty transmission
uses much more bandwidth than continuous transmission.

III. PACKET ARRIVALS: QUEUING SYSTEM

In this part of the paper we extend the simple model in
Section II with attributes of a more realistic communication
system. The network communication system we consider is
shown in Fig. 4.

Rather than the source emitting a constant stream of bits
at in Section II, the bits now arrives in packets (messages)
at random epochs. The messages with each b bits, generated
from a source node, enter a buffer (with infinite size) at the
encoding node to form a queue. It is assumed that the message
arrivals follow a Poisson process with message arrival rate
λmsg – the bit arrival rate is λ = bλmsg , and therefore
Ra = λTc = bλmsgTc. According to the current queue length
q ∈ N � {0, 1, 2, · · · }, the encoder adaptively chooses the
number of bits k (an integer multiple of the message size b),
coding blocklength n, power P , and maximum number of
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Fig. 4. The lossy network communication system considered in this work.

Fig. 5. Coding epochs.

transmissions L to encode the first k/b messages in the
buffer into codeword xj ∈ Rn, 1 ≤ j ≤ 2k, with

2−k
∑2k

j=1 ||xj ||2 ≤ nP , corresponding to an average energy
constraint, Section II-A. This means that the optimal action
(k, n, P, L) at each encoding epoch is a vector-valued function
of the current queue length q, i.e., (k, n, P, L) = d (q),
where the function d ∈ D is called the decision rule that
prescribes actions for each state of the queue and D denotes
the set of all possible decision rules. Similar to the feedback
scenario considered in [27], we assume that the decoder can
feedback an ARQ message to the encoder to inform whether
the transmitted messages have been decoded correctly1. If not,
the encoder retransmits the coded messages. Here the coding
process is assumed to be instantaneous, i.e., without delay, and
each transmission is assumed to be independent, i.e., for one
block data, the current transmission does not make use of the
previous unsuccessful ones. The main objective in this section
is to find the decision rule d (q) to minimize overall energy
consumption, as well as analyzing the delay-energy tradeoff
for the system in Fig. 4.

We assume that during the transmission period of one block,
the encoder can not code or transmit another block. Hence,
as shown in Fig. 5, we set the arrival epochs (outside of the
transmission periods) and transmission stop epochs to coding
epochs. It is worth noting that this assumption is restrictive,
e.g. it does not allow the transmitter to add additional data to a
codeword before retransmitting it. Let T = {ti, i = 1, 2, · · · }
denote the set of coding epochs. For any epoch ti ∈ T, set
the system state to qi, where qi is the queue length (not
including the messages in transmission) at epoch ti. A policy
π = (d1,d2, · · · ,dI) is a sequence of coding decisions
di ∈ D at different epochs. Let (ki, ni, Pi, Li) = di (qi),
resulting in a certain packet error probability �i. We let ki = 0
mean that the encoder does not code (or is in an idle state)
at the coding epoch, and ki > 0, ni = Pi = Li = 0 indicate
that the encoder drops ki bits at the coding epoch, i.e., �i = 1.
Furthermore, a scheme without ARQ corresponds to the case

1This assumption can be realized in the communication system with ideal
feedback, where according to receiver’s feedback the sender determines
whether the transmitted messages have been decoded correctly, and then sends
the result to the receiver by powerful channel codes (we assume that the
transmission of the result is error-free and the overhead incurred is negligible,
since only one bit is generated for each coding block); besides, there are also
some practical error detection strategies, see [40] and [41].

that Li = 1 whenever ki > 0. As opposed to the bit streaming
scenario in Section II, it is not sensible to exclude bit dropping,
as they are random in nature, and therefore similar to random
errors; we therefore do not have � = δ. Furthermore, the
packet error probability is variable as opposed to the fixed
error probability for streaming bits, which again makes more
sense in this model. We also denote the coding rate as ri � ki

ni

if ni > 0. For a Poisson arrival queue, the states qi form an
embedded Markov chain, and the resulting decision process
becomes an embedded Markov decision process (MDP) [37].

For a deterministic Markovian (possibly time-sharing) pol-
icy π, the message delivery success rate is given by

pπ
s =

Tc

RatI
E

π [
I∑

i=1

ki(1 − �Li

i )], (22)

where the expectation Eπ is taken over the distribution of all
queue length qi, 1 ≤ i ≤ I , and �i is the error probability for
each transmission of the ith block.

Little’s law [39] states that the long-term average number
of messages in a stable system Nπ is equal to the arrival rate
λmsg , multiplied by the average time a message spends in the
system (average delay), dπ. That is2

dπ =
Nπ

λmsgTs
. (23)

Hence to compute average delay, we only need to compute
average number of messages in the system Nπ.

From coding epoch i to coding epoch i + 1, the average
number of messages in the system (given the number of
transmissions li) is

qi =

{
qi, if ki = 0;
qi + 1

2λmsgliniTc, if ki > 0.
(24)

Hence Nπ can be computed as

Nπ =
1
tI

E
π[

I∑
i=1

Eli,ΔtiΔtiqi] (25)

=
1
tI

E
π[

I∑
i=1

Qi], (26)

2As in the previous section, here we also normalize the delay through
dividing it by Ts. Furthermore, when it is allowed for the transmitter to
drop messages, the waiting delays of dropped messages are also taken into
account in the delay of the system. Ideally, we should define the delay of
the system as the average delay of the messages that are correctly decoded
by the receiver. However, this is difficult to compute. Hence we consider the
average delay of all the messages emitted from the source, which is much
simpler to compute. Furthermore, it does not seem reasonable to define the
delay of the system as the average delay of the messages that are delivered
to the receiver. This is because the dropped messages can be seen as being
transmitted to the receiver by a special channel code (with n = 0, P = 0).
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where similar to (22) the expectation Eπ is also taken over the
distribution of all queue length qi, 1 ≤ i ≤ I , Δti := ti+1− ti
denotes the length of time from epoch i to epoch i + 1, and

Qi := Eli,ΔtiΔtiqi =

{
qi

λmsg
, if ki = 0;

qil̄iniTc + 1
2λmsgl2i n

2
i T

2
c , if ki > 0,

(27)

with l̄i = E [li] and l2i = E
[
l2i
]

denoting the expectation
and second moment of number of transmissions for the ith
block. Since the number of transmissions li follows the
following distribution:

P (li = j) =

{
(1 − �i) �j−1

i , if j ≤ Li − 1;
�Li−1
i , if j = Li,

(28)

we have l̄i = 1−�
Li
i

1−�i
and l2i =

2
�
1−�

Li
i

�

1−�i
− 1 − (2Li − 1) �Li

i .
The decoding error probability �i for ith block satisfies (15).
Ignoring the O(

√
n) term gives

ki = niC

(
Pi

1 − �i

)
−
√

V

(
Pi

1 − �i

)
ni log ni. (29)

In this section of the paper, our focus is on deriving an
optimum decision rule d (q) or policy π, and to do so we
need a concrete relationship between (ki, ni, Pi) – O terms
are not useable. The resulting policy therefore optimizes for
the approximate energy. It is still a valid policy for the actual
system, and while it might not minimize actual energy, it
is almost certainly better than a policy based on infinite
blocklength theory. Furthermore, as seen from the results in
Section II (particularly Fig. 3), ignoring the O terms gives an
approximation that is accurate in an asymptotic sense.

For policy π, the average power (per transmitted symbol)

P π =
Tc

tI
E

π [
I∑

i=1

P̄i], (30)

where

P̄i =

{
0, if ki = 0;
niPi l̄i, if ki > 0,

(31)

denotes the expected total energy consumed for the ith block.
We now proceed to define the power-delay-error function

P (d, δ) as the minimum power consumed for the system under
delay d and average message error rate δ (including loss and
decoding error), which can be expressed as

P (d, δ) = lim sup
I→∞

min P π (32)

over π = (d1,d2, · · · ,dI )
subject to ki (q) ≤ bq, ∀i, q ∈ N (33)

dπ ≤ d (34)

pπ
s ≥ 1 − δ. (35)

For any policy π, since the power P π and energy per bit Eπ
b

are related by
Eπ

b
N0
2

=
P πtI/Tc

bλmsgtI
=

P π

Ra
, (36)

we similarly define the energy-delay-error function as

Eb (d, δ, Ra) =
P (d, δ, Ra)

2Ra
. (37)

Here we have explicitly noted the dependency on Ra of
P (d, δ) in (32) to clarify that Ra (and λmsg) is more
than a proportionality factor. Notice that Ra is fixed as in
Section II-B.

A. The Optimal Power-Delay Tradeoff

We first convert the power-delay tradeoff problem into a
MDP problem subject to an expected cost constraint, and
then give the optimality equation of the resulting MDP prob-
lem. Finally, we compute the optimal coding strategy and
the corresponding power-delay function by a policy iteration
algorithm [37].

Instead of directly computing the optimal power-delay
tradeoff under a given message error rate δ defined in (32),
we start from the optimal power-delay-error tradeoff, and then
transform it into the optimal power-delay tradeoff by setting
the error rate to be a constant δ.

By a time-sharing argument [43], the achievable power-
delay-error region is convex, hence the Lagrangian method can
be applied to solve the power-delay-error tradeoff problem. We
minimize the Lagrangian cost

gπ = −pπ
s + μP π + νNπ (38)

with μ, ν ≥ 0, since error rate is equal to 1 − pπ
s , and delay

is proportional to Nπ.
1) Markov Decision Process and the Optimality Equation:

For each policy π = (d1,d2, · · · ,dI), using (22) and (30),
we can rewrite the Lagrangian cost in (38) as3

gπ = lim sup
I→∞

1
tI

E
π[

I∑
i=1

cdi (qi)], (39)

where cdi(qi) = − Tc

Ra
ki(1− �Li

i )+μP̄i +νQi is the expected
total cost between two successive decision epochs, given the
system occupies state qi ∈ N at the first decision epoch and
the decision maker chooses action (ki, ni, Pi, Li).

Denote Pdi (qi+1|qi) as the the transition probability that
the MDP occupies state qi+1 at the next decision epoch, given
the decision maker chooses action (ki, ni, Pi, Li) in state qi

at current decision epoch. Then

Pdi (qi+1|qi) = 1, if ki = 0, qi+1 = qi + 1;

Pdi (qi+1|qi) =
Li−1∑
l=1

(1 − �i)�l−1
i p(j, λmsgnilTc)

+ �Li−1
i p(j, λmsgnilTc),

if ki > 0, j ≥ 0, qi+1 = qi − ki

b
+ j, (40)

where p (m, μ) = μm

m! e
−μ, m ≥ 0 is the Poisson probability

mass function. To achieve the optimal coding strategy that

3We only deal with unichain MDP, for which the optimal cost
does not depend on the initial state. We thus omit the initial state
in (32), (37) and (39).
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TABLE I

POLICY ITERATION ALGORITHM

minimizes gπ in (39), we need to introduce the following
theorem from [37].

Theorem 7. [37] A) For a unichain average cost MDP,
regardless of the initial state, the optimality equation is
given by

0 = min
d∈D

{cd − gyd + (Pd − I)h} , (41)

where Pd and I are the transition probability matrix con-
sisting of Pd (qi+1|qi) defined in (40) and unit matrix,
respectively, cd = (cd (0) , cd (1) , cd (2) , · · · )T , yd =
(yd (0) , yd (1) , yd (2) , · · · )T with the q-th component being
the expected length of time from this decision epoch to the
next one, given the decision maker chooses action in state q
at current decision epoch, h is also a vector, representing the
bias of the Markov cost process, and g is a scalar for the
expected average cost.

B) Moreover, if there exists a decision rule d ∈ D, constant
g and vector h for which (41) holds, then g = g∗, where g∗

is the optimal cost for all initial states and the policy using d
at all coding epochs is optimal.

For our optimization problem of (39), yd (qi) can be
expressed as

yd (qi) =

{
1

λmsg
, if ki = 0;

ni l̄iTc, if ki > 0.
(42)

Part A) of Theorem 7 gives a necessary condition for the
optimal cost and part B) states that this necessary condition is
also sufficient. Hence, we can apply it to compute the optimal
cost and the corresponding optimal coding strategy4.

2) The Policy Iteration Algorithm: In order to solve the
optimality equation (41), we borrow the policy iteration algo-
rithm of [37] shown in Table I. Convergence and uniqueness
of its solution are guaranteed by Theorem 8.6.6 of [37]. Hence
using this algorithm, we can find the optimal coding strategy
π∗. We note that in our analysis, the buffer size is infinity,
but the policy iteration algorithm can only be implemented
for finite state spaces. Hence this algorithm only can be used
to approximately compute the optimal energy-delay tradeoff,
by setting the buffer size to a sufficiently large value.

4To guarantee the MDP is unichain, we assume that any decision rule in D

has the property for any q2 ∈ N, k (q2) > 0 if there exists a q1 ∈ N and
q1 ≤ q2 such that k (q1) > 0.

B. Bounds and Asymptotics

The algorithmic approach employed above to computing
the optimal energy/power-delay functions is not amenable to
analysis, because the optimal solution is implicitly given by the
Bellman equation [37], even in the limit as d → ∞. We now
give theoretical bounds of the energy/power-delay functions
and study their asymptotics.

1) Lower and Upper Bounds: Denote A � {(k, n, P, L) :
k/b ∈ N} as the set of action elements. Define the set of
the probability distributions on A satisfying the following
constraints on system stability, packet loss, and delay bound.

ALB
d,δ �

{
(α1, α2, · · · , α|A|) : 0 ≤ αi ≤ 1, for 1 ≤ i ≤ |A| ,
|A|∑
i=1

αi = 1,

∑|A|
i=1 αini l̄i∑|A|
i=1 αiki

≤ 1
Ra

,

∑|A|
i=1 αiki(1 − �Li

i )∑|A|
i=1 αiki

≥ 1 − δ,

∑|A|
i=1 αik

2
i

2Ra

∑|A|
i=1 αiki

+
∑|A|

i=1 αinil̄iki∑|A|
i=1 αiki

− b

2Ra
≤ d

Ra

}
,

(43)

where l̄i was defined in previous subsections. Define a set
of modified actions (with the parameter L replaced by the
transmission success rate p0) as

AUB
d,δ �

{
(k, n, P, p0) : p0 =

1 − δ

1 − �
≤ 1,

k = bp0k0, k0 ∈ N,

ρ =
Rap0

r
< 1,

k0b
(
1 +

ρ

2

)
+

b (3ρ − 2)
2(1 − ρ)

≤ d
}
, (44)

where r and � were defined in previous subsections. The
inequalities in definition of AUB

d,δ respectively correspond to
constraints on packet loss, system stability, and delay bound.
Then we have the following bounds.

Theorem 8. For a given arrival rate λmsg the energy-delay
function is bounded by

ELB
b (d, δ) ≤ Eb (d, δ) ≤ EUB

b (d, δ) (45)

where

ELB
b (d, δ) = inf

(α1,α2,··· ,α|A|)∈ALB
d,δ

∑|A|
i=1 αiniPi l̄i∑|A|

i=1 αiki

, (46)

EUB
b (τ, δ) = inf

(k,n,P,p0)∈AUB
d,δ

p0P

r
. (47)

The proof is given in Appendix D.
Fig. 6 shows the energy-delay function together with its

bounds.
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Fig. 6. The energy-delay function together with its bounds for message
arrival rate message arrival rate λmsg = 0.01, error probability constraint
δ = 0.01, bandwidth Tc = 0.01, and b = 100.

2) Asymptotics: Similar to Section II we would like to
analyze the system in Fig. 4 in terms of fundamental energy-
delay trade-off. It is important to notice here that finite
blocklength theory, whether [21] or [47], keeps the packet
error probability � constant as the blocklength n → ∞, and
this is not easy to get around. The analytical results there
will assume that � is constant as d → ∞. On the other hand,
in the scheduling algorithm, when (ki, ni, Pi, Li) is chosen
adaptively, there is no good reason to fix �i, as mentioned
previously, and the same is true when numerically calculating
performance. There is therefore a slight difference between
the setup for exact analysis and numerical analysis. With this
in mind we get

Theorem 9. For fixed Ra and average energy, the achievable
energy per bit is

Eb (d, δ)
1 − �

=
22Rap0 − 1

2Ra
+

22Rap0
√

3V (22Rap0 − 1)√
2Ra log e

√
log d

d

+ o

(√
log d

d

)
. (48)

where p0(1− �) = 1− δ. This is achieved for ρ(d) = 1− log d
d

for d sufficiently large. This is true with or without ARQ.

The proof is in Appendix E. Here 1 − p0 is the packet/bit
drop probability. In Section II we did not allow bit dropping,
and we can therefore compare with Theorem 2 for p0 = 1.
In this section we consider average delay, and we can take this
into account by changing d �−→ d

2 in (16) to arrive at

Eb (d, δ)
1 − δ

=
22Ra − 1

2Ra
+

22Ra
√

3V (22Ra − 1)√
2Ra log e

√
log d

d

+ o

(√
log d

d

)
. (49)

Both of these expressions are achievable energies, so one
should be slightly careful with concluding too much. Still, the
fact that the expressions are the same indicates that random

Fig. 7. Comparison of energy per bit vs
�

d−1 log d for finite and
infinite [23] blocklength codes. In the former case, message arrival rate
λmsg = 0.01, error probability constraint δ = 0.01, bandwidth Tc = 0.01,
and b = 100.

packet arrival does not increase energy up to the first order in
delay (i.e., the second terms in (48) and (49)).

It is clear that the first term in (48) is minimized for � = 0 or,
more precisely, � → 0 as d → ∞, but, as mentioned, this limit
is not allowed in the analysis5. However, we can analyze the
energy per bit in the limit, i.e., the first term separately to get

Theorem 10. As d → ∞, and letting � → 0 both bounds
ELB

b (d, δ) and EUB
b (d, δ) in (45) approach

1
2Ra

(
22Ra(1−δ) − 1

)
. (50)

The proof is given in Appendix F.

C. Numerical Results

In this section we will plot some numerical results for
the algorithms and bounds developed above. As a baseline,
we would also like to compare with what one would expect
using infinite blocklength theory. Suppose that data arrives in
packets of size b, and each such packet is transmitted in n
channel uses. A reasonable measure of delay6 is therefore a
scaling of n – with our normalization d = nRa. The power
needed for transmission is P = 22r − 1 = 22Rabd−1 − 1, and
the energy can be found from (8) (with k = b). Comparing
with the wideband slope of [24], it can then be seen that the
energy per bit (in dB) is linear in d−1 to the first order.

Fig. 6 depicts convergence of the lower and upper bound
with d. In Fig. 7, we plot the energy per bit vs

√
d−1 log d

to better see its asymptotic behavior. The infinite blocklength

5We will briefly clarify the difference between bit dropping and the packet
dropping of [47]. The communication scheme in [47] allows packet dropping.
However, when a packet is dropped in [47], the transmitter stays idle, which
makes sense for single packet transmission. On the other hand, in streaming,
when bits are dropped, some other bits could be transmitted instead, which
is what we refer to a bit dropping. In terms of energy, it is more efficient to
spread out transmission, and this explains why ε → 0 as d → ∞, i.e., all
errors are due to bit dropping in the limit.

6Since with infinite blocklength the actual delay is infinite, some handwav-
ing is usually used to conclude something about delay.
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Fig. 8. Comparison of energy per bit vs d−1 for finite and infinite [23]
blocklength codes. In the former case, message arrival rate λmsg = 0.01,
error probability constraint δ = 0.01, bandwidth Tc = 0.01, and b = 100.

case of [24] is labeled ’Verdu’. It is seen that, for a finite block-
length code, the energy increases linearly with

√
d−1 log d,

which verifies the results of Theorem 9. In Fig. 8 we plot the
same results7, but for smaller values of d. It is seen that the
energy increases very rapidly when delay moves away from
infinity, as opposed to the prediction from infinite blocklength
theory that energy just increases linearly with (inverse) delay.
This means that it is very hard to achieve the -1.59 dB limit
in practice when the actual delay is taken into account. This
confirms the conclusion from Theorem 6.

IV. CONCLUSION

This paper has investigated the basic tradeoffs between
delay and energy in streaming data. A consistent finding is that
the minimum energy is approached slowly, both in terms of
delay and bandwidth, much more so than predicted by infinite
blocklength theory.

The results in the paper have been based on existing finite
blocklength theory. This puts some limits on what can be
proven. Basically, finite blocklength theory was not developed
with streaming delay and energy in mind. We have therefore
chosen our constraints so that they could be matched to finite
blocklength theory. For example, we have only considered
packet transmission, and with that a fixed packet error prob-
ability. Also, energy has been measured in a packet-based
framework. It would be interesting to see generalizations of
for example Theorems 1 and 3 without being constrained to
packet transmission, and Theorem 9 with � → 0. This requires
new approaches to finite blocklength theory (and a new name:
finite delay theory, as the fundamental constraint is not that
the blocks should be finite, but the delay be finite). We hope
to develop this in a future paper.

APPENDIX A
PROOF OF THEOREMS 1 AND 2

The O(·) terms in (9), (15) are with respect to n, but
depends on δ and P . Here, δ is still kept constant, but P

7To compare with the infinite blocklength case we plot versus d−1, as in
that case energy is (approximately) linear in d−1.

is variable. For Theorem 1 we can therefore write

k = nC −
√

nV Q−1(δ) +
1
2

log n + b(n, P ), (51)

where |b(n, P )| ≤ M(P ) for sufficiently large n. It is easy
to see from [21], [46] that M(P ) is itself bounded for small
variations of P . That is, we can write formally

∃δ, M > 0 : ∀n > n0 : ∀P ∈ [P0 − δ, P0+δ] : |b(n, P )| ≤ M

(52)

and in this region we can write (9) explicitly as

nC −
√

nV Q−1 (δ) +
1
2

log n − M

≤ k ≤ nC −
√

nV Q−1 (δ) +
1
2

log n + M. (53)

We also know that since Ra is fixed we have

lim
d→∞

P = P0 = 22Ra − 1. (54)

Thus, we can use (52) in the limit.
Let us write P = P0+�P, where limd−1→0 �P = 0. With

this we can write C (P ) , V (P ) as

C = C0 +
log e

2 (1 + P0)
�P + o (�P ) (55)

√
V =

√
V0 +

√
V0

P0 (1 + P0) (2 + P0)
�P + o (�P ) , (56)

where C0, V0 is C, V evaluated at P0. Let K0 =
log e

2(1+P0) , K1 =
√

V0
P0(1+P0)(2+P0) . Now o (�P ) = �Pε (�P ),

where we use ε(x) to denote any function that satisfies

lim
x→0

ε(x) = 0. (57)

But we know from (54) that �P → 0 when d−1 → 0 so
ε (�P ) = ε

(
d−1
)
. And thus we can say that o (�P ) =

�Pε (�P ) = �Pε
(
d−1
)
. Let K2 =

√
2RaQ−1 (δ) and set

k = (1−α)d, n = dαR−1
a where α ∈ [β, 1

2

]
for any constant

β satisfying 0 < β < 1
2 by (6). We introduced β to bound

α away from zero; in the end, the value of β will not matter.
One consequence is limd→∞ n = ∞ so that we can use (9).

With this relationships (53) can be written as

(1 − α)d ≶ αdR−1
a (Ra + K0�P (1 + ε (�P )))

−
√

αdR−1
a Q−1 (δ)

√
V0

−
√

αdR−1
a Q−1 (δ)K1�P (1 + ε (�P ))

+
1
2

log
(
αdR−1

a

)± M. (58)

Solving this with respect to ΔP we get and using the series
expansion 1

1−y = 1 + y + O
(
y2
)

�P (1 + ε (�P )) =
1 − 2α

α
K−1

0 Ra

+
√

α−1d−1RaV0K
−1
0 Q−1 (δ)

+
√

α−1d−1R3
aK−2

0 K1
1 − 2α

α
Q−1 (δ)

+ o
(√

d−1
)

. (59)

Authorized licensed use limited to: Anders Host-Madsen. Downloaded on August 26,2020 at 00:32:24 UTC from IEEE Xplore.  Restrictions apply. 



BAIG et al.: ON THE ENERGY-DELAY TRADEOFF IN STREAMING DATA: FINITE BLOCKLENGTH ANALYSIS 1871

Now we can write using the relation ε (�P ) = ε
(
d−1
)

that

Eb (d, δ) =
nP

2k
=

α

1 − α

P

2Ra
=

1
2Ra

α

1 − α
[P0 + �P ]

=
1

2Ra

α

1 − α

[
P0 +

1 − 2α

α
K−1

0 Ra

]

+
1

2Ra

α

1 − α

√
α−1d−1RaV0K

−1
0 Q−1 (δ)

+
1

2Ra

α

1 − α

√
α−1d−1R3

aK−2
0 K1

1 − 2α

α
Q−1 (δ)

+ o
(√

d−1
)

(60)

According to Lemma 63 in [21] we can minimize (60) with
respect to α by minimizing the first term: all terms are
continuous in α, and the minimization is over the compact
set
[
β, 1

2

]
. According to Lemma 63 in [21] this minimization

results in an o
(√

d−1
)

term, which can be included in the

o
(√

d−1
)

term in (60). Thus, we have to minimize

f (P0, α) =
1

2Ra

α

1 − α

[
P0 +

1 − 2α

α

2 (1 + P0)
log e

Ra

]
. (61)

Making use of the substitution Ra = C (P0) we have

f (P0, α) =
α ln 2

(
(1−2α)(2P0+2) ln(1+P0)

2α + P0

)
(1 − α) log(P0 + 1)

(62)

∂f

∂α
=

ln 2(P0 − (P0 + 1) ln(P0 + 1))
(α − 1)2 log(P0 + 1)

< 0, ∀P0 > 0.

(63)

This tells us that for sufficiently large d, setting α = 1
2 is

therefore optimum, independent of β, which corresponds to
continuous transmission. Substituting the value of α we obtain

�P =
K2

√
V0

K0

√
d−1 + o

(√
d−1
)

(64)

and Eb = 1
2Ra

[
P0 + K2

√
V0

K0

√
d−1 + o

(√
d−1
)]

.
For Theorem 2 we proceed similarly but instead of (52) now

have

k

n
≶ C

(
P

1 − δ

)
−
√

V

(
P

1 − δ

)√
log n

n
± M√

n
. (65)

We now expand C (P ) and V (P ) around P0 =
(1 − δ)

(
22Ra − 1

)
and making the substitutions k =

(1 − α) d and n = αdR−1
a where α ∈ [β, 1

2

]
for any constant

β satisfying 0 < β < 1
2 . We have

Ra
1 − α

α
≶ C0 − V0+[C1−V1]�P + o (�P ) ∓ M√

αdR−1
a

,

(66)

where C0 = C
(

P0
1−δ

)
= Ra, C1 = 1

2 ln 2(1−δ+P0) , V0 =√
V
(

P0
1−δ

)
log
(
αdR−1

a

)
Raα−1d−1 and

V1 =
(δ−1)2

�
log(αdR−1

a )Raα−1d−1

√
2 ln 2

√
P0(−2δ+P0+2)(−δ+P0+1)2

. Again, we solve for

ΔP and obtain

Eb (d, δ) =
nP0 + n�P

2k

=
1

2Ra

α

1 − α

[
P0 + C−1

1 Ra

(
α−1 − 2

)]
+

1
2Ra

α

1 − α

[
C−1

1 V0 + Ra

(
α−1 − 2

)
C−2

1 V1

]
+ o
(√

d−1 log d
)

. (67)

Minimizing Eb (d, δ) for sufficiently large d is equivalent to
minimizing (using Lemma 63 in [21])

g (P0, α) =
α ln 2

(
(1−2α)(−2δ+2P0+2) ln( P0

1−δ +1)
2α + P0

)

(1 − α) ln
(

P0
1−δ + 1

)
(68)

∂g

∂α
=

(δ − 1)
(
4Ra(Ra ln 4 − 1) + 1

)
2Ra(α − 1)2

< 0,

∀Ra > 0, ∀δ ∈ (0, 1) . (69)

This tells us that for sufficiently large d, setting α = 1
2 is

optimum. Substituting the value of α = 1
2 in (67) we get the

desired result.

APPENDIX B
PROOF OF THEOREM 6

Non-convergence is just a restatement of Theorem 1.
To achieve the minimum energy limit (1) transmission in the

low-power regime is required, that is, the essence of reaching
the limit is that P → 0. Expression (9) is for a fixed P .
In the proof of Theorem 1 this was overcome by noting that
the bound has bounded variations for small variations of P .
However, to establish a bound for P → 0, we need to examine
the proof of (9) more carefully.

In [21, Appendix L] the authors explicitly state that

k ≤ nC −
√

nV Q−1(δ) +
1
2

log n + gc(P, δ) (70)

We will show that limP→0 gc(P, δ) = k, some constant. Here

gc(P, δ) = −2B(P )
√

V g1(P, δ) − log B(P )

B(P ) =
6E[|Si|3]

V 3/2

Si =
P log e

2(1 + P )

(
Z2

i − 2
Zi√
P

− 1
)

Zi ∼ N(0, 1). (71)

It is easy to see that limP→0 B(P ) = k1, since the dominating
terms in P have the same power in numerator and denomina-
tor. Now

g1(P, δ) = min
θ∈[α1,1−δ]

d

dx
Q−1(θ). (72)

Since α1 < 1 − δ, g1(P, δ) is bounded away from −∞.
Therefore gc(P, δ) is bounded as P → 0 and we have

k ≤ nC −
√

nV Q−1(δ) +
1
2

log n + b(n, P )

∃P0, M > 0 : ∀n > n0 : ∀P < P0 : |b(n, P )| ≤ M. (73)
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In the other direction, [46] give the following lower bound on
k (slightly restated)

k ≥ nC −
√

nV (P )Q−1

(
δ − B(P ) + G(P )√

n
− ξn(P )

)

− log
(

G(P )J(P )√
n

)
(74)

where we have noted explicit dependence on P , B(P ) is given
in (71), and where

G(P ) =
24√
2π

(1 + P )3/2
√

1 + 2P√
P

. (75)

We have already proven that B(P ) is bounded as P → 0
above, and it is easy to see from [46] that J(P ) is bounded
(from above) and bounded away from zero as P → 0.
Furthermore, limP→0 ξn(P ) = 0. The complication is that
limP→0 G(P ) = ∞. For the bound to even be valid (that is,
relevant), we require that what is inside the Q−1 function to
converge to δ, that is G(P )√

n
→ 0, or nP → ∞.

We will first consider continuous transmission, that is
k = d

2 and therefore n = d
2R−1

a . In terms of the lower bound,
from (73) this solution satisfies

d

2
≤ d

2Ra
C −

√
d

2Ra
V Q−1(δ) +

1
2

log
d

2Ra
+ M. (76)

Using

C =
P

2 ln 2
− P 2

4 ln 2
+ o
(
P 2
)

√
V =

√
P

ln 2
+ o
(√

P
)

Eb =
P

2Ra
. (77)

we can write (76) as

1 ≤
[

Eb

ln 2
− RaE2

b

ln 2
(1 + ε (P ))

]

−
√

2
d
Q−1(δ)

[√
2Eb

ln 2
(1 + ε (P ))

]

+
log d

2Ra
+ 2M

d
. (78)

From the lower bound of the Theorem statement,
O
(
d exp(−√

d ln 2Q−1(δ))
)

< Ra, follows that
log d

2Ra
+2M

d = o(
√

d−1). With this and the fact that
Ra ≤ o(

√
d−1) =

√
d−1ε

(
d−1
)

and ε (P ) = ε
(
d−1
)
,

we can write (78) as

1 ≤ Eb

ln 2
− 2Q−1(δ)

ln 2

√
Ebd−1 + o

(√
d−1
)

(79)

We solve this inequality with respect to Eb,

√
Eb ≥ −B

2

(
1 +

√
1 +

4 ln 2
B2

)
(80)

B = −2Q−1(δ)
√

d−1
(
1 + ε

(
d−1
))

. (81)

The square root can be expanded as√
1 +

4 ln 2
B2

=

√
ln 2

Q−1(δ)

√
d
(
1 + ε

(
d−1
))

. (82)

Then √
Eb ≥ Q−1(δ)

√
d−1

(
1 + ε

(
d−1
))

×
(

1 +

√
ln 2

Q−1(δ)

√
d
(
1 + ε

(
d−1
)))

=
√

ln 2 + Q−1(δ)
√

d−1 + o
(√

d−1
)

, (83)

which give the lower bound in (20).
For the upper bound, notice that we consider solutions with

P → 0. On the other hand R−1
a P
2 = Eb ≥ Eb,min > 0 so that

nP = d
2R−1

a P → ∞. Therefore the conditions for using the
bound (74) are satisfied. We can write this as

d

2
≥ d

2Ra
C−
√

d

2Ra
V Q−1(δ)+

1
2

log
d

2Ra
−logG(P ) + M.

(84)

Now use that

− log G =
ln P

2
+ M̃ − 5

2
P +

7
4
P 2 + o

(
P 2
)

(85)

together with (77) to get

1 ≥
[

Eb

ln 2
− RaE2

b

ln 2
(1 + ε (P ))

]

− 2

√
1
d
Q−1(δ)

[√
Eb

ln 2
(1 + ε (P ))

]

+
log Ebd

d
− 10RaEb

d
+

14 (RaEb)
2 (1 + ε (P ))
d

+
2M̂

d
(86)

or

1 ≥ Eb

ln 2
− 2Q−1(δ)

ln 2

√
Ebd−1 + o

(√
d−1
)

. (87)

This is the same as (79) with the inequality reversed. Solving
it the same way for Eb results in the upper bound in (20)

We next consider solutions that allow bursty transmission.
First notice that we have

Eb =
nP

2k
≥ nP

2
(
nC −√

nV Q−1(δ) + 1
2 log n + M

)
=

1
f(P )

(88)

f(P ) = 2
nC

nP
− 2

√
nV

nP
Q−1(δ) +

log n

nP
+

2M

nP
. (89)

The idea is that we maximize f(P ) for fixed n (we will get
to constraints below). We have

f ′(P )nP 2 =− log n − 2M +
√

nPQ−1(δ) log e+
√

no(
√

P ).
(90)

To solve f ′(P ) = 0 is equivalent to solving

P (1 + ε (P )) =
(2M + log n)2

(Q−1(δ) log e)2 n
. (91)

We claim that the solution is

P =
log2 n

(Q−1(δ) log e)2 n
+

log2 n

n
ε(n−1). (92)
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To show that this is the solution, we need to verify that the term
�(n−1) does in fact converge to zero. Let explicitly ε(n−1) =
h(n). Then inserting (92) in (91)

h(n) =
n

log2 n

1
1 + ε(n−1)

(
(2M + log n)2

(Q−1(δ) log e)2 n

− log2 n

(Q−1(δ) log e)2 n
(1 + ε(n−1))

)
(93)

→ 0 as n → ∞. (94)

Where we have used that ε(P ) = ε(n−1) for the given
solution (92). We now insert (92) in (the Taylor series of)
f(P ),

f(P ) = log e − P
log e

2
− 2Q−1(δ) log e√

nP

+
3Q−1(δ) log e

2

√
P

n
+

log n + 2M

nP
+ o(P ). (95)

Taylor series now gives

log n + 2M

nP
=

(
Q−1(δ) log e

)2
log n

(
1 + ε

(
n−1
))

+
2M

log2 n

(
1 + ε

(
n−1
))

(96)

3Q−1(δ) log e

2

√
P

n
=

3
2

log n

n

(
1 + ε(n−1)

)
(97)

−2Q−1(δ) log e√
nP

=
−2
(
Q−1(δ) log e

)2
log n

(
1 + ε

(
n−1
))

(98)

o(P ) =
log2 n

n

(
1 + ε

(
n−1
))

ε
(
n−1
)
, (99)

which gives

f(P ) = log e −
(
Q−1(δ) log e

)2
log n

+ o

(
1

log n

)
. (100)

Thus,

Eb ≥ 1
log e

+

(
Q−1(δ)

)2
log n

+ o

(
1

log n

)
. (101)

For the achievability bound, we can choose P , and based
on (92) we choose

P =
log2 n

(Q−1(δ) log e)2 n
. (102)

The bound (74) now is a function only of n(and δ of course).
We call the resulting expression for G(P ) for G(n) with

G(n) =
24√
2π

√
n

log n
+ o

( √
n

log n

)
. (103)

Thus limn→∞
G(n)√

n
= 0, so that we have

k ≥ nC(n)−
√

nV (n)Q−1 (δ)−log
(

G(n)√
n

)
+O(1). (104)

We can now upper bound the energy per bit as follows

Eb =

nP

2k
≤

(
Q−1(δ) log e

)−2 log2 n

2
(
nC(n) −√nV (n)Q−1 (δ) − log

(
G(n)√

n

)
+ M

)
≤ 1

g (n)
(105)

g (n) =
2nC(n)−2

√
nV (n)Q−1 (δ) − 2 log

(
G(n)√

n

)
+ 2M

(Q−1(δ) log e)−2 log2 n
.

(106)

Here

2nC

(Q−1(δ) log e)−2 log2 n
= log e −

(
Q−1(δ) log e

)−2

2
log2 n

n

+ o

(
log2 n

n

)
(107)

and

− 2

√
nV (n)Q−1 (δ)

(Q−1(δ) log e)−2 log2 n

= −2
1

logn
+

3
(
Q−1 (δ) log e

)−2

2
log n

n
+ o

(
log n

n

)
(108)

−2
log
(

G(n)√
n

)
log2 n

+
2M

log2 n
= 2

log log n

log2 n
+

M̃

log2 n
. (109)

Inserting this gives

g (n) = log e − 2

(Q−1(δ) log e)−2

1
log n

+ o

(
1

log n

)
.

(110)

From which

Eb ≤ 1
log e

+
2
(
Q−1(δ)

)2
log n

+ o

(
1

log n

)
. (111)

We notice already here that in the bursty transmission regime,
upper (111) and lower bounds (101) are not tight.

From (100) and (110) we also get the optimum k as

k∗(n) =
1

2 (Q−1(δ))2 log e
log2(n) + O (log n) . (112)

Now if k∗(n) < d
2 , this means that k = d

2 , the minimum,
is optimum – in the sense that the lower bound is increasing
with k, while it is also achieved for k = d

2 . This condition is
equivalent to

1
2 (Q−1(δ))2 log e

log2(n) + O (log n) <
d

2
(113)

n < 2
√

dQ−1(δ)
√

log e+O(1). (114)

That is

Ra > O

(
d

2
2−

√
dQ−1(δ)

√
log e

)
. (115)
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We now look at the regime of very bursty transmission.
Since the energy is decreasing with n and k(n) is increasing
in n, we should choose k(n) ≈ d. Specifically, we put k(n) =
d − ξ(d). With this we get

log n =
√

2 log eQ−1(δ)
√

d − ξ(d) + O(1) (116)

and then from (101) and (111)

Eb ≥ 1
log e

+
Q−1(δ)√

2 log e

1√
d − ξ(d)

+ o

(
1√

d − ξ(d)

)

(117)

Eb ≤ 1
log e

+ 2
Q−1(δ)√

2 log e

1√
d − ξ(d)

+ o

(
1√

d − ξ(d)

)
.

(118)

We want to choose ξ(d) so that it does not contribute to the
first term, but is absorbed into the o(·) term. This is the case
for ξ(d) = o(d). Then

Eb ≥ 1
log e

+
Q−1(δ)√

2 log e

1√
d

+ o

(
1√
d

)
(119)

Eb ≤ 1
log e

+ 2
Q−1(δ)√

2 log e

1√
d

+ o

(
1√
d

)
(120)

and

Ra =
o(d)
n

= o(d) exp(−
√

2d ln 2Q−1(δ)). (121)

The lower bound (119) is lower than the lower bound of Propo-
sition 3, so we can use that instead. The upper bound (120) on
the other hand meets the lower bound, so that it is achievable.

APPENDIX C
PROOF OF THEOREM 4

We use the notation of [27]. Consider codebooks with
(E, M, �) (with M = 2k) satisfying the average energy con-
straint. The basic idea in both achievability and converse is to
use a codebook

(
Ê, M̂ , �̂

)
with M̂ < M satisfying a maximal

energy constraint, and then from this construct an average
energy constraint codebook by amending the codebook with
M − M̂ 0 entries. For achievability we can assume this
structure, and for the converse we need to prove it to be
optimum. Let 0 < α < 1, then we set

M =
M̂

α
(122)

E = Êα (123)

The average Pe is

Pe = 1 × M − M̂

M
+ P̂e × M̂

M
≤ 1 − α + �̂ × α = � (124)

and the average energy of codewords in this codebook is

0 × M − M̂

M
+ Ê × M̂

M
= E. (125)

For achievability we can directly use [27, Theorem 3]
with

(
Ê, M̂, �̂

)
. But instead of the final expression we

use [27, (48)]

log (αM) ≥ −log Q

(√
2E

α
+ Q−1

(
1 − �

α

)
+ O

(√
α

E

))

log (M) ≥−log (α) − log Q

(√
2E

α
+ Q−1

(
1 − �

α

)

+O

(√
α

E

))
. (126)

For the converse, most of the proof of [27, Theorem 2]
caries over to the case of variable energy. Specifically,
[27, (21)] is still true when E is replaced by Ej = 	cj	2,
and [27, (24)] is still true when Ej is used,

1
M

≥ 1
M

M∑
j=1

βP j(g−1(j)) (Ej) . (127)

Therefore,

1
M

≥ 1
M

M∑
j=1

Q
(√

2Ej + Q−1 (1 − �j)
)

= E

[
Q
(√

2Ej + Q−1 (1 − �j)
)]

1≤j≤M
(128)

where

1
M

M∑
j=1

Ej ≤ E (129)

1
M

M∑
j=1

�j ≤ �. (130)

A valid choice here is to set �j = 1 ( [27, (21)] is still valid),
and for those terms we get
Q
(√

2Ej + Q−1 (1 − �j)
)

= 0 independent of Ej , so that
setting Ej = 0 is optimum. Let us assume that the (1−α)M
last codewords have �j = 1. Then

1
αM

≥ 1
αM

αM∑
j=1

Q
(√

2Ej + Q−1 (1 − �j)
)

(131)

subject to

1
αM

αM∑
j=1

Ej ≤ E

α

1
αM

αM∑
j=1

�j + (1 − α) ≤ �. (132)

It is clear that (131) is minimized for the constraints (132) are
satisfied with equality. Therefore let E1 = ME −∑αM

j=2 Ej

and �1 = αM(�−(1−α))−∑αM
j=2 �j . Taking derivatives of the

right hand side of (131), it is then seen that a local minimum
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therefore must satisfy

− 1
2

(√
2Ej + Q−1 (1 − �j)

)2

= −1
2

(√
2E1 + Q−1 (1 − �j)

)2

(133)

2
[
Q−1 (1 − �j)

]2 − 1
2

(√
2Ej + Q−1 (1 − �j)

)2

= 2
[
Q−1 (1 − �1)

]2 − 1
2

(√
2E1 + Q−1 (1 − �j)

)2

.

(134)

We divide the codes into those that have ∞ >√
2Ej + Q−1 (1 − �j) > 0 and those with√
2Ej + Q−1 (1 − �j) ≤ 0. We can assume that the former

are the first βαM indices. For those j we can conclude
from (133) that we must have

√
2Ej + Q−1 (1 − �j)

independent of j. Then we can conclude from (134) that �j

is independent of j, and therefore also Ej independent of j.
Then

1
αM

≥β
1

βαM

βαM∑
j=1

Q
(√

2Ej+Q−1 (1−�j)
)

+
1
2

(1 − β)

(135)

≥ βQ

(√
2E

α
+ Q−1

(
1 − �

α

))
+

1
2

(1 − β) . (136)

Here, for sufficiently large E, the Q-function is less than half,
so that β = 1 is optimum. Thus

1
M

≥ αQ

(√
2E

α
+ Q−1

(
1 − �

α

))

≥ (1 − �)Q

(√
2E

α
+ Q−1

(
1 − �

α

))
(137)

as α ≥ 1 − � follows from (132). Note that (137) is very
similar with (126).

We need to optimize the converse with respect to α; we
can then use the same value for achievability. We let z =
Q−1

(
α+�−1

α

)
, α = 1−�

1−Q(z) , and then bound

max
z>0

√
2E

1 − �
(1 − Q (z)) − z. (138)

To maximize the last expression with respect to z, we take the
derivative and equate to zero. Let K−1

0 = 4π (1 − �) .

z2 = ln (K0E) − ln (1 − Q (z)) (139)

= ln (K0E) − ln
(
1 − Q

(√
ln (K0E) − ln (1−Q (z))

))
(140)

= ln (K0E) − ln
(
1 − Q

(√
ln (K0E) + o (1)

))
. (141)

In (140) we substitute for z in Q (z) from equation (139)
and in (141) we make use of the known fact that z → ∞
(for we know that α → 1 − �) as E → ∞. Also note
that limE−1→0 Q (z) → 0. Using the well known series

Q (x) = K1e
− x2

2
(
x−1 + o

(
x−1
))

for sufficiently large x,
where K−1

1 =
√

2π we have

z2

= ln (K0E) − ln

(
1 − K1e

− lnK0E+o(1)√
ln (K0E) + o (1)

[
1 + ε

(
E−1

)])

(142)

= ln (K0E) +
K1K

−1
0 E−1√

ln (K0E) + o (1)

[
1 + ε

(
E−1

)]
(143)

= ln (K0E) + K1K
−1
0 E−1

√
ln−1 (K0E)

[
1 + ε

(
E−1

)]
(144)

= ln (K0E) + o (1) . (145)

Let K2 = 2
1−� . Now it is easy to verify that

Q (z)

= K1e
− ln(

√
K0E)−K12

−1K−1
0 E−1

√
ln−1(K0E)[1+ε(E−1)]

× (z−1 + o
(
z−1
))

(146)

=

√
K2

1K−1
0 E−1

z2

×
(

1 − K12−1K−1
0 E−1

√
ln−1 (K0E)

[
1 + ε

(
E−1

)])
(147)

=

√√√√ K2
1K−1

0 E−1

ln (K0E) + K1K
−1
0 E−1

√
ln−1 (K0E) [1 + ε (E−1)]

×
(

1 − K12−1K−1
0 E−1

√
ln−1 (K0E)

[
1 + ε

(
E−1

)])
(148)

=
√

K2
1K−1

0 E−1 ln−1 (K0E)

×
(

1 − K12−1K−1
0 E−1

√
ln−1 (K0E)

[
1 + ε

(
E−1

)])
(149)

and thus we can write EQ (z) =
√

K2
1K−1

0 E ln−1 (K0E) +
o (1) . Furthermore,√

E (1 − Q (z)) z2

=

√
E ln (K0E) + K1K

−1
0

√
ln−1 (K0E) [1 + ε (E−1)]

−
√

2−1K2
1K−1

0

[
1 + ε

(
E−1

)]
(150)

=
√

E ln (K0E) −
√

2−1K2
1K−1

0

[
1 + ε

(
E−1

)]
. (151)

and[√
K2E (1 − Q (z)) − z

]2
= K2E − K2EQ (z) + z2 − 2

√
K2E (1 − Q (z))z (152)

= K2E−K2

√
K2

1K−1
0 E ln−1(K0E)−2

√
K2E ln (K0E)

−
√

2K2K2
1K−1

0 (153)

+ ln (K0E) + o (1) . (154)
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Using the above expansions we have

log
[√

K2E (1 − Q (z)) − z
]

=
1
2

log
[(√

K2E (1 − Q (z)) − z
)2
]

= 2−1 log
[
K2E

[
1 − O

(√
E−1 ln E

)]]
= 2−1 log (K2E) + o (1) . (155)

From the series expansion of the Q function ( [27, (42)]), we
get for the converse expression

log M

≤ 2−1

[
K2E − K2

√
K2

1K−1
0 E ln−1 (K0E)

−2
√

K2E ln (K0E)
]

log e

+ log E + O(1). (156)

=
E

1 − �
log e

−
√

2E

1 − �
ln

E

4π (1 − �)

(
1 + ln−1

(
E

4π (1 − �)

))
log e

+ log E + O(1). (157)

For achievability, we can write O
(√

α
E

)
= O

(√
E−1

)
and

[√
K2E (1 − Q (z)) − z + O

(√
E−1

)]2
=
[√

K2E (1 − Q (z)) − z
]2

+ O
(
E−1

)
+ O

(√
(1 − Q (z))

)
− O

(
z
√

E−1
)

(158)

=
[√

K2E (1 − Q (z)) − z
]2

+ O (1) . (159)

As above we now have

log M

≥ E

1 − �
log e

−
√

2E

1 − �
ln

E

4π (1 − �)

(
1 + ln−1

(
E

4π (1 − �)

))
log e

+ log (E) + O (1) . (160)

APPENDIX D
PROOF OF THEOREM 8

The energy lower bounds: Assume that π∗ achieves the
optimal delay-power tradeoff (δ, P ), then the corresponding
coding action (ki, ni, Pi, Li) chosen by the encoder at each
coding epoch satisfies (33)-(35). We start from constraint (33),
i.e., 0 ≤ ki/b ≤ q, and relax it to ki/b ≥ 0, which is one of
the constraints put on A in (46) for ELB

b (d, δ).
Since the above mentioned coding action satisfies (33),

it automatically belongs to A. Denote αi the probability for
the encoder to choose this coding action from A, then

Eb (d, δ) =
∑|A|

i=1 αiniPil̄i∑|A|
i=1 αiki

. (161)

After a long enough period of t (that lasts for N cod-
ing epochs), the average number of messages that enter the
buffer is

N

|A|∑
i=1

αiki = λmsgbt (162)

and the average number of output symbols is N
∑|A|

i=1 αini l̄i.
Due to bandwidth constraint, we have

N

|A|∑
i=1

αinil̄i ≤ t

Tc
. (163)

Combining (162) and (163), we have∑|A|
i=1 αini l̄i∑|A|
i=1 αiki

≤ 1
λmsgbTc

=
1

Ra
. (164)

Now we consider the delay constraint. The waiting time
consists of two parts: the waiting time for the arrival of the
whole batch (ki messages), and the waiting time for the start
of the service. We only consider the first part, and then get a
lower bound of waiting time, which is also a lower bound of
the total time. Therefore, the average total time should be low

bounded by
N
�|A|

i=1 αi
1

2λmsg

�
ki
b −1

�
ki
b

λmsgt .
On the other hand, the average total delay is constrained by

d, hence we have

N
∑|A|

i=1 αiki

(
ki

b − 1
)

2λ2
msgbt

+
N
∑|A|

i=1 αinil̄iTc
ki

b

λmsgt
≤ dTs. (165)

Combining (162) and (165) gives us∑|A|
i=1 αik

2
i

2λmsgb
∑|A|

i=1 αiki

− 1
2λmsg

+
Tc

∑|A|
i=1 αini l̄iki∑|A|
i=1 αiki

≤ dTs.

(166)

Furthermore, the message success rate can be expressed as

ps =
∑|A|

i=1 αiki(1 − �Li

i )∑|A|
i=1 αiki

, (167)

which is constrained by 1 − δ.
Therefore, combining the above, we have(

α1, α2, · · · , α|A|
) ∈ ALB

d,δ , with ALB
d,δ given in (43).

If we define

ELB
b (d, δ) = inf

(α1,α2,··· ,α|A|)∈ALB
d,δ

∑|A|
i=1 αiniPi l̄i∑|A|

i=1 αiki

, (168)

then ELB
b (d, δ) lower bounds Eb (d, δ), i.e.,

Eb(d, δ) ≥ ELB
b (d, δ). (169)

The energy upper bound: We consider the following time-
sharing strategy: The encoder waits till the number in the
queue reaches p0k0, then all the p0k0 messages are served
(encoded and transmitted) in a batch with fixed k = p0k0b, n,
P and L = 1 such that r < C. After that, the encoder drops
(1 − p0) k0 messages successively. Then the encoder repeats
these two operations indefinitely.

Next we will show that the energy upper bound could be
achieved by applying the above coding scheme to the original
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system in Fig. 4. To prove this, we need to introduce another
two queuing systems with infinite buffer as well. The first
new system adopts a batch serving strategy: if the number of
messages in the queue is less than k0, the encoder waits till
the number of messages in the queue reaches k0; otherwise,
it serves all the k0 messages in a batch within a fixed service
time of nTc.

The second new system adopts a similar strategy: if the
number of messages in the queue is less than k0, the encoder
waits till the number of messages in the queue reaches k0;
otherwise, it sends a message within a fixed service time of
nTc

k0
. Note that different from the first system, the second new

system serves only one message at each time.
For the first new system, we consider the following two

cases: a) consider the departure epoch of a whole batch as the
departure epoch of each message in the batch; b) consider the
“real” departure epoch of a message as the departure epoch
of that message.

Denote the average delays for the original system, the first
new system for case a), the first new system for case b),
and the second new system as dtotal, dtotal

1,a , dtotal
1,b , and dtotal

2
8,

respectively. Then we have the following Lemma

Lemma 1. Consider three same message streams are fed into
the original system and the two new systems, respectively.
For the first new system, if we consider the case a), then the
original system has a lower average delay than the first new
system; and in turn, if we consider the case b), the first new
system has a lower average delay than the second new system.
That is,

dtotal ≤ dtotal
1,a (170)

dtotal
1,b ≤ dtotal

2 . (171)

Proof: Obviously the original system has a lower average
delay than the first new system, since it does not need to wait
all the k0 messages before starting service. Next we show the
first new system has a lower average delay than the second
new system.

We claim that all the messages depart from the first new
system earlier than from the second new system.

We use mathematical induction to prove the above claim.
Denote the arrival epoch of the ith message as tai , and the
departure epochs for the first and second new system as td1

i

and td2
i , respectively. We also assume that both the systems

are initially empty. Next we will show td1
i ≤ td2

i .
1) Before the first k0 messages arrive, both systems are in

the idle state. After they arrive and enter the buffers, the second
system serves the first message, and the first system serves the
whole batch (of all k0 messages). Hence the departure epoch
of the first message is tak0

+ ΔT, ΔT � nTc

k0
for both the

systems, i.e., td1
1 = td2

1 .
2) Assume that td1

i ≤ td2
i , i ≥ 1 holds. To prove td1

i+1 ≤
td2
i+1, we need to enumerate all possible cases for the original

system.

8All of them denote real (unnormalized) delays.

Case 1: If the ith message and the (i + 1)th message are
served in the same batch in the first system, then td1

i+1 = td1
i +

ΔT . Hence td2
i+1 ≥ td2

i + ΔT ≥ td1
i + ΔT = td1

i+1.
Case 2: If the ith message and the (i + 1)th message

are served in the different batches in the first system,
then td1

i+1 = max
{
td1
i + ΔT, tai+k0

+ ΔT
}

. Hence td2
i+1 =

max
{
td2
i + ΔT, tai+k0

+ ΔT
} ≥ td1

i+1.
Combining both the cases above, we have td1

i+1 ≤ td2
i+1.

Therefore, td1
i ≤ td2

i for all i ≥ 1, i.e., all the messages depart
from the original system earlier than from the new system.
This implies that the original system has lower average delay.

On the other hand, for the second new system we divide the
buffer into two segments: the first consisting of the first k0−1
message space, and the second consisting of the other (infinite)
message space. Then by observing the strategy applied to
the second new system, we can find that the first segment will
be always full after k0−1 message arrivals and that the second
segment is equivalent to an M/D/1 queuing system with arrival
rate λmsg and service time nTc

k0
. After a sufficiently long period

of time t, the incurred average delay dtotal
2 for the second new

system can be expressed as

dtotal
2 =

(k0 − 1) t + λmsgt
(
d2 + nTc

k0

)
λmsgt

=
k0−1
λmsg

+d2+
nTc

k0

(172)

where d2 =
ρ

2μ(1 − ρ)
=

ρ2

2λmsg(1 − ρ)
, with 1

μ = nTc

k0
and

ρ = λmsgnTc

k0
= Rap0

r , is the average waiting delay of the
M/D/1 queuing system. To guarantee stability of the system,
ρ < 1 should hold.

For the first new system, we can observe that the average
delay for cases a) and b) are only different in service (trans-
mission) delay part. Moreover, we can express them as

dtotal
1,a = dwait

1 + dserv
1,a (173)

dtotal
1,b = dwait

1 + dserv
1,b , (174)

where dwait
1 denotes the waiting delay for both cases a) and

b), and

dserv
1,a = nTc (175)

dserv
1,b =

k0 + 1
2

nTc

k0
(176)

denote the service delay for cases a) and b), respectively.
From (170)-(176) we have

dtotal ≤ dtotal
1,a = dwait

1 + dserv
1,a (177)

= dtotal
1,b − dserv

1,b + dserv
1,a (178)

≤ dtotal
2 − dserv

1,b + dserv
1,a (179)

=
k0 − 1
λmsg

+ d2 +
nTc

k0
− k0 + 1

2
nTc

k0
+ nTc (180)

=
k0

λmsg

(
1 +

ρ

2

)
+

3ρ− 2
2λmsg(1 − ρ)

. (181)
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In addition, the message delivery success rate of the original
system is

ps = p0 (1 − �) . (182)

and the energy per bit is

Eb,0 =
nP

k0b
=

p0P

r
. (183)

Hence we have

Eb (d, δ) ≤ min
(k, n, P, p0) ∈ AUB

d,δ

p0P

r
. (184)

APPENDIX E
PROOF OF THEOREM 9

The energy is minimized by maximizing block length, so we
set k0 = λmsgdTs

1+ ρ
2

− 3ρ−2

2(1+ ρ
2 )(1−ρ)

in (44)9 to get

n =
k

r
=

b

Rap0
k0ρ=

d

Rap0

ρ

1+ ρ
2

− b

Rap0

(3ρ − 2) ρ

2
(
1 + ρ

2

)
(1 − ρ)

.

(185)

As in Appendix A, we now substitute n and r in

r = C

(
P0 + �P

1 − �

)
−
√

V

(
P0 + �P

1 − �

)√
log n

n
+

M√
n

(186)

where P = P0 + �P and P0
1−� = 22Rap0 − 1. Since ΔP → 0

as n → ∞ (d → ∞) we have

Rap0

ρ (d)
= C0−V0+[C1 − V1]�P +o (�P )+

M√
n (d)

(187)

where C0 = C
(

P0
1−�

)
, C1 = 1

2 ln 2(1−�+P0)
,

V0 =
√

V
(

P0
1−�

)
log (n)n−1 and V1 =

(�−1)2
√

log(n)n−1

√
2 ln 2

√
P0(−2�+P0+2)(−�+P0+1)2

. Solving for ΔP in (187)

gives us

�P (1 + ε (ΔP )) = C−1
1

(
Rap0

ρ (d)
− C0

)
+ C−1

1 V0+(
Rap0

ρ (d)
− C0

)
C−2

1 V1 + o
(√

n−1 log n
)

.

We will now choose an optimum ρ (d) such that both achiev-
able Eb (d, δ) is minimized and simultaneously ensuring that
n → ∞ as d → ∞ so that (186) can be used in the limit. The
latter condition would also ascertain that both V0, V1 → 0 as
d → ∞. Using the above equation we have

Eb (d, δ) =
p0P

2r
=

ρ (d)
2Ra

(P0 + ΔP )

= 2−1C−1
1 R−1

a

[
ρC1P0 + (Rap0 − C0ρ) + V0ρ

+ (Rap0 − C0ρ)C−1
1 V1 + o

(√
n−1 log n

)]
.

9As k0 → ∞, the integer constraint can be ignored

Optimizing Eb (d, δ) for sufficiently large n (equivalently d),
is equivalent to selecting a suitable ρ (d) such that

h (P0, ρ (d)) :=
Rap0

2C1Ra
+

P0 − C−1
1 C0

2Ra
ρ (d) (188)

is minimized. As

C−1
1 C0 − P0

= (1 − �) 22y
(
y2 ln 2 − 1 + 2−2y

) ≥ 0, y = Rap0 (189)

this means our choice for ρ (d) → 1 as d → ∞. With
this insight, let ρ (d) = 1 − α (d) where α (d) ∈ (0, 1)
and α (d) → 0 as d → ∞. This gives us n (d) =
1−α
3−α

[
b

Rap0

(3α−1)
α + 2

Rap0
d
]

and

Eb (d, δ) = 2−1C−1
1 R−1

a

[
C1P0 +

(
C−1

1 C0 − P0

)
α (d) + V0

+
[
C0C

−1
1 V1 − V0

]
α (d) + o

(√
n−1 log n

)]
.

Finally, we now select α(d) ∈ ε
(
d−1
)

such that

both o
(√

n−1 log n
)

and α (d) get absorbed into an

o
(√

d−1 log d
)

term – otherwise, these terms contribute pos-
itively to energy, i.e., make the energy larger. This is satisfied
by choosing α (d) = d−1 log d giving us

√
n−1 log n =√

3
2Rad−1 log d + o

(√
d−1 log d

)
and V1α (d) , V0α (d) ∈

o
(√

d−1 log d
)

. Thus

Eb (d, δ)
1 − �

=
22Rap0 − 1

2Ra

+
22Rap0

log e

√
3

2Ra
V (22Rap0 − 1)d−1 log d

+ o
(√

d−1 log d
)

.

This completes the proof.

APPENDIX F
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Lower Bounds: Denote A+ = {i : 1 ≤ i ≤ |A| , ni > 0}.
For any i /∈ A+, it holds that ni = Li = 0. Hence,

ALB
∞,δ = lim

d→∞
ALB

d,δ ={
(α1, α2, · · · , α|A|) : 0 ≤ αi ≤ 1, for 1 ≤ i ≤ |A| ,
|A|∑
i=1

αi = 1,

∑
i∈A+ αini l̄i∑|A|

i=1 αiki

≤ 1
Ra

,

∑
i∈A+ αiki(1 − �Li

i )∑|A|
i=1 αiki

≥ 1 − δ
}
.

(190)
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On the other hand,

lim
d→∞

ELB
b (d, δ)

≥ inf
(α1,α2,··· ,α|A|)∈ALB

∞,δ∑
i∈A+ αini l̄i(1 − �i)N0

2

(
22ri − 1

)
∑|A|

i=1 αiki

(191)

= inf
(α1,α2,··· ,α|A|)∈ALB

∞,δ

N0
2

∑
i∈A+ αini(1 − �Li

i )
(
22ri − 1

)
∑|A|

i=1 αiki

(192)

≥ inf
(α1,α2,··· ,α|A|)∈ALB

∞,δ

N0
2

(∑
i∈A+ αini(1 − �Li

i )
)⎛⎜⎝2

2

�

i∈A+ αini(1−ε
Li
i

)ri
�

i∈A+ αini(1−ε
Li
i

) − 1

⎞
⎟⎠

∑|A|
i=1 αiki

(193)

≥ inf
(α1,α2,··· ,α|A|)∈ALB

∞,δ

N0
2

(∑
i∈A+ αini(1 − �Li

i )
)⎛⎝2

2
(1−δ)

�|A|
i=1 αiki

�

i∈A+ αini(1−ε
Li
i

) − 1

⎞
⎠

∑|A|
i=1 αiki

(194)

= inf
t

N0

2
22(1−δ)t − 1

t
, (195)

where

t =
∑|A|

i=1 αiki∑
i∈A+ αini(1 − �Li

i )
≥

∑|A|
i=1 αiki∑

i∈A+ αini l̄i
≥ Ra, (196)

and (193) follows from the fact that 22x − 1 is convex in x.
Since 22t−1

t is increasing in t, by (195) we have

lim
τ→∞ELB

b (τ, δ) ≥ N0

2Ra

(
22Ra(1−δ) − 1

)
. (197)

Upper Bounds: Fix r and P , since r < C, let n → ∞
(d → ∞), then � → 0. Therefore,

lim
d→∞

EUB
b (d, δ)

≤ lim
τ→∞ inf

p0P

r
over (r, n, P )

subject to p0 =
1 − δ

1 − �
,

k = bp0k0, k0 ∈ N,

r < C,

ρ =
Rap0

r
< 1,

k0

λmsg

(
1 +

ρ

2

)
+

3ρ− 2
2λmsg(1 − ρ)

≤ dTs

= inf
r,P

(1 − δ)P

r
subject to Rap0 < r < C

≤ inf
r

(1 − δ)N0

2r

(
22r − 1

)
subject to r > Rap0 (1 − δ)

=
N0

2Ra

(
22Rap0(1−δ) − 1

)
. (198)

In addition,

lim
d→∞

EUB
b (d, δ) ≥ lim

d→∞
ELB

b (d, δ) . (199)

Combining this with (197) and (198) gives us

lim
d→∞

EUB
b (d, δ)= lim

d→∞
ELB

b (d, δ)=
N0

2Ra

(
22Rap0(1−δ)−1

)
.

(200)
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